人教版高中数学必修5正弦定理和余弦定理测试题及答案

合集下载

高中数学必修5:正弦定理与余弦定理 知识点及经典例题(含答案)

高中数学必修5:正弦定理与余弦定理 知识点及经典例题(含答案)

高中数学必修5:正弦定理与余弦定理知识点及经典例题(含答案)
正弦定理、余弦定理和射影定理可以帮助我们计算三角形的边长和角度。

其中,正弦定理表达了三角形边长和角度之间的关系,余弦定理则是通过两条边和它们之间的夹角计算第三条边的长度。

射影定理则是利用三角形中某个角的正弦值或余弦值来计算三角形中某条边的长度。

二、面积公式可以用来计算三角形的面积,其中a、b、c 分别为三角形的三条边,而对应的角度则可以通过正弦定理或余弦定理来计算。

三、在解题时,需要根据题目给出的条件选择合适的定理进行计算。

同时,需要注意计算过程中的精度和单位。

学前诊断】
1.在△ABC中,若C=90,a=6,B=30,则c-b等于1.
2.在△ABC中,若b=2asinB,则A等于30或60.
3.在△ABC中,c-a=b-ba,且∠C=90.
经典例题】
例1.在△ABC中,若∠A=45°,a=2,c=6,则∠B=45°,b=4.
例2.已知△ABC满足条件acosA=bcosB,可以判断
△ABC是等腰三角形。

例3.在△ABC中,已知b+c=6,求a的值。

根据余弦定理可得a²=(b+c)²-4bc,代入数据得a=2.
本课总结】
本课介绍了三角形中的正弦定理、余弦定理、射影定理和面积公式,这些定理可以帮助我们计算三角形的边长、角度和面积。

在解题时,需要根据题目给出的条件选择合适的定理进行计算。

高中数学必修5解三角形余弦定理精选题目(附答案)

高中数学必修5解三角形余弦定理精选题目(附答案)

高中数学必修5解三角形余弦定理精选题目(附答案)余弦定理1.在△ABC 中,已知a =9,b =23,C =150°,则c 等于( ) A.39 B .83 C .102D .732.在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 等于( ) A .60° B .45° C .120°D .30°3.在△ABC 中,已知A =30°,且3a =3b =12,则c 的值为( ) A .4 B .8 C .4或8D .无解题型一:已知两边与一角解三角形4.(1)在△ABC 中,已知b =60 cm ,c =60 3 cm ,A =π6,则a =________cm ;(2)在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________.5.在△ABC 中,a =23,c =6+2,B =45°,解这个三角形. 题型二:已知三角形的三边解三角形6.在△ABC 中,已知a =23,b =6,c =3+3,解此三角形.7.在△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则角C =( ) A .60° B .45° C .135°D .45°或135°题型三:利用余弦定理判断三角形形状8.在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状. 9.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状. 题型四:正、余弦定理的综合应用 (一):利用正、余弦定理解三角形10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sin B . (1)求角B 的大小;(2)若A =75°,b =2,求a ,c . (二):利用正、余弦定理证明三角形中的恒等式11.在△ABC 中,求证a 2sin 2B +b 2sin 2A =2ab sin C . (三):正、余弦定理与三角函数、平面向量的交汇应用12.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且sin A a =3cos Cc. (1)求C 的大小;(2)如果a +b =6,CA u u u r ·CB u u u r=4,求c 的值.巩固练习:1.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,则角A 等于( ) A .30° B .60° C .120°D .150°2.在△ABC 中,若a =8,b =7,cos C =1314,则最大角的余弦值是( )A .-15B .-16C .-17D .-183.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab >0,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形4.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-43 C .1D.235.锐角△ABC 中,b =1,c =2,则a 的取值范围是( ) A .1<a <3B .1<a <5C.3<a <5 D .不确定6.已知a ,b ,c 为△ABC 的三边,B =120°,则a 2+c 2+ac -b 2=________. 7.在△ABC 中,若b =1,c =3,C =2π3,则a =________.8.在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.9.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b .10.(2017·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝⎛⎭⎫2A +π4的值. 11.在△ABC 中,有下列关系式:①a sin B =b sin A ;②a =b cos C +c cos B ;③a 2+b 2-c 2=2ab cos C ;④b =c sin A +a sin C . 一定成立的有( ) A .1个B .2个C .3个D .4个12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若C =120°,c =2a ,则a ,b 的大小关系为( )A .a >bB .a <bC .a =bD .不能确定13.在△ABC 中,cos 2B 2=a +c2c ,则△ABC 是( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形14.在△ABC 中,AB =5,BC =7,AC =8,则AB u u u r ·BC u u ur 的值为( )A .79B .69C .5D .-515.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.16.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C的值为________.17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab .(1)求sin Csin A的值; (2)若cos B =14,△ABC 的周长为5,求b 的长.18.在△ABC 中,已知BC =15,AB ∶AC =7∶8,sin B =437,求BC 边上的高AD 的长. 参考答案:1.解析:选D 由余弦定理得:c =92+(23)2-2×9×23×cos 150°=147=7 3.2.解析:选C 由cos A =b 2+c 2-a 22bc =-12,∴A =120°.3.解析:选C 由3a =3b =12,得a =4,b =43,利用余弦定理可得a 2=b 2+c 2-2bc cos A ,即16=48+c 2-12c ,解得c =4或c =8.4.[解析](1)由余弦定理得:a = 602+(603)2-2×60×603×cos π6=4×602-3×602=60(cm).(2)由余弦定理得:(5)2=52+BC 2-2×5×BC ×910,所以BC 2-9BC +20=0,解得BC =4或BC =5. [答案] (1)60 (2)4或5 5.解:根据余弦定理得,b 2=a 2+c 2-2ac cos B =(23)2+(6+2)2-2×23×(6+2)×cos 45°=8, ∴b =2 2.又∵cos A =b 2+c 2-a 22bc =8+(6+2)2-(23)22×22×(6+2)=12,∴A =60°,C =180°-(A +B )=75°. 6.[解] 法一:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.同理可求B =30°,故C =180°-A -B =180°-45°-30°=105°. 法二:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.由正弦定理a sin A =b sin B 知23sin 45°=6sin B,得sin B =6·sin 45°23=12. 由a >b 知A >B ,∴B =30°.故C =180°-A -B =180°-45°-30°=105°. 7.解析:选D ∵cos C =a 2+b 2-c 22ab ,∴cos 2C =a 4+b 4+c 4-2a 2c 2-2b 2c 2+2a 2b 24a 2b 2.∵a 4+b 4+c 4=2c 2(a 2+b 2), ∴a 4+b 4+c 4-2c 2a 2-2c 2b 2=0, ∴cos 2C =2a 2b 24a 2b 2=12,∴cos C =±22, ∴C =45°或135°. 8.解:[法一 化角为边] 将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得 b 2+c 2-b 2⎝⎛⎭⎫a 2+b 2-c 22ab 2-c 2⎝⎛⎭⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c 22ab ,∴b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a2=a 2. ∴A =90°.∴△ABC 是直角三角形. [法二 化边为角]由正弦定理,已知条件可化为sin 2C sin 2B +sin 2C sin 2B =2sin B sin C cos B cos C . 又sin B sin C ≠0,∴sin B sin C =cos B cos C ,即cos(B +C )=0. 又∵0°<B +C <180°,∴B +C =90°,∴A =90°. ∴△ABC 是直角三角形.9.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形. 10.解:(1)由正弦定理得a 2+c 2-2ac =b 2. 由余弦定理得b 2=a 2+c 2-2ac cos B . 故cos B =22,因此B =45°. (2)sin A =sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64. 故由正弦定理得a =b ·sin Asin B =1+ 3.由已知得,C =180°-45°-75°=60°, c =b ·sin C sin B =2×sin 60°sin 45°= 6.11:证明:法一:(化为角的关系式)a 2sin 2B +b 2sin 2A =(2R ·sin A )2·2sin B ·cos B +(2R ·sin B )2·2sin A ·cos A =8R 2sin A ·sin B (sin A ·cos B +cos A sin B )=8R 2sin A sin B sin C =2·2R sin A ·2R sin B ·sin C =2ab sin C .∴原式得证.法二:(化为边的关系式)左边=a 2·2sin B cos B +b 2·2sin A cos A =a 2·2b 2R ·a 2+c 2-b 22ac +b 2·2a 2R ·b 2+c 2-a 22bc =ab 2Rc(a 2+c2-b 2+b 2+c 2-a 2)=ab 2Rc ·2c 2=2ab ·c2R=2ab sin C =右边,∴原式得证.12.解:(1)∵a sin A =c sin C ,sin A a =3cos Cc ,∴sin C =3cos C .∴tan C = 3. 又∵C ∈(0,π),∴C =π3.(2)∵CA u u u r ·CB u u u r =|CA u u u r |·|CB u u u r |cos C =12ab ,又∵CA u u u r ·CB u u u r=4,∴ab =8.又∵a +b =6,由余弦定理知c 2=a 2+b 2-2ab cos C =(a +b )2-3ab =12, ∴c =2 3. 巩固练习:1.解析:选B ∵(b +c )2-a 2=b 2+c 2+2bc -a 2=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =60°.2.解析:选C 由余弦定理,得c 2=a 2+b 2-2ab cos C =82+72-2×8×7×1314=9,所以c =3,故a 最大, 所以最大角的余弦值为cos A =b 2+c 2-a 22bc =72+32-822×7×3=-17.3.解析:选C 由c 2-a 2-b 22ab>0得-cos C >0,所以cos C <0,从而C 为钝角,因此△ABC 一定是钝角三角形.4.解析:选A 由(a +b )2-c 2=4,得a 2+b 2-c 2+2ab =4,由余弦定理得a 2+b 2-c 2=2ab cos C =2ab cos 60°=ab ,则ab +2ab =4,∴ab =43.5.解析:选C 若a 为最大边,则b 2+c 2-a 2>0,即a 2<5,∴a <5,若c 为最大边,则a 2+b 2>c 2,即a 2>3,∴a >3,故3<a < 5.6.解析:∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 120° =a 2+c 2+ac , ∴a 2+c 2+ac -b 2=0.7.解析:∵c 2=a 2+b 2-2ab cos C , ∴(3)2=a 2+12-2a ×1×cos2π3, ∴a 2+a -2=0,即(a +2)(a -1)=0, ∴a =1,或a =-2(舍去).∴a =1. 8.解析:因为b +c =7,所以c =7-b . 由余弦定理得:b 2=a 2+c 2-2ac cos B , 即b 2=4+(7-b )2-2×2×(7-b )×⎝⎛⎭⎫-14, 解得b =4.9.解:在△ABC 中,∵A +C =2B ,A +B +C =180°, ∴B =60°. 由余弦定理,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B =82-2×15-2×15×12=19.∴b =19.10.解:(1)在△ABC 中,因为a >b , 故由sin B =35,可得cos B =45.由已知及余弦定理,得b 2=a 2+c 2-2ac cos B =13, 所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎫2A +π4=sin 2A cos π4+cos 2A sin π4=22×⎝⎛⎭⎫1213-513=7226. 11.解析:选C 对于①③,由正弦、余弦定理,知一定成立.对于②,由正弦定理及sin A =sin(B +C )=sin B cos C +sin C cos B ,知显然成立.对于④,利用正弦定理,变形得sin B =sin C sin A +sin A sin C =2sin A sin C ,又sin B =sin(A +C )=cos C sin A +cos A sin C ,与上式不一定相等,所以④不一定成立.故选C.12.解析:选A 在△ABC 中,c 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab ,∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .13.解析:选B ∵cos 2B 2=a +c 2c ,∴cos B +12=a +c 2c ,∴cos B =ac ,∴a 2+c 2-b 22ac =a c ,∴a 2+c 2-b 2=2a 2,即a 2+b 2=c 2,∴△ABC 为直角三角形. 14.解析:选D 由余弦定理得:cos ∠ABC =AB 2+BC 2-AC 22AB ·BC =52+72-822×5×7=17.因为向量AB u u u r 与BC u u ur 的夹角为180°-∠ABC ,所以AB u u u r ·BC u u u r =|AB u u u r |·|BC u u ur |cos(180°-∠ABC )=5×7×⎝⎛⎭⎫-17=-5. 15.解析:∵cos C =BC 2+AC 2-AB 22BC ·AC =22,∴sin C =22,∴AD =AC sin C = 3.16.解析:由余弦定理可得49=AC 2+25-2×5×AC ×cos 120°,整理得: AC 2+5·AC -24=0,解得AC =3或AC =-8(舍去), 再由正弦定理可得sin B sin C =AC AB =35.17.解:(1)由正弦定理可设a sin A =b sin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin Asin B, 所以cos A -2cos C cos B =2sin C -sin A sin B,即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ). 又A +B +C =π,所以sin C =2sin A , 因此sin Csin A =2.(2)由sin Csin A=2,得c =2a . 由余弦定理及cos B =14,得b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2,所以b =2a .又a +b +c =5,所以a =1,因此b =2. 18.解:由已知设AB =7x ,AC =8x . 在△ABC 中,由正弦定理,得7x sin C =8x sin B, ∴sin C =7x sin B 8x =78×437=32,∴∠C =60°(∠C =120°舍去,否则由8x >7x ,知B 也为钝角,不合要求).再由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C ,即(7x )2=(8x )2+152-2×8x ×15cos 60°,∴x 2-8x +15=0,∴x =3或x =5,∴AB =21或AB =35.在Rt △ADB 中,AD =AB sin B =437AB ,∴AD =123或AD =20 3.。

