电机控制中双闭环及PI控制的个人理解[xiu]

电机控制中双闭环及PI控制的个人理解[xiu]
电机控制中双闭环及PI控制的个人理解[xiu]

运动控制中多闭环反馈控制及PI 控制的个人理解(1)

虫虫QQ214081712 Email:kyo2000652@https://www.360docs.net/doc/8219110603.html, 在运动控制系统中,为了实现对电机速度或者位置的良好控制,常常采用多重闭环的结构。比如有刷直流电机调速系统,交流永磁同步电动机伺服系统,都采用了类似的结构,除此之外,闭环系统一般采用PI 控制器或者PID 控制器。所以设计或调试类似系统就必须熟悉多闭环系统和PI 控制器的作用机理。本问着重从物理意义的角度谈一下这些内容,而不做较深层次的分析,因为是个人的见解,所以难免有错误或者不全面的地方,请大家指出,谢谢! 一,基本知识:

谈这个问题的时,首先要明确我们对运动控制系统的要求,其次要了解电机这个被

控对象的一些特征,只有明确了这两点才能理解为什么选用多闭环的结构。/

1, 对运动控制系统的要求:

不同类型运动控制系统对性能的要求是不一样的,比如一些调速系统要求系统能对

负载扰动有很强的抑制能力,有的伺服系统要求系统对某类信号的静态误差不能超过

多少,或者能适应频繁启动制动的情况。但是把他们综合以下,可以大致归纳为以下

几点:

A,静态性能指标:主要是系统的静态误差,一般要保证指令信号和实际输出之间没有

误差或者误差在允许范围内,假如你输入的指令是一个阶跃信号表示为50转每分,

那么电机的稳态输出就要尽量接近50转每分,当然这里说的指令信号不一定都是阶

跃信号,也有可能是斜坡或者其他信号,但是一般系统多用阶跃响应作为标准。 对于负反馈闭环控制系统来说,影响静态误差的主要因素是系统开环传递函数的型别,所以开环传函中串联的积分环节越多,系统型别就越高,静态误差越小,可以参考自动控制原理中的一些内容,这里不再深究。 B,抗扰动指标:也有不少书把该指标化归到静态性能中,这里单独把这个拿出来是为

了强调它的重要性。一般我们要求,当扰动在系统内某点产生作用时,系统输出受他

的影响最小,也就是输出波动的幅度最小,而且能在很快的时间内恢复到正常输出。在实际系统中,特别是调速系统中,我们一般把“静差率”的概念和抗扰动性能联系

起来,静差率表示系统在负载变化下转速稳定程度,相关资料可以参考陈伯时《电力

拖动自动控制系统》,实际上不仅仅是负载变化,运动控制中还有其他扰动,比如电

源的波动,有时候系统参数的时变也可以等效成一种扰动,经典控制论上一般采用扰

动点到系统输出的传递函数定义为扰动传函,我们对这个传递函数的要求是他在低频

的时候增益要足够小(一般要远在0db 以下),这和一般的传递函数不大一样。与之

相关的内容参考《自动控制原理》

,同时可以关注一下:恢复时间和最大动态变化量

这两个概念。

C动态指标:这个指标总体上分为两类:相对稳定性和系统的响应速度,这两个指标实际上是互相矛盾的,我们的设计和调试是对他们的折衷,相对稳定性反应了系统动态过程的平稳程度,一个发散的系统固然是不稳定(这是绝对不稳定的),但是如果

一个系统经过了几次震荡或者一个大的超调才稳定下来,那我们就说它的相对稳定性很不好,从系统时领角度看相对稳定性一般要求超调不能大于20%,对于某些场合不超过5%,而震荡一般是不允许的,从系统频域角度来看,该指标和相角稳定余度有关系,相角稳定裕度越大就越好,一般要求稳定裕度在40~60度之间,为什么相角裕度不能太大呢?这就是因为我们对系统的响应速度也有要求,如果太大系统反应会很慢,极端的情况是系统在时间无限大的情况下还没有完全达到指令值的范围。系统的响应速度比较好理解,他反映为上升时间等指标。我们希望系统能在很短的时间内达到指令范围。在频域上,他反映为系统的带宽,理想的情况下,系统有无限大的带宽,这样他就相当于一个对指令信号的全通滤波器,可以完全复现指令,有极快的响应速度,但是这是不可能的,带宽过大必然肯定会导致系统相角裕度不足,而相对稳定性的下降。动态性能对应波特图的中频段,设计并调试出一个“漂亮”的中频段是很重要的。

2,电机的运行机理

电机是一个复杂的机电系统,涉及到机,电,磁等的一系列能量转化,我们这里为了更有针对性的分析,主要针对有刷直流电机进行讲解,(其他电机的作用机理可能不大一样)。实际上,交流永磁同步电机和交流异步电机和它也很相似,具体内容可以参考“电机统一理论”(本人曾在一个博士论文中看过相关内容,但是忘记文章名字了)

电机的运行可以用一些微分方程来表示,一般来讲,主要有电路方程和转矩方程,电路方程主要描述电枢绕组内的电特性,大多数情况下,这个方程都可以描述为,电枢外加电压等于绕组总电阻和总电感的电压降加上电机反电动势,这个反电动势实际上是为了建立磁场所耗费的,他和电机速度的大小成正比,总的来看,在忽略了反电动势的情况下,电路方程可以近似看成电压和电流为变量的一阶线性微分方程,这也就表明电机电压和电流之间近似于线性的关系。(但是有些场合要考虑反电动势)

电机的转距方程一般来讲可以理解为转距和电枢电流成正比,也就是说我们如果打算控制电机的转距或者加速度就必须控制好电流。对于id=0矢量控制方式的交流用磁电动机,他的转巨方程和电枢方程和有刷直流电机十分相似,也可以做以上的理解。在开环调速PWM系统中,我们给电机一个一定占空比的电压信号,电机从0速度开始旋转,慢慢加速直到指定速度附近。这个过程可以这么理解:

第1阶段:建立电流:当电压信号刚加在电枢绕组上的时候,由于电枢回路的感性(电气上的惯性),电流不会很大,而且是慢慢增长的,又由于电机负载和转子的惯性(机械上的惯性),电机速度基本上等于零,因为一般机械惯性大于电气惯性,所以电流的增长要远远比速度的增长快,这个过程的主要作用是建立电流,让电流先增大到一定程度。与此同时和电流成正比的转巨也在逐渐增长,为下阶段的加速做准备。第2阶段:加速段:当电流增大到一定程度的时候,电机速度也有了一定程度的提高,并开始大幅度加速。在开环的情况下,电流会有所减少,但是不会减少到稳态附近。(注意是稳态值而不是额定值,稳态电流和负载大小有关系,负载越大稳态电流越大,空载的时候PWM控制的电流一般很小且易断流)

第3阶段:稳速段:当速度接近指令附近的时候,电流会迅速减低,并在稳态值附近震荡,同时速度也在小幅度调整中,直到电流和速度都稳定下来,电机进入稳态。

从上面我们可以看出,电机加速和启动的动态过程中,电流起到了很重要的作用,而在电机趋近稳态的附近,对转速的控制也应该被提起。

二,多闭还反馈控制的必要性

1,反馈和PID控制的必要性:为什么我们要采用反馈控制的策略呢?

我们先说说如果不采用反馈控制会怎么样?

a,从动态的角度来看:不采用反馈控制的时候,也就是完全开环状态(主要针对速度和电流的开环),一些电机控制系统响应的速度很慢,输出上升的过程很慢,

类似于一个过阻尼的2阶环节,也有个别系统(比如某些异步电机)可能有大

幅度的震荡才能稳定。以直流有刷电机的电流控制来说,假如我们不做电流反馈

控制,电流的阶跃响应往往是一个缓慢的上升过程,这是因为电流开环可以等效

成一个一阶惯性环节,我们需要的是一个快速反映的过程,即使有小的超调也可

以忍受,所以我们采用了反馈的结构并安装了PI控制器,其实在这里PI控制器

对电流动态性能影响最大的是比例部分P,开环系统之所以反映很慢就是因为它

的带宽太小了,而我们加了比例放大环节后,实际上系统开环传递函数的频率特

性向上平移,系统带宽增大,截止频率增大。所以足够的带宽和增益是反馈后必

须要做到的。

b,从抗扰动的角度来看:扰动处处存在,时时存在,以开环的速度控制为例,当发生负载扰动,比如负载突然增大,由于指令信号不变,而增大的那部分负载实际

上就分去了一部分信号,这部分信号原本是要产生与指令对应的速度的,而由于

负载分去的那部分信号,导致速度的下降,也就产生了误差。如果我们采用了反

馈和PI控制器,实际上就引入了误差控制,由扰动产生的那部分速度的降低可

以产生误差信号,这个信号经过PI

控制器,被放大并用于补偿失去的速度,我

们还可以看出PI 控制器的比例系数越大,对误差的放大能力越好,则补偿能力越好。抑制扰动的能力越好。

2, 速度环的必要性

速度环的主要作用是为了抑制负载扰动,具体的过程前面已经说过了,这个可以

通过静差率来描述。对于速度环的静态要求一般是要做到阶跃响应没有误差的,所以至少要把他设计成1型系统。

另外,对于系统的动态过程来说,速度环一般是要饱和的,也就是相当于工作于开环状态,那么他一般在什么时候饱和呢,那就是大幅度加减速或者启动过程,这个时候他套配合电流环才能发挥出很好的作用,而这个饱和值的设置也是很有讲究的。我们将在后面讲一下。

顺便说一下,价值的,但是实际上可能和算出来的不一样,特别是对于速度环。由于“饱和”和参数变化等非线形现象的出现,导致很多线形的方法都不很适用。建议一切以实验为准,灵活把握。有兴趣的朋友可以参考南京航空航天大学陈荣博士的毕业

论文。

3,

电流环的必要性

前面已经说过了,电流环主要作用是为了提高电流的响应速度,它主要作用于电

机启动的时候,也就是前面所说的电流建立的阶段。从物理的角度来理解,由于我们一般采用电压源产生的PWM 电压信号来驱动电机,但是前面也说了电压和电流是一个近似线性一阶微分方程的关系,所以当我给定了一个电压的时候,实际上是给了这个微分方程一个终值,而电流会逐渐的趋近于该数值(或者是它乘上一个系数),这实际上是一种间接的电流控制,为了提高这种间接控制的快速性,就可以做电流反馈。 同时要注意,电流环的超调不能太大,否则对元件不利或者直接启动保护。

最后谈一下,速度环饱和与电流环作用的关系。实际在启动阶段,由于速度环的迅速饱和,就顺应了快速建立电流的需要,由于电流建立阶段我们不需要对速度做精确快速的控制,只要能在这个阶段把电流建立起来就达到了快速性的目的,而速度环饱和输出实际上可以理解为电机能够允许的最大电流,一般这个饱和数值可以取到额定电流的3倍(但不绝对)。这样电机就能在一定时间内以这个大电流保证迅速加速。饱和固然可以加速,但是也可能带来超调,这在后面进一步说明。

二,PI 控制的理解

比例积分控制(PI 控制)在运动控制系统中很常见,hellodsp 论坛上的朋友likyo

曾经做过详尽的分析,写的很棒。下面我主要说一下需要注意的问题:

1,关于算法的结构问题:

