华东理工大学化工原理实验 精馏实验
化工大学精馏实验报告
北京化工大学学生实验报告姓名:学号:专业:班级:同组人员:课程名称:化工原理实验实验名称:精馏实验实验日期: 2016.5.13北京化工大学实验五精馏实验摘要:本实验通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,根据数据绘出x-y图并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。
通过实验,了解精馏塔工作原理。
关键词:精馏,图解法,理论板数,全塔效率,单板效率。
一、目的及任务①熟悉精馏的工艺流程,掌握精馏实验的操作方法。
②了解板式塔的结构,观察塔板上汽-液接触状况。
③测定全回流时的全塔效率及单塔效率。
④测定部分回流时的全塔效率。
⑤测定全塔的浓度(或温度)分布。
⑥测定塔釜再沸器的沸腾给热系数。
二、基本原理在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。
回流是精馏操作得以实现的基础。
塔顶的回流量与采出量之比,称为回流比。
回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。
回流比存在两种极限情况:最小回流比和全回流。
若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。
当然,这不符合工业实际,所以最小回流比只是一个操作限度。
若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。
但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。
实际回流比常取最小回流比的1.2~2.0倍。
在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。
板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。
(1)总板效率EE=N/Ne式中 E——总板效率;N——理论板数(不包括塔釜);Ne——实际板数。
(2)单板效率EmlEml =(xn-1-xn)/(xn-1-xn*)式中 Eml——以液相浓度表示的单板效率;xn ,xn-1——第n块板和第n-1块板的液相浓度;xn*——与第n块板气相浓度相平衡的液相浓度。
化工原理精馏实验报告
13—进料泵;14—塔顶放气阀
本实验的流程如上图所示,主要由精馏塔、回流分配装置及测控系统组成。
1,精馏塔
精馏塔为筛板塔,全塔共八块塔板,塔身的结构尺寸为:塔径φ(57×3.5)mm,塔板间距80mm;溢流管截面积78.5mm2,溢流堰高12mm,底隙高度6mm;每块塔板开有43个直径为1.5mm的小孔,正三角形排列,孔间距为6mm。为了便于观察塔板上的气-液接触状况,塔身设有一节玻璃视盅,在第1—6块塔板上均有液相取样口。
5、测定塔釜再沸器的沸腾给热系数,调节塔釜加热器的加热电压,待稳定后,记录塔釜温度及加热器壁温,然后改变加热电压,测取8-10组数据。
6、待全回流操作稳定后,根据进料板上的浓度,调整进料液的浓度,开启进料泵,设定进料量及回流比,测定部分回流情况下的全塔效率,建议进料量维持在30-35mL/min,回流比3-5,塔釜液面维持恒定(调整釜液排出量)。切记在排釜液前,一定要打开釜液冷却器的冷却水控制阀。待塔操作稳定后,在塔顶、塔釜取样,分析测取数据。
实际回流比常取用最小回流比的1.2-2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。
板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。
(1)总板效率E
式中 E—总板效率; N—理论板数(不包括塔釜); Ne—实际板数。
(2)单板效率Eml
式中Eml—以液相浓度表示的单板效率;
2、全回流操作时,在原料储罐中配置乙醇含量20%-25%(摩尔分数)左右的乙醇-正丙醇料液,启动进料泵,向塔中供料至塔釜液面250-300mm。
3、启动塔釜加热及塔身伴热,观察塔釜、塔身、塔顶温度及塔板上的气液接触状况(观察视镜),发现塔板上有料液时,打开塔顶冷凝器的冷却水控制阀。
化工原理含实验报告(3篇)
第1篇一、实验目的1. 理解并掌握化工原理中的基本概念和原理。
2. 通过实验验证理论知识,提高实验技能。
