高二数学选修2-1测试题
高二数学选修2-1测试题及答案汇编
6 ,椭圆 C 上任意一点到椭圆两
个焦点的距离之和为 6.(Ⅰ)求椭圆 C 的方程;
(Ⅱ)设直线 l : y kx 2 与椭圆 C 交于 A, B 两点,点 P (0,1),且 PA = PB ,求 直线 l 的方程.
更多精品文档
学习-----好资料
22.如图,在四棱锥 P ABCD 中, PD 底面 ABCD ,底面 ABCD 为正方形, PD DC , E, F 分别是 AB, PB 的中点. (1)求证: EF CD ; (2)在平面 PAD 内求一点 G ,使 GF 平面 PCB ,并证明你的结论; (3)求 DB 与平面 DEF 所成角的正弦值.
()
A.0
B. 2
C.
D. 3 2
10.与向量 a (1, 3, 2) 平行的一个向量的坐标是 ( )
A.( 1 ,1,1) B.(-1,-3,2) C.(- 1 , 3 ,-1) D.( 2 ,-3,-2 2 )
3
22
11.已知圆 C 与直线 x y 0 及 x y 4 0 都相切,圆心在直线 x y 0 上,则
16 9
4 ,选 C.
5.A 【解析】
试题分析:由焦点为 F (0 , 3) ,所以,双曲线的焦点在 y 轴上,且 c = 3 ,焦点到最近
更多精品文档
学习-----好资料
顶点的距离是 3 1,所以,a = 3 -( 3 1)=1,所以,b c2 a2 = 2 ,所以, 双曲线方程为: y2 x2 1.本题容易错选 B,没看清楚焦点的位置,注意区分.
考点: 命题真假的判断. 3.C 【解析】
解题分析:因为 F1 , F2 是距离为 6,动点 M 满足∣ MF1 ∣+∣ MF2 ∣=6,所以 M 点的轨迹是 线段 F1F2 。故选 C。
高二数学(人教B版)选修2-1全册同步练习:3-1-1空间向量的线性运算
3.1.1空间向量的线性运算一、选择题1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,AB →=a ,AD →=b ,AA 1→=c ,则D 1B →等于( )A .a +b +cB .a +b +cC .a -b -cD .-a +b +c [答案] C[解析] D 1B →=D 1A 1→+A 1A →+AB →=-b +(-c )+a =a -b -c .故选C2.在平行六面体ABCD -A ′B ′C ′D ′中,向量AB ′→、AD ′→、BD →是( ) A .有相同起点的向量 B .是等长的向量 C .是共面向量D .是不共面向量[答案] C[解析] ∵AB 1→-AD 1→=D 1B 1→=BD →,∴共面.故选C.3.如图所示在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1→的共有( )(1)(AB →+BC →)+CC 1→ (2)(AA 1→+A 1D 1→)+D 1C 1→ (3)(AB →+BB 1→)+B 1C 1→ (4)(AA 1→+A 1B 1→)+B 1C 1→. A .1个 B .2个 C .3个D .4个[答案] D[解析] 代入检验知选D.4.在平行六面体ABCD -A 1B 1C 1D 1中,有以下等式,其中不正确的是( ) A.D 1B →=D 1D →+D 1A 1→+D 1C 1→ B.D 1B →=D 1C 1→+B 1B →+CB → C.D 1B →=D 1A 1→+A 1B →+A 1A →D.D 1B →=D 1C 1→+C 1D →+DB → [答案] C[解析] D 1A 1→+A 1B →+A 1A →=D 1B →+A 1A →≠D 1B →. 故选C.5.如图所示的空间四边形ABCD 中,M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A.32DB →B .3MG →C .3GM →D .2MG →[答案] B[解析] MG →-AB →+AD →=MG →+BD →=MG →+2MG →=3MG →.6.平行六面体ABCD -A 1B 1C 1D 中,O 为BD 1与AC 1的交点,下列说法正确的是( ) A.AO →=12AB →+AD →+AA 1→)B.AO →=13AC 1→C.BO →=12(BA →+BC →+BD →1)D.BO →=14AC 1→+BD 1→)[答案] A[解析] AB →+AD →+AA 1→=AC →+AA 1→=AC 1→. 故选A.7.如图所示,空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c, 点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →等于( )A.12a -23b +12c B .-23 a +12b +12cC.12a +12 b -23cD.23a +23b -12c [答案] B[解析] MN →=ON →-OM →=12(OB →+OC →)-23OA →=12×(b +c )-23a =-23a +12b +12c .∴应选B. 8.已知G 是正方形ABCD 的中心,点P 为正方形ABCD 所在平面外一点,则PA →+PB →+PC →+PD →=( )A .4PG →B .3PG →C .2PG →D.PG →[答案] A[解析] PA →+PB →+PC →+PD →=PG →+GA →+PG →+GB →+PG →+GC →+PG →+GD →=4PG →+(GA →+GC →)+(GB →+GD →),∵ABCD 是正方形,G 是它的中心, ∴GA →+GC →=GB →+GD →=0,故原式=4PG →.9.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .空间四边形B .平行四边形C .等腰梯形D .矩形[答案] B[解析] 画图利用空间向量的运算法则首尾相接 AO →+OB →=AB →,DO →+OC →=DC →, ∴AB →=DC →.故选B.10.已知正方体ABCD -A ′B ′C ′D ′ ,点E 是A ′C ′的中点,点F 是AE 的三等分点,且AF =12,则AF →等于( )A.AA ′→+12AB →+12AD →B.12AA ′→+12AB →+12AD →C.12AA ′→+16AB →+16AD →D.13AA ′→+16AB →+16AD → [答案] D[解析] AF →=13AE →=13(AA ′→+A ′E →)=13AA ′→+13×12A ′C ′→ =13AA ′→+16(A ′B ′→+A ′D ′→) =13AA ′→+16A ′B ′→+16A ′D ′→. 故选D. 二、填空题11.设A ,B ,C ,D 为空间任意四点,则AC →-BC →+BD →=________. [答案] AD →[解析] AC →-BC →+BD →=AC →+CB →+BD →=AD →。
高二数学选修2-1第一章测试题
1.如下图所示,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点. (1)求证:AC 1∥平面CDB 1;(2)求异面直线AC 1与B 1C 所成角的余弦值.2.如下图所示, 在平行六面体1111ABCD A B C D -中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点,求证:(1) MN//B 1D 1 ;(2) AC 1//平面EB 1D 1 ;(3) 平面EB 1D 1//平面BDG.3.如图, 在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 、P 、Q 、R 分别是所在棱 AB 、BC 、BB '、A 'D '、D 'C '、DD '的中点,求证: (1)PQ ∥EF ; (2)PQ ∥平面EFG ; (3)平面PQR ∥平面EFG ;(4)异面直线EG 与AC 1的夹角的余弦.5. 已知PA ⊥平面ABC ,AB 是圆O 的直径,C 是圆O 上的任一点,求证:PC BC ⊥6、如图,已知矩形ABCD 所在平面外一点P ,P A ⊥平面ABCD ,E 、F 分别是AB, PC 的中点 (1)求证:EF ∥平面P AD ; (2)求证:EF ⊥CD ;(3)若∠PDA =45︒,求EF 与平面ABCD 所成的角的大小.7、如图,四面体ABCD 中,O 、E 分别是B D .BC 的中点,2====BD CD CB CA ,2==AD AB(Ⅰ)求证:AO ⊥平面BCD;(Ⅱ)求异面直线AB 与CD 所成角的余弦值;(Ⅲ)求点E 到平面ACD 的距离.1、(1)起止框图: (2)输入、输出框: (3)处理框: (4)判断框:ACD'B 'C 'D ' FQGRP OCCB DA PEFACDOBE2、三种基本逻辑结构: 顺序结构 ;条件结构;循环结构3、基本算法语句 条件语句IF -THEN -ELSE 格式当计算机执行上述语句时,首先对IF 后的条件进行判断,如果条件符合,就执行THEN 后的语句1,否则执行ELSE 后的语句2。
高二数学选修2-1练习题(1)
1高二数学选修2-1一. 选择题1.下列语句是命题的为 ( ) A. x-1=0 B. 他还年青C. 20-5×3=10D. 在20020年前,将有人登上为火星2.命题 “若△ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题是( ) A. “若△ABC 是等腰三角形,则它的任何两个内角相等” B. “若△ABC 任何两个内角不相等,则它不是等腰三角形” C. “若△ABC 有两个内角相等,则它是等腰三角形” D. “若△ABC 任何两个角相等,则它是等腰三角形”3.“m =-2”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的 ( )A. 充分必要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件 4. 给出下列三个命题 ①若1->≥b a ,则bb a a +≥+11②若正整数m 和n 满足n m ≤,则2)(n m n m ≤-③设),(11y x P 为圆9:221=+y x O 上任一点,圆O 2以),(b a Q 为圆心且半径为 1.当1)()(2121=-+-y b x a 时,圆O 1与圆O 2相切其中假命题的个数为( )A .0B .1C .2D .35.双曲线19422-=-y x 的渐近线方程是( )A .x y 23±=B .x y 32±=C .x y 49±=D .x y 94±=6. 已知M(-2,0),N(2,0),|PM|-|PN|=4,则动点P 的轨迹是( ) A.双曲线 B.双曲线左支 C.一条射线 D.双曲线右支7.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A. (0,+∞) B. (0,2) C. (1,+∞) D. (0,1)8.已知向量)5,3,2(-=与向量),,4(y x -=平行,则x,y 的值分别是( ) A. 6和-10 B. –6和10 C. –6和-10 D. 6和109.已知ABCD 是平行四边形,且A(4,1,3),B(2,-5,1),C(3,7,-5),则顶点D 的坐标为( )2A. (1,1,-7)B. (5,3,1)C. (-3,1,5)D. (5,13,-3) 10.3465x y --=表示的曲线为 A. 抛物线 B. 椭圆 C. 双曲线 D.圆 二. 填空题11. 已知双曲线12222=-by a x 的一条渐近线方程为034=-y x ,则双曲线的离心率为___12.直线l 过抛物线2ay x = (a>0)的焦点,并且与x 轴垂直,若l 被抛物线截得的线段长为4,则a= . 13.已知下列命题(c b a ,,是非零向量) (1)若⋅=⋅,则=; (2)若k =⋅,则b=(3) )()(⋅=⋅则假命题的个数为___________14. 已知向量(,12,1),(4,5,1),(,10,1)OA k OB OC k ===-,且A 、B 、C 三点共线, 则k= . 三. 解答题15.如果正△ABC 中,D ∈AB,E ∈AC,向量12DE BC =,求以B,C 为焦点且过点D,E 的双曲线的离心率.16.如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点. (Ⅰ)证明AD ⊥D 1F; (Ⅱ)求AE 与D 1F 所成的角; (Ⅲ)证明面AED ⊥面A 1FD 1;317.如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB=3,BC=1,PA=2,E 为PD 的中点.(Ⅰ)求直线AC 与PB 所成角的余弦值;(Ⅱ)在侧面PAB 内找一点N ,使NE ⊥面PAC ,并求出N 点到AB 和AP 的距离.18. 设0<a,b,c<1,用反证法证明: (1-a)b,(1-b)c,(1-c)a 不同时大于.4119.已知一条曲线上的每个点M 到A (1,0)的距离减去它到y 轴的距离差都是1. (1)求曲线的方程;(2)讨论直线y=kx+1 (k ∈R)与曲线的公共点个数.20.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。
高二数学选修2-1第一章第二章试题.doc
高二数学《简单逻辑》与《圆锥曲线》试题一、选择题:本大题共10小题,每小题5分,共50分。