2021_2022学年高中数学第一章正弦定理和余弦定理1.1.2余弦定理作业1新人教A版必修5

2021_2022学年高中数学第一章正弦定理和余弦定理1.1.2余弦定理作业1新人教A版必修5

1.1.2余弦定理基础巩固一、选择题1.在△ABC 中,b =5,c =53,A =30°,则a 等于( ) A .5 B .4 C .3 D .10[答案] A[解析] 由余弦定理,得a 2=b 2+c 2-2bc cos A , ∴a 2=52+(53)2-2×5×53×cos30°, ∴a 2=25,∴a =5.2.在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 等于( ) A .π3B .π6C .2π3D .π3或2π3[答案] C[解析] ∵a 2=b 2+c 2+bc ,∴cos A =b 2+c 2-a 22bc =b 2+c 2-b 2-c 2-bc 2bc =-12,又∵0<A <π,∴A =2π3.3.(2014·全国新课标Ⅱ理,4)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5B . 5C .2D .1[答案] B[解析] 本题考查余弦定理及三角形的面积公式. ∵S △ABC =12ac sin B =12×2×1×sin B =12,∴sin B =22, ∴B =π4或3π4.当B =π4时,经计算△ABC 为等腰直角三角形,不符合题意,舍去.当B =3π4时,由余弦定理,得b 2=a 2+c 2-2ac cos B ,解得b =5,故选B .4.(2014·江西理,4)在△ABC 中,内角A 、B 、C 所对应的边分别为a 、b 、c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B .932C .332D .3 3[答案] C[解析] 本题考查正弦、余弦定理及三角形的面积公式.由题设条件得a 2+b 2-c 2=2ab -6,由余弦定理得a 2+b 2-c 2=ab , ∴ab =6,∴S △ABC =12ab sin π3=12×6×32=332.选C .5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 满足b 2=ac ,且c =2a , 则cos B =( ) A .14 B .34 C .24D .23[答案] B[解析] 由b 2=ac ,又c =2a ,由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+4a 2-a ×2a 2a ·2a =34.6.(2015·广东文,5)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若a =2,c =23, cos A =32,且b <c ,则b =( ) A .3 B .2 2 C .2 D . 3[答案] C[解析] 由余弦定理,得a 2=b 2+c 2-2bc cos A , ∴4=b 2+12-6b ,即b 2-6b +8=0, ∴b =2或b =4. 又∵b <c ,∴b =2.二、填空题7.以4、5、6为边长的三角形一定是________三角形.(填:锐角、直角、钝角) [答案] 锐角[解析] 由题意可知长为6的边所对的内角最大,设这个最大角为α,则cos α=16+25-362×4×5=18>0,因此0°<α<90°. 8.若2、3、x 为三边组成一个锐角三角形,则x 的取值范围为________. [答案] (5,13)[解析] 长为3的边所对的角为锐角时,x 2+4-9>0,∴x >5, 长为x 的边所对的角为锐角时,4+9-x 2>0,∴x <13, ∴5<x <13.三、解答题9.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b .[解析] 解法一:在△ABC 中,由A +C =2B ,A +B +C =180°,知B =60°.a +c =8,ac =15,则a 、c 是方程x 2-8x +15=0的两根.解得a =5,c =3或a =3,c =5. 由余弦定理,得b 2=a 2+c 2-2ac cos B =9+25-2×3×5×12=19.∴b =19.解法二:在△ABC 中,∵A +C =2B ,A +B +C =180°, ∴B =60°. 由余弦定理,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B=82-2×15-2×15×12=19.∴b =19.10.在△ABC 中,已知sin C =12,a =23,b =2,求边c .[解析] ∵sin C =12,且0<C <π,∴C 为π6或5π6.当C =π6时,cos C =32,此时,c 2=a 2+b 2-2ab cos C =4,即c =2. 当C =5π6时,cos C =-32,此时,c 2=a 2+b 2-2ab cos C =28,即c =27.能力提升一、选择题1.在△ABC 中,AB =3,BC =13,AC =4,则AC 边上的高为( ) A .322B .332C .32D .3 3[答案] B[解析] 由余弦定理,可得cos A =AC 2+AB 2-BC 22AC ·AB =42+32-1322×3×4=12,所以sin A =32. 则AC 边上的高h =AB sin A =3×32=332,故选B . 2.在△ABC 中,∠B =60°,b 2=ac ,则这个三角形是( ) A .不等边三角形 B .等边三角形 C .等腰三角形 D .直角三角形[答案] B[解析] 由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =12,则(a -c )2=0,∴a =c ,又∠B =60°, ∴△ABC 为等边三角形.3.在△ABC 中,三边长AB =7,BC =5,AC =6,则AB →·BC →等于( ) A .19 B .-14 C .-18 D .-19[答案] D[解析] 在△ABC 中AB =7,BC =5,AC =6, 则cos B =49+25-362×5×7=1935.又AB →·BC →=|AB →|·|BC →|cos(π-B ) =-|AB →|·|BC →|cos B =-7×5×1935=-19.4.△ABC 的三内角A 、B 、C 所对边的长分别为a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则C 的大小为( ) A .π6B .π3C .π2D .2π3[答案] B[解析] ∵p =(a +c ,b ),q =(b -a ,c -a ),p ∥q , ∴(a +c )(c -a )-b (b -a )=0, 即a 2+b 2-c 2=ab .由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,∵0<C <π,∴C =π3.二、填空题5.(2015·重庆文,13)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________. [答案] 4[解析] ∵3sin A =2sin B , ∴3a =2b ,又∵a =2,∴b =3. 由余弦定理,得c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×(-14)=16,∴c =4.6.如图,在△ABC 中,∠BAC =120°,AB =2,AC =1,D 是边BC 上一点,DC =2BD ,则AD →·BC →=________.[答案] -83[解析] 由余弦定理,得BC 2=22+12-2×2×1×(-12)=7,∴BC =7,∴cos B =4+7-12×2×7=5714.∴AD →·BC →=(AB →+BD →)·BC →=AB →·BC →+BD →·BC → =-2×7×5714+73×7×1=-83.三、解答题7.已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积. [解析] 如图,连结AC .∵B +D =180°,∴sin B =sin D .S 四边形ABCD =S △ABC +S △ACD =12AB ·BC ·sin B +12AD ·DC ·sin D =14sin B .由余弦定理,得AB 2+BC 2-2AB ·BC ·cos B =AD 2+DC 2-2AD ·DC ·cos D , 即40-24cos B =32-32cos D .又cos B =-cos D , ∴56cos B =8,cos B =17.∵0°<B <180°,∴sin B =1-cos 2B =437. ∴S 四边形ABCD =14sin B =8 3.8.设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且a +c =6,b =2,cos B =79.(1)求a 、c 的值; (2)求sin(A -B )的值.[解析] (1)由余弦定理,得b 2=a 2+c 2-2ac cos B 得,b 2=(a +c )2-2ac (1+cos B ),又已知a +c =6,b =2,cos B =79,∴ac =9.由a +c =6,ac =9,解得a =3,c =3. (2)在△ABC 中,∵cos B =79,∴sin B =1-cos 2B =429. 由正弦定理,得sin A =a sin Bb =223,∵a =c ,∴A 为锐角,∴cos A =1-sin 2A =13.∴sin(A -B )=sin A cos B -cos A sin B =223×79-13×429=10227.9.在△ABC 中,角A 、B 、C 所对边分别为a 、b 、c 且a =3,C =60°,△ABC 的面积为332,求边长b 和c .[解析] ∵S △ABC =12ab sin C ,∴332=12×3b ×sin60°=12×3b ×32, ∴b =2.由余弦定理,得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×cos60° =9+4-2×3×2×12=7,∴c =7.。

