实验三 三态门
实验六、三态门
实验目的: 一、 实验目的: 1. 掌握三态门的逻辑功能及工作原理。 2. 了解三态门在计算机总线中的应用。 3. 熟悉集电极开路门的电路原理。 4. 掌握集电路开路门的使用方法。
1
二 、实验设备与材料 设备:
1. 示波器 GOS-620FG一台。 2. 三用表一只。
9
五、实验内容: 实验内容 1. 三态门的测量(高阻测量)
10
1. 三态门的测量 (正常传输的测量)
11
将其测试的数据填入下表中,并分析其结果, 是否符合下列逻辑关系。
12
2.实现一位(A0
B0)二进制的双向传送,实现A→B,A
输入续脉冲信号,测试并记录B点的相应信号;正确选择三态 门控制端的逻辑电平(C1,C3=0;C2,C4=1), 实现B→A,B输入为高电平,或低电平,或连续脉冲信号 时,测试并记录A点相应信号;正确选择三态门控制端的逻辑 电平(C1,C3=1;C2,C4=0),
材料:
OC门74LS03 一片; 三态门74LS125 一片。
2
三、实验任务: 实验任务
1. 利用74LS125芯片测量三态门高电平、低电平、 高阻抗。 2. 用三态门构成计算机地址总线、数据总线和控制 总线,实现双向数据传送。 3. 利用74LS03芯片测量集电极开路门(OC )门。 4. 集电极开路门用于“线与”功能,实现逻辑电平 的转换,以驱动发光二极管、继电器、电磁阀等。
3
四、实验原理: 实验原理
1. 三态门的测量 本实验以74LS125为例进行研究。74LS125的 引出线图如下图所示。芯片中含有四个功能相同 的三态输出门,可以独立地被使用。
4
三态门实验实验启发收获
三态门实验实验启发收获近年来,随着科技的飞速发展,人们对于物质的认知也在不断提高。
然而,对于电子学中的一些概念和原理,很多人可能并不了解。
今天,我们将通过讨论三态门实验的实验启发和收获,来帮助大家更好地理解这个概念。
三态门实验是一种基于逻辑电路的实验,它可以帮助我们理解三态门的工作原理和应用。
三态门是一种特殊的逻辑门,它除了具有逻辑高和逻辑低的输出状态,还有一个特殊的状态,即高阻态。
在这个状态下,三态门的输出端与输入端之间是断开的,相当于一个开关断开的状态。
这种特殊的输出状态使得三态门在电子系统中具有广泛的应用,特别是在总线系统中。
通过进行三态门实验,我们可以更直观地感受到三态门的工作原理。
首先,我们需要准备一个三态门芯片和一些外围电路。
接着,我们将输入信号接入到三态门的输入端,然后将输出信号连接到示波器或其他显示设备上。
当我们输入高电平信号时,三态门的输出将变为逻辑高;当我们输入低电平信号时,三态门的输出将变为逻辑低。
但是,当我们输入一个特定的控制信号时,三态门将进入高阻态,输出将断开。
通过这个实验,我们可以清楚地看到三态门的输出状态是如何变化的。
同时,我们还可以通过改变输入信号和控制信号的状态,来观察三态门的不同工作模式。
这样一来,我们就可以更好地理解三态门的原理和应用。
通过三态门实验,我们不仅可以获得对三态门的直观认识,还可以从中获得一些实验启发和收获。
首先,我们可以深入了解逻辑电路的原理和运作方式。
逻辑电路是现代电子系统的基础,了解它的原理对于我们理解和设计电子系统非常重要。
其次,通过实验,我们可以培养工程实践能力和动手能力。
实验是理论知识的实践应用,通过亲自进行实验,我们可以更好地掌握知识,并培养解决问题的能力。
此外,通过实验我们还可以培养观察力和分析能力。
在实验过程中,我们需要观察和分析实验现象,从中总结规律和结论,这对于我们的科学素养和思维能力有很大的帮助。
在进行三态门实验时,我们还可以进一步拓展实验内容,加深对逻辑电路的理解。
集成门电路功能测试(三态门)
集成门电路功能测试实验报告一实验内容1 三态门的静态逻辑功能测试。
2 动态测试三台门。
并画出三态门的输出特性曲线。
输入为CP矩形波。
3 测试三态门的传输延迟时间。
4 动态测试三态门的电压传输特性曲线。
输入为三角波。
二实验条件硬件基础实验箱,函数信号发生器,双踪示波器,数字万用表,74LS125。
三实验原理1 首先测试实验箱上提供的频率电源参数是否正确。
打开实验箱电源,把分别把5MHz的脉冲接入红表笔上,黑表笔接地。
观察示波器显示波形的频率是否为5MHz,经过观察计算,波形频率接近5M。
误差很小,从下图可以看出,ch1为输入波形一个周期占四个格子,可计算得到f=5MHz。
2 三态门的静态逻辑功能测试。
(后面四个实验都是通过示波器在同一时刻测试3动态测试三台门。
并画出三态门的输出特性曲线。
输入为CP矩形波。
使能端无效是波形:使能端有效时输出波形4 测试三态门的传输延迟时间。
通过测量同一时刻的输入输出波形,可以观察到三态门的输出延迟。