1.已知p:{}:,0q ⊆φ {}{}.2,11∈由他们构成的新命题“q p ∧”,“q p ∨”, “p ⌝”中,真命题有( )A 1个 B 2个 C 3个 D 4个 2.3=a 是直线032=++a y ax 和直线7)1(3-=-+a y a x 平行且不重合的() A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件3.一元二次方程)0(0122≠=++a x ax 有一个正根与一个负根的充分不必要条件是( ) A.0<a B 0>a C 1-<a D 1>a4曲线 与曲线 (0 <k<9) 具有( ) A 、相等的长、短轴 B 、相等的焦距C 、相等的离心率 D 、相同的准线 5、若曲线C 的方程为,0122=++-y xy x 则下列名点中,在曲线C 上的点是( )A(-1,2) B(1,-2) C(2,-3) D(3,6)6、如果抛物线y 2= ax 的准线是直线x=-1,那么它的焦点坐标为( ) A .(1, 0) B .(2, 0) C .(3, 0) D .(-1, 0)7、双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为( ) A .3 B .26 C .36D .338、过点P (2,-2)且与22x -y 2=1有相同渐近线的双曲线方程是( )A .14222=-x yB .12422=-y xC .12422=-x yD .14222=-y x 9、中心在原点,对称轴为坐标轴,离心率3e =360x -=的双曲线方程是 ( )(A )22134x y -= (B )22153y x -= (C )22124x y -= (D )22142y x -= 10、已知双曲线 和椭圆 (a>0, m>b>0)的离心率互为 倒数,那么以a 、b 、m 为边长的三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等腰三角形二、填空题:本大题共5小题,每小题5分,共25分,把答案填在题中的横线上。
高二数学选修2-1空间向量试卷及答案
AA 1DCB B 1C 1图高二数学(选修2-1)空间向量试题姓名:_________班级:________ 得分:________一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分). 1.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为( )A .60°B .90°C .105°D .75°2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是( )A .1715 B .21 C .178 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A .1030 B .21 C .1530 D .1015 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离( )A .515 B .55 C .552 D .105 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离( )A .a 42 B .a 82 C .a 423 D .a 22 6.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离( )A .63 B .33 C .332 D .23 图图7.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =21PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值( )A .621B .338 C60210 D .302108.在直三棱柱111C B A ABC -中,底面是等腰直角三角形,90=∠ACB ,侧棱21=AA ,D ,E分别是1CC 与B A 1的中点,点E 在平面AB D 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值( )A .32 B .37C .23 D .73 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是C B 延长线上一点,且BC BD =,则二面角B AD B --1的大小( )A .3π B .6πC .65πD .32π10.正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E ,F 分别为棱AB ,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积V ( )A .66 B .3316 C .316D .1611.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底,那么b a ,的关系是不共线; ②,,,O A B C 为空间四点,且向量OC OB OA ,,不构成空间的一个基底,则点,,,O A B C 一定共面;③已知向量c b a ,,是空间的一个基底,则向量c b a b a ,,-+也是空间的一个基底。
高二数学选修2-1第三章 空间向量与立体几何练习题及答案
第三章 空间向量与立体几何空间向量的数乘运算 测试题姓名:_________班级:________ 得分:_______ 1. 下列命题中不正确的命题个数是( )①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 与不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 与b 所在直线平行。
A .1B .2C .3D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且P A ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 与1CD 所形成角的余弦值为( ) A .1010 B . 15 C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的_ C _ D _ A _ P_ N _ B_ M3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.;221111111①(A A+A D +A B )=3(A B )()0;C ⋅-=1111②A A B A A 60;︒11向量与向量的夹角为AD A B ③ ⋅⋅11111立方体ABCD-A B C D 的体积为|AB AA AD |;④4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ; (2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a =-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( ) A .可构成直角三角形 B .可构成锐角三角形 C .可构成钝角三角形 D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( )A .[0,5]B .[1,5]C .(1,5)D .[1,25] 4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 . 5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角.3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=C 1 B 1 A 1B A2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值为( ) A .42 B .32 C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ; (2)求1C 到平面1A AB 的距离; (3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,13AC AA ==,∠ABC =60°. (1)证明:1AB A C ⊥;(2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面P AC .若存在,求S E :EC 的值; 若不存在,试说明理由.参考答案第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算§3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-.∵1122EN CD BA ===12AB -,CBA C 1B 1 A1 D 1C 1B 1A 1DABC_ C_ D_ A_S_ F_ B_ P_ N_ EEN PM PE =-=211326PC PC PC -=,连结AC ,则PC AC AP AB AD AP =-=+- ∴11()26MN AB AB AD AP =--+-=211366AB AD AP --+,∴211,,366x y z =-=-=.§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ;(2)1,2,CD x CD CC ==1设则 2CC =x, 111,BD AA C C BD A C ⊥∴⊥ 面 ,11:0x AC CD ∴⋅= 只须求满足, 设1,,A A a AD b DC c ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-, 令24260x x+-=,则2320x x --=,解得1x =,或23x =-(舍去),111,.A C C BD ∴=⊥1CD时能使平面CC §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.A2.D3.B4.165. (1)建系如图,则A (0,0,0) B (0,a ,0)A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1 则有1(,0,0)2MC =-(0,,0)AB a=,1)AA =, ∴10MC AB ⋅=,110MC AA ⋅=,所以,MC 1⊥平面ABB 1A 1.因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.1(,)2a AC =-,(0,)2aAM =,A∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°.∴AC 1与侧面ABB 1A 1所成的角为30°.3.2立体几何中的向量方法1.A2.C3.(1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥, 所以DE AC ⊥,又1A D ⊥平面ABC , 以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()10,0,A t ,()10,2,C t ,()10,3,AC t =,()12,1,BA t =--,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得3t = 设平面1A AB 的法向量为(),,n x y z =,(13AA =,()2,2,0AB =,所以130220n AA y z n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,3,1n =-, 所以点1C 到平面1A AB 的距离1AC n d n⋅==221. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,3CA =-,()2,0,0CB =, 所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =, 故cos ,m n m n m n⋅<>==⋅77-,根据法向量的方向, 可知二面角1A A B C --7. 4.(1)三棱柱111ABC A B C -为直三棱柱,11AB AA AC AA ∴⊥⊥,,Rt ABC ∆,1,3,60AB AC ABC ==∠=︒,由正弦定理030ACB ∠=.090BAC ∴∠=AB AC ⊥即 .如右图,建立空间直角坐标系,则 1(0,0,0),(1,0,0)(0,3,0),(0,0,3)A B C A1(1,0,0),(0,3,3)AB AC ∴==, 110030(3)0AB AC ⋅=⨯+⨯+⨯-=, 1AB A C ∴⊥.(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量, 设平面1A BC 的法向量为(,,)n l m n =, 则10,0,130BC n AC n BC ⋅=⋅==-又(,,), 303,330l m l m n m m n ⎧-+=⎪∴∴==⎨-=⎪⎩. 不妨取1,(3,1,1)m n ==则,22222231101015cos ,5(3)11100m n m n m n ⋅⨯+⨯+⨯<>===⋅++⋅++.1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)2SD a =-,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. _ C_ A_S_ F_ BO(2)由题设知,平面PAC 的一个法向量(,0,)22DS a a =,平面DAC 的一个法向量002OS =(,,),设所求二面角为θ,则cos 2OS DS OS DSθ⋅==,得所求二面角的大小为30°. (3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且,0,),(0,,)2222DS a a CS a a ==-(.设,CE tCS = 则(,(1),)222BE BC CE BC tCS a t at =+=+=--,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面.(完)。
高二数学理科选修2-1模块测试试卷