一般的PI控制有两种常见的结构: kp+ki/s和kp(tis+1)/ti*s 这两种结构是可以互化的,但是我个人认为后一种格式更好,更便于参数的调试,这是为什么呢?实际上,后一种结构做到了“实际增益的分离”,我们一般意义上所说的比例增益实际上并不仅仅是kp这一个参数提供的,他也取决于积分部分产生的放大增益,我们应该把控制器的比例增益理解为整个控制器提供的放大倍数,对于PI控制来说,如果积分系数ki的提高同样也增大了整体的增益,所以我们必须把积分的实际作用从系统中分离出来,kp(tis+1)/ti*s中ti是一个在0和1之间的小数,它构成的比例微分环节(tis+1)对增益没有太大影响,为什么这么说呢,这是因为根据零极点对消的理论,实际这个微分环节是要和系统中某个大惯性环节相抵消的,实际上如果积分常数调节的好,这个比例微分环节基本不起作用,那么剩下的kp/ti才是系统真正的增益。(其中ti已经被系统的最大惯性环节确定了,我们主要是确定kp)这个这样的结构把起作用的部分和不起作用的部分分开了。而kp+ki/s中,我们要考虑两个“耦合”的参数,这两个参数都可能对系统的总体增益产生作用,所以调试起来很麻烦。

2.比例和积分参数的作用:

比例系数主要和系统的动态过程有关,同时也和静态精度有关系。

当系统反映迟缓的时候可以通过增大比例系数来拓宽带宽,调试比例系数的时候要从小到大,直到出现震荡。

更重要的是比例系数还反映了系统“抗扰动的性能”,它越大越能抑制扰动。

积分常数ti用于抵消大惯性环节,另一方面积分作用也引入了一个纯积分环节,积分环节提高了系统的型别,使得静态误差减少了,所以当你调试好比例系数后发现静态性能不好,就可以加上积分,积分常数和比例系数不一样,要从大到小调试,采用kp(tis+1)/ti*s形式调试的时候你会发现,当积分系数越小的时候静态精度越高,但是超调也越大,而积分系数太大的话,静态精度不高。

另外就是饱和问题,速度饱和产生的超调本质上是由积分的退饱和引起的,解决的办法有很多,可以尝试用微分负反馈,也可以改变一下程序的结构(比如在误差很大的时候让积分作用,但是当误差减小的时候要逐渐减少积分,这样电机就可以在速度达到指令的时候,控制器输出不会过大,电机刚好能维持在指令速度附近)。

虫虫

实验七 双闭环三相异步电动机调压调速系统

实验七双闭环三相异步电动机调压调速系统一.实验目的 1.熟悉相位控制交流调压调速系统的组成与工作。 2.了解并熟悉双闭环三相异步电动机调压调速系统的原理及组成。 3.了解绕线式异步电动机转子串电阻时在调节定子电压调速时的机械特性。 4.通过测定系统的静特性和动态特性进一步理解交流调压系统中电流环和转速环的作用。 二.实验内容 1.测定绕线式异步电动机转子串电阻时的人为机械特性。 2.测定双闭环交流调压调速系统的静特性。 3.测定双闭环交流调压调速系统的动态特性。 三.实验系统组成及工作原理 双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流调压器及三相绕线式异步电动机(转子回路串电阻)。控制系统由电流调节器(ACR),速度调节器(ASR),电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器等组成。其系统原理图如图7-1所示。 整个调速系统采用了速度,电流两个反馈控制环。这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。在稳定运行情况下,电流环对电网振动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。 异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率全部消耗在转子电阻中,使转子过热。 四.实验设备和仪器 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)。 4.电机导轨及测速发电机、直流发电机 5.MEL—03三相可调电阻器(或自配滑线变阻器450 ,1A) 6.绕线式异步电动机 7.MEL—11组件

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验 魏小景张晓娇刘姣 (自动化0602班) 摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。 关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真 1.引言 双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。 2.基本原理和系统建模 为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、 图1 直流电机双闭环调速系统的动态结构图

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真 1.异步电机矢量控制系统的原理及其仿真 1.1 异步电动机矢量控制原理 异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。 本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。 图1矢量变换控制系统仿真原理图 如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。 (1) (2) (3) (4)

(5) 上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率; 是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。 图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。 1.2 异步电机转差型矢量控制系统建模 在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。 图2 电流控制变频模型图 整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、

双闭环三相异步电机调压调速系统实验报告

运动控制系统专题实验 实 验 报 告 2016年5月

6.1双闭环三相异步电机调压调速系统 一.实验目的 (1)熟悉晶闸管相位控制交流调压调速系统的组成与工作原理。 (2)熟悉双闭环三相异步电机调压调速系统的基本原理。 (3)掌握绕线式异步电机转子串电阻时在调节定子电压调速时的机械特性。(4)掌握交流调压调速系统的静特性和动态特性。 熟悉交流调压系统中电流环和转速环的作用。 二.实验内容 (1)测定绕线式异步电动机转子串电阻时的人为机械特性。 (2)测定双闭环交流调压调速系统的静特性。 (3)测定双闭环交流调压调速系统的动态特性。 三.实验设备 (1)电源控制屏(NMCL-32); (2)低压控制电路及仪表(NMCL-31); (3)触发电路和晶闸管主回路(NMCL-33); (4)可调电阻(NMCL-03); (5)直流调速控制单元(NMCL-18); (6)电机导轨及测速发电机(或光电编码器); (7)直流发电机M03; (8)三相绕线式异步电机; (9)双踪示波器; (10)万用表。 四.实验原理 1.系统原理 双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流调压器(TVC)及三相绕线式异步电动机M(转子回路串电阻)。控制系统由零速封锁器(DZS)、电流调节器(ACR)、速度调节器(ASR)、电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器(AP1)等组成。其系统原理图如图6-1所示。