得到波形图为CH1,CH2分别为输入输出波形,可以看出在上升沿的输出延迟为10ns然而下降沿的时候的截图已经丢失了,依稀记得在实验时候,测得是数据下降沿的输出延迟与上升沿的不一致,并且比上升沿的短。
为9.6ns,其传输延迟为两个延迟的平均值9.8ns。
5 测试三态门的电压传输特性曲线。
输入为三角波。
得到输入输出波形为:CH1为输入,CH2为输出。
得到阀值电压为0.92V。
四总结这次实验基本上和上次实验的方法一样,没遇到什么大的问题。
就是还是粗心。
五评价实验效果挺好。
巩固了对逻辑器件的功能测试的方法和操作。
三态门实验报告
三态门实验报告三态门实验报告引言:在科学研究中,实验是获取真实数据和验证理论的重要方法之一。
本次实验旨在研究三态门的工作原理和应用。
通过实验,我们能够深入了解三态门的特性,并进一步探究其在现实生活中的应用。
一、实验目的本次实验的目的是通过搭建三态门电路,观察和分析三态门的工作原理,探究其在数字电路中的应用。
二、实验材料和仪器本次实验所需材料和仪器如下:1. 电路板2. 三态门芯片3. 连接线4. 电源5. 开关6. LED灯三、实验步骤1. 将三态门芯片插入电路板中,并用连接线连接芯片和其他元件。
2. 将电源接入电路板,确保电路板正常供电。
3. 通过开关控制输入信号,观察LED灯的亮灭情况。
四、实验结果和分析通过实验观察和数据记录,我们得出以下实验结果和分析:1. 当输入信号为低电平时,LED灯熄灭。
2. 当输入信号为高电平时,LED灯点亮。
3. 当输入信号为无效电平时,LED灯保持上一状态。
根据实验结果,我们可以得出以下结论:三态门是一种数字逻辑门,具有三个输入端和一个输出端。
它的工作原理是根据输入信号的不同状态,输出相应的电平。
当输入信号为低电平时,输出为低电平;当输入信号为高电平时,输出为高电平;当输入信号为无效电平时,输出保持上一状态。
五、三态门的应用三态门在数字电路中有广泛的应用。
以下是一些常见的应用场景:1. 数据总线控制:在计算机系统中,三态门常用于数据总线的控制,实现数据的传输和共享。
2. 内存芯片:三态门可以用于内存芯片的控制线路,实现数据的读取和写入。
3. 多路选择器:三态门可以用于多路选择器的实现,根据输入信号的不同状态,选择不同的输入通路。
4. 缓冲器:三态门可以用作缓冲器,将信号从一个电路传递到另一个电路,保持信号的强度和波形。
六、实验总结通过本次实验,我们深入了解了三态门的工作原理和应用。
三态门作为一种重要的数字逻辑门,在现代电子技术中起着重要的作用。
通过进一步研究和实践,我们可以更好地应用三态门,推动数字电路技术的发展。
实验三 0C门和三态门的应用(3)
图4.26
用OC门实现两组数据传输线路图
实验三 0C门和三态门的应用
三、实验内容及步骤
表4.8
M 0 1 0 1 A1 A2 A3 A4 1 0 0 0 0 0 1 1 1.集电极开路(OC)门实验
OC门数据分时传输
B1 B2 B3 B4 0 0 0 1 1 1 1 0 L1 L2 L3 L4
L1 A 1 M B1M A 1M B1M M 0, L1 B1 M 1, L1 A 1
实验三 0C门和三态门的应用
二、实验原理和电路
1.集电极开路门(OC门)
图4.19
Hale Waihona Puke 0C与非门逻辑符号 图4.20 0C与非门“线与”应用
实验三 0C门和三态门的应用
二、实验原理和电路
1.集电极开路门(OC门) RL的计算方法可通过图4.21来说明。如果n个OC门“线与” 上式中: 驱动N个TTL“与非”门,则负载电阻 RL可以根据“线与”的“与非” 门(OC)数目n和负载门的数目N来进行选择。 为保证输出电平符合逻辑关系,RL的数值范围为: IOH—OC门输出管的截止漏电流。 ILM—OC门输出管允许的最大负载电流。 IIL—负载门的低电平输入电流。 EC—负载电阻RL所接的外接电源电压。 IIH—负载门的高电平输入电流。 n—“线与”输出OC门的个数。 N—负载门的个数。 m—接入电路的负载门输入端个数。 RL的大小会影响输出波形的边沿时间,在工 作速度较高时,RL的值应尽量小,接近RLmin。
图4.21
实验三 0C门和三态门的应用
二、实验原理和电路
2.三态门
三态门有三种状态0、1、高阻态。处于高阻态时,电路与负载之 间相当于开路。图4.22(a)是三态门的逻辑符号,它有一个控制 N 端(又称禁止端或使能端) E, =1为禁止工作状态,Q呈高阻状态; EN =0为正常工作状态,Q=A。 EN
三态门、OC门的设计与仿真实验报告
三态门的设计与仿真实验报告一、实验内容1、用逻辑图和VHDL语言设计三态门,三态门的使能端对低电平有效。
2、应用MaxplusII软件对三态门和OC门进行编译、仿真和模拟。