高二数学理科选修2-1模块测试题总得分:一、单项选择题:(每小题5分,共40分)1.24x >是 x>2的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 既充分又必要条件 D. 既不充分又不必要条件2.命题“在△ABC 中,若21sin =A ,则A=30º”的否命题是 ( ) A.在△ABC 中,若21sin =A ,则A≠30º B. 在△ABC 中,若1sin 2A ≠,则A=30ºC.在△ABC 中,若1sin 2A ≠,则A≠30ºD.在△ABC 中,若A≠30º,则1sin 2A ≠3.在平行六面体ABCD -A 1B 1C 1D 1中,用向量1,,AB AD AA 来表示向量1AC,则( ) A. 11AC AB AD AA =-+ B. 11AC AB AD AA =++ C. 11AC AB AD AA =+- D. 11AC AB AD AA =--4.双曲线22149x y-=的渐近线方程是 ( ) A . 23y x =± B.49y x =± C. 32y x =±D. 94y x =±5.若椭圆1522=+m y x 的离心率510=e ,则m 值是( ) A. 3 B. 3或325 C. 15 D. 15 或3155 6.已知命题P 是“第一次射击击中目标”,命题Q 是“第二次射击击中目标”。
则“两次都击中目标” 可用逻辑联结词表示为: ( )A .P ∧QB .P ∨QC . ¬P ∨¬QD . ¬P ∧¬Q7.椭圆1422=+y x 的两个焦点为F 1、F 2,P 为椭圆上一点,若∣PF 1 ∣=2 则∣PF 2 ∣=( )A . 1B .3C .2D .4AC 18.已知 a =(8,21x ,x ) b =(x ,1,2),其中x ﹥0,若a ∥ b 则x 的值为( )A .8 B. 4 C. 2 D. 0二、填空题 :本大题共4小题,每小题5分,共20分.9. 过点P(-2, -4)的抛物线的标准方程为 .10.已知向量a =(1,2,-3)与b =(2,5,6)平行,则a ×b的值是 。
高二数学(人教B版)选修2-1全册同步练习:3-2-3直线与平面的夹角
3.2.3直线与平面的夹角一、选择题1.已知平面α内的角∠APB =60°,射线PC 与PA 、PB 所成角均为135°,则PC 与平面α所成角的余弦值是( )A .-63B.63C.33D .-33[答案] B[解析] 由三余弦公式知cos45°=cos α·cos30°, ∴cos α=63. 2.三棱锥P —ABC 的底面是以AC 为斜边的直角三角形,顶点P 在底面的射影恰好是△ABC 的外心,P A =AB =1,BC =2,则PB 与底面ABC 所成角为( )A .60°B .30°C .45°D .90°[答案] B[解析] 由AB =1,BC =2,知AC =3,∴OA =32, 又∵PA =1,PQ ⊥AC ,∴PO =12,∵OB =OA =32,∴tan θ=33.∴应选B. 3.正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的正弦值是( ) A.24 B.23 C.63D.32[答案] C[解析] 由计算得sin θ=23.故选C. 4.在三棱锥P —ABC 中,AB ⊥BC ,AB =BC =12PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为( )A.216B.833 C.21060D.21030[答案] D[解析] 以O 为原点,射线OA 、OB 、OP 为x 、y 、z 轴建立空间直角坐标系,如图,设AB =a ,则OP =72a ,OD →=(-24a,0,144a ),可求得平面PBC 的法向量为n =(-1,-1,17), ∴cos(OD →,n )=OD →·n |OD →||n |=21030,设OD →与面PBC 的角为θ,则sin θ=21030,故选D.5.若直线l 与平面α所成角为π3,直线a 在平面α内,且与直线l 异面,则直线l 与直线a 所成角的取值范围是( )A.⎣⎡⎦⎤0,2π3 B.⎣⎡⎦⎤π3,2π3 C.⎣⎡π2,2π3D.⎣⎡π3,π2[答案] D6.如果平面的一条斜线段长是它在这个平面上的射影长的3倍,那么斜线段与平面所成角的余弦值为( )A.13B.223C.22D.23[答案] A7.如图,正方体AC 1中,BC 1与对角面BB 1D 1D 所成的角是( ) A .∠C 1BB 1 B .∠C 1BD C .∠C 1BD 1 D .∠C 1BO [答案] D[解析] 由三垂线定理得,OB 为BC 1在平面BB 1D 1D 上的射影.故选D.8.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,E 为CC 1的中点,则直线A 1B 与平面BDE 所成的角为( )A.π6B.π3C.π2D.56π [答案] B[解析] 以D 为原点建立空间直角坐标系,平面BDE 的法向量n =(1,-1,2), 而BA 1→=(0,-1,1),∴cos θ=1+223=32,∴θ=30°.∴直线A 1B 与平面BDE 成60°角.9.正方形纸片ABCD ,沿对角线AC 折起,使点D 在面ABCD 外 ,这时DB 与平面ABC 所成角一定不等于( )A .30°B .45°C .60°D .90°[答案] D[解析] 当沿对角线AC 折起时,BD 在面ABC 上的射影始终在原对角线上,若BD ⊥面ABC ,则此时B 、D 重合为一点,这是不成立的,故选D.10.已知等腰直角△ABC 的一条直角边BC 平行于平面α,点A ∈α,斜边AB =2,AB 与平面α所成的角为30°,则AC 与平面α所成的角为( )A .30°B .45°C .60°D .90°[答案] B[解析] 过B 、C 作BB ′⊥α于B ′,CC ′⊥α于C ′, 则BB ′=CC ′=1,∴sin θ=22,∴θ=45°.故选B. 二、填空题11.正三棱柱ABC —A 1B 1C 1的所有棱长都相等,则AC 1与平面BB 1C 1C 的夹角的余弦值为________.[答案]104[解析] 设三棱柱的棱长为1,以B 为原点,建立坐标系如图,则C 1(0,1,1),A ⎝⎛⎭⎫32,12,0,AC 1→=⎝⎛⎭⎫-32,12,1,又平面BB 1C 1C 的一个法向量n =(1,0,0), 设AC 1与平面BB 1C 1C 的夹角为θ. sin θ=|cos 〈n ,AC 1→〉|=|AC 1→·n ||AC 1→||n |=64,∴cos θ=1-sin 2θ=104. 12.正四棱锥S —ABCD 中,O 为顶点S 在底面内的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面PAC 所成的角是________.[答案] 30°13.AB ∥α,AA ′⊥α, A ′是垂足,BB ′是α的一条斜线段,B ′为斜足,若AA ′=9,BB ′=63,则直线BB ′与平面α所成角的大小为________.[答案] 60°14.正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为AA 1、A 1D 1的中点,则EF 与面A 1C 1所成的角为________.[答案] 45° 三、解答题15.如图所示,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12SC 与平面ABCD 所成的角.[解析] 解法1:如图所示,设n 是平面α的法向量,AB 是平面α的一条斜线,A ∈α,则AB 与平面α所成的角为π2-arccos |AB →·n ||AB →|·n ;AS →是平面ABCD 的法向量,设CS →与AS →的夹角为φ. ∵CS →=CB →+BA →+AS →,∴AS →·CS →=AS →·(CB →+BA →+AS →)=AS →·AS →=1. |AS →|=1,|CS →|=(CB ―→+BA ―→+AS ―→)2 =|CB ―→|2+|BA ―→|2+|AS ―→|2=3, ∴cos φ=AS →·CS →|AS →|·|CS →|=33.∴φ=arccos33. 从而CS 与平面ABCD 所成的角为π2-arccos 33.解法2:连结AC ,显然∠SCA 即为SC 与平面ABCD 所成的角.计算得:AC =2,∴tan ∠SCA =22,故SC 与平面ABCD 所成角为arctan22. 16.如图,在直三棱柱ABO —A ′B ′O ′中,OO ′=4,OB =3,∠AOB =90°.D 是线段A ′B ′的中点,P 是侧棱BB ′上的一点.若OP ⊥BD ,试求:(1)OP 与底面AOB 所成的角的大小; (2)BD 与侧面AOO ′A ′所成的角的大小.[解析] 如图,以O 为原点建立空间直角坐标系,由题意,有B (3,0,0),D ⎝⎛⎭⎫32,2,4,设P (3,0,z ),则BD →=⎝⎛⎭⎫-32,2,4,OP →=(3,0,z ).∵BD ⊥OP ,∴BD →·OP →=-92+4z =0,z =98.∴P ⎝⎛⎭⎫3,0,98.(1)∵BB ′⊥平面AOB ,∴∠POB 是OP 与底面AOB 所成的角. ∵tan ∠POB =983=38,∴∠POB =arctan 38.故OP 与底面AOB 所成角的大小是arctan 38.(2)∵OB →=(3,0,0),且OB →⊥平面AOO ′A ′, ∴平面AOO ′A ′的法向量为OB →=(3,0,0). 又DB →=(3,0,0)-⎝⎛⎭⎫32,2,4=⎝⎛⎭⎫32,-2,-4, ∴OB →·DB { =3×32+(-2)×0+(-4)×0=92.又|OB →|=3, |DB →|=⎝⎛⎭⎫322+(-2)2+(-4)2=892, ∴cos 〈OB →,DB →〉=OB →·DB →|OB →|·|DB →|=923×892=389 .∴BD 与侧面AOO ′A ′所成的角的大小为π2-〈OB →,DB →〉=π2-arccos 389(或写成arcsin389).17.如图,正方体ABCD -A 1B 1C 1D 1中,E 是CC 1的中点,求BE 与平面B 1BD 所成角的正弦值.[解析] 如图,建立空间直角坐标系,设正方体的棱长为2,则B (2,2,0),B 1(2,2,2),E (0,2,1),BD →=(-2,-2,0),BB 1→=(0,0,2),BE →=(-2,0,1).设平面B 1BD 的法向量为n =(x ,y ,z ), ∵n ⊥BD ,n ⊥BB 1∴⎩⎪⎨⎪⎧n ·BD →=-2x -2y =0n ·BB 1→=2z =0,∴⎩⎪⎨⎪⎧x =-y z =0, 令y =1时,则n =(-1,1,0), cos<n ,BE →>=n ·BE →|n ||BE →|=105.即BE 与平面B 1BD 所成的角的正弦值为105.18.(2009·北京)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC ;(2)当D 为PB 的中点时,求AD 与平面P AC 所成的角的大小; [解析] 考查线面垂直,直线与平面所成角,以及二面角等内容,可以用直接法实现,也可用向量法.解法一:(1)∵PA ⊥底面ABC ,∴PA ⊥BC . 又∠BCA =90°,∴AC ⊥BC . ∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴DE =12BC .又由(1)知,BC ⊥平面P AC , ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面P AC 所成的角. ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA =AB ,∴△ABP 为等腰直角三角形, ∴AD =12AB .在Rt △ABC 中,∠ABC =60°,∴BC =12.∴在Rt △ADE 中,sin ∠DAE =DE AD =BC 2AD =24.∴AD 与平面PAC 所成的角的大小为arcsin24. 解法二:(1)如图,以A 为原点建立空间直角坐标系A -xyz .设PA =a ,由已知可得A (0,0,0),B ⎝⎛⎭⎫-12a ,32a ,0,C ⎝⎛⎭⎫0,32a ,0,P (0,0,a ). (1)∵AP →=(0,0,a ),BC →=⎝⎛⎭⎫12a ,0,0,∴BC →·AP →=0, ∴BC ⊥AP .又∵∠BCA =90°, ∴BC ⊥AC . ∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴D ⎝⎛⎭⎫-14a ,34a ,12,E ⎝⎛⎭⎫0,34a ,12a .又由(1)知,BC ⊥平面P AC . ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面P AC 所成的角. ∵AD →=⎝⎛⎭⎫-14a ,34a ,12a ,AE →=⎝⎛⎭⎫0,34a ,12a ,∴cos ∠DAE =AD →·AE →|AD →||AE →|=144.∴AD 与平面PAC 所成的角的大小为arccos144.。
高二数学选修2-1测试试题及答案