整个调速系统采用了速度、电流两个反馈控制环。这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。在稳定运行情况下,电流环对电网波动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。 异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率全部消耗在转子电阻中,使转子过热。 2.三相异步电机的调速方法 交流调速系统按转差功率的处理方式可分为三种类型。 转差功率消耗型:异步电机采用调压、变电阻等调速方式,转速越低时,转差功率的消耗越大,效率越低。 转差功率馈送型:控制绕线转子异步电机的转子电压,利用其转差功率可实现调节转速的目的,这种调节方式具有良好的调速性能和效率,如串级调速。 转差功率不变型:这种方法转差功率很小,而且不随转速变化,效率较高,列如磁极对数调速、变频调速等。 如何处理转差功率在很大程度上影响着电机调速系统的效率。 五.实验方法 双闭环交流调压调速系统主回路和控制回路如图连接,NMCL-32的“三相交流 电源”开关拨向“交流调速”。给定电位器RP1和RP2左旋到最大位置,可调电阻NMCL-03左旋到最大位置。注意:图中主回路中接入的是交流电流表和交流电压表。 VT 3 VT 1 VT 6 VT 4 VT 5 VT 2 A 交流电流表,量程为1A 图2-1 双闭环交流调压调速系统主回路G 直流电机 励磁电源 R G 直流发电机M03V TG 定子 转子NMEL-09的线绕电机起动电阻

双闭环三相异步电动机调压调速系统的仿真设计

吉林建筑大学城建学院 课程设计报告 题目名称双闭环三相异步电动机 调压调速系统的仿真院(系) 电气信息工程系 课程名称电力拖动自动控制系统 班级电气11-1 学号110090121 学生姓名李林 指导教师柏逢明 起止日期2015.3.2-2015.3.13

目录 摘要……………………………………………………………………I ABSTRACT……………………………………………………………………………II 第1章双闭环三相异步电动机调压调速系统 (1) 1.1设计原理 (1) 1.2工作原理………………………………………………………………2 1.2.1 控制电路 (2) 1.2.2移相触发电路 (2) 第2章设计方案 (3) 2.1 主电路设计 (3) 2.1.1 调压电路…………………………………………………………3 2.1.2开环调压调速? (3) 2.1.3闭环调压调速................................................42.2控制回路设计 (5) 5 ……………… …………… 2.2.1转速检测环节和电流检测环节的设计? 2.2.2调速系统的静态参数分析 (9) 2.3触发电路设计 ……………………………………………………………11 第3章仿真设计 (12) 3.1 调压电路 (12) 3.1.1 调压电器的仿真模型 (12) 3 1 ……………………………………………………… 3.1.2 参数的设定? 3.1.3电阻负载的仿真图形 (14) 3.2 异步电动机带风机泵类负载开环调压调速模块 (1) 5 3.2.1参数设定……………………………………………………………15 3.2.2闭环调压 (18) 结论 (21)

实验五 直流电机闭环调速控制

实验五直流电机闭环调速控制 2011级测控一班王婷婷 2011134128 一、实验目的 1.掌握用PID控制规律的直流调速系统的调试方法; 2.了解PWM调制、直流电机驱动电路的工作原理。 二、实验设备 计算机控制技术(二)、PCI数据采集卡(含上位机软件) 三、实验原理 直流电机在应用中有多种控制方式,在直流电机的调速控制系统中,主要采用电枢电压控制电机的转速与方向。 功率放大器是电机调速系统中的重要部件,它的性能及价格对系统都有重要的影响。过去的功率放大器是采用磁放大器、交磁放大机或可控硅(晶闸管)。现在基本上采用晶体管功率放大器。PWM功率放大器与线性功率放大器相比,有功耗低、效率高,有利于克服直流电机的静摩擦等优点。 PWM调制与晶体管功率放大器的工作原理: 1.PWM的工作原理 图5-1 PWM的控制电路 图5-1所示为SG3525为核心的控制电路,SG3525是美国Silicon General公司生产的专用PWM控制集成芯片,其内部电路结构及各引脚如图5-2所示,它采用恒频脉宽调制控制方案,其内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相互错开180度、占空比可调的矩形波(即PWM信号)。它适用于各开关电源、斩波器的控制。 2.功放电路 直流电机PWM输出的信号一般比较小,不能直接去驱动直流电机,它必须经过功放后再接到直流电机的两端。该实验装置中采用直流15V的直流电压功放电路驱动。 3.反馈接口 在直流电机控制系统中,在直流电机的轴上贴有一块小磁钢,电机转动带动磁钢转动。 磁钢的下面中有一个霍尔元件,当磁钢转到时霍尔元件感应输出。 4.直流电机控制系统如图13-3所示,由霍耳传感器将电机的速度转换成电信号,经数据采集卡变换成数字量后送到计算机与给定值比较,所得的差值按照一定的规律(通常为PID)运算,然后经数据采集卡输出控制量,供执行器来控制电机的转速和方向。

直流电机双闭环调速大作业

题目(中)直流电机双闭环控制调速 姓名与学号 指导教师 年级与专业

所在学院

目录: 一、电机控制实验目的和要求 (4) 二、双闭环调速控制内容 (4) 三、主要仪器设备和仿真平台 (5) 四、仿真建模步骤及分析 (5) 1.直流电机双闭环调速各模块功能分析 (5) 2.仿真结果分析(转速、转矩改变) (18) 3.转速PI调节器参数对电机运行性能的影响 (24) 4.电流调节器改用PI调节器后的仿真 (27) 5.加入位置闭环后的仿真 (28) 6.速度无超调仿真 (30) 七、实验心得 (32)

一、电机控制实验目的和要求 1、加深对直流电机双闭环PWM调速模型的理解。 2、学会利用MATLAB中的SIMULINK工具进行建模仿真。 3、掌握PI调节器的使用,分析其参数对电机运行性能的影响。 二、双闭环调速控制内容 必做: 1、描述Chopper-Fed DC Motor Drive中每个模块的功能。 2、仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象。 3、转速PI调节器参数对电机运行性能的影响。 4、电流调节器改用PI调节器后,对电机运行调速结果的影响。 选做: 5、加入位置闭环 6、速度无超调