3、在“MaxplusII软件的基本操作”实验的基础上,能更加熟练的掌握应用MaxplusII软件,从而更形象更深层次的理解三态门和OC门。
二、实验平台及实验方法用VHDL语言编写三态门和OC门的程序,运用Maxplus软件进行仿真,再结合FPGA(即对实验箱的芯片进行编译)进行验证。
也可以用原理图进行文本设计,波形设计。
逻辑符号图:真值表:EN A OUT0 0 HI-Z0 1 HI-Z1 0 01 1 0电路图:三、实验过程1.启动MaxplusII软件;2.新建一个文本编辑文件,输入三态门的VHDL语言;3.编译。
点击file→save as,保存文件名为tri-s名称,扩展名为vhd,选择芯片类型为EPF10K20TI144-4,保存并进行编译,若编译结果出现0 error,0 warnings则说明编译通过。
4.仿真波形。
点Max+plus II→Waveform editor,出现波形图的设置界面,然后点Node→Enter Nodes from SNF→list,将输入输出端添加到界面,并设置其周期和输入波形,保存后,点Max+plus II→Simulator,即可仿真出输出的波形。
5.设计芯片。
点Max+plus II→Floorplan editor,将Unassigned Nodes & 栏中,电路的输入输出节点标号直接用鼠标“拖到” 想分配的引脚上(enabel:88,datain:89,dataout:12),点Max+plus II→programmer→configuer,然后就可以操作试验箱,观察三态门的工作情况。
四、实验结果实验步骤:1、用VHDL语言来编写程序LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY tri_s ISPORT(enable,datain:IN STD_LOGIC;dataout:OUT STD_LOGIC);END tri_s;ARCHITECTURE bhv OF tri_s ISBEGINPROCESS (enable,datain)BEGINIF enable='1' THEN dataout<=datain;ELSE dataout<='Z';END IF;END PROCESS;END bhv;2、将上述程序保存为文件名为tri_s.vhd的文件,点击Maxplus里的compiler进行编译,出现如下图,编译成功。
数电实验之三态输出门与集电极开路门
三态输出门与集电极开路门一、实验目的1.学习中规模集成门电路的使用。
2.掌握三态输出门的逻辑功能。
3.学会三态输出门的应用。
二 实验原理三态门是一种特殊的门电路,它与普通的门电路有所不同,它的输出端除了通常为高、低电平两种状态外,还有第三种输出状态—高阻状态,处于高阻状态时,电路与负载之间相当于开路。
它有一个控制端(禁止端或使能端)。
三态门按逻辑功能及控制方式来分有各种不同类型,本实验所采用的型号是74LS125为三态输出四总线缓冲器。
三态门主要用途之一是分时实现总线传输,即用一个传输通道(总线),以选通方式传送多路信息。
电路中将若干个三态门输出端直接接在一总线上,使用时,要求只有一个传输信息的TS 三态输出门控制端处于使能,而其余各TS 门的控制端均处于禁止态。
因为由理论课学习我们知道TS 门输出端不允许并联使用。
所以显然不能同时有两个或两个以上的TS 门的控制端处于使能。
2. 本实验所用OC 与非门(集电极开路门)型号为74LS03(2输入四与非门)。
OC 与非门的输出管的集电极是悬空的,工作时输出端必须通过一只外接电阻R L 和电源V CC ’相连接,以保证输出电平符合电路要求。
OC 门的应用主要有以下三个方面1、 利用电路的“线与”特性,可方便的完成某些特定的逻辑功能。
如下图13.2(A )所示,将两个OC 与非门输出端直接并联在一起,则它们的输出Y = F A +F B = 21A A ·21B B =2121B B A A即把两个或两个以上OC 与非门“线与”后,可完成“与或非”的逻辑功能。
2、实现多路信息采集,使两路以上的信息共用一个传输通道(总线)。
3、实现逻辑电平的转换,以推动荧光数码管、继电器、MOS 器件等多种数字集成电路。
图13.1 OC 与非门内部逻辑图(A)(B )图13.2OC 门输出并联运用时负载电阻R L 的选择:图13.1(B )中由n 个OC 与非门“线与”驱动有m 个输入端的N 个TTL 与非门,为保证OC 与非门输出电平符合逻辑要求,负载电阻R L 阻值的选择范围为;R L (max ) =IHH H CCmInI V V --'00R L (min ) =ILLML CC I m I V V '--'0式中:I 0H :OC 门输出管截止时(输出高电平)的漏电流(约50uA ) I LM :OC 门输出低电平时允许最大灌入负载电流(约20mA ) I IH :负载门高电平输入电流(<50uA)I IL:负载门低电平输入电流(<1.6m A=V CC’:R L外接电源电压n:OC门个数N:负载门个数m:接入电路的负载门输入端总个数。