3. 熟悉化工原理实验装置的操作方法,培养动手能力。
4. 学会运用实验数据进行分析,提高数据处理能力。
二、实验内容本次实验共分为三个部分:流体流动阻力实验、精馏实验和流化床干燥实验。
1. 流体流动阻力实验实验目的:测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,将测得的~Re曲线与由经验公式描出的曲线比较;测定流体在不同流量流经全开闸阀时的局部阻力系数。
实验原理:流体在管道内流动时,由于摩擦作用,会产生阻力损失。
阻力损失的大小与流体的雷诺数Re、管道的粗糙度、管道直径等因素有关。
实验中通过测量不同流量下的压差,计算出摩擦系数和局部阻力系数。
实验步骤:1. 将水从高位水槽引入光滑管,调节流量,记录压差。
2. 将水从高位水槽引入粗糙管,调节流量,记录压差。
3. 改变流量,重复步骤1和2,得到一系列数据。
4. 根据数据计算摩擦系数和局部阻力系数。
实验结果与分析:通过实验数据绘制~Re曲线和局部阻力系数曲线,与理论公式进行比较,验证了流体流动阻力实验原理的正确性。
2. 精馏实验实验目的:1. 熟悉精馏的工艺流程,掌握精馏实验的操作方法。
2. 了解板式塔的结构,观察塔板上汽-液接触状况。
3. 测定全回流时的全塔效率及单板效率。
4. 测定部分回流时的全塔效率。
5. 测定全塔的浓度分布。
6. 测定塔釜再沸器的沸腾给热系数。
实验原理:精馏是利用混合物中各组分沸点不同,通过加热使混合物汽化,然后冷凝分离各组分的方法。
精馏塔是精馏操作的核心设备,其结构对精馏效率有很大影响。
实验步骤:1. 将混合物加入精馏塔,开启加热器,调节回流比。
2. 记录塔顶、塔釜及各层塔板的液相和气相温度、压力、流量等数据。
3. 根据数据计算理论塔板数、全塔效率、单板效率等指标。
4. 绘制浓度分布曲线。
实验结果与分析:通过实验数据,计算出了理论塔板数、全塔效率、单板效率等指标,并与理论值进行了比较。
化工原理精馏实验
化工原理精馏实验化工原理精馏实验是化工工程中的一项重要实验内容,它主要用于分离和提纯混合物中的组分。
本文将介绍化工原理精馏实验的基本原理、实验步骤以及实验中需要注意的事项。
1. 实验目的化工原理精馏实验的主要目的是通过温度差异,利用液体蒸汽和凝结的原理,将混合物中的组分分离并得到纯净的产品。
通过这个实验,我们可以了解精馏作为一种分离技术的原理和应用。
2. 实验原理化工原理精馏实验的基本原理是利用混合物中各组分的不同沸点,通过升温使其中具有较低沸点的组分先蒸发,然后通过冷凝使其变为液体,从而实现分离。
在实验过程中,我们需要使用精馏塔,该塔内部设置有填料,用于增加混合物和蒸汽之间的交流面积,并实现更充分的分离。
3. 实验步骤(1) 准备实验所需设备和药品,包括精馏装置、混合物、填料等。
(2) 将混合物加入精馏瓶中,并将瓶塞密封。
(3) 将冷凝管和进料管连接到精馏瓶上,确保连接牢固。
(4) 将精馏瓶放入加热设备中,逐渐升温。
(5) 观察精馏瓶内的液体是否开始蒸发,当温度上升到某一点时,开始收集冷凝液。
(6) 根据实验需要,调整加热温度和收集冷凝液的时间,以实现所需组分的分离和提纯。
4. 实验注意事项(1) 在进行化工原理精馏实验前,需先对所需设备进行检查和清洁,确保实验过程的安全性。
(2) 在实验操作中,热量的传递速度会影响分馏过程的效果,因此需要掌握合适的加热速率。
(3) 为了避免精馏烧坏填料或其他设备,需要控制温度,确保温度在安全范围内。
(4) 实验结束后,应将设备进行清洗和消毒,防止残留物对下次实验的影响。
5. 实验结果分析通过化工原理精馏实验,可以得到分离出的纯净组分,并进行定量分析。
根据实验结果,可以进一步探讨精馏的分离效果、提纯效率等指标,并对所得纯净组分进行性质分析。
总结:化工原理精馏实验是一项重要的实验内容,通过实验可以了解精馏作为一种分离技术的原理和应用。
在实验过程中,需要注意设备的清洁和安全操作,合理控制加热温度和加热速率,以达到较好的分馏效果。
化工原理精馏实验报告
化工原理精馏实验报告精馏技术在化学工程中已经得到了广泛的应用,但是如何完善其理论基础却是一个相当棘手的问题。
本文介绍了精馏实验,简要概述了精馏实验的基本原理及其应用,同时尝试深入了解精馏实验的基本操作,研究精馏实验的结果,并探讨分析其理论原理。
精馏是一种分离工艺,它的用途有两个方面。
首先,精馏是一种冷冻分离技术,可以通过利用液相与固相的分子量差异,将混合物分离出来。
其次,精馏也可以被用于提取物质,将物质从混合物中分离出来,以获得更高纯度的产品。
