《工程制图》中几个重难点的总结及对策

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《工程制图》中几个重难点的总结及对策

袁昌富罗昕李爱玲

(石河子大学机电学院机械系工程制图教研室新疆石河子邮编832003)

摘要工程制图是一门比较抽象的课程,其学习过程中一些重难点及一些容易混淆的概念往往令学生感到困惑或一知半解。本文结合自己的教学经验,总结了学生在这门课程学习中的一些常见的“症结”,并对症给出了自己的“良方”。

关键词轴测图透视图基本视图尺寸标注

工程制图是工程界的一门语言,是工科学生的一门必修课。它可以培养学生的空间构型和空间想象能力,同时又是学生设计创新的基础。然而在工程制图学习过程中可能碰到的一些问题,约束了学生的思维,影响了他们的学习兴趣,让他们感到了困惑或一知半解。其实一些看似较难的知识点的掌握是有规律可循的,它可以让我们少走弯路。达到事半功倍的效果。以下面几个知识点为例。

一、透视图与轴测图:混淆不清(问题解决:一个表格)

关于透视图与轴测图,由于两者有不少相同之处。许多没有从本质上掌握这两种投影的学生容易混淆它们。其实要想掌握这两者的异同只需记住下面的这个表格即可。

二、基本视图的学习:记住一个规律很方便

视图是工程制图中形体表达最常用的方法之一,它包括基本视图、向视图、局部视图和斜视图等。其中基本视图是最基本的视图表达方法。而剖视图和向视图等都与基本视图联系紧密。剖视图、断面图一般可由基本视图修改得到;向视图可以看作是视图位置移动了的基本视图,因此基本视图的掌握很重要。GB/T14692-1993 [1]中规定:用正六面体的六个面作为基础投影面,将形体放其中,分别向投影面投影,得到的六个视图称为基本视图。按照第一角投影法中,六个视图的名称和展开后的相对位置见图1。在图1中,六个视图除了满足“长对正、高平齐、宽相等”的投影规律外,实质上是三对“镜像视图”,即左、右视图关于侧平面W“镜像”;俯视图、仰视图关于水平面H“镜像”;主视图、后视图关于正平面V “镜像”[2],只是一些视图中图线的虚实发生变化而已。线型发生变化的图线可根据各已知视图结合形体分析不难判别出虚实。

利用上述规律可以将绘制六个视图的问题转变为绘制三个视图即可,从而可大大提高

基本视图的绘制效率,尤其是当形体比较复杂时。在绘图实践中需要注意的是个别视图图线虚实的变化。此外,它还可以用来验证已知基本视图的正确性。

上述方法针对一般形体的尺寸标注而言,可谓一个捷径,大大降低了尺寸标注的难度。 三、 尺寸标注:多标漏标尺寸,令人头疼(问题解决办法:一个公式) 尺寸是工程图样中的重要组成部分,尺寸标注是否正确 、合理、清晰,直接影响图样的质量和产品加工质量。GB 中规定:尺寸标注的基本要求是正确、清晰、完整。所谓“完整”,指尺寸要齐全,不遗漏,不重复,即尺寸数量要不多不少。虽然都知道尺寸的基本要求,但学生在标注尺寸时却模棱两可,尺寸多余、尺寸遗漏现象普遍。教材上给出的方法是“形体分析法”。下面再介绍一种尺寸标注的辅助方法即“公式法“,它可以简便快捷地确定尺寸总数的方法。设形体的尺寸总数为N ,则有公式[3]:

N= R+L+W+H R :各视图中所有互不相等的圆和圆弧的总数(相同的圆和圆弧算一个);L 、W 、H :某一视图中沿长度、宽度、高度方向各图形元素点、直线(包括轮廓线和点划线)所在的不同位置数;分别记做0、1、2。。。。L ; 0、1、2……W ;0、1、2…H

注:切点、转向轮廓线、回转体表面交线不记在内 ,轴线不能遗漏,以视图对称轴线为基准时只考虑一半;尺寸基准处记做0;本题中R=6,L=8,W=3,H=4,得N=6+8+3+4=21,与形体分析法结果一致。具体步骤如图2所示。

四、 同坡屋顶画法:模棱两可(问题解决:45度偏转法)

在坡屋顶中,如果每个屋面对水平面的倾角相同,并且房屋四周的屋檐同高,那么由这种屋面组成的屋顶称为同坡屋顶。 在根据屋檐的水平投影求同坡屋顶的水平投影时,本人根据经验总结出了一种方法,暂称为““45度偏转法”。使用该法解决同坡屋顶问题简便易行,不易出错。 “45度偏转法”:水平投影中,屋脊线沿着与屋檐平行且与之等距的方向前进时,每遇到一条斜脊或天沟的投影,屋脊线的方向就偏移45度,直到与下一条斜脊或天沟的投影相交。 例如图3

,

图3-(a)中各斜脊或天沟的投影为与屋檐成

45度角的直线,图3-(b)中的屋脊线从1点出发,沿平行与屋檐方向前进,至2点时首先与c点的天沟线2c相交,相交后屋脊线偏转45度(至于左偏还是右偏,看能否与斜脊或天沟的投影相交,图中屋脊线沿12前进,只有向右偏才能与斜脊相交,图中屋脊线右偏后与斜脊3h交于3点,之后,沿与屋檐平行方向前进,交斜脊4d于4点,45度偏转后交天沟5g于5点,最后沿屋檐平行方向至6点结束。

五、几何体读图:多解情况始料不及

(问题解决:四点须知+一个措施)读图是工程制图着重培养的一个重要能力,但是一些视图无标号(尺寸标注等),又比较抽象。如果没有较强的空间想象能力和经过专门的训练,要读懂也并不容易。比如下面的例子,

这是因为工程制图被称为一门语言,它同时也具有语言的通性,即由于词语的多义某种场合会产生多义、歧义。“歧义”的原因是由以下原因决定的:

1、视图中的点的含义不明确,可能有两种可能:空间点的投影、空间直线的投影。

2、视图中的图线的含义不明确,可能有三种可能:垂直面的投影、表面交线的投影及曲面转向轮廓线的投影。

3、视图中闭合线框的含义不明确,可能有三种可能:平面的投影、曲面的投影及孔的投影。

由于视图中基本元素点、线、面含义的不确定性,我们有必要牢记以下四点须知:

1、一个视图不能确定几何体的形状

的;这点我们应该毫无疑问。一个投影,对于空间一点来说,其位置都不可确定,更不用说几何体的形状了。

2、两个视图在很多情况下仍不能唯一确定几何体的形状;

这样的例子比较多,图4.中所示就是一例。所以我们根据几何体的两个投影补画第三投影时,要考虑是否有多解的情况。

3、三个视图确定几何体的形状时,仍

有例外;

三个视图,一些人认为应该可以唯一确定几何体的形状了。但仍有例外。如:

4、六个视图一定能唯一确定的几何体

形状?例外确实存在;

如果继续增加视图数量到六个视图,不少人认为用六个方位视图来表达一个几何体,其形状应该“万无一失”了。不过,确实存在六个视图也不能唯一确定的几何体形状的情况。图6就是一特例

相关文档
最新文档