实验三三态门
实验三三态门实验三三态门一、实验目的1.熟悉计三态输出门的逻辑功能和使用方法。
2.掌握用三态门构成公共总线的特点和方法。
二、实验器材1.数字逻辑实验箱2.双踪示波器3.与非门74LS00(1片)、三态门74LS125(1片)三、预习要求1.复习三态门有关知识,了解其逻辑功能及管脚。
2.复习三态门实现总线传输的方法。
四、实验原理1.三态门(TS)三态门有三种输出状态:高电平输出、低电平输出和高阻输出状态。
常见的三态门有控制端高电平有效和低电平有效两种类型。
三态输出门除了有多输入三态与非门,还经常做成单输入、单输出的总线驱动器,并且输入与输出有同相和反相两种类型。
例如:74LS125就是单输入、单输出的控制端低电平有效的同相三态输出门。
即E=0时,Y=A;E=1时为高阻态。
三态门主要用途之一是实现总线传输,各三态门输出端可以并联使用一个传输通道,以选通的方式传送多路信息。
使用时注意输出端并接的三态门只能有一个处于工作状态(E=0)。
其余必须处于高阻状态(E=1)。
三态门驱动能力强,开关速度快,在中大规模集成电路中广泛采用三态门输出电路,作为计算机和外围电路的接口电路。
如图2-1为三态门逻辑符号。
AB图2-1三态门逻辑符号五、实验内容1.三态门逻辑功能测试:查出三态门74LS125的引脚图,验证各三态门逻辑功能。
按图2-1(A)在实验箱上连线,先接上电源和地线,然后用逻辑电平控制输入端A和使能端E,用L显示输出Y的状态,实验结果填入下表:表2-174LS125逻辑功能表:使能输入端E0011数据输入A0101输出Y2.用三态门74LS125构成公共总线:要求:用三个三态门构成一条公共总线,参考图21(B)。
使三个输入端状态分别为“0”、“1”、CP,观测公共总线输出状态。
(1)按上述要求画出公共总线的逻辑图。
(2)在实验箱上连线:A1、0(GND),A2、1(Vcc),A3、CP(1KHz或100KHz信号源输出),三个使能端E1??E3分别由三个逻辑开关控制其电平的高低。
《实验六、三态门》课件
,
CONTENTS
PART ONE
PART TWO
掌握三态门的使用方法
学习三态门的应用
了解三态门的输入输出特性
掌握三态门的原理
熟悉三态门的电路结构
掌握三态门的逻辑功能
了解三态门的应用
掌握三态门的测试方法
掌握三态门的原理和应用
学习如何使用三态门实现逻辑功能
掌握三态门的实际应用案例
PART FOUR
准备材料:门电路芯片、电阻、电容等
搭建电路:按照电路图连接各个元件
测试电路:通过测试点测试电路是否正常工作
调试优化:根据测试结果进行调试和优化
测试输入信号的频率和幅度
测试输入信号的波形
测试输入信号的稳定性
测试输入信号的抗干扰能力
测试目的:验证三态门的输出信号是否符合预期
测试结果:记录输出信号的波形、幅度、频率等参数
思考题:请根据实验内容,提出几个具有挑战性的思考题,以促进同学们深入思考和探讨实验中的问题。
拓展学习建议:提供一些与实验相关的参考文献、网络资源或专业书籍,以帮助同学们进一步拓展学习视野和知识面。
实践应用建议:针对实验内容,提出一些实际应用场景或建议,以激发同学们的学习兴趣和动力。
团队合作建议:强调团队合作的重要性,并提供一些团队合作的建议和技巧,以帮助同学们更好地完成实验任务。
汇报:
了解三态门在数字电路中的作用
PART THREE
三态门的概述
三态门的电路结构
三态门的逻辑功能
三态门的应用
高电平有效
低电平有效
输出高阻态
输出低阻态
禁止态:当输入为任意电平时,输出为高阻态
高电平有效:当输入为高电平时,输出为高电平
三态门和集电极开路(OC)门实验报告
4、验证 74LS03 集成电机开路门的逻辑功能
接上拉电阻
不接上拉电阻
A/V
B/V
Y/V
A/V
B/V
Y/V
4.93
4.93
0.17
4.93
4.93
0
4.93
0
12.15
0
0
0
0
4.93
12.15
0
4.93
0
0
0
12.15
4.93
0
0
由上表可得,当不接上拉电阻时,Y 端始终为 0;当接上拉电阻时,Y 当且仅
当 A、B 同时为高电压时取低电压,74LS03 集成电机开路门实现了与非门的功能。
5、74LS03 实现线与、电平转换功能
VB
VA
VF
4.93
4.93
0.12