精馏实验的基本原理是利用溶剂的沸点级将混合液分为多个部分,然后采用吸附的方式将其中的不同组分分离出来。
精馏实验的操作步骤有:放置混合液;配置精馏塔;控制温度;给料;收集分离结果并绘制精馏曲线;分析结果。
首先,将混合液放入精馏塔中,然后控制精馏塔的温度,在进行温度控制的过程中,给料应该按预先设定的速率进行,以控制压力,这样便可以收集分离后的结果,绘制精馏曲线,根据精馏曲线的分析,可以分析出所得到的产品的有效性,并了解其分离效果。
另外,在精馏实验中,还可以采用许多其它的手段,以检验精馏实验的结果,如容量分析、比表面积测定、溶解度测定、m角测定等,从而对精馏实验的结果进行评价。
总之,精馏实验是为了让我们更好地理解和利用化学工程中的精馏技术,了解精馏实验的原理和操作,充分利用实验结果,并以此进行研究。
通过以上介绍,我们可以发现,精馏实验在化学工程中具有重要意义,可以用来分离混合液,提取物质,评价实验结果,从而为精馏技术的改进提供有力的理论支撑。
然而,在实际进行精馏实验时,需要用户掌握基本原理、进行合理操作,避免发生意外和错误,有效地利用精馏塔,从而使实验结果更好地反映出实验所需的理论结果。
综上所述,精馏技术已经在化学工程领域得到广泛应用,但是如何提高精馏技术的理论基础仍然是一个复杂的问题。
因此,精馏实验就显得十分重要,它不仅能够给我们提供更多的知识,而且可以实践中新的了解,以更加全面地把握精馏技术的理论原理,进而更好地服务于化学工程的发展。
化工原理实验报告--精馏实验
填料精馏塔实验一、实验目的1.观察填料精馏塔精馏过程中气、液两相流动状况;2.掌握测定填料等板高度的方法;3.研究回流比对精馏操作的影响。
二、实验原理精馏塔是实现液体混合物分离操作的气液传质设备,精馏塔可分为板式塔和填料塔。
板式塔为气液两相在塔内逐板逆流接触,而填料塔气液两相在塔内沿填料层高度连续微分逆流接触。
填料是填料塔的主要构件,填料可分为散装填料和规整填料,散装填料如:拉西环、鲍尔环、阶梯环、弧鞍形填料、矩鞍形填料、θ网环等;规整填料有板波纹填料、金属丝网波纹填料等。
由于填料塔内气液两相传质过程十分复杂,影响因素很多,包括填料特性、气液两相接触状况及两相的物性等。
在完成一定分离任务条件下确定填料塔内的填料层高度时,往往需要直接的实验数据或选用填料种类、操作条件及分离体系相近的经验公式进行填料层高度的计算。
确定填料层高度有两种方法:1.传质单元法填料层高度=传质单元高度×传质单元数(2—50)或:(2—51)由于填料塔按其传质机理是气液两相的组成沿填料层呈连续变化,而不是阶梯式变化,用传质单元法计算填料层高度最为合适,广泛应用于吸收、解吸、萃取等填料塔的设计计算。
2.等板高度法在精馏过程计算中,一般都用理论板数来表达分离的效果,因此习惯用等板高度法计算填料精馏塔的填料层高度。
(2—52)式中:Z——填料层高度,m;N T ——理论塔板数;HETP——等板高度,m。
等板高度HETP,表示分离效果相当于一块理论板的填料层高度,又称为当量高度,单位为m。
进行填料塔设计时,若选定填料的HETP无从查找,可通过实验直接测定。
对于二元组分的混合液,在全回流操作条件下,待精馏过程达到稳定后,从塔顶、塔釜分别取样测得样品的组成,用芬斯克(Fenske)方程或在x~y图上作全回流时的理论板数。
芬斯克方程:(2—53)式中:——全回流时的理论板数;——塔顶易挥发组分与难挥发组分的摩尔比;——塔底难挥发组分与易挥发组分的摩尔比;——全塔的平均相对挥发度,当α变化不大时,在部分回流的精馏操作中,可由芬斯克方程和吉利兰图,或在x~y图上作梯级求出理论板数。
化工原理精馏实验
化工原理精馏实验嘿,朋友们!今天咱就来聊聊化工原理精馏实验这档子事儿。
你说这精馏实验啊,就好比是一场精细的烹饪。
咱得把各种原料小心地调配,掌握好火候,才能做出美味的菜肴,也就是得到我们想要的纯净产物。
想象一下,那精馏塔就像是一个神奇的魔法塔,各种混合物在里面上上下下,经过层层分离和提纯。
这可不是随便玩玩的,得认真对待呢!我们就像是魔法塔里的小魔法师,要精准地控制每一个环节。
实验开始前,那准备工作可得做足了。
仪器设备得检查好,不能有半点马虎,不然到时候出了岔子,那不就抓瞎啦!就像你做饭前不把锅碗瓢盆准备好,那还怎么做饭呀!然后就是操作啦,那可得小心翼翼的。
温度呀,压力呀,都得时刻关注着,稍有不慎,可能结果就不那么理想咯。
这就跟骑自行车一样,得保持平衡,不然就得摔跟头。
在实验过程中,还得注意观察各种现象。
