二倍角教案公开课
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.3 二倍角的正弦、余弦和正切公式
一、知识与技能
1. 能从两角和的正弦、余弦、正切公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;理解化归思想在推导中的作用。
2. 能正确运用(顺向、逆向、变形运用)二倍角公式求值、化简、证明,增强学生灵活运用数学知识和逻辑推理能力;
3.揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识,并培养学生综合分析能力.
4.结合三角函数值域求函数值域问题。
二、过程与方法
1.让学生自己由和角公式而导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;通过例题讲解,总结方法.通过做练习,巩固所学知识.
2.通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力;通过综合运用公式,掌握有关技巧,提高分析问题、解决问题的能力。
三、情感、态度与价值观
1.通过本节的学习,使同学们对三角函数各个公式之间有一个全新的认识;理解掌握三角函数各个公式的各种变形,增强学生灵活运用数学知识、逻辑推理能力和综合分析能力.提高逆用思维的能力.
2.引导学生发现数学规律,培养学生思维的严密性与科学性等思维品质.
四、教学重、难点
教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式;教学难点:二倍角的理解及其灵活运用.
五、学法与教学用具
六、教学过程
教
学
流
程
教学内容师生互动
温故探新问题1:回顾前面学习的公式,推导二倍角的三角函数
公式。
()β
α
β
α
β
αsin
sin
cos
cos
cos
=
±;
()β
α
β
α
β
αsin
cos
cos
sin
sin±
=
±;
()
β
α
β
α
β
α
tan
tan
1
tan
tan
tan
±
=
±
令伪=尾则有
师:前面学习过两角和差正
弦余弦正切公式,这节课学
习新的内容,请同学们先完
成做中学温故探新部分。
学生活动:自主完成复习导
入,归纳新知识。
已知等腰三角形一个底角的正弦值为
,
5