4.93
0
4.93
0
4.93
4.93
0
0
4.93
由上表和电路图可得,只要 A、B 中有一个低电平那么输出端就为低电平,
逻辑上实现了线与的关系。
示:
数据选择器
e)三态门构成双向数据收发器及总线数据传输 :
• DIR1 = 1 且 DIR2 = 0 时,数据传送方向从 X → Y • DIR1 = 0 且 DIR2 = 1 时,数据传送方向从 Y → X
三态门和集电极开路(OC)门
2010-10-15
Page 4 of 9
f)集电极开路门总线数据收发传输: 电路图和功能表如下
如下图表所示:
三态门和集电极开路ge 2 of 9
74LS125 芯片
3、集电极开路(OC)门:
a)对 TTL 逻辑门,将逻辑门电路输出级的三极管 T4 去掉, 此时 T5 的集电极直接输出,T5 集电极呈开路状态,其输 出驱动电源由外部提供。
三态门实验
题目:4.3三态门实验目录1. 数字逻辑和数字系统实验 (3)1.1.三态门实验 (3)1.1.1.实验目的 (3)1.1.2.实验内容 (3)1.1.3.实验方法 (3)1.2.实验结果....................................................................... 错误!未定义书签。
2.实验图片 (5)1. 数字逻辑和数字系统实验三态门实验实验目的:1.掌握三态门逻辑功能和使用方法。
2.掌握用三态门构成总线的特点和方法。
3.初步学会用示波器测量简单的数字波形。
实验内容:1.74LS125三台们的输出负载为74LS00一个与非门输入端。
74LS00同一个与非门的另一个输入端接低电平,测试74LS125三态门三态输出、高电平输出、低电平输出的电压值。
同时测试74LS125三态输出时74LS00输出值。
2. 74LS125三台们的输出负载为74LS00一个与非门输入端。
74LS00同一个与非门的另一个输入端接高电平,测试74LS125三态门三态输出、高电平输出、低电平输出的电压值。
同时测试74LS125三态输出时74LS00输出值。
3.用74LS125两个三态门输出构成一条总线。
使两个控制端一个为低电平,另一个为高电平,一个三态门的输入接50KHz信号,另一个三态门的输入接500KHz信号,用示波器观察三态门的输出。
实验方法1.实验所用仪器和仪表:四2输入正与非门74LS00 1片三态输出的四总线缓冲门74LS125 1片万用表示波器2.实验接线图:实验结果1.当74LS00引脚2为低电平时,测试74LS125引脚3和74LS00引脚3,结果如下:三态门输出高电平 4.58V三态门输出低电平0.11V三态门三态输出 2.30V74LS00引脚3输出 4.53V2.当74LS00引脚2为低电平时,测试74LS125引脚3和74LS00引脚3,结果如下:三态门输出高电平 4.26V三态门输出低电平0.11V三态门三态输出 1.68V74LS00引脚3输出0.18V3.用三态门74LS125构成总线时,只要将三态门输出并联即可,在任何时刻,构成总线的三态门中只允许一个控制端为低电平其余控制端应为高电平。
实验-三态门特性研究和典型应用
2、三态缓冲器实现信号单向三路总线传输
画出用74LS125芯片构成如下逻辑电路图的实验接线图,根 据实验接线图组装三路输入信号经一根总线传送的单向公共总线 逻辑电路,并进行测试分析。
测试分析要求:
①输入信号A和B由数字系统综合实验平台的逻辑电平信 号源提供:其中 A=0V,B=5V。输入信号C由综合实验平台 的固定频率时钟源提供:C为0.1MHz方波 。
1片
2. 4三态输出缓冲器74LS125
1片
3. 4异或门74LS86
1片
4. 数字万用表UT56
1台
5. TDS-4数字系统综合实验平台
1台
6. PC机(数字信号显示仪)
1台
7. GOS-6051示波器
1台
芯片引脚图
三、实验内容
1、三态门逻辑特性测试(用表格记录测试数据)
①74LS125三态门的输出负载为74LS00一个与非门输入端。
1000
1001 1010
G2
1011
B3
1100
1101 1110
G3
1111
EN
四、实验预习要求
1. 结合本次实验内容中的三态门负载测试电路图及数 据记录表格,分析该项实验测试的目的。
2.复习三态门的功能、特性和应用三态缓冲器实现单向 总线传输和双向总线传输的逻辑电路。
3.查看74LS125和74LS139芯片的引脚图,画出实现三 路输入信号经一根总线传送的实验接线图。
③ 用数字信号显示仪同时观察和记录三态缓冲器实现信号 单向三路总线传输电路的输入信号A、B、C,三态门的三个控制 信号ENA~ENC和总线输出信号Y。