高中数学必修5:正弦定理与余弦定理 知识点及经典例题(含答案)

高中数学必修5:正弦定理与余弦定理 知识点及经典例题(含答案)

正弦定理与余弦定理【知识概述】在△ABC 中,a , b, c 分别为内角A, B, C 的对边,R 为△ABC 外接圆半径. 1. 正弦定理:R CcB b A a 2sin sin sin === 定理变式:A R a sin 2=,B R b sin 2=,C R c sin 2=R a A 2sin =,R b B 2sin =,Rc C 2sin = ,sin sin ,sin sin ,sin sin C b B c A c C a A b B a ===C B A c b a sin :sin :sin ::=2.余弦定理:C ab b a c B ac c a b A bc c b a cos 2,cos 2,cos 2222222222-+=-+=-+=定理变式:,2cos ,2cos ,2cos 222222222abc b a C ac b c a B bc a c b A -+=-+=-+=3.射影定理:,cos cos ,cos cos ,cos cos A c C a c A c C a b B c C b a +=+=+=4.面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆【学前诊断】1.[难度] 易在△ABC 中,若0030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.[难度] 易在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或3.[难度] 易在ΔABC 中,角A 、B 、C 的对边分别为a 、b 、c , 且ba b a c -=-222,∠C = .【经典例题】例1.在△ABC 中,若 ,则△A =45°,a = 2,c ,则△B =_______, b =___________.例2.已知△ ABC 满足条件cos cos ,a A b B =判断△ ABC 的形状.例3. 在△ABC 中,△A ,B ,C 所对的边分别为 a ,b ,c ,且满足 cos3.25A AB AC =⋅= (1)求△ ABC 的面积;(2)若b + c =6,求a 的值.例4.在△ABC 中,a , b , c 分别为内角A , B , C 的对边,且2sin (2)sin (2)sin .a A b c B c b C =+++ (1)求A 的大小;(2)求sin sin B C +的最大值.例5.在△ABC 中,内角A ,B ,C 对边的边长分别是 a ,b ,c ,已知 c =2,C =π3.(1)若△ABC a ,b ; (2)若sin 2sin B A =,求△ABC 的面积.【本课总结】一、合理选择使用定理解三角形需要利用边角关系,正弦定理和余弦定理是刻画三角形边角关系的重要定理,如何恰当的选择公式则是解题的关键,一般来说,如果题目中含有边的一次式或角的正弦,可考虑选择正弦定理,如果题目中含有边的二次式或角的余弦,可考虑选择余弦定理.二、确定三角形的形状常用归一法 在解三角形的题目中,条件中往往会同时涉及边和角,解题策略则是选择合适的公式把已知条件转化成只含有边或角的关系式.三、解三角形主要涉及的问题解三角形主要处理的是三角形中各边的长度、角的大小以及三角形面积等问题,在三角形中有六个基本元素,三条边、三个角,通常是给出三个独立条件,可求出其它的元素,如果是特殊三角形,如直角三角形,则给出两个条件就可以了.如,若已知两边a,b 和角A,则解的情况如下:(1)当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解. (2)当A 为锐角时,如果a≥b ,那么只有一解;如果a<b ,那么可以分下面三种情况来讨论: (1)若>sin a b A ,则有两解; (2)若sin a b A =,则只有一解; (3)若sin a b A <,则无解.【活学活用】1.[难度] 易在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,A =60°,a =3,b =1,则c 的值为( ) A. 1 B. 2 C. 3-1 D. 32. [难度] 易△ABC 中,若a =2b cos C ,则△ABC 的形状一定为( ) A. 等边三角形 B. 直角三角形 C. 等腰三角形 D. 等腰直角三角形3. [难度] 中在△ABC 中,内角A 、B 、C 所对的边分别为a ,b ,c ,若满足c a )13(-=,tan 2tan B a cC c-=,求A 、B 、C 的大小.。