那液体的流动,那气体的升腾,都藏着好多秘密呢!就好像看一场精彩的魔术表演,你得睁大眼睛,才能发现其中的奥秘。
有时候会遇到一些小麻烦,比如说仪器不太听话啦,数据不太对劲啦。
别着急,别慌张,咱得冷静下来慢慢找原因。
这就像走路遇到石头,咱绕过去或者搬开它不就好啦。
等实验结束了,可别以为就大功告成咯。
分析数据也是很重要的一环呢!得看看咱这成果到底怎么样,有没有达到预期。
要是没达到,那就得找找问题出在哪儿,下次好改进呀。
做化工原理精馏实验呀,真的是既有趣又有挑战。
它就像是一个神秘的宝库,等着我们去探索,去发现其中的宝藏。
每一次实验都是一次成长,一次进步。
所以呀,朋友们,别害怕实验中的困难和挫折,那都是我们进步的阶梯呢!只要我们用心去做,认真去对待,就一定能在这化工原理精馏实验的世界里收获满满,取得好成绩!让我们一起加油,在这个神奇的领域里尽情探索吧!原创不易,请尊重原创,谢谢!。
化工原理筛板塔精馏实验报告
筛板塔精馏实验一.实验目的1.了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。
2.学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。
3.学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。
二.基本原理1.全塔效率E T全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值:N T——完成一定分离任务所需的理论塔板数,包括蒸馏釜;N P——完成一定分离任务所需的实际塔板数,本装置N P=10。
2.图解法求理论塔板数N T以回流比R写成的精馏段操作线方程如下:y n+1——精馏段第n+1块塔板上升的蒸汽组成,摩尔分数;x n——精馏段第n块塔板下流的液体组成,摩尔分数;x D——塔顶溜出液的液体组成,摩尔分数;R——泡点回流下的回流比。
提馏段操作线方程如下:y m+1——提馏段第m+1块塔板上升的蒸汽组成,摩尔分数;x m——提馏段第m块塔板下流的液体组成,摩尔分数;x W-塔底釜液的液体组成,摩尔分数;L'-提馏段内下流的液体量,kmol/s;W-釜液流量,kmol/s。
加料线(q线)方程可表示为:其中,q——进料热状况参数;r F——进料液组成下的汽化潜热,kJ/kmol;t S——进料液的泡点温度,℃;t F——进料液温度,℃;c pF——进料液在平均温度 (tS − tF ) /2 下的比热容,kJ/(kmol℃);x F——进料液组成,摩尔分数。
(1)全回流操作在精馏全回流操作时,操作线在y-x图上为对角线,如图1所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板数。
图1 全回流时理论塔板数确定(2)部分回流操作部分回流操作时,如图2,图解法的主要步骤为:A.根据物系和操作压力画出相平衡曲线,并画出对角线作为辅助线;B.在对角线上定出a点(xD,xD)、f点(xF,xF)和b点(xW,xW);C.在y轴上定出yC=xD/(R+1)的点c,连接a、c作出精馏段操作线;D.由进料热状况求出q,过点f作出斜率为q/(q-1)的q线交精馏段操作线于点d,连接点d、b作出提馏段操作线;E.从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏段操作线之间画阶梯,直至梯级跨过点b为止;G.所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板,其上的阶梯数为精馏段的理论塔板数。
华东理工大学化工原理实验 精馏实验
4. 灵敏板 对于物料不平衡和分离能力不够造成的产品不合格 现象,可早期通过灵敏板温度的变化得到预测。 全塔温度分布: 灵敏板温度:某一板的温度变化明显
精馏塔操作过程参数:
塔釜液位:
判断全塔物料平衡 塔釜压力(或塔压降) 判断塔板汽液接触操作状态 灵敏板温度 判断板上组成变化和产品质量变化
5.板效率
过程变量分离的工程问题处理方法:
精馏塔设计(工艺因素;物性因素,设备结构因素) 工艺因素: --理论板 设备和物性:--塔板效率 塔板效率:
点效率 --理论研究 板效率 --开发研究 全塔效率-0 % N
三、流程图
四、操作要点
1. 预热开始后,要及时开启冷凝水的冷却水阀,当釜液 沸腾后要注意控制加热量; 2. 排除管道内的不凝气; 3. 要注意釜内压强和灵敏板温度,塔釜操作压力 正常操作状态: 塔釜压力约20KPa(表压)