三、主要仪器设备和仿真平台 1、MATLAB R2014b 2、Microsoft Officials Word 2016 四、仿真建模步骤及分析 1.直流电机双闭环调速各模块功能分析 参考Matlab自带的直流电机双闭环调速的SIMULINK仿真模型: demo/simulink/simpowersystem/Power Electronics Models/Chopper-Fed DC Motor Drive

实验四 双闭环三相异步电动机串级调速系统

南昌大学实验报告 学生姓名:学号:专业班级:自动化121班 实验类型:□验证□综合□设计□创新实验日期:实验成绩:实验四双闭环三相异步电动机串级调速系统一.实验目的 1.熟悉双闭环三相异步电动机串级调速系统的组成及工作原理。 2.掌握串级调速系统的调试步骤及方法。 3.了解串级调速系统的静态与动态特性。 二.实验内容 1.控制单元及系统调试 2.测定开环串级调速系统的静特性。 3.测定双闭环串级调速系统的静特性。 4.测定双闭环串级调速系统的动态特性。 三.实验系统组成及工作原理 绕线式异步电动机串级调速,即在转子回路中引入附加电动势进行调速。通常使用的方法是将转子三相电动势经二极管三相桥式不控整流得到一个直流电压,再由晶闸管有源逆变电路代替电动势,从而方便地实现调速,并将能量回馈至电网,这是一种比较经济的调速方法。 本系统为晶闸管亚同步闭环串级调速系统。控制系统由速度调节器ASR,电流调节器ACR,触发装置GT,脉冲放大器MF,速度变换器FBS,电流变换器FBC等组成,其系统原理图如图7-2所示。 四.实验设备和仪器 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)。 4.电机导轨及测速发电机、直流发电机 5.MEL—03三相可调电阻器(或自配滑线变阻器450Ω,1A) 6.绕线式异步电动机 7.MEL—11组件 8.直流电动机M03 9.双踪示波器。. 10.万用表 五.注意事项

1.本实验是利用串调装置直接起动电机,不再另外附加设备,所以在电动机起动时,必须使晶闸管逆变角β处于βmin位置。然后才能加大β角,使逆变器的逆变电压缓慢减少,电机平稳加速。 2.本实验中,α角的移相范围为90°~150°,注意不可使α<90°,否则易造成短路事故。 3.接线时,注意绕线电机的转子有4个引出端,其中1个为公共端,不需接线。 4.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 5.测取静特性时,须注意电流不许超过电机的额定值(0.55A)。 6.三相主电源连线时需注意,不可换错相序。逆变变压器采用MEL-03三相芯式变压器的高压绕组和中压绕组,注意不可接错。 7.电源开关闭合时,过流保护、过压保护的发光二极管可能会亮,只需按下对应的复位开关SB1、SB2即可正常工作。 8.系统开环连接时,不允许突加给定信号U g起动电机。 9.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 10.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 11.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 12.绕线式异步电动机:P N=100W,U N=220V,I N=0.55A,n N=1350,M N=0.68,Y接。 六.实验方法 1.移相触发电路的调试(主电路未通电) (a)用示波器观察MCL—33(或MCL—53)的双脉冲观察孔,应有间隔均匀,幅值相同的双脉冲;将G输出直接接至U ct,调节Uct,脉冲相位应是可调的。 (b)将面板上的U blf端接地,调节偏移电压U b,使U ct=0时,α接近1500。将正组触发脉冲的六个键开关“接通”,观察正桥晶闸管的触发脉冲是否正常(应有幅值为1V~2V 的双脉冲)。 (c)触发电路输出脉冲应在30°≤β≤90°范围内可调。 可通过对偏移电压调节电位器及ASR输出电压的调整实现。例如:使ASR输出为0V,调节偏移电压,实现β=30°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使β=90°。 2.控制单元调试 按直流调速系统方法调试各单元 3.求取调速系统在无转速负反馈时的开环工作机械特性。 a.断开ASR(MCL—18或MCL—31)的“3”至U ct(MCL—33或MCL—53)的连接线,G(给定)直接加至U ct,且Ug调至零。 直流电机励磁电源开关闭合。电机转子回路接入每相为10Ω左右的三相电阻。 b.三相调压器逆时针调到底,合上主控制屏的绿色按钮开关,调节三相调压器的输出,

实验四 双闭环三相异步电动机调压调速系统

实验四双闭环三相异步电动机调压调速系统(验证性) 一.实验目的 1.熟悉相位控制交流调压调速系统的组成与工作。 2.了解双闭环三相异步电动机调压调速系统的原理及组成。 3.通过测定系统的静特性和动态特性进一步理解交流调压系统中电流环和转速环的作用。 二.实验内容 1.测定绕线式异步电动机转子串电阻时的人为机械特性。 2.测定双闭环交流调压调速系统的静特性。 3.测定双闭环交流调压调速系统的动态特性。 三.实验系统组成及工作原理 双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流调压器及三相绕线式异步电动机(转子回路串电阻)。控制系统由电流调节器(ACR),速度调节器(ASR),电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器等组成。其系统原理图如图7-1所示。 整个调速系统采用了速度,电流两个反馈控制环。这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。在稳定运行情况下,电流环对电网波动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。 异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率全部消耗在转子电阻中,使转子过热。 四.实验设备和仪器 1.MCL系列教学实验台主控制屏。 2.MCL—18组件。 3.MCL—33组件。 4.三相绕线型异步电动机-负载直流发电机-测速发电机组 5.MEL—03三相可调电阻器。 6.MEL—11组件。 7.双踪示波器。. 8.万用表。 五.注意事项 1.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意电流不许超过电机的额定值(0.55A)。 4.三相主电源连线时需注意,不可换错相序。 5.电源开关闭合时,过流保护、过压保护的发光二极管可能会亮,只需按下对应的复