高二数学人教A必修5练习:1.1.2 余弦定理 Word版含解析

高二数学人教A必修5练习:1.1.2 余弦定理 Word版含解析

课时训练2 余弦定理一、利用余弦定理解三角形1.在△ABC 中,a=1,B=60°,c=2,则b 等于( )A.1B.√2C.√3D.3答案:C解析:b 2=a 2+c 2-2ac cos B=1+4-2×1×2×12=3,故b=√3. 2.在△ABC 中,c 2-a 2-b 2=√3ab ,则角C 为( ) A.60° B.45°或135° C.150° D.30°答案:C解析:∵cos C=a 2+b 2-c 2=-√3ab =-√3,∴C=150°.3.在△ABC 中,已知sin A ∶sin B ∶sin C=3∶5∶7,则此三角形的最大内角的度数等于 . 答案:120°解析:由正弦定理可得a ∶b ∶c=3∶5∶7,不妨设a=3,b=5,c=7,则c 边最大,∴角C 最大.∴cos C=a 2+b 2-c 2=32+52-72=-1. ∵0°<C<180°,∴C=120°.4.(2015河南郑州高二期末,15)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A=√3sin C ,B=30°,b=2,则边c= . 答案:2解析:∵在△ABC 中,sin A=√3sin C ,∴a=√3c.又B=30°,由余弦定理,得cos B=cos 30°=√32=a 2+c 2-b22ac=22√3c 2,解得c=2.二、判断三角形形状5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b+c=2c cos 2A2,则△ABC 是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形答案:A解析:∵b+c=2c cos 2A2,且2cos 2A2=1+cos A ,∴b+c=c (1+cos A ),即b=c cos A.由余弦定理得b=c ·b 2+c 2-a 22bc ,化简得a 2+b 2=c 2,∴△ABC 是直角三角形.6.在△ABC 中,若sin 2A+sin 2B<sin 2C ,则△ABC 的形状是( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.不能确定答案:A解析:由sin 2A+sin 2B<sin 2C ,得a 2+b 2<c 2,所以cos C=a 2+b 2-c 2<0,所以∠C 为钝角, 即△ABC 为钝角三角形.7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若a=2b cos C ,试判断△ABC 的形状.解法一:∵cos C=a 2+b 2-c 2,代入a=2b cos C ,得a=2b ·a 2+b 2-c 2,∴a 2=a 2+b 2-c 2,即b 2-c 2=0. ∴b=c.∴△ABC 为等腰三角形.解法二:根据正弦定理asinA =bsinB =csinC =2R ,得a=2R sin A ,b=2R sin B ,代入已知条件得2R sin A=4R sin B cos C , 即sin A=2sin B cos C ,∵A=π-(B+C ),∴sin A=sin(B+C ). ∴sin B cos C+cos B sin C=2sin B cos C. ∴sin B cos C-cos B sin C=0.∴sin(B-C )=0.又-π<B-C<π,∴B-C=0,即B=C.∴△ABC 是等腰三角形.三、正弦定理、余弦定理的综合应用8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知b-c=14a ,2sin B=3sin C ,则cos A 的值为( ) A.-14 B.14C.12D.-13答案:A解析:∵2sin B=3sin C ,∴2b=3c.又b-c=a4,∴a=2c ,b=32c.∴cos A=b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c×c=-14. 9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=√3bc ,sin C=2√3sin B ,则A= . 答案:π6解析:∵sin C=2√3sin B ,∴由正弦定理得c=2√3b. ∵a 2-b 2=√3bc ,∴cos A=b 2+c 2-a 2=c 2-√3bc=2√3bc -√3bc2bc=√32,∴A=π6.10.(2015山东威海高二期中,17)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c 且满足4a cos B-b cos C=c cos B.(1)求cos B 的值;(2)若ac=12,b=3√2,求a ,c.解:(1)已知等式4a cos B-b cos C=c cos B ,利用正弦定理,得4sin A cos B-sin B cos C=sin C cos B ,整理,得4sin A cos B=sin(B+C ), 即4sin A cos B=sin A ,∵sin A ≠0,∴cos B=14.(2)∵ac=12,b=3√2,cos B=14,∴由b 2=a 2+c 2-2ac cos B ,得a 2+c 2=24,联立a 2+c 2=24与ac=12,解得a=c=2√3.(建议用时:30分钟)1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a=1,b=2,cos C=14 ,则sin B=( )A.15B.√15C.√15D.7答案:B解析:由已知根据余弦定理得c 2=a 2+b 2-2ab cos C=4,∴c=2,即B=C , ∴sin B=√1-116=√154.2.(2015河北邯郸三校联考,3)在△ABC 中,如果sin A ∶sin B ∶sin C=2∶3∶4,那么cos C 等于( ) A.23B.-23C.-13D.-14答案:D解析:由正弦定理可得sin A ∶sin B ∶sin C=a ∶b ∶c=2∶3∶4,可设a=2k ,b=3k ,c=4k (k>0), 由余弦定理可得cos C=a 2+b 2-c 2=4k 2+9k 2-16k 2=-1,故选D .3.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c.若C=120°,c=√2a ,则( ) A.a>b B.a<b C.a=bD.a 与b 的大小关系不能确定 答案:A解析:由余弦定理c 2=a 2+b 2-2ab cos C 得2a 2=a 2+b 2+ab ,∴a 2-b 2=ab>0,∴a 2>b 2,∴a>b. 4.△ABC 的三边长分别为AB=7,BC=5,AC=6,则BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为( ) A.19 B.14 C.-18 D.-19答案:A解析:cos B=72+52-62=19,∴BA⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =|BA ⃗⃗⃗⃗⃗ ||BC ⃗⃗⃗⃗⃗ |cos B=7×5×1935=19. 5.在不等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,如果sin 2(B+C )<sin 2B+sin 2C ,则角A 的取值范围为( ) A.(0,π2)B.(π4,π2) C.(π6,π3) D.(π3,π2) 答案:D解析:由题意得sin 2A<sin 2B+sin 2C ,再由正弦定理得a 2<b 2+c 2,即b 2+c 2-a 2>0, 则cos A=b 2+c 2-a 22bc >0,∵0<A<π,∴0<A<π.又a 为最大边,∴A>π3.因此得角A 的取值范围是(π3,π2).6.已知在△ABC 中,2B=A+C ,b 2=ac ,则△ABC 的形状为 .答案:等边三角形解析:∵2B=A+C ,又A+B+C=180°,∴B=60°.又b 2=ac ,由余弦定理可得b 2=a 2+c 2-2ac cos B=a 2+c 2-2ac cos 60°=a 2+c 2-ac ,∴有a 2+c 2-ac=ac ,从而(a-c )2=0, ∴a=c ,故△ABC 为等边三角形.7.(2015北京高考,12)在△ABC 中,a=4,b=5,c=6,则sin2AsinC = . 答案:1解析:在△ABC 中,由正弦定理知,sin2AsinC =2sinAcosA sinC =2cos A ·a c =2cos A×46=43cos A ,再根据余弦定理,得cos A=36+25-162×6×5=34,所以sin2A sinC=43×34=1.8.在△ABC 中,角A ,B ,C 的对边边长分别为a=3,b=4,c=6,则bc cos A+ac cos B+ab cos C 的值为 . 答案:612解析:由余弦定理得bc cos A+ac cos B+ab cos C=b 2+c 2-a 22+a 2+c 2-b 22+a 2+b 2-c 22=a 2+b 2+c 22=32+42+622=612.9.在△ABC 中,已知(a+b+c )(a+b-c )=3ab ,且2cos A sin B=sin C ,试判定△ABC 的形状. 解:由(a+b+c )(a+b-c )=3ab ,得(a+b )2-c 2=3ab , 即a 2+b 2-c 2=ab.∴cos C=a 2+b 2-c 22ab=ab 2ab =12.∵0°<C<180°,∴C=60°. ∵A+B+C=180°, ∴sin C=sin(A+B ).又∵2cos A sin B=sin C ,∴2cos A sin B=sin A cos B+cos A sin B , ∴sin(A-B )=0.∵A ,B 均为△ABC 的内角,∴A=B.因此△ABC 为等边三角形.10.在△ABC 中,C=2A ,a+c=10,cos A=34,求b.解:由正弦定理得c a =sinC sinA=sin2AsinA=2cos A , ∴c a =32.又a+c=10,∴a=4,c=6. 由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+20=3,∴b=4或b=5.当b=4时,∵a=4,∴A=B. 又C=2A ,且A+B+C=π,∴A=π4,与已知cos A=34矛盾,不合题意,舍去.当b=5时,满足题意,∴b=5.。

(2021年整理)人教版高中数学必修五专题余弦定理习题(含答案)

(2021年整理)人教版高中数学必修五专题余弦定理习题(含答案)

(完整)人教版高中数学必修五专题余弦定理习题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)人教版高中数学必修五专题余弦定理习题(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)人教版高中数学必修五专题余弦定理习题(含答案)的全部内容。

余弦定理一、选择题1.(2016·天津高考)在△ABC中,若AB=错误!,BC=3,∠C=120°,则AC=( )A.1 B.2C.3 D.42.在△ABC中,已知a2=b2+bc+c2,则角A为( )A。

错误! B.错误!C.错误!D.错误!或错误!3.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab 的值为( )A.错误!B.8-4错误!C.1 D。

错误!4.在△ABC中,角A,B,C的对边分别为a,b,c,若(a2+c2-b2)tan B=错误!ac,则角B为( )A。

错误! B.错误!C.错误!或错误!D。

错误!或错误!5.在△ABC中,角A,B,C所对的边分别为a,b,c。

若a=1,c=4错误!,B=45°,则sin C 等于()A.错误!B。

错误!C.错误!D。

错误!二、填空题6.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=错误!,c=错误!,则B =________.7.在△ABC中,已知a,b是方程x2-5x+2=0的两根,C=120°,则边c=________.8.(2015·重庆高考)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cos C=-错误!,3sin A=2sin B,则c=________。

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。

正弦定理和余弦定理习题及答案

正弦定理和余弦定理习题及答案

正弦定理和余弦定理测试题一、选择题:1.在△ABC中,a=15,b=10,A=60°,则 cos B=() 22226 A.-3 B.3C.-3D.6 32.在△ABC中,内角A,B,C的对边分别是a,b,c.若 a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°3.E,F是等腰直角△ABC斜边AB上的三平分点,则tan ∠ECF =()16233A. 27B. 3C.3D.4.△中,若-lg c ==-lg 2且∈ 0,π,则△ABC4ABC lg a lgsin B B2的形状是 ()A.等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形5.△ABC中,a、b、c分别为∠A、∠B、∠C的对边,假如a、b、c 成等差数列,∠ B=30°,△ ABC的面积为,那么 b 为()A.1+ 3B.3+ 3 C.3+ 3D.2+ 3 36.已知锐角A是△ABC的一个内角,a、b、c是三角形中各内角的对应边,若 sin2-cos2=1,则 ()A A2A.b+c=2a B .b+c<2a C.b+c≤2a D.b+c≥2a7、若ABC的内角A知足sin 2A 2,则 sin A cos A 3A.153 B.153C.5D.5338、假如A1 B1C1的三个内角的余弦值分别等于A2 B2C2的三个内角的正弦值,则A.A1B1C1和A2B2C2都是锐角三角形B.A1B1C1和A2 B2C2都是钝角三角形C.A1 B1C1是钝角三角形,A2 B2C2是锐角三角形D.A1B1C1是锐角三角形,A2 B2C 2是钝角三角形9、VABC的三内角A,B,C所对边的长分别为 a, b, c 设向量ur r ur rp (a c, b) , q (b a, c a) ,若 p // q ,则角C的大小为(A)(B)(C)(D)233 6210、已知等腰△ABC的腰为底的 2 倍,则顶角A的正切值是()A.3B. 3C.15D.15 28711、ABC的内角 A、B、C的对边分别为a、b、c,若 a、b、c 成等比数列,且 c2a ,则 cosBA .1B.3C .24 44D.2312、在△ABC中,角A、B、C的对边分别为a、b、c, A=, a= 3 , b=1,3则 c=(A)1(B)2(C)3—1(D)3二、填空题:13 、在ABC中,若sin A:sin B :sin C5:7:8 ,则B的大小是___________.14、在 ABC中,已知a 3 3,=,=°,则=.b 4 A30sinB415、在△ ABC中,已知 BC=12,A=60°, B=45°,则 AC=16、已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边 BC上的中线 AD的长为.三、解答题:11 17。