灵敏板温度约78~81℃ ;
4. 取样应在稳定操作时进行; 5.样品分析注意事项; 6.有关实验数据处理注意事项。
5.全回流状态下的数据处理
(1)注意塔顶和塔釜浓度换 算成mol浓度; (2)作图求解理论塔板数。
一、实验目的和内容
1.目的 熟悉板式塔的结构和精馏流程; 理论联系实际,掌握精馏塔的操作; 学习变量分离的工程问题处理方法; 掌握精馏塔效率的测定方法。
2.内容
(1)全回流操作,并测定全塔效率; (2)对15%~20%(v)的水和乙醇混合液进行 精馏分离, 达到塔顶馏出液乙醇浓度大 于90%(v),塔釜残液乙醇浓度小于5%
3.产品不合格的原因及调节方法 (1)物料不平衡 DxD>FxF-WxW 表现:釜温合格,而顶温上升 原因:顶底产品采出比例不当 调节方法:不变加热蒸汽压,减小塔顶采出,加 大塔釜出料和进料量 DxD<FxF-WxW 表现:釜温不合格,而顶温合格 原因:顶底产品采出比例不当 调节方法:不变回流量,加大塔顶采出,加大加 热蒸汽压 (2)分离能力不够引起产品不合格的现象及调节方法 表现:塔顶温度升高,塔底温度降低。 调节方法:加大回流比
实验十九 恒 沸 精 馏 - 展示系统首页-华东理工大学课程中心
实验十九恒沸精馏A 实验目的恒沸精馏是一种特殊的分离方法。
它是通过加入适当的分离媒质来改变被分离组分之间的汽液平衡关系,从而使分离由难变易。
主要适用于含恒沸物组成且用普通精馏无法得到纯品的物系。
通常,加入的分离媒质(亦称夹带剂)能与被分离系统中的一种或几种物质形成最低恒沸物,使夹带剂以恒沸物的形式从塔顶蒸出,而塔釜得到纯物质。
这种方法就称作恒沸精馏。
本实验的目的,旨在使学生通过制备无水乙醇,从而(1)加强并巩固对恒沸精馏过程的理解;(2)熟悉实验精馏塔的构造,掌握精馏操作方法;B 实验原理在常压下,用常规精馏方法分离乙醇–水溶液,ٛ最高只能得到浓度为95.57%(wt%)的乙醇。
这是乙醇与水形成恒沸物的缘故,其恒沸点78.15℃,与乙醇沸点78.30℃十分接近,形成的是均相最低恒沸物。
而浓度95%左右的乙醇常称工业乙醇。
由工业乙醇制备无水乙醇,可采用恒沸精馏的方法。
实验室中恒沸精馏过程的研究,包括以下几个内容:(1)夹带剂的选择恒沸精馏成败的关键在于夹带剂的选取,一个理想的夹带剂应该满足:1)必须至少与原溶液中一个组分、形成最低恒沸物,希望此恒沸物比原溶液中的任一组分的沸点或原来的恒沸点低10℃以上。
2)在形成的恒沸物中,夹带剂的含量应尽可能少,ٛ以减少夹带剂的用量,节省能耗。
3)回收容易,ٛ一方面希望形成的最低恒沸物是非均相恒沸物,可以减少分离恒沸物所需要的萃取操作等,另一方面,在溶剂回收塔中,应该与其它物料有相当大的挥发度差异。
4)应具有较小的汽化潜热,ٛ以节省能耗。
5)价廉、来源广,无毒 热稳定性好与腐蚀性小等。
就工业乙醇制备无水乙醇,适用的夹带剂有苯、正己烷,环己烷,乙酸乙酯等。
它们都能与水–乙醇形成多种恒沸物,而且其中的三元恒沸物在室温下又可以分为两相,一相富含夹带剂,另一相中富含水,前者可以循环使用,后者又很容易分离出来,这样使得整个分离过程大为简化。
下表给出了几种常用的恒沸剂及其形成三元恒沸物的有关数据。
化工原理精馏实验报告
北 京 化 工 大 学实 验 报 告课程名称: 化工原理实验 实验日期: 2011.04.24 班 级: 化工0801 姓 名: 王晓 同 组 人:丁大鹏,王平,王海玮 装置型号:精馏实验一、摘要精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。
本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。
关键词:精馏、板式塔、理论板数、总板效率、单板效率二、实验目的1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。
2、了解板式塔的结构,观察塔板上气-液接触状况。
3、测测定全回流时的全塔效率及单板效率。
4、测定部分回流时的全塔效率。
5、测定全塔的浓度或温度分布。
6、测定塔釜再沸器的沸腾给热系数。
三、实验原理在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。
回流是精馏操作得以实现的基础。
塔顶的回流量和采出量之比,称为回流比。
回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。