④根据数字信号显示仪显示出的输入信号、控制信号和输 出信号,详细分析总结单向三路总线传输电路的“总线”结构 原理、工作特点以及工作注意事项。
实验三 三态门实验报告
实验三三态门实验报告实验三三态门实验报告引言:在数字电路中,门电路是最基本的组成单元之一。
而三态门是一种特殊的门电路,它具有三种输出状态:高电平、低电平和高阻态。
本实验旨在通过实际搭建和测试三态门电路,深入了解其工作原理和应用。
一、实验目的本实验的主要目的是通过搭建和测试三态门电路,掌握其工作原理和特性。
具体目标如下:1. 理解三态门的概念和功能;2. 学会使用逻辑门芯片搭建三态门电路;3. 掌握三态门的输出状态和切换条件。
二、实验器材和仪器1. 逻辑门芯片:74LS125或74HC125;2. 面包板、导线等实验器材;3. 示波器、数字万用表等测量仪器。
三、实验原理三态门是一种具有三种输出状态的门电路,其输出可以是高电平、低电平或高阻态。
它通过控制输入端的使能信号来切换输出状态。
当使能信号为高电平时,三态门处于开启状态,输出与输入信号一致;当使能信号为低电平时,三态门处于关闭状态,输出为高阻态,即不对外输出信号。
四、实验步骤1. 将74LS125或74HC125逻辑门芯片插入面包板中,注意引脚与连接线的对应关系;2. 连接电源和地线,确保电路正常供电;3. 将输入信号接入逻辑门芯片的输入端,同时连接使能信号;4. 使用示波器或数字万用表等测量仪器,测试逻辑门芯片的输出信号;5. 调节输入信号和使能信号,观察三态门的输出状态变化。
五、实验结果与分析通过实验,我们得到了三态门的输出状态和切换条件。
当使能信号为高电平时,三态门处于开启状态,输出与输入信号一致;当使能信号为低电平时,三态门处于关闭状态,输出为高阻态。
这种特性使得三态门在数字电路设计中具有广泛的应用。
六、实验应用三态门在数字电路设计中有着重要的应用。
首先,它可以用于数据总线的连接和控制,实现多个设备之间的数据传输和共享。
其次,三态门还可以用于电路的隔离与保护,防止信号干扰和短路等问题。
此外,三态门还可以用于多路选择器和数据缓存等电路的设计与实现。
oc门和三态门实验
oc门和三态门实验
TTL三态门和OC门(也可以称为集电极开路门或漏极开路门)都是集成电路门电路的输出类型,它们之间的主要区别在于输出电压的处理方式和用途。
TTL三态门:
TTL三态门是一种具有三个工作状态的门电路,即高电平、低电平和高阻态。
在高阻态时,输出晶体管是断开的,因此输出端对地和电源电压来说都是高阻抗的,即相当于输出端与输入端完全断开。
这种门电路通常用于多路复用和双向总线应用,以及需要避免线与(线路上的电位冲突)的应用。
OC门:
OC门是一种具有推挽输出的门电路,其输出晶体管在饱和时具有较低的电阻,使得输出电压可以接近电源电压。
与TTL三态门不同的是,OC门的输出端在饱和时是低阻抗的。
因此,OC门通常用于需要高电流输出的应用,如驱动LED、电机等。
此外,OC门还可以通过将多个门的输出并联起来,实现“线与”逻辑。
在这种配置下,当所有门的输出都为高电平时,输出为低电平;而当至少一个门的输出为低电平时,输出也为低电平。
这种特性在实现多路复用、解码器等功能时非常有用。
总结来说,TTL三态门和OC门的主要区别在于输出电路的处理方式和用途。
TTL三态门适用于需要高阻态的三态输出的应用,如多路复用和双向总线;而OC门适用于需要高电流输出的应用,如驱
动LED、电机等,并可以通过并联实现“线与”逻辑。
实验 OC门和三态门
F = AB + CD+ EF
实验内容和步骤
(1)OC门应用 OC门应用 ①TTL集电极开路与非门74LS01负载电阻 TTL集电极开路与非门74LS01负载电阻 RL的确定。 用两个集电极开路与非门“线与” 用两个集电极开路与非门“线与”使用驱 动一个TTL非门;按图1 动一个TTL非门;按图1–2–4连接实验电路, 负载电阻R 用一只200 电阻和100k 负载电阻RL用一只200 电阻和100k 电位 器串联而成,用实验方法确定和的阻值, 并和理论计算值相比较。填入表1 并和理论计算值相比较。填入表1–2–2中。
假设将n OC门的输出端并联“线与”,负载是m 假设将n个OC门的输出端并联“线与”,负载是m 个TTL与非门的输入端,为了保证OC门的输出电 TTL与非门的输入端,为了保证OC门的输出电 平符合逻辑要求,OC门外接负载电阻R 平符合逻辑要求,OC门外接负载电阻RL的数值应 介于与所规定的范围值之间。