正弦定理和余弦定理习题及答案

正弦定理和余弦定理习题及答案

正弦定理和余弦定理测试题一、选择题:1.在△ABC^, a=15, b=10, A= 60 ,则 cosB=()2. 在△ABC\内角A, B, C 的对边分别是a, b, c .若a 2—b 2=3bc, sin C= 2 3sin B,则 A=()A. 30B. 60 C . 120D. 1503. E, F 是等腰直角AABCM 边AB 上的三等分点,则tan / ECF=()4. △ABOt\ 若 lg a —lg c=lgsin B= — lg /且 B6 0, "2■,则AABC的形状是()A.等边三角形 B .直角三角形 C .等腰三角形 D .等腰直 角三角形5. AABC^, a 、b 、c 分别为/A 、/B /C 的对边,如果 a 、b 、c 成等差数列,/ B= 30° , △ ABC 勺面积为,那么b 为()A. 1+ 3B. 3+. 3D. 2+. 36.已知锐角A 是△ ABC 勺一个内角,a 、b 、c 是三角形中各内角A.212 3的对应边,若sin 2A — cos 2A= g,则( )A. b+ c=2a B . b+ c <2aC . b+ c<2aD . b+ cn 2a7、若ABC 的内角A 满足sin 2A I ,则sinA 8sA8、如果AB I C I 的三个内角的余弦值分别等于 A 2B 2c 2的三个内角的正 弦值,则A. A 1B i C i 和A 2B 2c 2都是锐角三角形 B . AB 1C 1和A 2B 2c 2都是钝角 三角形C. ABiG 是钝角三角形, 4B 2c 2是锐角三角形D.AB i C i 是锐角三角形,A 2B 2c 2是钝角三角形9、VABC 的三内角A,B,C 所对边的长分别为a,b,c 设向量in r ur r t . ., . .. p (a c,b), q (b a,c a),右 p//q ,则角 C 的大小为(A )6(B)3(C)2(D)i0、已知等腰△ ABC 的腰为底的2倍,则顶角A 的正切值是( )i5 D. -15711、 ABC 的内角A 、B 、C 的对边分别为a 、b 、c,若a 、b 、c 成等比 数列,且c 2a ,则cosBA.工3平 C . |A., i5A. 1 B, 3 。

(word完整版)高中数学必修5正弦定理、余弦定理水平测试题及解析(2021年整理)

(word完整版)高中数学必修5正弦定理、余弦定理水平测试题及解析(2021年整理)

(word完整版)高中数学必修5正弦定理、余弦定理水平测试题及解析(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中数学必修5正弦定理、余弦定理水平测试题及解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中数学必修5正弦定理、余弦定理水平测试题及解析(word版可编辑修改)的全部内容。

起航教育正弦定理、余弦定理水平测试题一、选择题命题人:代老师1.在△ABC中,角A、B、C的对边分别为a、b、c,若a2+c2-b2=错误!ac,则角B的值为()A。

错误! B. 错误! C。

错误!或错误! D。

错误!或错误!2.已知锐角△ABC的面积为3错误!,BC=4,CA=3,则角C的大小为() A.75° B.60° C.45° D.30°3.(2010·上海高考)若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13,则△ABC ( )A.一定是锐角三角形 B.一定是直角三角形C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形4.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为()A.518B. 错误! C。

错误! D. 错误!5.(2010·湖南高考)在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=错误!a,则( )A.a>b B.a<b C.a=b D.a与b大小不能确定二、填空题6.△ABC中,a、b、c分别是角A、B、C所对的边,已知a=错误!,b=3,C=30°,则A=________. 7.(2010·山东高考)在△ABC中,角A,B,C所对的边分别为a,b,c。

2020秋高中数学人教版5达标检测:1.1第3课时 正、余弦定理的综合应用含解析

2020秋高中数学人教版5达标检测:1.1第3课时 正、余弦定理的综合应用含解析

2020秋高中数学人教A版必修5达标检测:1.1第3课时正、余弦定理的综合应用含解析A级基础巩固一、选择题1.已知三角形的三边长分别是a,b,错误!,则此三角形中最大的角是()A.30°B.60°C.120°D.150°解析:因为错误!>a, 错误!>b,所以最大边是错误!,设其所对的角为θ,则cos θ=错误!=-错误!,所以θ=120°.答案:C2.△ABC的内角A,B,C所对的边分别为a,b,c。

若B=2A,a=1,b=错误!,则c=()A.2错误!B.2 C.错误!D.1解析:由asin A=错误!,得错误!=错误!,所以错误!=错误!,故cos A=错误!,因为A∈(0,π),所以A=错误!,所以B=错误!,C=错误!,c=错误!=错误!=2.答案:B3.已知△ABC的三边长分别为AB=7,BC=5,AC=6。

则错误!·错误!的值为()A.19 B.14 C.-18 D.-19解析:由余弦定理的推论知:cos B=AB2+BC2-AC22AB·BC=1935。

所以错误!·错误!=|错误!|·|错误!|·cos(π-B)=7×5×错误!=-19.答案:D4.锐角三角形ABC中,sin A和cos B的大小关系是()A.sin A=cos B B.sin A<cos BC.sin A>cos B D.不能确定解析:在锐角三角形ABC中,A+B>90°.所以A>90°-B,所以sin A>sin (90°-B)=cos B.答案:C5.在△ABC中,b=8,c=3,A=60°,则此三角形外接圆面积为()A.错误!B.错误!C。

错误!D。

错误!解析:a2=b2+c2-2bc cos A=82+32-2×8×3×错误!=49,所以a=7,所以2R=错误!=错误!=错误!,所以R=错误!,所以S=π错误!错误!=错误!π.答案:D二、填空题6.(2019·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=________.答案:错误!7.在△ABC中,AB=错误!,D为BC的中点,AD=1,∠BAD =30°,则△ABC的面积S△ABC=________.解析:因为AB=3,AD=1,∠BAD=30°,所以S△ABD=错误!·错误!·1·sin 30°=错误!,又D是BC边中点,所以S△ABC=2S ABD=错误!.答案:错误!8.(2018·浙江卷)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=7,b=2,A=60°,则sin B=________,c=________.解析:本小题考查正弦定理、余弦定理.由错误!=错误!得sin B=错误!sin A=错误!,由a2=b2+c2-2bc cos A,得c2-2c-3=0,解得c=3(舍负).答案:错误!3三、解答题9.已知△ABC中,角A,B,C的对边分别为a,b,c,2cos C·(a cos C+c cos A)+b=0.(1)求角C的大小;(2)若b=2,c=2错误!,求△ABC的面积.解:(1)由正弦定理可得2cos C (sin A cos C +sin C cos A )+sin B =0,所以2cos C sin(A +C )+sin B =0,即2cos C sin B +sin B =0, 又0<B <π,所以sin B ≠0,所以cos C =-错误!,即C =错误!。

人教必修5 正弦定理余弦定理综合应用,解三角形经典例题

人教必修5  正弦定理余弦定理综合应用,解三角形经典例题

一、知识梳理1.内角和定理:在ABC ∆中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C -面积公式:111sin sin sin 222ABC S ab C bc A ac B∆===在三角形中大边对大角,反之亦然.2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具)形式二:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具)形式三:::sin :sin :sin a b c A B C =形式四:sin ,sin ,sin 222a b c A B C R R R ===3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍..形式一:2222cos a b c bc A =+- 2222cos b c a ca B =+- (解三角形的重要工具)2222cos c a b ab C =+-形式二:222cos 2b c a A bc +-=222cos 2a c b B ac +-=222cos 2a b c C ab +-=二、方法归纳(1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b cA B C ==,可求出角C ,再求b 、c .(2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2-2b c cosA ,求出a ,再由余弦定理,求出角B 、C .(3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C .(4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a bA B =,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a bA B =求B 时,可能出一解,两解或无解的情况,其判断方法,如下表:A >90° A =90° A <90° a >b 一解 一解 一解 a =b无解 无解 一解a <ba >bsinA 两解 无解 无解 a =bsinA 一解a <bsinA无解(见图示).a =b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解三、课堂精讲例题问题一:利用正弦定理解三角形 【例1】在ABC ∆中,若5b =,4B π∠=,1sin 3A =,则a = .523【例2】在△ABC 中,已知a =3,b =2,B=45°,求A 、C 和c . 【解析】 ∵B=45°<90°且a sinB <b <a ,∴△ABC 有两解. 由正弦定理得sinA=b B a sin =245sin 3︒=23, 则A 为60°或120°.①当A=60°时,C=180°-(A+B)=75°, c=B C b sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+.②当A=120°时,C=180°-(A+B)=15°,c=B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-.故在△ABC 中,A=60°,C=75°,c=226+或 A=120°,C=15°, c =226-. 【思考】从所得到式子看,为什么会有两解:sinA =23,在(0,)π上显然有两个解。