基于单片机的直流电机闭环调速控制系统xin

滨江学院 专业综合设计 题目直流电机闭环调速系统控制 院系自动控制 专业自动化 组别第二组 组长周未政 指导教师周旺平 二0 一0 年十二月二十八日基于单片机的直流电机闭环调速控制系统

摘要:设计以AT89C51单片机控制模块为核心,由单片机控制、红外线光电检测装置、直流电机转速为被测量组成的控制系统。原理是利用红外线光电传感器接收直流电机转速所产生的红外信号转换成电信号传输给单片机,并调节转速的闭环调速控制系统。 1.AT80C51单片机介绍 1.1主电源引脚 V ss—(20脚):电路地电平 V cc—(40脚):正常运行和编程校检(8051/8751)时为+5V电源。 1.2外接晶振或外部振荡器引脚 XTAL1—(19脚):接外部晶振的一个引脚. 在单片机内部,它是一个反相放大器的输入端,这个放大器构成了片内振荡器. 当采用外部振荡器时,此引脚应该接地. XTAL2—(18脚):接外部晶振的另一个引脚. 在片内接至振荡器的反相放大器的输出和内部时钟发生器的输入端. 当采用外部振荡器时,则此引脚接外部振荡信号的输入。 1.3控制、选通或电源复用引脚 RST/V pd—(9引脚): RST即Reset(复位)信号输入端。 ALE/PROG—(30引脚): ALE,允许地址索存信号输出。 PSEN—(29脚):访问外部程序存储器选通信号,低电平有效。. V pp/EA—(31引脚): EA为访问内部或外部程序存储器选择信号。 1.4多功能I/O口引脚 P0口—(32-39脚):8位漏极开路双向并行I/O接口. P1口—(1-8脚): 8位准双向并行I/O接口. P2口—(21-28脚):8位准双向并行I/O接口. P3口—(10-17脚):具有内部上拉电路的8位准双向并行I/O端口。它还提供第二特殊功能,具体含义为: P3.0—(10脚)RXD:串行数据接收端。 P3.1—(10脚)TXD:串行数据发送端。 P3.2—(10脚)INT0:外部中断0请求端,低电平有效。 P3.3—(10脚)INT1:外部中断1请求端,低电平有效。. P3.4—(10脚)T0:定时器/计数器0外部事件计数输入端。.

直流电机双闭环调速系统设计要点

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

(技术文档2)异步电机目前几种主要控制方法的对比分析

异步电机几种主要控制方法的对比分析 近些年来,随着电力电子、计算机控制以及矢量控制等技术的不断发展,交流调速获得了巨大的技术支持,交流调速系统已经取代了直流调速系统。交流异步电机调速控制系统大致可分为两大类,一类是标量控制系统,主要是变频调速系统,包括恒压频比控制(V/F 控制)和转差频率控制。另一类是矢量控制系统,包括转子磁场定向矢量控制(VC )、转差频率矢量控制、直接转矩控制(DTC )和无速度传感器矢量控制。 1 标量控制 1.1 恒压频比控制( V/F) 交流异步电机调速时,总是希望保持每极磁通量m Φ为额定值不变,这样铁芯才能工作在最经济状态。电源频率和电机极对数决定异步电动机的同步转速,即在改变电源频率时,可以改变电机的同步转速,这时只有控制电源电压与变化的频率的比值为恒定( V/F 恒定) ,才能确保电动机的磁通m Φ基本恒定。电动机定子的感应电动势: m N 111K 44.4Φ=N f E g (1) 式中Eg —气隙磁通在定子每相绕组中感应电动势有效值; 1f —电源频率; 1N —定子每相绕组串联匝数; 1N K —基波绕组系数; m Φ—每极气隙磁通量。 由式(1)可知,在控制电动机频率时,保持1/f E g 1恒定,就可以维持磁通恒定。有三种不同方式的电压—频率协调控制。 (1) 恒压频比=11/f U 控制,1U 为定子端电压,这种方式最容易实现,能够满足一般调速要求,其缺点是低速带载能力差,需要对定子压降进行补偿。 (2) 恒1/f E g 控制,g E 是气隙磁通在定子每相绕组中感应电动势,它以对恒压频比实行电压补偿为目标,稳态调速性能优于恒压频比11/f U 控制。这种控制方式的缺点是机械特性非线性,产生转矩的能力不强。 (3) 恒1/f E r 控制,r E 是气隙磁通在转子每相绕组中感应电动势,这种控制方式可以得到和直流励电动机一样的机械特性,从而使高性能调速得以实现。但是它的控制系统比较复杂。