回流比存在两种极限情况:最小回流比和全回流。
若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。
当然,这不符合工业实际,所以最小回流比只是一个操作限度。
若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。
但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。
实际回流比常取用最小回流比的1.2-2.0倍。
在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。
板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。
(1)总板效率Ee NE N式中 E —总板效率; N —理论板数(不包括塔釜); Ne —实际板数。
精馏实验(化工原理实验)
精馏实验一、实验目的1、了解筛板式精馏塔及其附属设备的基本结构,掌握精馏操作的基本方法;2、掌握精馏过程全回流和部分回流的操作方法;3、掌握测定板式塔全塔效率。
二、实验原理1、全塔效率E T全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值,即-1=T T P N E N (1)式中:T N -完成一定分离任务所需的理论塔板数,包括塔釜;P N -完成一定分离任务所需的实际塔板数。
全塔效率简单地反映了整个塔内塔板的平均效率,表明塔板结构、物性系数、操作状况等因素对塔板分离效果的影响。
对于双组分体系,塔内所需理论塔板数N T ,可通过实验测得塔顶组成x D 、塔釜组成x W 、进料组成x F 及进料热状况q 、回流比R等有关参数,利用相平衡关系和操作线用图解法或逐板计算法求得。
图1塔板气液流向示意图2、单板效率ME 单板效率又称莫弗里板效率,如图1所示,是指气相或液相经过一层实际塔板前后的组成变化值与经过一层理论塔板前后的组成变化值之比。
按气相组成变化表示的单板效率为1*1y =n n MV n n y E y y ++--(2)按液相组成变化表示的单板效率为1*1n n ML n n x x E x x ---=-(3)式中:y n 、1n y +-分别为离开第n 、n+1块塔板的气相组成,摩尔分数;1n x -、n x -分别为离开第n-1、n 块塔板的液相组成,摩尔分数;*ny -与x n 成平衡的气相组成,摩尔分数;*nx -与y n 成平衡的液相组成,摩尔分数。
3、图解法求理论塔板数N T图解法又称麦卡勃-蒂列(McCabe-Thiele)法,简称M-T 法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x 图上直观地表示出来。
对于恒摩尔流体系,精馏段的操作线方程为:111D n n x R y x R R +=+++(4)式中:1n y +-精馏段第n+1块塔板上升的蒸汽组成,摩尔分数;n x -精馏段第n 块塔板下流的液体组成,摩尔分数;D x -塔顶溜出液的液体组成,摩尔分数;R -回流比。
化工原理下实验精馏实验
密度 Kg/m3 971.4 969.2 967.0 964.6 962.2 959.7
四、实验操作
开机:启动四组加热丝,打开全凝器的冷却水进口阀,当 塔顶的温度快速上升时,及时关掉1、2组加热器,利用可 调加热丝将3,4组加热电流调节为12A(1#,2#板式塔) 或30A(3#,4#填料塔)
全回流:塔顶蒸汽温度达到70~80℃时,不进料也不出料 即F=0,D=0,逐渐开启回流阀,回流量的大小应注意控 制(1#、2#塔,L应小一些约为2~3l/h, 3#、4#塔回流量 可靠调节至7~8 L/h,在全回流下运行10分钟,期间当回 流流量有下降的趋势,则关小回流阀,全回流时间10分钟。
填料塔的等板高度:HETP
Z NT
等板高度(HETP)是指与一层理论塔板的传质作用相当的填料层
高度。它的大小取决于填料的类型、材质与尺寸,受系统物性、
操作条件及塔设备尺寸的影响。
Z-实际的填料层高度。
关键:如何求NT: 逐板计算法或梯级图解法
测出以下数据:
温度[℃]: tD、tf、tW 组成[mol/mol]:xD、xf、xW 流量: F、D、L
的全回流操作? (9)在本实验室的精馏实验过程,发生了液泛现象,试分析原因并提出解
决的方法。 (10)采用本实验室的流程分离乙醇和水的混合物,能否得到无水乙醇?为
什么?