(选修2-1)模块测试试题(本试题满分150分;用时100分钟)一、选择题:(本大题共12小题;每小题5分;共60分.在每小题给出的四个选项中;只有一项是符合题目要求的.)1.命题“若a b >;则88a b ->-”的逆否命题是 ( )a b <;则88a b -<-88a b ->-;则a b > a ≤b ;则88a b -≤-88a b -≤-;则a ≤b2.如果方程x 2+k y 2=2表示焦点在y 轴上的椭圆;那么实数k 的取值范围是( ) A .(0; +∞)B .(0; 2)C .(0; 1)D . (1; +∞)3.P:12≥-x ;Q:0232≥+-x x ;则“非P ”是“非Q ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4.双曲线221169x y -=的左、右焦点分别为F 1;F 2;在左支上过点F 1的弦AB 的长为5; 那么△ABF 2的周长是( )A 、24B 、25C 、26D 、 285.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21;则m=( ) A.3 B.23 C.38 D.32 6.在同一坐标系中;方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )7.椭圆221259x y +=的两个焦点分别为F 1、F 2;P 为椭圆上的一点;已知PF 1⊥PF 2;则∆PF 1F 2的面积为( )A.9B.12 8.正方体1111ABCD A B C D -的棱长为1;E 是11A B 的中点;则E 到平面11ABC D 的距离是( ) A.32B.22C.12D.339.若向量a 与b 的夹角为60°;4=b ;(2)(3)72a b a b +-=-;则a =( ) A.2 B.4C.6D.1210.方程22111x y k k表示双曲线;则k 的取值范围是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k11.方程12222=+kb y ka x (a >b >0;k >0且k ≠1);与方程12222=+by a x (a >b >0)表示的椭圆( )(A )有等长的短轴、长轴 (B )有共同的焦点(C )有公共的准线 (D )有相同的离心率 12.如图1;梯形ABCD 中;AB CD ∥;且AB ⊥平面α;224AB BC CD ===;点P 为α内一动点;且APB DPC ∠=∠;则P 点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线二、填空题:(本大题共5小题;每小题6分;共30分.将正确答案填在答题卷上对应题号的横线上.)13.设甲、乙、丙是三个命题;如果甲是乙的必要条件;丙是乙的充分条件;但不是乙的必要条件;那么丙是甲的 (①.充分而不必要条件;②.必要而不充分条件 ;③.充要条件) 14.在棱长为a 的正方体1111ABCD A B C D -中;向量1BA 与向量AC 所成的角为 . 15.已知向量)0,3,2(-=a ;)3,0,(k b =;若b a ,成1200的角;则k= .16.抛物线的的方程为22x y =;则抛物线的焦点坐标为____________17.以下三个关于圆锥曲线的命题中:①设A 、B 为两个定点;K 为非零常数;若|PA |-|PB |=K ;则动点P 的轨迹是双曲线。
高二数学选修2-1综合测试题(带答案)
高二数学选修2-1测试题(120分钟150分)班级姓名成绩一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题“如果-1≤a≤1,那么关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集为 ”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A.0个B.1个C.2个D.4个【变式训练】命题“若C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这4个命题中,真命题的个数是( )A.0B.1C.2D.32.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m∥β且l1∥αB.m∥l1且n∥l2C.m ∥β且n ∥βD.m∥β且n∥l2【变式训练】有下述说法:①a>b>0是a2>b2的充要条件;②a>b>0是<的充要条件;③a>b>0是a3>b3的充要条件.其中正确的说法有( )A.0个B.1个C.2个D.3个3. “1<m<3”是“方程+=1表示椭圆”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知抛物线y2=2px(p>0)与双曲线-=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为( )A. B.+1 C.+1 D.【变式训练】若双曲线C:x 2-=1(b>0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A.2B.C.3D.5.已知命题p:∀x∈R,x ≥2,那么下列结论正确的是( )A.命题p:∀x∈R,x≤2B.命题p:∃x0∈R,x0<2C.命题p:∀x∈R,x≤-2D.命题p:∃x0∈R,x0<-26.已知矩形ABCD中,AB=1,BC=,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则B与D之间的距离为( )A.1B.C.D.7.过抛物线y2=4x焦点的直线交抛物线于A,B两点,若=10,则AB的中点到y轴的距离等于( )A.1B.2C.3D.48.在四边形ABCD中,“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为( )A.60°B.90°C.45°D.以上都不正确10.设F1,F2是双曲线x2-4y2=4a(a>0)的两个焦点,点P在双曲线上,且满足:·=0,||·||=2,则a的值为( )A.2B.C.1D.11.点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点,则·的取值范围是( )A. B.C.[-1,0]D.12.已知正六边形ABCDEF的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是( )A. B. C. D.2二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.抛物线焦点在y轴上,且被y=x+1截得的弦长为5,则抛物线的标准方程为.14.在△ABC中,若∠ACB=90°,∠BAC=60°,AB=8,PC⊥平面ABC,PC=4,M是AB上一点,则PM的最小值为.15.在四棱锥P-ABCD中,ABCD为平行四边形,AC与BD交于O,G为BD上一点,BG=2GD,=a,=b,=c,试用基底{a,b,c}表示向量= .16.曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2的点的轨迹.给出下列四个结论:①曲线C过点(-1,1);②曲线C关于点(-1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则+不小于2k.④设P0为曲线C上任意一点,则点P0关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1,P2,P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)设p:关于x的不等式a x>1(a>0且a ≠1)的解集为{x|x<0},q:函数y=l g(ax2-x+a)的定义域为R.如果p和q有且仅有一个正确,求a的取值范围. 18.(12分)如图,正方体ABCD-A1B1C1D1中,M,N分别为AB,B1C的中点.(1)用向量法证明平面A1BD∥平面B1CD1.(2)用向量法证明MN⊥平面A1BD.19.(12分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程.(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求直线l的方程;若不存在,说明理由.20.(12分)设F1,F2为椭圆+=1的两个焦点,P是椭圆上一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|.(1)求|PF1|的长度.(2)求的值. 21.(12分)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成角的正弦值.(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.22.(12分)如图,四棱柱ABCD -A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE.(2)求二面角B1-CE-C1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.高二数学选修2-1测试题答案一、选择题1、【解析】选C.当-1≤a≤1时,Δ=(a+2)2+4(a2-4)=5--12≤5--12<0,所以原命题为真,逆否命题亦为真.反之,如a=-2时,所给不等式的解集即为空集,但a∉[-1,1],所以逆命题为假,故否命题亦为假.【变式训练】【解析】选C.原命题是真命题.其逆命题为“若△ABC是直角三角形,则C=90°”,这是一个假命题,因为当△ABC为直角三角形时,也可能A或B为直角.这样,否命题是假命题,逆否命题是真命题.因此真命题的个数是2.2.【解析】选B.对于选项A,α,β也可能相交,此时,l1,m都平行于交线,是必要不充分条件;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选项B符合题意;对于选项C,由于m,n不一定相交,故是必要不充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,【变式训练】【解析】选 A.a>b>0⇒a2>b2,a2>b2⇒|a|>|b|⇒a>b>0,故①错.a>b>0⇒<,但<⇒a>b>0,故②错.a>b>0⇒a3>b3,但a3>b 3⇒a>b>0故③错故选A.3. 【解析】选 B.当方程+=1表示椭圆时,必有所以1<m<3;但当1<m<3时,该方程不一定表示椭圆,如当m=2时,方程变为x 2+y2=1,它表示一个圆.4【解析】选B.如图,由双曲线-=1,且AF⊥x轴得-=1得|y|=,由抛物线y2=2px的定义得AF=p,即=2c.得b2=2ac,所以=,e2-1=2e,所以e=+1.【拓展延伸】求离心率的方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是在y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=.已知其中的任意两个参数,可以求其他的参数.这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率.这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.【变式训练】【解析】选B.由双曲线方程知a=1,所以c=,所以一条渐近线的方程为y=bx,即bx-y=0.所以=,解得b=1,所以c=,所以e==.5.【解析】选B.全称命题的否定是特称命题,所以命题p:∃x0∈R,x0<2.6. 【解析】选B.过B,D分别向AC作垂线,垂足分别为M,N.则可求得AM=,BM=,CN=,DN=,MN=1.由于=++,所以||2=(++)2=||2+||2+||2+ 2(·+ ·+·)=+12++2(0+0+0)=,所以||=.7.【解析】选D.抛物线y2=4x的焦点(1,0),准线为l:x=-1,设AB的中点为E,过A,E,B分别作准线的垂线,垂足分别为C,F,D,EF交纵轴于点H,如图所示,则由EF为直角梯形的中位线知,|EF|===5,所以EH=EF-1=5-1=4,即AB的中点到y 轴的距离等于4.8. 【解析】选C.若=λ,=λ,则∥,∥,即AB∥DC,AD∥BC,所以四边形ABCD为平行四边形.反之,若四边形ABCD为平行四边形,则有AB∥DC,AD∥BC且AB=DC,AD=BC ,即=,=,此时λ=1,所以∃λ∈R ,使得=λ,=λ成立.所以“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的充分必要条件.9. 【解析】选B.以点D为原点,直线DA,DC,DD 1分别为x轴,y轴,z轴,建立空间直角坐标系,如图.由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以=(0,1,-1),=(1,1,-1),=(0,-1,-1).设平面A1ED1的一个法向量为n=(x,y,z).则⇒令z=1,得y=1,x=0.所以n=(0,1,1),cos<n ,>===-1.所以<n ,>=180°.所以直线AE与平面A1ED1所成的角的大小为90°.10. 【解析】选C.双曲线方程化为-=1(a>0),因为·=0,所以PF1⊥PF2.所以||2+||2=4c2=20a. ①由双曲线定义||-||=±4,②又已知||·||=2,③由①②③得20a-2×2=16a,所以a=1.11. 【解析】选D.如图所示建立空间直角坐标系,则A(1,0,1),C1(0,1,0).设P(x,y,0)其中0≤x≤1,0≤y≤1.则=(1-x,-y,1) =(-x,1-y,0)所以·=(1-x,-y,1)·(-x,1-y,0)=+-,因为+的几何意义是平面区域到点的距离的平方,所以当x=y=时,+有最小值0,当x=y=0或x=y=1或x=1,y=0或x=0,y=1时,+有最大值,所以-≤+-≤0,即·的取值范围是.12. 【解析】选B.设抛物线方程为y2=2px(p>0),根据对称性可知,正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px上,设A(x1,1),F(x2,2),则即x2=4x1,又AF==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,即p===.二、填空题13.【解析】设抛物线方程为x2=my,联立抛物线方程与直线方程y=x+1并消元,得:2x2-mx-2m=0,所以x1+x2=,x1x2=-m,所以5=,把x1+x2=,x1x2=-m代入解得m=4或m=-20.所以抛物线的标准方程为x2=4y或x2=-20y. 答案:x2=4y或x2=-20y 14.【解析】由条件知PC,AC,BC 两两垂直,设=a ,=b ,=c,则a·b=b·c=c·a=0,因为∠BAC=60°,AB=8,所以|a |=||=8cos60°=4,|b |=||=8sin60°=4,|c |=||=4.设=x=x(b -a),其中x∈[0,1],则=++=-c+a+x(b-a)=(1-x)a+x b-c,||2=(1-x)2|a|2+x2|b|2+|c|2+2(1-x)x a·b-2x b·c-2(1-x)a·c=16(1-x) 2+48x2+16=32(2x2-x+1)=64+28,所以当x=时,||2取最小值28,所以||min =2. 