离心式压缩机喘振现象与调节方法

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心式压缩机喘振现象与调节方法

一、什么是喘振

喘振是离心式压缩机的一种特有的异常工作现象,归根揭底是由旋转失速引起的,气体的连续性受到破坏,其显著特征是:流量大幅度下降,压缩机出口排气量显著下降;出口压力波动较大,压力表的指针来回摆动;机组发生强烈振动并伴有间断的低沉的吼声,好像人在干咳一般。判断是否发生喘振除了凭人的感觉以外,还可以根据仪表和运行参数配合性能曲线查出。

压缩机发生喘振的原因:由于某些原因导致压缩机入口流量减小,当减小到一定程度时,整个扩压器流道中会产生严重的旋转失速,压缩机出口压力突然下降,当与压缩机出口相连的管网的压力高于压缩机的出口压力时,管网的气流倒流回压缩机,直到管网的压力下降到比压缩机的出口压力低时,压缩机才重新开始向管网排气,此时压缩机恢复到正常状态。当管网压力恢复到正常压力时,如果压缩机入口流量依然小于产生喘振工况的最小流量,压缩机扩压器流道中又产生严重的旋转失速,压缩机出口压力再次下降,管网压力大于压缩机排气压力,管网中的气流再次倒流回压缩机,如此不断循环,压缩机系统中产生了一种周期性的气流喘振现象,这种现象被称之为“喘振”。

二、离心式压缩机特性曲线

对于一定的气体而言,在压缩机转速一定时,每一流量都对应一个压力,把不同流量下对应的每一个压力连成一条曲线,即为压缩机的性能曲线。

如图1所示,对每一种转速,都可以用一条曲线描述压缩机入口流量Q1与压缩比P2/P1的关系(P2、P1分别为压缩机出口绝对压力和入口绝对压力)。

图1为离心式压缩机特性曲线

压缩机特性线是压缩机变动工况性能的图像表示,它清晰地表明了各种工况下的性能、稳定工作范围等,是操作运行、分析变工况性能的重要依据。

(1)转速一定,流量减少,压力比增加,起先增加很快,当流量减少到一定值开始,压比增加的速度放慢,有的压缩机级的特性压比随流量减少甚至还要减少。

(2)流量进一步减少,压缩机的工作会出现不稳定,气流出现脉动,振动加剧,伴随着吼叫声,这个现象称为喘振现象,这个最小流量称为喘振流量。每个转速下都有一个喘振流量,不同转速下喘振流量工况点的连线称为喘振线。在喘振线左侧为非稳定工作区,而右侧为稳定工作区。一般来说,单级工业离心式压缩机的额定转速线下的喘振流量约为额定流量的50%,多级离心式压缩机额定转速下的喘振流量一般为额定流量的70~80%。喘振工况是小流量下的一种压缩机不稳定状况,不仅与压缩机级的设计导致的旋转失速有关,还与外管网有关。

(3)在增大流量时也会有限制,在转速不变的情况下,流量加大到某个最大值时,压比和效率垂直下降,出现所谓“阻塞现象”。阻塞工况也称作最大流量工况,造成这种工况

有两种可能。第一:级中流道中某喉部处气流达到临界状态,这时气体的容积流量已是最大值,在压缩机内流道中某个截面出现声速,任凭压缩机背压再降低,流量也不可能再增加,进一步加大流量成为不可能。第二,流量增加,损失增加太多,流道内并未达到临界状态,即尚未出现“阻塞”工况,但压缩机在偌大的流量下,机内流动损失很大,所能提供的排气压力很小,几乎接近零能头,叶轮对气体做的功仅够用来克服排气管的流动阻力以维持这样大的流量,而不能提高气体的压力,继续增加流量,压缩机将在“膨胀状态”下工作。

(4)转速越高,特性线越陡,这主要是由于转速高,气流马赫数就高。因而流量变化引起的损失增加就大,从而使得特性线变陡。

(5)多级压缩机特性线比单级特性线陡,同理,压缩机段的特性线叠加后得到整机特性线要比段的特性线陡,稳定工作范围小。

三、离心式压缩机的防喘振线

从图1中可见,在转速不变的条件下,随流量的变化,P2/P1有一个最高点,将不同转速下的最高点连接起来可以得到一条曲线,称为喘振线(图中虚线)。虚线左边的阴影部分不是稳定区,称为喘振区,虚线右边为稳定区,称为正常工作区或安全区。