精馏塔中塔板或填料是气液两相接触的场所由塔釜产生的上升蒸汽与从塔顶下降的下降液接触进行传热和传质下降液经过多次部分气化重组分含量逐渐增加上升蒸汽经多次部分冷凝轻组分含量逐渐增加从而使混合物达到一定程度的分离
精馏实验
二、实验原理简介
精馏塔中,塔板或填料是气液两相接触的场所,由塔釜产 生的上升蒸汽与从塔顶下降的下降液接触进行传热和传质, 下降液经过多次部分气化,重组分含量逐渐增加,上升蒸 汽经多次部分冷凝,轻组分含量逐渐增加,从而使混合物 达到一定程度的分离。
化工原理实验精馏实验报告
化工原理实验精馏实验报告This manuscript was revised on November 28, 2020北京化工大学学生实验报告学院:化学工程学院姓名:王敬尧学号:专业:化学工程与工艺班级:化工1012班同组人员:雍维、雷雄飞课程名称:化工原理实验实验名称:精馏实验实验日期北京化工大学实验五精馏实验摘要:本实验通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,根据数据绘出x-y图并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。
通过实验,了解精馏塔工作原理。
关键词:精馏,图解法,理论板数,全塔效率,单板效率。
一、目的及任务①熟悉精馏的工艺流程,掌握精馏实验的操作方法。
②了解板式塔的结构,观察塔板上汽-液接触状况。
③测定全回流时的全塔效率及单塔效率。
④测定部分回流时的全塔效率。
⑤测定全塔的浓度(或温度)分布。
⑥测定塔釜再沸器的沸腾给热系数。
二、基本原理在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。
回流是精馏操作得以实现的基础。
塔顶的回流量与采出量之比,称为回流比。
回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。
回流比存在两种极限情况:最小回流比和全回流。
若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。
当然,这不符合工业实际,所以最小回流比只是一个操作限度。
若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。
但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。
实际回流比常取最小回流比的~倍。
在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。
板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。
华东理工大学精馏PPT教案
fˆiV ˆiV pyi
ˆ iV
fiV iV p
iV
fˆi L ˆiL pxi
ˆ iL
fi L iL p
iL
fˆi L = fi0 i xi is pis i xi
is
pis i
第15页/共186页
2.2.4 逸度的基本公式(以P,T为变量)
混合物:
RT
ln ˆi
RT
ln
fˆi yi P
⑥ 板式塔:确定塔板型式,求算塔径、塔高以及塔板的结 构尺寸;
填料塔:计算塔径,进行液体和汽体分布器的设计。
第7页/共186页
精馏操作的开发步骤:
相平衡,操作压力(P)
建立数学模型
(MESH)
R
模型求解 T NT
板效率 塔板设计 等板高度 液体分布器设计
第8页/共186页
2.2 汽液相平衡
pis
)
pis-纯物质饱和蒸汽压
exp
Vi
L
(
p RT
pis
)
-波因丁因子
第25页/共186页
2.2.10 活度系数与过剩自由焓
GtE ni RT ln i
(
GtE ni
)T
,P,n j
RT ln i
GE / RT f (x1, x2 , , )
(2 - 58)
若有适当的过剩自由焓的数学模型,由(2-58)式可得γ。 常用的活度系数方程有: Wohl型方程:包括:VanLaar方程,Margules方程等。 局部组成概念:Wilson方程、NRTL方程、Uniquac方程等。
确定适宜的操作条件和参数 P,R,NT ,q… 工艺参数
确定适宜的设备结构和尺寸 D,H,结构… 设备参数
化工原理筛板塔精馏实验报告
筛板塔精馏实验一.实验目的1.了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。
2.学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。
3.学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。