直流电机转速闭环控制课程设计

计算机控制技术课程设计 报告 设计课题:直流电机转速闭环控制 (采用单片机教学实验系统) 班级: 报告人: 指导教师: 完成日期:2011年9月22日

重庆大学本科学生《计算机控制技术基础》课程设计任务书课程设计题目直流电机转速闭环控制(采用单片机教学实验系统) 学院自动化学院专业自动化专业年级 (1)已知参数和设计要求 1)用单片机产生PWM方波调制直流电机以一定速率旋转,人为给一个速度漂移,霍尔元件测出速度并根据PID算法跟踪校正速度漂移。 2)要求用LED或LCD时实显示电机速度。 3)要求在10秒内PID算法纠正速率漂移。 (2)实现方法 采用单片机教学实验系统实现(限≤4人选做) 学生应完成的工作: 1)硬件设计:要求完成控制系统框图;绘制完整的控制系统电原理图;说明各功能模块的具体功能和参数;结合实验室现有的单片机教学实验系统进行系统组成,对整个系统的工作原理进行全面分析,论述其结构特点、工作原理、优、缺点和使用场合。分析和论述系统采用的主要单元的工作原理和特性。 2)软件设计:要求合理分配系统资源,完成直流电机转速闭环控制的程序设计(如:系统初始化;主程序;A/D转换;D/A转换;标度变换;显示与键盘管理;控制算法处理;输出等)。 3)对设计控制系统进行系统联调。 4)编写课程设计报告:按统一论文格式、统一报告纸和报告的各要素【封面、任务书、目录、摘要、序言、主要内容(包括设计总体思路、设计步骤、原理分析和相关知识的引用等)、总结、各组员心得体会、参考书及附录(包括系统框图、程序流程图、电原理图和程序原代码)】进行编写,字数要求不少于4000字,要求设计报告论理正确,逻辑性强,文理通顺,层次分明,表达确切。 目前资料收集情况(含指定参考资料): 《计算机硬件技术基础实验教程》黄勤等编著重庆大学出版社 《单片微型计算机机与接口技术》李群芳等编著电子工业出版社 《计算机控制技术》王建华等编著高等教育出版社 课程设计的工作计划: (1)2011年9月19日熟悉设计任务和要求。 (2)2011年9月20日确定设计方案。 (3)2011年9月21日硬件调试。 (4)2011年9月22日软件及系统调试。 (5)2011年9月23日设计答辩。 任务下达日期 2011年 9月 19 日完成日期 2011年 9 月 24日 指导教师(签名) 学生(签名) 说明:1、学院、专业、年级均填全称,如:光电工程学院、测控技术、2003。 2、本表除签名外均可采用计算机打印。本表不够,可另附页,但应在页脚添加页码。

直流电机双闭环控制系统分析报告与设计

基于MATLAB 的直流电机 双闭环调速系统的设计与仿真 设计任务书: 1. 设置该大作业的目的 在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果。通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。此外,通过完成本大作业题目,让学生体会反馈校正方法所具有的独特优点:改造受控对象的固有特性,使其满足更高的动态品质指标。 2. 大作业具体容 设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为: 额定功率200W ; 额定电压48V ; 额定电流4A ; 额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2; 电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5s ; 电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ; 要求转速调节器和电流调节器的最大输入电压==* *im nm U U 10V ; 两调节器的输出限幅电压为10V ;

f10kHz; PWM功率变换器的开关频率= K 4.8。 放大倍数= s 试对该系统进行动态参数设计,设计指标: 稳态无静差; σ5%; 电流超调量≤ i 空载起动到额定转速时的转速超调量σ≤ 25%; t0.5 s。 过渡过程时间= s 3. 具体要求 (1) 计算电流和转速反馈系数; (2) 按工程设计法,详细写出电流环的动态校正过程和设计结果; (3) 编制Matlab程序,绘制经过小参数环节合并近似后的电流环开环频率特性曲线和单位阶跃响应曲线; (4) 编制Matlab程序,绘制未经过小参数环节合并近似处理的电流环开环频率特性曲线和单位阶跃响应曲线; (5) 按工程设计法,详细写出转速环的动态校正过程和设计结果; (6) 编制Matlab程序,绘制经过小参数环节合并近似后的转速环开环频率特性曲线和单位阶跃响应曲线; (7) 编制Matlab程序,绘制未经过小参数环节合并近似处理的转速环开环频率特性曲线和单位阶跃响应曲线; (8) 建立转速电流双闭环直流调速系统的Simulink仿真模型,对上述分析设计结果进行仿真; (9) 给出阶跃信号速度输入条件下的转速、电流、转速调节器输出、电流调节器输出过渡过程曲线,分析设计结果与要求指标的符合性;

双闭环三相异步电动机调压调速系统课程设计

第1章绪论 现在社会工业化越来越体现着它的强大。工业化运行的前提是能源的有力支撑。调压调速是一种非常简单实用的调速方法。本论文对异步电机开环控制调压调速系统及速度闭环控制调压调速系统的讨论和仿真,并探讨最经济实用的调压电路。找出最合理的调速方法,实现电机平稳运行,平滑调速,既能延长电机寿命,又可以有效节约能源。在现实社会具有相当高的研究价值。交流电动机的发明是由美国发明家特斯拉完成的,最早的交流电动机根据电磁感应原理设计,结构比起直流电动机更为简单,同时也比起只能使用在电车上的直流电动机用途更广泛,它的发明让电动机真正进入了家庭电器领域。交流电动机问世之后,同步电动机、串激电动机、交流换向器电动机等也逐步被人们发明出来,并投入实际的生产,为人们的生活提供更多便利。电动机的发明和应用对人类来说具有极大的意义,可以说它为人类生活带来了翻天覆地的变化。 交流电动机,特别是鼠笼型异步电动机,结构简单,成本低,维护方便,而且坚固耐用,惯量小,运行可靠,对环境要求不高,因此在工农业生产中得到了极广泛的应用。其突出的优点是:电机制造成本低,结构简单,维护容易,可以实现高压大功率及高速驱动,适宜在恶劣条件下工作,并能获得和直流电机控制系统相媲美或更好的控制性能。因此,人们对交流电机的研究也越来越深入。但是交流电机是一个复杂的、多变量、强耦合的非线性系统,在设计交流调速系统时完全用解析法是相当复杂的也是行不通的。构造实验系统进行分析研究是通常采用的办法,但由实验来分析研究,耗时长、投资大,且不便于分析系统的各种性能。因此,利用计算机仿真技术去研究交流调速系统是一个省时省力的好办法,计算机仿真作为研究交流电机的一种重要手段,也越来越受到重视。 MATLAB 是目前最流行的科学计算语言之一。它是以复数矩阵作为基本编程单元的高级程序设计语言,提供了矩阵的运算与操作,拥有强大的绘图功能。同时还是高度集成的软件系统,解决工程计算、图形可视化、图像处理、多媒体处理等问题。MATLAB 语言在自动控制、航天工业、汽车工业、生物医学工程、语言处理的方面都有涉及。MATLAB软件是一个非常优秀的软件,具有强大的仿真能力。仿真结果直观。