人教B版高中数学必修五 1.1正弦定理和余弦定理(5必修)

人教B版高中数学必修五  1.1正弦定理和余弦定理(5必修)

1.1正弦定理和余弦定理(数学5必修)1.2应用举例1.3实习作业[基础训练A 组]一、选择题(六个小题,每题5分,共30分)1.在△ABC 中,若0030,6,90===B a C ,则b c -等于()A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是()A .A sinB .A cosC .A tanD .Atan 1 3.在△ABC 中,角A 、B 均为锐角,且,sin cos B A >则△ABC 的形状是()A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长=()A .2B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于()A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是()A .090B .0120C .0135D .0150二、填空题(五个小题,每题6分,共30分)1. 在Rt △ABC 中,C=090,则B A sin sin 的最大值是_______________。

2.在△ABC 中,若=++=A c bc b a 则,222_________。

3.在△ABC 中,若====a C B b 则,135,30,200_________。

4.在△ABC 中,若sin A ∶sin B ∶sin C=7∶8∶13,则C=_____________。

5.在△ABC 中,,26-=AB ∠C=300,则AC+BC 的最大值是________。

三、解答题(四个小题,每题10分,共40分)1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。

必修5《解三角形》综合测试题及解析【教师版】

必修5《解三角形》综合测试题及解析【教师版】

专题复习 正弦定理和余弦定理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.高考模拟1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则b 等于___5___.解析 ∵S =12ac sin B =2,∴12×1×c ×sin 45°=2. ∴c =4 2.∴b 2=a 2+c 2-2ac cos B =1+32-2×1×42×cos 45°. ∴b 2=25,b =5.2.在△ABC 中,A ,B ,C 为内角,且sin A cos A =sin B cos B ,则△ABC 是____等腰或直角____三角形.解析 由sin A cos A =sin B cos B 得sin 2A =sin 2B =sin(π-2B ),所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,所以△ABC 为等腰或直角三角形.3.已知α∈R ,sin α+2cos α=102,则tan 2α等于____-34____. 解析 ∵sin α+2cos α=102,∴sin 2α+4sin α·cos α+4cos 2α=52. 化简,得4sin 2α=-3cos 2α,∴tan 2α=sin 2αcos 2α=-34.4.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C 等于___725_____.解析 先用正弦定理求出角B 的余弦值,再求解.由b sin B =c sin C,且8b =5c ,C =2B , 所以5c sin 2B =8c sin B ,所以cos B =45. 所以cos C =cos 2B =2cos 2 B -1=725.5.已知tan β=43,sin(α+β)=513,其中α,β∈(0,π),则sin α的值为___6365___.解析 依题意得sin β=45,cos β=35;注意到sin(α+β)=513<sin β,因此有α+β>π2(否则,若α+β≤π2,则有0<β<α+β≤π2,0<sin β<sin(α+β),这与“sin(α+β)<sin β”矛盾),则cos(α+β)=-1213,sin α=sin[(α+β)-β]=sin(α+β)· cos β-cos(α+β)sin β=6365.6.在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin A ,求b =___4___.解析 在△ABC 中,sin A cos C =3cos A sin C ,则由正弦定理及余弦定理有a ·a 2+b 2-c 22ab =3·b 2+c 2-a 22bc ·c ,化简并整理得2(a 2-c 2)=b 2.又由已知a 2-c 2=2b ,则4b =b 2,解得b =4或b =0(舍).7.若α,β∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫α-β2=32,sin ⎝⎛⎭⎫α2-β=-12,则cos (α+β)=___-12__. 解析 ∵α,β∈⎝⎛⎭⎫0,π2,∴-π4<α-β2<π2,-π2<α2-β<π4,由cos ⎝⎛⎭⎫α-β2=32和sin ⎝⎛⎭⎫α2-β=-12得α-β2=±π6,α2-β=-π6,当α-β2=-π6,α2-β=-π6时,α+β=0,与α,β∈⎝⎛⎭⎫0,π2矛盾;当α-β2=π6,α2-β=-π6时,α=β=π3,此时cos (α+β)=-12.8.在△ABC 中,AD 为BC 边上的高线,AD =BC ,角A ,B ,C 的对边为a ,b ,c ,则b c +cb 的取值范围是__[2,5]___.解析 因为AD =BC =a ,由12a 2=12bc sin A ,解得sin A =a 2bc ,再由余弦定理得cos A =b 2+c 2-a 22bc =12⎝⎛⎭⎫b c +c b -a 2bc =12⎝⎛⎭⎫b c +c b -sin A , 得b c +cb=2cos A +sin A ,又A ∈(0,π), 所以由基本不等式和辅助角公式得b c +cb 的取值范围是[2,5].9.(2010·江苏卷)某兴趣小组要测量电视塔AE 的高度H (单位:m).如示意图,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β. (1)该小组已测得一组α,β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大? 解 (1)由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD ,得H tan α+h tan β=Htan β,解得H =h tan αtan α-tan β=4×1.241.24-1.20=124.因此,算出的电视塔的高度H 是124 m. (2)由题设知d =AB ,得tan α=Hd .由AB =AD -BD =H tan β-htan β,得tan β=H -h d ,所以tan(α-β)=tan α-tan β1+tan α tan β=hd +H(H -h )d≤h2H (H -h ),当且仅当d =H (H -h )d ,即d =H (H -h )=125×(125-4)=555时,上式取等号,所以当d =555时,tan(α-β)最大.因为0<β<α<π2,则0<α-β<π2,所以当d =555时,α-β最大.故所求的d 是555m.10.(2012·江苏卷)在△ABC 中,已知AB →·AC →=3BA →·BC →.(1)求证:tan B =3tan A ;(2)若cos C =55,求A 的值. (1)证明 因为AB →·AC →=3BA →·BC →,所以AB ·AC ·cos A =3BA ·BC ·cos B , 即AC ·cos A =3BC ·cos B ,由正弦定理知AC sin B =BC sin A ,从而sin B cos A =3sin A cos B ,又因为0<A +B <π,所以cos A >0,cos B >0, 所以tan B =3tan A . (2)解 因为cos C =55,0<C <π,所以sin C =1-cos 2C =255, 从而tan C =2,于是tan[π-(A +B )]=2,即tan(A +B )=-2,亦即tan A +tan B 1-tan A tan B =-2,由(1)得4tan A 1-3tan 2A =-2,解得tan A =1或-13, 因为cos A >0,故tan A =1,所以A =π4.11.△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值. 解 (1)由已知及正弦定理,得 sin A =sin B cos C +sin C sin B ,①又A =π-(B +C ), 故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B . 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac . 由已知及余弦定理,得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为2+1.《解三角形》综合测试题(A )Ⅰ卷(选择题)一、选择题(每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.某三角形的两个内角为o45和o60,若o45角所对的边长是6,则o60角所对的边长是 【 A 】A .B .C .D . 答案:A .解析:设o60角所对的边长是x ,由正弦定理得o o6sin 45sin 60x=,解得x =.故选A .2.在ABC ∆中,已知a =10c =,o30A =,则B 等于 【 D 】 A .o 105 B .o60 C .o15 D .o105或o15 答案:D .解析:在ABC ∆中,由sin sin a c A C =,得sin sin c A C a ==,则o 45C =或o135C =.故 当o45C =时,o105B =;当o135C =时,o15B =.故选D .3.在ABC ∆中,三边长7AB =,5BC =,6AC =,则AB BC ⋅的值等于 【 D 】A .19B .14-C .18-D .19- 答案:D .解析:由余弦定理得49253619cos 27535B +-==⨯⨯,故AB BC ⋅= ||AB ⋅ ||cos(BC π )B -=1975()1935⨯⨯-=-.故选D .4.在ABC ∆中,sin <sin A B ,则 【 A 】 A .<a b B .>a b C .a b ≥ D .a 、b 的大小关系不确定 答案:A .解析:在ABC ∆中,由正弦定理2sin sin a b R A B ==,得sin 2a A R =,sin 2bB R=,由sin A <sin B ,得<22a bR R,故<a b .故选A .5.ABC ∆满足下列条件:①3b =,4c =,o 30B =;②12b =,9c =,o60C =;③b =, 6c =,o 60B =;④5a =,8b =,o30A =.其中有两个解的是 【 B 】A .①②B .①④C .①②③D .②③ 答案:B .解析:① sin <<c B b c ,三角形有两解;②o<sin60c b ,三角形无解;③b =sin c B ,三角形只有一解;④sin <<b A a b ,三角形有两解.故选B .6.在ABC ∆中,已知2220b bc c --=,且a =7cos 8A =,则ABC ∆的面积是 【 A 】A .2B C .2 D .3 答案:A .解析:由2220b bc c --=,得(2)()0b c b c -+=,故2b c =或b c =-(舍去),由余弦定理2222cos a b c bc A =+-及已知条件,得23120c -=,故2c =,4b =,又由7cos 8A =及A 是ABC ∆的内角可得sin 8A =,故1242S =⨯⨯82=.故选A . 7.设a 、1a +、2a +是钝角三角形的三边长,则a 的取值范围为 【 B 】 A .0<<3a B .1<<3a C .3<<4a D .4<<6a 答案:B .解析:设钝角为C ,由三角形中大角对大边可知C 的对边为2a +,且cos C =222(1)(2)2(1)a a a a a ++-+⋅⋅+(3)(1)<02(1)a a a a -+=+,因为>0a ,故1>0a +,故0<<3a ,又(1)>+2a a a ++,故>1a ,故1<<3a .