二.基本原理1.全塔效率E T全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值:N T——完成一定分离任务所需的理论塔板数,包括蒸馏釜;N P——完成一定分离任务所需的实际塔板数,本装置N P=10。
2.图解法求理论塔板数N T以回流比R写成的精馏段操作线方程如下:y n+1——精馏段第n+1块塔板上升的蒸汽组成,摩尔分数;x n——精馏段第n块塔板下流的液体组成,摩尔分数;x D——塔顶溜出液的液体组成,摩尔分数;R——泡点回流下的回流比。
提馏段操作线方程如下:y m+1——提馏段第m+1块塔板上升的蒸汽组成,摩尔分数;x m——提馏段第m块塔板下流的液体组成,摩尔分数;x W-塔底釜液的液体组成,摩尔分数;L'-提馏段内下流的液体量,kmol/s;W-釜液流量,kmol/s。
加料线(q线)方程可表示为:其中,q——进料热状况参数;r F——进料液组成下的汽化潜热,kJ/kmol;t S——进料液的泡点温度,℃;t F——进料液温度,℃;c pF——进料液在平均温度(tS − tF ) /2 下的比热容,kJ/(kmol℃);x F——进料液组成,摩尔分数。
(1)全回流操作在精馏全回流操作时,操作线在y-x图上为对角线,如图1所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板数。
图1 全回流时理论塔板数确定(2)部分回流操作部分回流操作时,如图2,图解法的主要步骤为:A.根据物系和操作压力画出相平衡曲线,并画出对角线作为辅助线;B.在对角线上定出a点(xD,xD)、f点(xF,xF)和b点(xW,xW);C.在y轴上定出yC=xD/(R+1)的点c,连接a、c作出精馏段操作线;D.由进料热状况求出q,过点f作出斜率为q/(q-1)的q线交精馏段操作线于点d,连接点d、b作出提馏段操作线;E.从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏段操作线之间画阶梯,直至梯级跨过点b为止;G.所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板,其上的阶梯数为精馏段的理论塔板数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.板效率
过程变量分离的工程问题处理方法:
精馏塔设计(工艺因素;物性因素,设备结构因素) 工艺因素: --理论板 设备和物性:--塔板效率 塔板效率:
点效率 --理论研究 板效率 --开发研究 全塔效率--工程应用
全塔效率定义:
NT 1 100 % N
三、流程图
四、操作要点
1. 预热开始后,要及时开启冷凝水的冷却水阀,当釜液 沸腾后要注意控制加热量; 2. 排除管道内的不凝气; 3. 要注意釜内压强和灵敏板温度,塔釜操作压力 正常操作状态: 塔釜压力约20KPa(表压)
ห้องสมุดไป่ตู้
灵敏板温度约78~81℃ ;
4. 取样应在稳定操作时进行; 5.样品分析注意事项; 6.有关实验数据处理注意事项。
5.全回流状态下的数据处理
(1)注意塔顶和塔釜浓度换 算成mol浓度; (2)作图求解理论塔板数。
一、实验目的和内容
1.目的 熟悉板式塔的结构和精馏流程; 理论联系实际,掌握精馏塔的操作; 学习变量分离的工程问题处理方法; 掌握精馏塔效率的测定方法。
2.内容
(1)全回流操作,并测定全塔效率; (2)对15%~20%(v)的水和乙醇混合液进行 精馏分离, 达到塔顶馏出液乙醇浓度大 于90%(v),塔釜残液乙醇浓度小于5%
3.产品不合格的原因及调节方法 (1)物料不平衡 DxD>FxF-WxW 表现:釜温合格,而顶温上升 原因:顶底产品采出比例不当 调节方法:不变加热蒸汽压,减小塔顶采出,加 大塔釜出料和进料量 DxD<FxF-WxW 表现:釜温不合格,而顶温合格 原因:顶底产品采出比例不当 调节方法:不变回流量,加大塔顶采出,加大加 热蒸汽压 (2)分离能力不够引起产品不合格的现象及调节方法 表现:塔顶温度升高,塔底温度降低。 调节方法:加大回流比
4. 灵敏板 对于物料不平衡和分离能力不够造成的产品不合格 现象,可早期通过灵敏板温度的变化得到预测。 全塔温度分布: 灵敏板温度:某一板的温度变化明显
精馏塔操作过程参数:
塔釜液位:
判断全塔物料平衡 塔釜压力(或塔压降) 判断塔板汽液接触操作状态 灵敏板温度 判断板上组成变化和产品质量变化
(v);并在规定时间内完成300ml的塔顶
采出量。
二、基本原理
1.板式塔的结构、分类及特点
总体逆流,板上错流 泡罩塔———筛板塔———浮阀塔
2.维持稳定的精馏过程连续操作的条件
(1)物料平衡———总物料平衡和各组分平衡 (2)精馏塔应有足够的分离能力———塔板数和回流比 (3)维持正常的气液负荷量,避免发生以下不正常的 操作状况: 严重的液沫夹带现象; 严重的漏液现象; 溢流液泛