答案:215. 【解析】因为BG=2GD ,所以=.又=+=-+-=a+c-2b,所以=+=b +(a+c-2b)=a -b +c.答案:a -b +c16.【解析】设动点为(x,y),则由条件可知·=k2,①,将(-1,1)代入得0=k2,因为k>0,所以不成立,故方程不过点(-1,1),①错误.②,把方程中的x用-2-x代换,y用2-y代换,方程不变,故此曲线关于点(-1,1)对称,②正确.③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则≥,≥,所以+≥2=2k,故③正确.④,由题意知点P0在曲线C上,根据对称性,则四边形P0P1P2P3的面积为2·2=4·=4k2,所以④正确.综上所述,正确结论的序号是②③④.答案:②③④三、解答题17.【解析】当p真时,0<a<1,当q 真时,即a>,所以p假时,a>1,q假时,a ≤.又p和q有且仅有一个正确,当p真q假时,0<a ≤;当p假q真时,a>1. 综上a 的取值范围为∪(1,+∞). 18.【证明】(1)在正方体ABCD-A1B1C1D1中,=-,=-,又因为=,=,所以=,所以BD∥B1D1.又B1D1⊂平面B1CD1,BD⊄平面B1CD1,所以BD∥平面B1CD1,同理可证A1B∥平面B1CD1.又BD∩A1B=B,所以平面A1BD∥平面B1CD1.(2)=++=++(+)=++(-+)=++.设=a ,=b ,=c,则=(a+b+c).又=-=b-a,所以·=(a+b+c)·(b-a)=(b2-a2+c·b-c·a).又因为⊥,⊥,所以c·b=0,c·a=0.又|b|=|a|,所以b2=a2.所以b2-a2=0.所以·=0.所以MN⊥BD.同理可证,MN⊥A1B.又A1B∩BD=B,所以MN⊥平面A1BD.19.【解析】(1)将A(1,-2)代入y2=2px,得(-2)2=2p·1,所以p=2.故所求抛物线C的方程为y2=4x,其准线方程为x=-1.(2)假设存在符合题意的直线l,其方程为y=-2x+t.由得y2+2y-2t=0.因为直线l与抛物线C有公共点,所以Δ=4+8t≥0,解得t≥-.由直线OA与l的距离d=,可得=,解得t=±1.因为-1∉,1∈,所以符合题意的直线l存在,其方程为2x+y-1=0.20.【解析】(1)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8.(2)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,|PF2|=,所以=.若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8,|PF2|=4,所以=2,综上,=2或.21.【解析】设正方体的棱长为1.如图所示,以,,为单位正交基底建立空间直角坐标系Axyz.(1)依题意,得B(1,0,0),E,A(0,0,0),D(0,1,0),所以=,=(0,1,0).在正方体ABCD-A1B1C1D1中,因为AD⊥平面ABB1A1,所以是平面ABB1A1的一个法向量.设直线BE和平面ABB1A1所成的角为θ,则sinθ===.故直线BE和平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:依题意,得A1(0,0,1),=(-1,0,1),=.设n=(x,y,z)是平面A1BE的一个法向量,则由n ·=0,n ·=0,得所以x=z,y=z.取z=2,得n=(2,1,2).因为F是棱C1D1上的点,则F(t,1,1)(0≤t≤1). 又B1(1,0,1),所以=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE ⇒·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为棱C1D1的中点.这说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.22.【解题指南】方法一:(1)建立空间直角坐标系,写出,的坐标,利用数量积证明.(2)求出平面B1CE与平面CEC1的法向量,由法向量的夹角余弦值求二面角的正弦值.(3)用直线AM的方向向量与平面ADD1A1的法向量表示直线AM与平面ADD1A1所成角的正弦,确定向量的坐标,由向量的模求线段AM的长.方法二:(1)要证明线线垂直,先证明线面垂直,关键是找出与线B1C1垂直的平面CC1E,然后进行证明.(2)要求二面角B1-CE-C1的正弦值,关键是构造出二面角B1-CE-C1的平面角,然后在三角形中求解.(3)首先构造三角形,设AM=x,在直角三角形AHM,C1D1E中用x表示出AH,EH的长度,最后在三角形AEH中利用余弦定理求解.【解析】如图,以点A为坐标原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).(1)易得=(1,0,-1),=(-1,1,-1),于是·=0,所以B1C1⊥CE.(2)=(1,-2,-1),设平面B1CE的法向量m=(x,y,z),则即消去x,得y+2z=0,不妨设z=1,可得一个法向量为m=(-3,-2,1).由(1)知B1C1⊥CE,又CC1⊥B1C1,可得B1C1⊥平面CEC1,故=(1,0,-1)为平面CEC1的一个法向量.于是cos<m ,>===-,从而sin<m ,>=.所以二面角B1-CE-C1的正弦值为.(3)=(0,1,0),=(1,1,1),设=λ=(λ,λ,λ),0≤λ≤1,有=+=(λ,λ+1,λ).可取=(0,0,2)为平面ADD1A1的一个法向量.设θ为直线AM与平面ADD1A1所成的角,则sinθ====.于是=,解得λ=,所以AM=.【一题多解】(1)因为侧棱CC1⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1,所以CC1⊥B1C1,经计算可得B1E=,B1C1=,EC1=,从而B1E2=B 1+E,所以在△B1EC1中,B1C1⊥C1E,又CC1,C1E⊂平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CE⊂平面CC1E,故B1C1⊥CE.(2)过B1作B1G⊥CE于点G,连接C1G,由(1)知,B1C1⊥CE,B1C1,B1G⊂平面B1C1G,B1C1∩B1G=B1,故CE⊥平面B1C1G,又C1G⊂平面B1C1G ,得CE⊥C1G,所以∠B1GC1为二面角B1-CE-C1的平面角.在△CC1E中,由CE=C1E=,CC1=2,可得C1G=.在Rt△B1C1G中,B1G=,所以sin∠B1GC1=,即二面角B1-CE-C1的正弦值为.(3)连接D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,连接AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.设AM=x,从而在Rt△AHM中,有MH=x,AH=x,在Rt△C1D1E中,C1D1=1,ED1=,得EH=MH=x,在△AEH中,∠AEH=135°,AE=1,由AH2=AE2+EH2-2AE·EHcos135°,得x2=1+x2+x,整理得5x2-2x-6=0,解得x=.所以线段AM的长为.。
高二数学选修2-1测试试题及答案
高二数学选修2-1测试试题及答案本试题满分150分,用时100分钟)一、选择题:1.命题“若a>b,则a-8>b-8”的逆否命题是()A.若a<b,则a-8<b-8B.若a-8≤b-8,则a≤bC.若a≤b,则a-8≤b-8D.若a-8b2.如果方程x^2+ky^2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0.+∞)B.(0.2)C.(0.1)D.(1.+∞)3.已知x-3x+2≥0,2x-2≥1,则“非P”是“非Q”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件4.双曲线16/(x^2)-9/(y^2)=1的左、右焦点分别为F1,F2,在左支上过点F1的弦AB的长为5,那么△ABF2的周长是()A、24B、25C、26D、285.若焦点在轴上的椭圆x^2/3+y^2/2=1的离心率为e,则m=A.3B.38/2C.23/2D.33/26.在同一坐标系中,方程x^2/2+y^2/2=1与ax+by^2=(a>b>)的曲线大致是()ab7.椭圆25x^2+16y^2=400的面积为()A.9B.12C.10D.88.正方体ABCD-A1B1C1D1的棱长为1,E是A1B1的中点,则E到平面ABC1D1的距离是()A.√2/2B.√6/2C.√3/2D.√29.若向量a与b的夹角为60°,b=4,(a+2b)(a-3b)=-72,则a=A.2B.4C.6D.1210.方程x^2/k-y^2/k=1表示双曲线,则k的取值范围是()A.-1<k<1B.k>0XXX≥1D.k>1或k<-111.方程x^2/a^2+y^2/b^2=1(a>b>0,k>且k≠1),与方程y^2/a^2+x^2/b^2=1的图形是()两个坐标轴上的椭圆12.若x^2+y^2+z^2=1,则x^2y^2+y^2z^2+z^2x^2的最大值为()1/3二、填空题:13.当k>1时,曲线x^2/k-y^2/k=1是()。
高二数学试卷(选修2-1)
高二数学试卷(选修2-1)一.选择题(每小题5分,共50分)1.抛物线281x y -=的准线方程是 ( )A . 321=xB . 2=yC . 321=y D . 2-=y2. 设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为 ( )A.4± B.± C.2± D.3.命题:“若12<x ,则11<<-x ”的逆否命题是 ( )A.若12≥x ,则11-≤≥x x ,且 B.若11<<-x ,则12<x C.若11-<>x x ,或,则12>x D.若11-≤≥x x ,或,则12≥x 4 . 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为 ( ) A .2- B .2 C .4- D .4 5 . 圆221:20O x y x +-=和圆222:40O x y y +-=的位置关系是 ( ).A 相离 .B 相交 .C 外切 .D 内切6 . 已知双曲线的渐近线方程为x y 2±= ,且它的一个焦点是)10,0(-,则双曲线的标准方程为 ( )A.12822=-y x B .18222=-y x C .18222=-x y D .12822=-x y 7 . 一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是( )A .4B .5C .1D .8 .1>x 是11<x的 ( ) A. 充分必要条件 B. 充分非必要条件C.必要非充分条件D. 既不充分也不必要条件 9.已知命题2011tan ,:00=∈∃x R x p 使,其中正确的是( )A.2011tan ,:≠∈∃⌝x R x p 使B. 2011tan ,:≠∉∃⌝x R x p 使C. 2011tan ,:≠∈∀⌝x R x p 使D.2011tan ,:≠∉∀⌝x R x p 使10 .设圆222(3)(5)(0)x y r r -++=>上有且仅有两个点到直线4320x y --=的距离等于2,则圆半径r 的取值范围是( )A .35r <<B .73<<rC .3>rD .7>r二.填空题(每小题4分,共28分)11.椭圆17222=+y x 的离心率是___________ . 12.若方程132222=-+-k y k x 表示的图形是双曲线,则k 的取值范围为 .13. 命题:“若42=x ,则2=x ,或2-=x ”的否命题是 .14. sin sin x y x y ≠≠是成立的 条件(填充分、必要条件)15.已知直线0125=++a y x 与圆01022=+-y x x 相交于A 、B 两点,若6=AB ,则a 的值为________.16. 已知抛物线y a x 212=的焦点坐标为F )71,0(-, 则抛物线上纵坐标为-4的点P 到抛物线焦点F 的距离为 .17.若圆2221:240C x y mx m +-+-=与圆2222:24480C x y x my m ++-+-=相切,则m 的值等于 .三.解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.) 18.(14分)设命题p : 指数函数xa y )12(-=在x ∈R 内单调递减;命题q :曲线1)54(2+-+=x a x y 与x 轴交于不同的两点. 如果q p ∨为真,q ⌝也为真,求实数a 的取值范围.19. (14分)已知圆C :04222=+--+m y x y x .(1)若点P )1,1(-在圆C 外,求m 的取值范围;(2)若圆C 与直线042=-+y x 交于M 、N 两点,且ON OM ⊥(O 为坐标原点),求m 的值;(3)在(2)的条件下,求以线段MN 为直径的圆的方程.20. (15分)设M 是圆C:66222=+-+y x y x 上的动点,O 是原点,N 是射线OM 上的点. (1) 写出圆C 的圆心与半径;(2) 若30||||=⋅ON OM ,求点N 的轨迹方程.21.(14分)已知抛物线C :x y 62=与直线L 交于),(11y x A 、),(22y x B 两点,O 为坐标原点. (1) 若直线L 过抛物线C 的焦点F , 且1521=+x x ,求AB ; (2) 若直线L 过点M(3,0), 且OAB ∆的面积为119, 求直线L 的方程.22. (15分)已知双曲线C:112422=-x y 的焦点为21,F F ,直线032:=--y x l ,O为坐标原点. (1)求以21,F F 为顶点 , 离心率为23的椭圆方程; (2) 若直线l 与双曲线C 交于A ,B 两点 ,求AB ;(3)是否存在与直线l 垂直的直线m 与双曲线C 交于N M ,两点,使得56=⋅ON OM ?若存在,求出直线m 的方程, 若不存在,请说明理由. 答案BCDDB DABCB 11.735 12.232<>k k 或 13.若42≠x , 则2≠x ,且2-≠x14. 必要非充分 15.27,或-77 16.729 17. 512,52,2,0-- 18.143<≤a 19.(1)50<<m ;(2)58=m ; (3)05165822=--+y x y x . 20.(1)圆心(1,-3),半径4 ;(2)0150301022=--++y x y x . 21.(1)18; (2))3(31:-±=x y l .22. (1)1166422=+y x ,或141622=+x y ; (2)117952; (3)不存在.高二数学期中考试答题卷(理)2011.11二.填空题(28分)11. 12.13.14. 15.16. 17.三. 解答题(72分)18.(14分)。