在不同的转速下,最高点的轨迹近似于一条抛物线,经过实验测试及理论分析,如果将P2/P1与Q12/T1标绘,喘振点的轨迹可大体上近似一条直线,因此可写出防喘振控制响应曲线公式如下:P2/P1=a+b(Q12/T1)

式中:P2为压缩机出口压力,P1为压缩机入口压力,Q1为压缩机入口流量,T1为压缩机入口温度,a、b为系数。

如果P2/P1大于[a+b(Q12/T1)],工况是安全的,如果P2/P1大于[a+b(Q12/T1)],则工况是危险的。

四、管网特性曲线

所谓管网,一般是指与压缩机连接的进气管路,排气管路以及这些管路上的附件及设备的总称。但对离心式压缩机来说,管网只是指压缩机后面的管路及全部装置。这样规定后,在研究压缩机与其管网的关系时就可以避开压缩机的进气条件将随工况变化的问题,使问题得到简化。图2左侧是压缩机与排气系统中第一个设备相连的示意图,排气管上有调整阀门。

管网特性曲线公式:

P R= Pr+AQ2

式中,P R位压缩机出口压力,Pr为容器中气体压力;Q为管网的体积流量;A为管道阻力计算系数。将上式表示在右侧图上,即为一条二次曲线,它是管网端压与进气量的关系曲线,称为管网性能曲线。管网性能曲线实际上相当于管网的阻力曲线,此曲线的形状与容器的压力及通过管路的阻力有关。

A、当从压缩机到容器的管网很短、阀门全开,因而阻力损失很小时,管网特性曲线几乎是一水平线如线1。

B、当管路很长或阀门关小时,阻力损失增大,管网性能曲线的斜率增加,于是变成线

2所示。阀门开度愈小,曲线变得愈陡,如线3。

C、如果容器中压力下降,则管网性能曲线将向下平移;当Pr为常压时,管网性能曲线就是线4。(比如放空或者开防喘振线)

可见管网的性能曲线是随管网的压力和阻力的变化而变化的。

五、离心式压缩机和管网的联合运行

离心压缩机在使用时,总是和其他设备管道联系起来,和驱动机用传动机构连接起来,构成一个统一的系统。离心式压缩机工作点:把压缩机的性能曲线Pκ-Qj同管路特性曲线Pe-Qj画在同一坐标上,横轴以Qj表示,纵轴以压力P表示,则两曲线的交点A即为压缩机的工作点。下图是离心压缩机工作点示意图(图中用质量流量G代替容积流量),图中线1为压缩机性能曲线,线2为管网性能曲线。

当离心压缩机向管网中输送气体时,如果气体流量和排出压力都相当稳定(即波动甚小),这就是表明压缩机和管网的性能协调,处于稳定操作状态。这个稳定工作点具有两个条件:一是压缩机的排气量等于管网的进气量;二是压缩机提供的排压等于管网需要的端压。所以这个稳定工作点一定是压缩机性能曲线和管网性能曲线交点,因为这个交点符合上述两个相关条件。

离心压缩机究竟在哪个工况下稳定运行,显然不仅取决于离心压缩机本身的性能,而且还取决于管网的特性。改变压缩机运行工况是由于压缩机本身(驱动机根据压缩机的需要随时与之相适应)和管网性能共同决定,因此,压缩机的调节方法原则上讲既可以借助改变压缩机的特性线,又可以借助改变管网的特性线或者两者同时改变来实现。

六、离心式压缩机喘振原因分析

1、喘振的实质

喘振又叫“飞动”,是离心压缩机的实际工作流量到一定程度时,气流进入叶片的方向与叶片进口角度不一致,即冲角i>0,这时在叶片的非工作面产生气体分离(旋转分离)。

当冲角达到某一值时,旋转分离区域联成一片,占据流道。压缩机不再排气,管路中气体就会倒回来,弥补流量不足,经叶轮压缩重新流出。这一股气打出后,流量又没了,气体又倒回来。这样周而复始的改变流向,机器和管线中就会产生“低频高振幅”的压力脉动,并发出如“牛吼叫”般的噪音。这实际上是气流在交替倒流和排气时产生的强大的气流冲击。这种冲击引起机器强烈的振动,如不及时采取措施,将使压缩机遭到严重破坏。这就是“喘振”。

2、由工作曲线分析喘振原因

相关文档
最新文档