故选B .8.ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,且4a =,5b c +=,tan tan A B ++t a n t a nA B =⋅,则ABC ∆的面积为 【 C 】A .32 B . C D .52 答案:C .解析:由已知,得tan tan tan tan )A B A B +=-⋅,即t a n ()A B +=又A 、B 是ABC ∆的内角,故o 120A B +=,则o 60C =,由2224(5)24(5)c c c =+--⨯⨯-ocos60,解得72c =,故32b =,故113sin 4222ABC S ab C ∆==⨯⨯=.故选C . 第Ⅱ卷(非选择题)二、填空题(每小题5分,共30分)9.在ABC ∆中,1sin 3A =,cos 3B =,1a =,则b =_________.解析:由cos B =,得sin 3B ===,由sin sin a b A B =,得b =1sin 31sin 3a BA==10.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若c =b =o 120B =,则a =______.解析:由余弦定理得2222cos b a c ac B =+-,即2o62cos120a =+-,即24a +-0=,解得a =(舍去负值).11.如果ABC ∆的面积是222S =C =____________.答案:o30.解析:由题意得2221sin 2ab C =cos C C =,故tan C =,故o30C =.12.ABC ∆的三内角A 、B 、C 的对边分别为a 、b 、c ,若o60A =,1b =,三角形的面积S =sin sin sin a b cA B C++++的值为____________.. 解析:由o 11sin sin 6022S bc A c ===4c =.由余弦定理得22a b =+22cos c bc A - 13=,故a =故sin sin sin a b c A B C ====,由等比性质,得sin sin sin sin a b c a A B C A ++==++14.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c,向量1)m =- ,(cos ,sin )n A A =,若m n ⊥,且cos cos sin a B b A c C +=,则B =____________.答案:6π或o30.解析:由m n ⊥ 得0m n ⋅=sin 0A A -=,即sin 0A A -=,故2sin()3A π-0=,故3A π=.由cos cos sin aB b A cC +=,得sin cos sin cos A B B A +=2sin C ,即2sin()sin A B C +=,故2sin sin C C =,故sin 1C =,又C 为ABC ∆的内角,故2C π=,故()()326B AC πππππ=-+=-+=.三、解答题(本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤)15.(本题满分12分)在ABC ∆中,已知2a =,c =o 45A =,解此三角形.解:由正弦定理,得sin sin 222c A C a ==⨯=o 60C ∠=或o120. 当o60C ∠=时,o o 180()75B A C ∠=-∠+∠=,由余弦定理,得2222cos b a c ac B =+-o46224=+-⨯=+1b =.当o120C ∠=时,o o 180()15B A C ∠=-∠+∠=,由余弦定理,得2222cos b a c ac B =+-o46224=+-⨯=-1b =.故1b =,o60C ∠=,o75B ∠=或1b =,o120C ∠=,o15B ∠=.17.(本题满分14分)a 、b 、c 是ABC ∆的内角A 、B 、C 的对边,S 是ABC ∆的面积,若4a =,5b =,S =c .解:由11sin 45sin 22S ab C C ==⋅⋅⋅=sin C =,则1cos 2C =或1cos 2C =-.(1)当1cos 2C =时,由余弦定理,得211625245212c =+-⋅⋅⋅=,故c =;(2)当1cos 2C =-时,由余弦定理,得211625245612c =++⋅⋅⋅=,故c =综上可知c .20.(本题满分14分)在锐角ABC ∆中,边a 、b 是方程220x -+=的两根,A 、B 满足2sin()A B +0=,解答下列问题:(1)求C 的度数;(2)求边c 的长度; (3)求ABC ∆的面积.解:(1)由题意,得sin()A B +=,因ABC ∆是锐角三角形,故o 120A B +=,o60C =;(2)由a 、b 是方程220x -+=的两根,得a b +=2a b ⋅=,由余弦定理,得22222cos ()31266c a b ab C a b ab =+-=+-=-=,故c =(3)故1sin 2ABC S ab C ∆==12222⨯⨯=.《解三角形》综合测试题(B )第Ⅰ卷(选择题)一、选择题(本大题共8小题,每小题5分,共40分.四个选项中只有一项是符合题目要求的) 1.在ABC ∆中,已知sin 1B =,3b =,则此三角形 【 D 】A .无解B .只有一解C .有两解D . 解的个数不确定答案:D .解析:由sin 1B =得o90B =,只知一边3b =,故三角形解的个数不确定.故选D .2.在ABC ∆中,已知o60A =,19b =,ABC ∆的面积S =,则a 等于 【 C 】 A .84 B .48 CD答案:C . 解析:由o 11sin 19sin 6022S bc A c ==⋅⋅=84c =,故222a b c =+o 2cos60bc - 5821=,故a =故选C .3.在ABC ∆中,o60A =,a =b =B 等于 【 A 】 A . o45 B .o 135 C .o 45或o135 D . 以上答案都不对 答案:A .解析:由正弦定理可求得sin B =<b a ,故o <60B A =,故o45B =.故选A . 4.在ABC ∆中,sin sin sin cos cos B CA B C+=+,则ABC ∆一定是 【 B 】A . 锐角三角形B . 直角三角形C . 钝角三角形D . 以上都有可能 答案:B .解析:由已知根据正、余弦定理得22222222b c a a c b a b cac ab+=+-+-+,整理得2222()()b a b c a c -+- ()bc b c =+,即233()()()()b c a b c bc b c bc b c +=+++=+,故22222a b bc c bc b c =-++=+,故ABC ∆为直角三角形. 故选B .5.在ABC ∆中,lg lg lg(sin )a b B -==-B 为锐角,则A 为 【 D 】 A . o90 B . o45 C . o60 D . o30 答案:D . 解析:由已知得sin a B b ==,又B 为锐角,故o45B =;又sin sin a A b B ==,故1sin 2A =,故o 30A =.故选D .6.在锐角三角形ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,设2B A =,则ba的取值 范围是 【 D 】 A . (2,2)- B . (0,2) C .D. 答案:D .解一:因2B A =,故o o 1801803C A B A =--=-,故o o o o o o o 0<<900<2<900<1803<90A A A ⎧⎪⎨⎪-⎩,解得o30<o <45A,故sin 2cos sin b BA a A==∈,故选D . 解二:由正弦定理得sin sin 22cos sin sin b B A A a A A ===,因02<<B π,故022<<A π,即0< 4<A π,又A B C π++=,故3C A π=-,由题意得032<<A ππ-,故63<<A ππ,又04<<A π,故64<<A ππ<cos <A<2cos <A ,即2cos A ∈,即ba∈.故选D . 7.在ABC ∆中,若3sin 4B =,10b =,则边长c 的取值范围是 【C 】A . 15(,)2+∞B . (10,)+∞C . 40(0,]3D . (0,10)答案:C .解析:由正弦定理可得40sin 3c C =,因0<sin 1C ≤,故400<3c ≤.故选C . 8.在ABC ∆中,若223coscos 222C A a c b +=,则a 、b 、c 的关系是 【 A 】 A .2a c b += B . a b c += C . 2b c a +=D . a b c ==答案:A . 解析:由已知得1cos 1cos 3222C A a c b ++⋅+⋅=,即(1cos )(1cos )3a C c A b +++=,由正弦定 理,得sin (1cos )sin (1cos )3sin A C C A B +++=,故sin sin cos sin A A C C +++sin cos C A3sin B =,即sin sin sin()3sin A C A CB +++=,又sin()sin AC B +=,故sin sin A C += 2sin B ,由正弦定理,得2a c b +=.故选A .第Ⅱ卷(非选择题)二、填空题(本大题共6小题,每小题5分,共30分.把答案填在横线上)9.三角形一边长为14,它的对角为60,另两边之比为8:5,则此三角形的面积为____________.答案:解析:设另两边的长为8x 和5x ,由余弦定理,得222o2(8)(5)14cos6080x x x +-=,解得2x =,则另两边的长为16和10,故此三角形的面积为o11610sin 602S =⨯⨯⨯=10.在ABC ∆中,50a =,o 30B =,o120C =,则BC 边上的高的长度是__________.答案:.解析:由已知得o30A =,由正弦定理得o o 50sin 30sin120AB=,解得AB =BC 边上的高12AD AB == 11.三角形的两边分别为5和3,它们的夹角的余弦值是方程25760x x --=的根,则此三角形的 面积S 为___________. 答案:6.解析:由方程解得3cos 5α=-,则4sin 5α=,故1453625S =⨯⨯⨯=.12.在ABC ∆中,已知2220b bc c --=,且a =7cos 8A =,则ABC ∆的面积是_________.解析:由2220b bc c --=,得2b c =;由余弦定理2222cos b c a bc A +-=,得2246c c +-7228c c =⨯⨯⨯,解得2c =,故4b =,故1242S =⨯⨯= 三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤)15.(本题满分10分)在ABC ∆中,已知3sin 5A =,sin cos <0A A +,a =5b =.求c .解:因为sin cos <0A A +,且3sin 5A =,故4cos 5A ==-;又a =5b =,故由2222cos a b c bc A =+-,得2224525()5c c =+-⨯⨯⨯-,即28200c c +-=,解得2c =或10(c =-舍去).故2c =. 点评:解此题的关键是由3sin 5A =求出cos A ,应注意根据sin cos <0A A +先判断cos A 的正负,以防产生漏解.18.(本题满分14分)设锐角三角形的内角A 、B 、C 的对边分别为a 、b 、c ,且2sin a b A =. (1)求B 的大小;(2)求cos sin A C +的取值范围.解:(1)由2sin a b A =根据正弦定理,得sin 2sin sin A B A =,故1sin 2B =.因ABC ∆为锐角三 角形,故6B π=.(2)1cos sin cos sin()cos sin()cos cos 662A C A A A A A A πππ+=+--=++=++2A)3A π=+.由ABC ∆为锐角三角形,知<<22B A ππ-,而226B πππ-=-3π=,故<<32A ππ,故25<<336A πππ+,故1<sin()<232A π+,<)23A π+3<2.故cos sin A C +的取值范围是3()22.。