UOH —— OC门输出高电平; OC门输出高电平; UOL ―― OC门输出低电平; OC门输出低电平; ――负载电阻所接的外接电源电压; ――负载电阻所接的外接电源电压; ――接入电路的负载门输入端个数; ――接入电路的负载门输入端个数; ――“线与”输出的OC门的个数; ――“线与”输出的OC门的个数; ――负载门的个数; ――负载门的个数; IIH――负载门高电平输入电流; IH――负载门高电平输入电流; IIL――负载门低电平输入电流; IL――负载门低电平输入电流; IOLmax――OC门导通时允许的最大负载电流; OLmax――OC门导通时允许的最大负载电流; IOH――OC门输出截止时的漏电流。 OH――OC门输出截止时的漏电流。
OC门电路应用范围较广泛,利用电路的 OC门电路应用范围较广泛,利用电路的 “线与”特性,可以方便地实现某些特定 线与” 的逻辑功能,例如:把两个以上OC结构的 的逻辑功能,例如:把两个以上OC结构的 与非门“线与”可完成“与或非” 与非门“线与”可完成“与或非”的逻辑 功能;实现电平的转换等任务。
数电实验三 三态门实验
深圳大学实验报告课程名称:数字电子技术基础实验项目名称:实验三:三态门实验学院:光电工程学院专业:光源与照明指导教师:**报告人:黄学号:2016 班级:02 实验时间:2018年11 月07 星期五实验报告提交时间:2018年11 月09 日星期教务处制一、实验目的:1、掌握三态门逻辑功能和使用方法。
2、掌握三态门构成总线的特点和方法。
3、初步学会用示波器测量简单的数字波形。
二、实验仪器:1、四2输入与非门74LS00 1片2、三态输出的四总线缓冲门74LS125 1片3、万用表4、示波器三、实验原理:控制端高电平有效的三态门控制端低电平有效的三态门(a)(b)图1:三态门电路图及电路符号图1(a)为三态门电路图,EN = 0时,电路为正常的与非工作状态,控制端低电平有效。
当EN = 1时,门电路输出端处于高阻状态。
四、实验内容与步骤:实验内容:1、74LS125三态门的输出负载为74LS00一个与非门输入端。
74LS00同一个与非门的另一个输入端接低电平,测试74LS125三态门三态输出、高电平输出、低电平输出的电压值。
同时测试74LS125三态输出时74LS00输出值。
2、74LS125三态输出负载为74LS00一个与非门输入端。
74LS00同一个与非门的另一个输入端接高电平,测试74LS125三态门三态输出、高电平输出、低电平输出的电压值。
同时测试74LS125三态输出时74LS00输出值。
3、用74LS125两个三态门输出构成一条总线。
使两个控制端一个为低电平,另一个为高电平。
一个三态门的输入接100kH Z信号,另一个三态门的输入接10kH Z信号。
用示波器观察三态门的输出。
具体实验步骤如下:1.按照图3.1连接电路,图中K1、K2和K3是逻辑开关输出,电压表指示电压测量点。
按入或弹出逻辑开关K3、K2、K1,则改变74LS00一个与非门输入端、74LS125三态门控制端、三态门输入端的电平。
三态门电路实验报告
实验二(1)三态门电路设计班级姓名学号一、实验目的熟悉QuartusII仿真软件的基本操作,并用VHDL/Verilog语言设计一个三态门。
二、实验内容1、熟悉QuartusII软件的基本操作,了解各种设计输入方法(原理图设计、文本设计、波形设计)2、用VHDL语言设计一个三态门,最终在FPGA芯片上编程指令译码器,并验证逻辑实现。
三、实验方法1、实验方法:采用基于FPGA进行数字逻辑电路设计的方法。
采用的软件工具是QuartusII软件仿真平台,采用的硬件平台是Altera EPF10K20TI144_4的FPGA试验箱。
2、实验步骤:1、新建,编写源代码。
(1).选择保存项和芯片类型:【File】-【new project wizard】-【next】(设置文件路径+设置project name为stm)-【next】(设置文件名zlym.vhd—在【add】)-【properties】(type=AHDL)-【next】(family=FLEX10K;name=EPF10K10TI144-4)-【next】-【finish】(2).新建:【file】-【new】(第二个AHDL File)-【OK】2、写好源代码,保存文件(stm.vhd)。
3、编译与调试。
确定源代码文件为当前工程文件,点击【processing】-【start compilation】进行文件编译。
编译结果有一个警告,文件编译成功。
4、波形仿真及验证。
新建一个vector waveform file。
按照程序所述插入EN,A以及dataout)四个节点(EN,A为输入节点,dataout为输出节点)。
(操作为:右击-【insert】-【insert node or bus】-【node finder】(pins=all;【list】)-【>>】-【ok】-【ok】)。