直流电机闭环调速

第 1 章前言 1.1 课题的研究意义 现代化的工业生产过程中,几乎无处不使用电力传动装置,尤其是在石油、化工、电力、冶金、轻工、核能等工业生产中对电动机的控制更是起着举足轻重的作用。因此调速系统成为当今电力拖动自动控制系统中应用最广泛的一种系统。随着生产工艺、产品质量要求不断提高和产量的增长,使得越来越多的生产机械要求能实现自动调速,而且,当今控制系统已进入了计算机时代,在许多领域已实现了智能化控制。对传统的过程工业而言,利用先进的自动化硬件及软件组成工业过程自动化调速系统,大大提高了生产过程的安全性、可靠性、稳定性。提高了产品产量和质量、提高了劳动生产率,企业的综合经济效益,同时,也大大促进了综合国力的增强。对可调速的传动系统,可分为直流调速和交流调速。 直流调速系统凭借优良的调速特性,调速平滑、范围宽、精度高、过载能力大、动态性能好、易于控制以及良好的起、制动性能等优点,能满足生产过程自动化系统中各种不同的特殊运行要求,所以在电气传动中获得了广泛应用。为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。在单闭环系统中,转速单闭环使用较多。 本次设计是基于51 系列单片机对直流电动机单闭环调速系统进行设计,能实现对直流电动机转速控制的功能,实现控制目的同时还配有显示装置,能实时反映当下直流电机的转速值,以优化整个系统的完整性。 通过这次设计,可以使我对51 系列单片机的应用和直流电机闭环调节系统进行进一步的学习,增强知识的整合度使相关知识融汇贯通,为以后的工作奠定一定的知识基础。 1.2 直流电机调速的发展 由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。 当然,近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展 快,在许多场合正逐渐取代直流调速系统。但是就目前来看,直流调速系统仍然是自动调 速系统的主要形式。在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控电力拖动场合,仍然广泛采用直流调速系统。而且,直流调速系统在理论和实践上都比较成熟,从控制技术角度来看,它又是交流调速系

双闭环直流电机控制完整版.

双闭环直流电机调速系统设计 摘要 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。根据晶闸管的特性,通过调节控制角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图。然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。这就形成了转速、电流双闭环调速系统。先确定其结构形式和设计各元部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算然后最后采用MATLAB/SIMULINK对整个调速系统进行了仿真分析,最后画出了调速控制电路的电气原理图。 关键词:双闭环;转速调节器;电流调节器 目录 前言0 第1章绪论1 1.1直流调速系统的概述1 1.2研究课题的目的和意义1 1.3设计内容和要求1 1.3.1设计要求1 1.3.2设计内容1 第2章双闭环直流调速系统设计框图3 第3章系统电路的结构形式和双闭环调速系统的组成4

3.1主电路的选择与确定4 3.2 双闭环调速系统的组成6 3.3 稳态结构框图和动态数学模型7 3.3.1稳态结构框图7 3.3.2 动态数学模型9 第4章主电路各器件的选择和计算10 4.1变流变压器容量的计算和选择10 4.2 整流元件晶闸管的选型12 4.3 电抗器设计13 4.4 主电路保护电路设计15 4.4.1过电压保护设计15 4.4.2过电流保护设计17 第5章驱动电路的设计18 5.1晶闸管的触发电路18 5.2脉冲变压器的设计20 第6章双闭环调速系统调节器的动态设计22 6.1 电流调节器的设计23 6.2 转速调节器的设计24 第7章基于MATLAB/SIMULINK的调速系统的仿真28 小结31 致谢32 参考文献33 附表34 附图35

三相异步电动机的建模与仿真分解

运动控制论文 课题:异步电动机数学模型和电压空间矢量PWM控制技术研究 姓名:xxxxxxxxx 专业:电气工程及自动化 班级:电097 学号:0912002167 日期:2013年3月30日

摘要 由于直流调速的局限性和交流调速的优越性,以及计算机技术和电力电子器件的不断发展,交流异步电动机变频调速技术正在快速发展之中。目前广泛研究应用的交流异步电动机调速技术有恒压频比控制方式,矢量控制,直接转矩控制等。本论文中所讨论的异步电动机调速技术叫做空间矢量脉宽调制方法(SVPWM)。相对于直接转矩控制,它有可连续控制,调速范围宽等显著优点。 本文首先对交流异步电动机的数学模型的建立进行了详细的分析和阐述,通过对交流异步电动机的动态电磁关系的分析以及坐标变换原理概念的介绍,逐步引出了异步电动机的数学模型和在不同坐标系上的数学模型表达方程式,指出了异步电动机的模型特点是一多变量、强藕合的非线性系统。采用MATLAB /SIMULINK软件包,实现异步电动机动态数学模型的仿真。仿真研究显示,该方法简洁、方便、实时交互性强,能充分融合到其它控制系统中,并具有良好地扩展性。 其次阐述了异步电动机电压空间矢量PWM控制技术的原理和矢量变换方法实现的步骤,据交流电机坐标变换及矢量控制理论提出了异步电机在任意同步旋转坐标系下仿真结构图的建模设想,得出了一种按转子定向磁场下的动态结构图,利用该结构图可以方便的构成电机的仿真模型,进行仿真计算。然后运用MATLAB软件搭建模型进行仿真分析,结果表明电机有良好的稳、动态性能。 通过对仿真软件的应用也表明在进行复杂系统设计时运用仿真工具对设计进行仿真分析是行之有效的方法,可以提高系统设计效率,缩短系统设计时间,并能够较好的进行系统优化。经试验表明,空间电压矢量调制的方法正确可行, 可调高电压利用率和系统精度。 关键词:异步电动机;矢量控制;数学模型;仿真

相关文档
最新文档