高二数学(人教B版)选修2-1全册同步练习:3-2-2平面的法向量与平面的向量表示
3.2.2平面的法向量与平面的向量表示一、选择题1.下列命题中正确的是( )A .如果一条直线与平面的一条斜线在这个平面内的射影垂直,则它也和这条斜线垂直B .如果一条直线与平面的一条斜线垂直,则它与斜线在平面上的射影垂直C .如果一向量和斜线在平面内的射影垂直,则它垂直于这条斜线D .如果一非零向量和一平面平行,且和一条斜线垂直,则它垂直于斜线在平面内的射影[答案] D[解析] 由三垂线定理知D 成立.2.在正方体ABCD —A 1B 1C 1D 1中,平面ACB 1的一个法向量为( )A.BD 1→B.DB →C.BA 1→D.BB 1→ [答案] A3.点A (a,0,0),B (0,b,0),C (0,0,c ),则平面ABC 的一个法向量为( )A .(bc ,ac ,ab )B .(ac ,ab ,bc )C .(bc ,ab ,ac )D .(ab ,ac ,bc ) [答案] A[解析] 设法向量为n =(x ,y ,z ),则AB ·n =0,AC →·n =0,则⎩⎪⎨⎪⎧-ax +by =0-ax +cz =0∴n =(bc ,ac ,ab ). 故选A. 4.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A .ACB .BDC .A 1DD .A 1A[答案] B[解析] 直线CE 在平面AC 内的射影为AC ,又AC ⊥BD ,∴BD ⊥CE ,故选B.5.正方体AC 1中,E ,F 分别是AB ,CD 的中点,则下列直线中不互相垂直的是( )A .B 1C 与C 1D 1B .D 1B 与B 1C C .D 1B 与EFD .A 1B 与B 1C 1 [答案] C[解析]D1B与EF所成角等于∠D1BC,其余弦值为33,故选C.6.若平面α、β的法向量分别为u=(-2,3,-5),v=(3,-1,4),则()A.α∥βB.α⊥βC.α、β相交但不垂直D.以上均不正确[答案] C[解析]∵u=(-2,3,-5),v=(3,-1,4),∴u与v不平行且u与v不垂直,故选C.7.平面α的一个法向量为v1=(1,2,1),平面β的一个法向量v2=-(2,4,2),则平面α与平面β()A.平行B.垂直C.相交D.不能确定[答案] A[解析]由v1∥v2故可判定α∥β.8.设平面α的法向量为(1,2,-2),平面β的法向量(-2,-4,k),若α∥β,则k=() A.2B.-4C.4D.-2[答案] C[解析]∵α∥β,∴1-2=2-4=-2k,∴k=4,故选C.9.若直线l的方向向量为a=(-1,0,-2),平面α的法向量为u=(4,0,8),则() A.l∥αB.l⊥αC.l⊂αD.l与α斜交[答案] B[解析]∵u=-4a,∴u∥a,∴a⊥α,∴l⊥α.故选B.10.在正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点,则()A.面AED∥面A1FD1B.面AED⊥面A1FD1C.面AED与面A1FD相交但不垂直D.以上都不对[答案] B[解析] 以D 为原点,DA →、DC →,DD 1→分别为x ,y ,z 建立空间直角坐标系求面AED 的法向量n 1与面A 1FD 1的法向量n 2.∵n 1·n 2=0,∴n 1⊥n 2,∴平面AED ⊥平面A 1FD 1.二、填空题11.若直线l 与β的法向量分别是a =(1,0,-2),b =(-1,0,2),则直线l 与β的位置关系是________.[答案] l ⊥β[解析] ∵a ∥b ,∴l ⊥β.12.已知l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝⎛⎭⎫1,12,2,则m =________.[答案] -8[解析] 设a =(2,m,1),b =(1,12,2). ∵l ∥α,∴a ⊥b ,∴2+12m +2=0,∴m =-8. 13.已知正四棱锥(如图所示),在向量PA →-PB →+PC →-PD →,PA→+PC →,PB →+PD →,PA →+PB →+PC →+PD →中,不能作为底面ABCD 的法向量的向量是________.[答案] PA →-PB →+PC →-PD →[解析] ∵PA →-PB →+PC →-PD →=BA →+DC →=0,不能作为这个平面的法向量,对其它三个化简后可知均与PO →共线.而PO ⊥平面ABCD ,它们可作为这个平面的法向量.14.如图所示,已知矩形ABCD ,AB =1,BC =a ,P A ⊥平面ABCD ,若在BC 上只有一个点Q 满足PQ ⊥QD ,则a 的值等于________.[答案] 2[解析] 以A 为原点,建立如图所示坐标系,则A (0,0,0),B (1,0,0),D (0,a,0),C (1,a,0),设Q (1,x,0),P (0,0,z ),PQ →=(1,x ,-z ),QD→=(-1,a -x,0).由PQ →·QD →=0,得-1+x (a -x )=0,即x 2-ax +1=0.当Δ=a 2-4=0,即a =2时,Q 只有一个.三、解答题15.已知△ABC 的三个顶点坐标分别为A (0,0,2),B (4,2,0),C (2,4,0),求平面ABC 的单位法向量.[解析] AB →=(4,2,-2),AC →=(2,4,-2)设n =(x ,y ,z )是平面ABC 的单位法向量,则有⎩⎪⎨⎪⎧ |n |2=1,n ·AB →=0,n ·AC →=0,⇒⎩⎪⎨⎪⎧ x 2+y 2+z 2=1,2x +y -z =0,x +2y -z =0. 取z >0,得x =y =111,z =311 . ∴n =111(1,1,3).16.如图所示,M 、N 、P 分别是正方体ABCD —A 1B 1C 1D 1中的棱CC 1、BC 、CD 的中点.求证:A 1P ⊥平面DMN .[证明] 建立如图所示的空间直角坐标系,设正方体棱长为2,则D (0,0,0),A 1(2,0,2),P (0,1,0),M (0,2,1),N (1,2,0).∴向量A 1P →=(0,1,0)-(2,0,2)=(-2,1,-2),DM →=(0,2,1)-(0,0,0)=(0,2,1),DN →=(1,2,0).∴A 1P →·DM →=(-2,1,-2)·(0,2,1)=(-2)×0+1×2+(-2)×1=0.A 1P →·DN →=(-2,1,-2)·(1,2,0)=(-2)×1+1×2+(-2)×0=0.∴A 1P →⊥DM →,A 1P →⊥DN →,即A 1P ⊥DM ,A 1P ⊥DN ,又DM ∩DN =D ,∴A 1P ⊥平面DMN .17.棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC?[解析] 以D 为原点建立如图所示的坐标系,设存在点P (0,0,z ),AP →=(-a,0,z ),AC →=(-a ,a,0),DB 1→=(a ,a ,a ),∴B 1D ⊥面PAC ,∴DB 1→·AP →=0,DB 1→·AC →=0.∴-a 2+az =0.∴z =a ,即点P 与D 1重合.∴点P 与D 1重合时,DB 1⊥面P AC .18.如图所示,ABCD 为矩形,PA ⊥平面ABCD ,PA =AD ,M 、N 、Q 分别是PC 、AB 、CD 的中点,(1)求证:MN ∥PAD ;(2)求证:平面QMN ∥平面PAD ;(3)求证:MN ⊥平面PCD .[解析] (1)如图以A 为原点,以AB ,AD ,AP 所在直线为坐标轴建立空间直角坐标系,设B (b,0,0),D (0,d,0),P (0,0,d ),则C (b ,d,0)∵M ,N ,Q 分别是PC ,AB ,CD 的中点,∴M ⎝⎛⎭⎫b 2,d 2,d 2,N ⎝⎛⎭⎫b 2,0,0,Q ⎝⎛⎭⎫b 2,d ,0 ∴MN →=⎝⎛⎭⎫0,-d 2,-d 2, ∵面PAD 的一个法向量为m =(1,0,0)∴MN →·m =0,即MN →⊥m ,∴MN 不在面P AD 内,∴MN ∥面PAD ,(2)QN →=(0,-d,0),QN →⊥m ,又QN 不在面P AD 内,又QN ∥面PAD .又∵MN ∩QN =N ,∴面MNQ ∥平面P AD .(3)PD →=(0,d ,-d ),DC →=(b,0,0), ∴MN →·PD →=⎝⎛⎭⎫-d 2d +⎝⎛⎭⎫-d 2(-d )=0, MN →·DC →=0,∴MN →⊥PD →,MN →⊥DC ,又PD ∩DC =D , ∴MN →⊥平面PCD .。
高二数学选修2-1测试试题及答案
(选修2-1)模块测试试题命题人:铁一中 周粉粉(本试题满分150分,用时100分钟)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若a b >,则88a b ->-”的逆否命题是 ( )A.若a b <,则88a b -<-B.若88a b ->-,则a b >C.若a ≤b ,则88a b -≤-D.若88a b -≤-,则a ≤b2.如果方程x 2+k y 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0, +∞)B .(0, 2)C .(0, 1)D . (1, +∞)3.P:12≥-x ,Q:0232≥+-x x ,则“非P ”是“非Q ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是( )A 、24B 、25C 、26D 、 285.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A.3 B.23 C.38 D.32 6.在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )7.椭圆221259x y +=的两个焦点分别为F 1、F 2,P 为椭圆上的一点,已知PF 1⊥PF 2,则∆PF 1F 2的面积为( )A.9B.12C.10D.8 8.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) A.32B.22C.12D.339.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( ) A.2 B.4C.6D.1210.方程22111x y k k表示双曲线,则k 的取值范围是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k11.方程12222=+kb y ka x (a >b >0,k >0且k ≠1),与方程12222=+by a x (a >b >0)表示的椭圆( ) (A )有等长的短轴、长轴 (B )有共同的焦点(C )有公共的准线 (D )有相同的离心率 12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线二、填空题:(本大题共5小题,每小题6分,共30分.将正确答案填在答题卷上对应题号的横线上.)13.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么丙是甲的 (①.充分而不必要条件,②.必要而不充分条件 ,③.充要条件) 14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为 . 15.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= .16.抛物线的的方程为22x y =,则抛物线的焦点坐标为____________17.以下三个关于圆锥曲线的命题中:①设A 、B 为两个定点,K 为非零常数,若|PA |-|PB |=K ,则动点P 的轨迹是双曲线。
高二数学必修5选修2-1考练卷(已排版,可直接打印)