任意设置EN,A的输入波形…点击保存按钮保存。
OD门和74LS126三态门的测试与使用实验报告
OD门和74LS126三态门的测试与使用实验报告一、预习报告:实验目的:1.掌握基本门电路和三态门逻辑功能和使用方法。
2.掌握基本门电路的应用。
3.掌握三态门构成总线的特点和方法.实验原理:74LS00与非门的逻辑功能是:74LS28或非门的逻辑功能是:TTL三态输出门是一种特殊的门电路。
它的输出端除了通常的高电平、低电平两种状态外(这两种状态均低阻状态),还有第三种输出状态——高阻状态。
处于高阻状态时,电路与负载之间相当于开路。
三态输出门按逻辑功能及控制方式来分有各种不同类型。
本实验所用三态门的型号是74 LS125,它有一个控制端(又称禁止端或使能端)Ē,Ē=0为正常工作状态,实现Y=A的逻辑功能;Ē=1为禁止状态,输出Y呈现高阻状态。
三态电路的主要用途之一是实现总线传输,即用一个传输通道(称总线)以选通方式传送多路信息。
实验设备:1.四2输入与非门74LS00 1片2.三态输出的四总线缓冲门74 LS125 1片3.四2输入或非门74LS28 1片实验步骤和预测实验数据:1、接线,验证74LS00与非门的逻辑功能2、接线,验证74LS28或非门的逻辑功能3、用与非门或其它门电路组成异或门并验证逻辑功能附:逻辑表达式和电路图:4、测试三态门的逻辑功能5、三态门构成1位单向总线用三态门74LS125实现的三路信号经一根总线传送的电路。
二、实验内容仿真电路和波形图:1、验证74LS00与非门的逻辑功能2、验证74LS28或非门的逻辑功能3、用与非门或其它门电路组成异或门并验证逻辑功能4、测试三态门的逻辑功能5、三态门构成1位单向总线用三态门74LS125实现的三路信号经一根总线传送的电路。
三、实验小结思考题(1)为什么用三态门构成总线?答:在一个总线上同时只内能有一个端口作输出,这时其他端口必须在高阻态。
(2)为什么TTL器件输出端不允许直接接地或接+5V电压?答:TTL器件输出端并没有短路保护,因此不允许短路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三三态门
一、实验目的
1.熟悉计三态输出门的逻辑功能和使用方法。
2.掌握用三态门构成公共总线的特点和方法。
二、实验器材
1.数字逻辑实验箱
2.双踪示波器
3.与非门74LS00(1片)、三态门74LS125(1片)
三、预习要求
1.复习三态门有关知识,了解其逻辑功能及管脚。
2.复习三态门实现总线传输的方法。
四、实验原理
1.三态门(TS)
三态门有三种输出状态:高电平输出、低电平输出和高阻输出状态。
常见的三态门有控制端高电平有效和低电平有效两种类型。
三态输出门除了有多输入三态与非门,还经常做成单输入、单输出的总线驱动器,并且输入与输出有同相和反相两种类型。
例如:74LS125就是单输入、单输出的控制端
低电平有效的同相三态输出门。
即E=0时,Y=A;E=1时为高阻态。
三态门主要用途之一是实现总线传输,各三态门输出端可以并联使用一个传输通道,以选通的方式传送多路信息。
使用时注意输出端并接的三态门只能有一个处于工作状态(E=0)。
其余必须处于高阻状态(E=1)。
三态门驱动能
力强,开关速度快,在中大规模集成电路中广泛采用三态门输出电路,作为计算机和外围电路的接口电路。
如图2-1为三态门逻辑符号。
A B
图2-1 三态门逻辑符号
五、实验内容
1.三态门逻辑功能测试:
查出三态门74LS125的引脚图,验证各三态门逻辑功能。
按图2-1(A)在实验箱上连线,先接上电源和地线,然后用逻辑电平控制输入端A和使能端E,用L显示输出Y的状态,实验结果填入下表:表2-1 74LS125逻辑功能表:
2.用三态门74LS125构成公共总线:
要求:用三个三态门构成一条公共总线,参考图21(B)。
使三个输入端状态分别为“0”、“1”、CP,观测公共总线输出状态。
(1)按上述要求画出公共总线的逻辑图。
(2)在实验箱上连线:A1、0(GND),A2、1(Vcc),A3、CP(1KHz或100KHz信号源输出),三个使能端E1……E3分别由三个逻辑开关控制其电平的高低。
(3)检查线路无误后,通电测试。
用双踪示波器测试输入和输出的状态及波形并记录。
注意:三态门74LS125的使能端是低电平有效,做总线传输时,要求只有需传输信息的那个三态门的使能端E=0,进入工作状态,其余各门皆处于禁止状态E=1(呈高阻态)。
否则,将造成逻辑混乱和
损坏芯片。
六、实验报告要求
1.按实验要求画出有关电图图,记录观察到的数据和波形。
2.分析波形变化的原因。
七、思考题
1.三态门的工作原理和特点是什么?
2.设计用两个三态门构成一条双向总线,画出电路图并测试。