正弦定理余弦定理习题及答案

正弦定理余弦定理习题及答案

正弦定理余弦定理习题及答案Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】正 余 弦 定 理1.在ABC∆中,A B >是sin sin A B >的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2、已知关于x 的方程22cos cos 2sin 02Cx x A B -⋅+=的两根之和等于两根之积的一半,则ABC ∆一定是 ( )(A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形. 3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=3, A+C=2B,则sinC= .4、如图,在△ABC 中,若b = 1,c =3,23C π∠=,则a= 。

5、在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,若2a =,2b =,sin cos 2B B +=,则角A 的大小为 .6、在∆ABC 中,,,a b c 分别为角,,A B C 的对边,且274sin cos 222B C A +-= (1)求A ∠的度数(2)若3a =,3b c +=,求b 和c 的值7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.8、如图,在△ABC 中,已知3=a ,2=b ,B=45? 求A 、C 及c .AB323π1、解:在ABC A B ∆>中,2sin 2sin sin sin a b R A R B A B ⇔>⇔>⇔>,因此,选C .2、【答案】由题意可知:211cos cos cos 2sin 222C CA B -=⋅⋅=,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+-cos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=,所以ABC ∆一定是等腰三角形选C3、【命题立意】本题考察正弦定理在解三角形中的应用.【思路点拨】由已知条件求出B 、A 的大小,求出C ,从而求出sin .C 【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得1sin sin 60A =得1sin 2A =,由a b <知60AB <=,所以30A =,180C A B =--90=,所以sin sin 90 1.C ==4、【命题立意】本题考查解三角形中的余弦定理。

正弦定理、余弦定理练习题及答案

正弦定理、余弦定理练习题及答案

正弦定理、余弦定理练习题及答案正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为A.-B.C.-D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是A.0B.1C.2D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为A.150°B.120°C.60°D.75°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.B.5-2 C. D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是A.Rt△B.锐角△C.钝角△D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=A.10+B.10(-1)C.(+1)D.1010.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为A.52B.2C.16D.412.在△ABC中,a2=b2+c2+bc,则A等于A.60°B.45°C.120D.30°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A. B.2 C.+1 D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于A.cos2BB.1-cos2BC.1+cos2BD.1+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A. B. C. D.20.在△ABC中,,则k为A.2RB.RC.4RD.(R为△ABC外接圆半径)二、填空题(共18题,题分合计75分)1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三角形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为.12.在△ABC中,sin A=2cos B sin C,则三角形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题(共24题,题分合计244分)1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c 是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题(共20题,合计100分)1 A 2A3C 4 B 5 C 6D 7A 8 D 9B 10 B 11 B 12C 13C 14C 15.B16. C 17:C 18A 19C 20. A二、填空题(共18题,合计75分)1. 2(-1)2 3. 45° 4. 8 5.等腰三角形 6.:钝角三角形7. a=b sin A或b<a8. 60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13. 120°14.或215. 36-1216.<x<17.a18. 2、3、4三、解答题(共24题,合计244分)1.a=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶47.a=6,b=5,c=48.当θ=时,S四边形OACB最大,最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.13.B1=60°,B2=120°;C1=90°,C2=30°;c1=2, c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三角形或直角三角形23.24.(1)k=1,2,3 (2)C=45°,B=15°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

..
人教版高中数学必修 5 正弦定理和余弦定理测试题及答案
一、选择题
1.在△ ABC 中,三个内角A, B, C 的对边分别是a, b,c,若 a= 2, b=3, cosC=-1 ,则 c 等于 ()
4
(A)2(B)3(C)4(D)5
2.在△ ABC 中,若 BC=2, AC= 2, B= 45°,则角 A 等于 ()
(A)60 °(B)30 °(C)60 °或 120°(D)30 °或 150°
3.在△ ABC 中,三个内角 A,B,C 的对边分别是 a,b,c,已知 B= 30°,c= 150,b= 50 3 ,那么这个三角形是 ()
(A) 等边三角形(B) 等腰三角形
(C) 直角三角形(D) 等腰三角形或直角三角形
4.在△ ABC 中,已知cosB 32
) ,sin C,AC =2,那么边 AB 等于 (
53
(A) 5
(B)
5
(C)
20
(D)
12 4395
5.在△ ABC 中,三个内角A,B, C 的对边分别是a, b, c,如果 A∶ B∶ C= 1∶ 2∶3,那么 a∶b∶ c 等于 ()
(A)1 ∶ 2∶3(B)1∶3∶2(C)1 ∶ 4∶ 9(D)1 ∶ 2 ∶ 3
二、填空题
6.在△ ABC 中,三个内角A,B, C 的对边分别是a, b, c,若 a= 2, B= 45°, C= 75°,则 b=________.
7.在△ ABC 中,三个内角A, B, C 的对边分别是a, b,c,若 a= 2, b= 2 3 ,c=4,则A= ________.
8.在△ ABC 中,三个内角A,B,C 的对边分别是a,b,c,若 2cosBcosC= 1-cosA,则△ABC 形状是 ________三角形 .
9.在△ ABC 中,三个内角A, B, C 的对边分别是a, b, c,若 a=3, b= 4,B= 60°,则c= ________.
10.在△ ABC 中,若 tanA= 2, B= 45°, BC = 5 ,则AC=________.
三、解答题
11.在△ ABC 中,三个内角A,B, C 的对边分别是 a, b, c,若 a=2, b= 4, C=60°,试解△ ABC.
..
12.在△ ABC 中,已知AB= 3, BC= 4,AC=13 .
(1)求角 B 的大小;
(2)若 D 是 BC 的中点,求中线AD 的长 .
13.如图,△ OAB 的顶点为O(0, 0),A(5, 2)和 B(- 9, 8),求角 A 的大
小 .
14.在△ ABC 中,已知BC =a, AC= b,且 a, b 是方程 x2- 23 x+2=0的两根,2cos(A +B)=1.
(1)求角 C 的度数;
(2)求 AB 的长;
(3)求△ ABC 的面积 .
..
参考答案
一、选择题 1. C 2.B
3.D
4. B
5.B
提示:
4.由正弦定理,得 sinC =
3
,所以 C =60°或 C = 120°,
2
当 C = 60°时,∵ B =30°,∴ A = 90°,△ ABC 是直角三角形;当
C = 120°时,∵ B = 30°,∴ A = 30°,△ ABC 是等腰三角形 . 5.因为 A ∶ B ∶C = 1∶2∶ 3,所以 A =30°, B = 60°, C = 90°,
由正弦定理
a b c
sin A sinB
= k ,
sin C
得 a =k ·sin30°= 1
k , b =k · sin60°=
3
k ,c = k · sin90°= k ,
2
2
所以 a ∶ b ∶ c = 1∶ 3 ∶ 2.
二、填空题
6. 2 6
7.30°
8.等腰三角形
9.
3 37 10. 5 2
3
2
4
提示:
8.∵ A +B + C =π,∴- cosA =cos(B + C). ∴ 2cosBcosC =1- cosA =cos(B + C)+1,
∴ 2cosBcosC = cosBcosC - sinBsinC +1,∴ cos(B -C)= 1,∴ B - C = 0,即 B = C. 9.利用余弦定理 b 2= a 2+c 2-2accosB.
10.由 tanA =2,得 sin A
2
,根据正弦定理,得
AC BC
,得 AC = 5 2 .
5
sin B
sin A 4
三、解答题
11. c =2 3 , A = 30°, B = 90° .
12. (1)60°; (2)AD =
7 .
13.如右图,由两点间距离公式,
得 OA = (5 0)2 (2 0)2
29 ,
同理得 OB
145, AB
232 . 由余弦定理,得
cosA = OA 2
AB 2 OB 2 2 ,
2OAAB
2
..
∴ A = 45° .
14. (1) 因为 2cos(A +B)= 1,所以 A +B = 60°,故 C = 120° .
(2)由题意,得 a + b = 2 3 , ab = 2,
又 AB 2= c 2= a 2+ b 2- 2abcosC = (a +b) 2- 2ab - 2abcosC
= 12-4- 4× (
1
)= 10.
2
所以 AB =
10 .
(3)S △ ABC =
1
absinC =
1
· 2·
3 = 3 . 2 2
2
2。

相关文档
最新文档