高二数学必修5选修2-1一、选择题:本大题共12小题,每小题5分,共60分. 1.已知△ABC ,内角A 、B 、C 的对边分别是︒===60,3,2,,,B b a c b a ,则A 等于( )A .45°B .30°C .45°或135°D .30°或150°2.已知等差数列}{n a 的前n 项和为10532,20,5,a S a a S n 则-=-=+等于 ( )A .-90B .-27C .-25D .03.若a 、b 、c b a R >∈,,则下列不等式成立的是( )A .b a 11<B .22b a >C .1122+>+c b c a D .||||c b c a >4.椭圆的一个顶点与两个焦点构成等边三角形,则椭圆的离心率是 ( )A .51 B .21 C .33D .435.已知数列{a n }是逐项递减的等比数列,其首项a 1 < 0,则其公比q 的取值范围是( ) A .(-∞,-1) B .(-1,0) C .(0,1)D .(1,+∞)6.如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成角的余弦值是 ( )A .515 B .22C .510 D .07.若)4tan(,2cos sin cos sin πααααα+=+-则等于( )A .2B .-2C .21D .21-8.已知数列{a n },如果 ,,,,,123121----n n a a a a a a a 是首项为1,公比为2的等比数列,那么a n =( )A .2n +1-1B .2n -1C .2n-1D .2n +19.已知实数x ,y 满足条件⎪⎩⎪⎨⎧≥++≥≤0420y x x y y ,则z = x + 3y 的最小值是( )A .316 B .316-C .12D .-1210.下列函数中,最小值为4的是( )A .xx y 4+=B .)0(sin 4sin π<<+=x xx y C .x x e e y -+=4D .12122+++=x x y11.若△ABC 的三边为a ,b ,c ,它的面积为4222c b a -+,那么内角C 等于( )A .30°B .45°C .60°D .90°12.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船航行的速度为 ( )A .2617海里/小时 B .634海里/小时C .2217海里/小时 D .234海里/小时二、填空题:本大题共4小题,每小题4分,共16分.13.对于任意实数x ,不等式0422<--x ax 恒成立,则实数a 的取值范围是 .14.点P 是抛物线y 2 = 4x 上一动点,则点P 到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .15.已知数列{a n }的通项公式是).42sin(2ππ+=n a n 设其前n 项和为S n ,则S 12 .16.已知命题P :不等式}10|{01<<<-x x x x的解集为; 命题q :在△ABC 中,“A > B ”是“sin A > sin B ”成立的必要不充分条件. 有下列四个结论:①p 真q 假;②“p ∧q ”为真;③“p ∨q ”为真;④p 假q 真其中正确结论的序号是 .(请把正确结论的序号都.填上)三、解答题:本大题共6小题,共74分.17.(12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,73tan =C .(1)求cosC ; (2)若..9,25c b a CA CB 求且=+=⋅18.(12分)解关于x 的不等式,122>++x a 其中R a ∈. 19.(12分)在如图所示的空间直角坐标系O -xyz 中,原点O 是BC 的中点,A 点坐标为 )0,21,23(,D 点在平面yoz 上,BC = 2,∠BDC = 90°,∠DCB = 30°. (Ⅰ)求D 点坐标; (Ⅱ)求><BC AD ,cos 的值.20.(12分)为保护我国的稀土资源,国家限定某矿区的出口总量不能超过80吨,该矿区计划从2006年开始出口,当年出口a 吨,以后每一年出口量均比上一年减少10%. (Ⅰ)以2006年为第一年,设第n 年出口量为a n 吨,试求a n 的表达式;(Ⅱ)因稀土资源不能再生,国家计划10年后终止该矿区的出口,问2006年最多出口多少吨?(保留一位小数) 参考数据:0.910 ≈ 0.35.21.(12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程; (2)若直线l :m kx y +=与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB为直径的圆过椭圆C 的右顶点。
高中数学 模块综合测评(含解析)新人教A版高二选修2-1数学试题
模块综合测评(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ∈R ,则“a <2”是“a 2<2a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件B [∵a 2<2a ⇔a (a -2)<0⇔0<a <2. ∴“a <2”是“a 2<2a ”的必要不充分条件.] 2.已知命题p :∀x >0,总有(x +1)e x >1,则p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x 0≤1D .∀x ≤0,总有(x +1)e x 0≤1 B [命题p 为全称命题,所以p 为∃x 0>0,使得(x 0+1)e x 0≤1.故选B .]3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A .54B .52C .32D .54B [由题意,1-b 2a 2=⎝⎛⎭⎫322=34,∴b 2a 2=14,而双曲线的离心率e 2=1+b 2a 2=1+14=54,∴e =52.]4.已知空间向量a =(t,1,t ),b =(t -2,t,1),则|a -b |的最小值为( ) A . 2 B . 3 C .2D .4C [|a -b |=2(t -1)2+4≥2,故选C .] 5.椭圆x 225+y 29=1与椭圆x 2a 2+y 29=1有()A .相同短轴B .相同长轴C .相同离心率D .以上都不对D [对于x 2a 2+y 29=1,有a 2>9或a 2<9,因此这两个椭圆可能长轴相同,也可能短轴相同,离心率是不确定的,因此A ,B ,C 均不正确,故选D .]6.长方体ABCD -A 1B 1C 1D 1中,AB =2,AD =AA 1=1,则二面角C 1-AB -C 为( ) A .π3B .2π3C .3π4D .π4D [以A 为原点,直线AB ,AD ,AA 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则平面ABC 的一个法向量为AA 1→=(0,0,1),平面ABC 1的一个法向量为A 1D →=(0,1,-1),∴cos 〈AA 1→,A 1D →〉=-12=-22,∴〈AA 1→,A 1D →〉=3π4,又二面角C 1-AB -C 为锐角,即π-34π=π4,故选D .]7.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4 B .a ≤4 C .a ≥5D .a ≤5C [∵∀x ∈[1,2],1≤x 2≤4,∴要使x 2-a ≤0为真,则a ≥x 2,即a ≥4,本题求的是充分不必要条件,结合选项,只有C 符合,故选C .]8.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8xB [由已知可得,抛物线的焦点坐标为⎝⎛⎭⎫a 4,0.又直线l 的斜率为2,故直线l 的方程为y =2⎝⎛⎭⎫x -a 4,则|OA |=|a |2,故S △OAF =12·|a |4·|a |2=4,解得a =±8,故抛物线的方程为y 2=±8x .] 9.已知A (1,2,3),B (2,1,2),C (1,1,2),O 为坐标原点,点D 在直线OC 上运动,则当DA →·DB →取最小值时,点D 的坐标为( )A .⎝⎛⎭⎫43,43,43B .⎝⎛⎭⎫83,43,83 C .⎝⎛⎭⎫43,43,83D .⎝⎛⎭⎫83,83,43C [点D 在直线OC 上运动,因而可设OD →=(a ,a,2a ),则DA →=(1-a,2-a,3-2a ),DB →=(2-a,1-a,2-2a ),DA →·DB →=(1-a )(2-a )+(2-a )(1-a )+(3-2a )(2-2a )=6a 2-16a +10,所以a =43时DA →·DB →取最小值,此时OD →=⎝⎛⎭⎫43,43,83.] 10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F ,若椭圆的离心率为23,则k 的值为( )A .-13B .13C .±13D .±12C [由题意知点B 的横坐标是c ,故点B 的坐标为⎝⎛⎭⎫c ,±b 2a ,则斜率k =±b 2ac +a =±b 2ac +a 2=±a 2-c 2ac +a 2=±1-e 2e +1=±(1-e )=±13,故选C .]11.若F 1,F 2为双曲线C :x 24-y 2=1的左、右焦点,点P 在双曲线C 上,∠F 1PF 2=60°,则点P 到x 轴的距离为( )A .55B .155C .2155D .1520B [设|PF 1|=r 1,|PF 2|=r 2,点P 到x 轴的距离为|y P |,则S △F 1PF 2=12r 1r 2sin 60°=34r 1r 2,又4c 2=r 21+r 22-2r 1r 2cos 60°=(r 1-r 2)2+2r 1r 2-r 1r 2=4a 2+r 1r 2,得r 1r 2=4c 2-4a 2=4b 2=4,所以S △F 1PF 2=12r 1r 2sin 60°=3=12·2c ·|y P |=5|y P |,得|y P |=155,故选B .]12.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN ||AB |的最大值是( ) A . 3 B .32 C .33D .34C [如图.设|AF |=r 1,|BF |=r 2,则|MN |=r 1+r 22.在△AFB 中,因为|AF |=r 1,|BF |=r 2且∠AFB =2π3,所以由余弦定理,得|AB |=r 21+r 22-2r 1r 2cos 2π3=r 21+r 22+r 1r 2,所以|MN ||AB |=r 1+r 22r 21+r 22+r 1r 2=12×(r 1+r 2)2r 21+r 22+r 1r 2=12×1+r 1r 2r 21+r 22+r 1r 2≤12×1+r 1r 23r 1r 2=33,当且仅当r 1=r 2时取等号.故选C .] 二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知点P 是平行四边形ABCD 所在平面外的一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号)①②③[∵AB →·AP →=-2-2+4=0,∴AB →⊥AP →,即AP ⊥AB ,①正确;∵AP →·AD →=-4+4=0,∴AP →⊥AD →,即AP ⊥AD ,②正确;由①②可得AP →是平面ABCD 的法向量,③正确;由③可得AP →⊥BD →,④错误.]14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为________.x 25-y 220=1[由已知得ba =2,所以b =2a .在y =2x +10中令y =0得x =-5,故c =5,从而a 2+b 2=5a 2=c 2=25,所以a 2=5,b 2=20,所以双曲线的方程为x 25-y 220=1.] 15.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3,则椭圆C 的方程为________.x 23+y 2=1[由e =c a=23,得c 2=23a 2,所以b 2=a 2-c 2=13a 2, 设P (x ,y )是椭圆C 上任意一点,则x 2a 2+y 2b 2=1,所以x 2=a 2⎝⎛⎭⎫1-y 2b 2=a 2-3y 2.|PQ |=x 2+(y -2)2=a 2-3y 2+(y -2)2=-2(y +1)2+a 2+6,当y =-1时,|PQ |有最大值a 2+6.由a 2+6=3,可得a 2=3,所以b 2=1,故椭圆C 的方程为x 23+y 2=1.]16.四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD =AB =1,G 为△ABC 的重心,则PG 与底面ABCD 所成的角θ的正弦值为________.31717[如图,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,由已知P (0,0,1),A (1,0,0),B (1,1,0),C (0,1,0),则重心G ⎝⎛⎭⎫23,23,0,因此DP →=(0,0,1),GP →=⎝⎛⎭⎫-23,-23,1,所以sin θ=|cos 〈DP →,GP →〉|=|DP →·GP →||DP →|·|GP →|=31717.]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设集合A ={x |x 2-3x +2=0},B ={x |ax =1}.“x ∈B ”是“x ∈A ”的充分不必要条件,试求满足条件的实数a 组成的集合.[解]∵A ={x |x 2-3x +2=0}={1,2},由于“x ∈B ”是“x ∈A ”的充分不必要条件,∴B A .当B =∅时,得a =0;当B ≠∅时,由题意得B ={1}或B ={2}.则当B ={1}时,得a =1;当B ={2}时,得a =12.综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,1,12.18.(本小题满分12分)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0.[解](1)由双曲线的离心率为2,可知双曲线为等轴双曲线,设双曲线的方程为x 2-y 2=λ,又双曲线过点(4,-10),代入解得λ=6,故双曲线的方程为x 2-y 2=6.(2)证明:由双曲线的方程为x 2-y 2=6,可得a =b =6,c =23,所以F 1(-23,0),F 2(23,0).由点M (3,m ),得MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ),又点M (3,m )在双曲线上,所以9-m 2=6,解得m 2=3,所以MF 1→·MF 2→=m 2-3=0.19.(本小题满分12分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.[解] (1)证明:取CD 的中点E ,连接BE ,如图①.①∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形, ∴BE ∥AD 且BE =AD =4k . 在△BCE 中,∵BE =4k ,CE =3k ,BC =5k ,∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD . 又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD . 又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA →,DC →,DD 1→的方向为x ,y ,z 轴的正方向建立如图②所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),②∴AC →=(-4k,6k,0),AB 1→=(0,3k,1),AA 1→=(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧AC →·n =0,AB 1→·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 所成的角为θ,则sin θ=|cos 〈AA 1→,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AA 1→·n |AA 1→||n |=6k 36k 2+13=67,解得k =1,故所求k 的值为1. 20.(本小题满分12分)如图,过抛物线y 2=2px (p >0)的焦点F 作一条倾斜角为π4的直线与抛物线相交于A ,B 两点.(1)用p 表示|AB |;(2)若OA →·OB →=-3,求这个抛物线的方程.[解](1)抛物线的焦点为F ⎝⎛⎭⎫p 2,0,过点F 且倾斜角为π4的直线方程为y =x -p2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2,得x 2-3px +p 24=0, ∴x 1+x 2=3p ,x 1x 2=p 24,∴|AB |=x 1+x 2+p =4p .(2)由(1)知,x 1x 2=p 24,x 1+x 2=3p ,∴y 1y 2=⎝⎛⎭⎫x 1-p 2⎝⎛⎭⎫x 2-p 2=x 1x 2-p 2(x 1+x 2)+p 24=p 24-3p 22+p 24=-p 2,∴OA →·OB →=x 1x 2+y 1y 2=p 24-p 2=-3p 24=-3,解得p 2=4,∴p =2. ∴这个抛物线的方程为y 2=4x .21.(本小题满分12分)如图所示,四棱锥P -ABCD 的底面是边长为1的正方形,P A ⊥CD ,P A =1,PD =2,E 为PD 上一点,PE =2ED .(1)求证:P A ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,说明理由.[解](1)证明:∵P A =AD =1,PD =2,∴P A 2+AD 2=PD 2, 即P A ⊥AD .又P A ⊥CD ,AD ∩CD =D , ∴P A ⊥平面ABCD .(2)以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝⎛⎭⎫0,23,13,AC →=(1,1,0),AE →=⎝⎛⎭⎫0,23,13.设平面AEC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1), 使得BF ∥平面AEC ,则BF →·n =0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ), ∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点.22.(本小题满分12分)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.[解](1)∵BF 2=2,而BF 22=OB 2+OF 22=b 2+c 2=2=a 2,∵点C 在椭圆上,C ⎝⎛⎭⎫43,13, ∴169a 2+19b2=1, ∴b 2=1,∴椭圆的方程为x 22+y 2=1. (2)直线BF 2的方程为x c +y b =1,与椭圆方程x 2a 2+y 2b2=1联立方程组,解得A 点坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,-b 3a 2+c 2,则C 点的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b 3a 2+c 2,又F 1为(-c,0),kF 1C =b 3a 2+c 22a 2c a 2+c 2+c=b 33a 2c +c 3, 又k AB =-b c ,由F 1C ⊥AB ,得b 33a 2c +c 3·⎝⎛⎭⎫-b c =-1, 即b 4=3a 2c 2+c 4,所以(a 2-c 2)2=3a 2c 2+c 4,化简得e =c a =55.。
高二数学选修2-1测试题
高二数学选修2-1测试题1.“x1”是“x23x2”的(必要不充分条件)。
2.若p q是假命题,则(p是真命题,q是假命题)。
3.F1,F2是距离为6的两定点,动点M满足∣MF1∣+∣MF2∣=6,则M点的轨迹是(椭圆)。
4.双曲线x2y21=0的渐近线方程为(y=±x/√3)。
5.中心在原点的双曲线,一个焦点为F(0,3),一个焦点到最近顶点的距离是31,则双曲线的方程是(y2/4-x2/3=1)。
6.已知正方形ABCD的顶点A,B为椭圆的焦点,顶点C,D 在椭圆上,则此椭圆的离心率为(2-√2)。
7.椭圆4a2x2+a2y2=4a2与双曲线x2/a2-y2/b2=1有相同的焦点,则a的值为(2)。
8.与双曲线y2/9-x2/16=1有共同的渐近线,且过点(2,2)的双曲线标准方程为(9y2-16x2=144)。
9.已知A(-1,-2,6),B(1,2,-6)O为坐标原点,则向量OA,与OB的夹角是(cosθ=0)。
10.与向量a(1,3,2)平行的一个向量的坐标是(2,-6,4)。
11.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为(x+1)²+(y-1)²=2)。
12.若直线x+y=m与圆x²+y²=m²相切,则m的值为(1)。
解析】解题分析:设圆心为O,则由题意可知O在直线y=x上,又因为圆心到直线x+y=2的距离为2,所以O到直线y=x的距离为2.由于直线y=x与直线x+y=2的距离为$\frac{\sqrt{2}}{2}$,所以O到直线y=x的距离也为$\frac{\sqrt{2}}{2}$。
因此,O的坐标为$(\frac{3}{2},\frac{3}{2})$,半径为$\sqrt{2}$,圆的方程为$(x-\frac{3}{2})^2+(y-\frac{3}{2})^2=2$。
故选C。
高二数学选修2-1双曲线习题
高二数学选修2-1双曲线习题这个文档是属于基础性的,很适合家教用。
可以让学生很好地了解双曲线的性质,是双曲线基础性习题。
某2y21.双曲线1的渐近线方程是(A)493294A.y=某B.y=某C.y=D.y=某23492.双曲线A.某264y2361上一点P到右焦点的距离是8,则P到左焦点的距离是(B)965325B.C.8D.3.已知双曲线的实轴长为6,焦距为10,则该双曲线的标准方程为(C)A.某29某2y216y21B.某216某2y29y2C.9161或y29某216某21D. 1691或某29y2164、若双曲线标准方程为22322y21,则双曲线的离心率是(C)A.B.C.62D.15.到两定点F13,0、F23,0的距离之差的绝对值等于6的点M的轨迹(C)A.椭圆6.双曲线某2B.线段3y2C.双曲线D.两条射线41的实轴长和虑轴长分别是(A)A.23,4B.4,23C.3,4D.2,3二、填空题1.如果双曲线的实半轴长为2,焦距为6,那么双曲线的短轴长为___25_____2..等轴双曲线的一个焦点是F1(4,0),则它的标准方程是某22y223.椭圆某24y2321上一点P到左焦点的距离为3,则P到右焦点的距离为___7_____ 2某y4.已知双曲线=1的一条渐近线方程为y=2某,则双曲线的离心率为_5____ab三、解答题1.已知双曲线两个焦点的坐标为F1(5,0),F2(5,0),双曲线上一点P到F1,F2的距离之差的绝对值等于8这个文档是属于基础性的,很适合家教用。
可以让学生很好地了解双曲线的性质,是双曲线基础性习题。
解:因为双曲线的焦点在某轴上,所以设它的标准方程为某a22yb221(a0,b0∵2a8,2c10∴a4,c5∴b2524216所求双曲线标准方程为某29y21612.求一条渐近线方程是3某离心率.(12分)4y0,一个焦点是4,0的双曲线标准方程,并求此双曲线的[解析]:设双曲线方程为:9某216y2,∵双曲线有一个焦点为(4,0),0222双曲线方程化为:某y11648,91625925625161442522∴双曲线方程为:某y1∴e45.1654。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名:___________班级:___________一、选择题1.“1x ≠”是“2320x x -+≠”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.若p q Λ是假命题,则( ) A.p 是真命题,q 是假命题 B.p 、q 均为假命题C.p 、q 至少有一个是假命题D.p 、q 至少有一个是真命题3.1F , 2F 是距离为6的两定点,动点M 满足∣1MF ∣+∣2MF ∣=6,则M 点的轨迹是 ( )A.椭圆B.直线C.线段D.圆4.)5.中心在原点的双曲线,一个焦点为,,则双曲线的方程是( )A .B .C .D . 6.已知正方形ABCD的顶点,A B 为椭圆的焦点,顶点,C D 在椭圆上,则此椭圆的离心率为( ) A7有相同的焦点,则a 的值为( ) A .1 BC .2D .38.且过点(2,2)的双曲线标准方程为( ) (A (B (C (D 9.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB 与的夹角是( ) A .0B C .π D (0F 12212x y -=2212y x -=221x =221y -=10.与向量(1,3,2)a =-平行的一个向量的坐标是 ( )A .1,1)B .(-1,-3,2)C .1)D -3,- 11.已知圆C 与直线0=-y x 及04=--y x 都相切,圆心在直线0=+y x 上,则圆C 的方程为( )A.22(1)(1)2x y ++-=B. 22(1)(1)2x y -++= C. 22(1)(1)2x y -+-= D. 22(1)(1)2x y +++= 12.若直线m y x =+与圆m y x =+22相切,则m 的值为( ) A .0 B .1 C .2 D .0或2 二、填空题13.直线y x =被圆22(2)4x y +-=截得的弦长为_______________.14.已知椭圆x y k k ky x 12)0(3222=>=+的一个焦点与抛物线的焦点重合,则该椭圆的离心率是 .15表示椭圆,则k 的取值范围为___________16.在正方体1111ABCD A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离 . 三、解答题17.求过点(-1,6)与圆x 2+y 2+6x -4y+9=0相切的直线方程.1819.求与x 轴相切,圆心C 在直线3x -y =0上,且截直线x -y =0得的弦长为圆的方程.20.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.21,椭圆C 上任意一点到椭圆两个焦点的距离之和为6.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 2:-=kx y 与椭圆C 交于B A ,两点,点P (0,1)直线l 的方程.22.如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD DC =,,E F 分别是,AB PB 的中点.(1)求证:EF CD ⊥;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论;(3)求DB 与平面DEF 所成角的正弦值. AEBPCDF参考答案1.B 【解析】试题分析: 2320(1)(2)0x x x x -+≠⇒--≠,则1x ≠且2x ≠;反之,1x ≠且2x =时,2320x x -+=,故选B.考点:充要条件的判断. 2.C 【解析】试题分析:当p 、q 都是真命题p q ⇔Λ是真命题,其逆否命题为: p q Λ是假命题⇔p 、q 至少有一个是假命题,可得C 正确.考点: 命题真假的判断. 3.C 【解析】解题分析:因为1F , 2F 是距离为6,动点M 满足∣1MF ∣+∣2MF ∣=6,所以M 点的轨迹是线段12F F 。
故选C 。
考点:主要考查椭圆的定义。
点评:学习中应熟读定义,关注细节。
4.Ca=4,b=3,c=5,选C.5.A【解析】试题分析:由焦点为,所以,双曲线的焦点在y 轴上,且c =,所以,a=)=1,所以,双曲线方程为:.本题容易错选B ,没看清楚焦点的位置,注意区分. 考点:双曲线的标准方程及其性质. 6.A 【解析】试题分析:设正方形ABCD 的边长为1(0F 112212x y -=考点:本小题主要考查椭圆中基本量的运算和椭圆中离心率的求法,考查学生的运算求解能力.,而不必分别求出,.a c 7.A 【解析】有相同的焦点,所以0a >,且椭圆的焦点应该在x 轴上,所以242,2, 1.a a a a -=+∴=-=或因为0a >,所以 1.a = 考点:本小题主要考查椭圆与双曲线的标准方程及其应用. 点评:椭圆中222c a b =-,而在双曲线中222.c a b =+ 8.B【解析】2,2),代入可得3λ=-,所以考点:本小题主要考查双曲线标准方程的求解,考查学生的运算求解能力.. 9.C【解析】试题分析:-1.所以量,OA OB 与的夹角是π,故选C 。
考点:本题主要考查向量的数量积及向量的坐标运算.点评:较好地考查考生综合应用知识解题的能力以及运算能力,属于基本题型。
10.C ; 【解析】试题分析:向量的共线(平行)问题,可利用空间向量共线定理写成数乘的形式.即b a b a b λ=⇔≠//,0.也可直接运用坐标运算。
经计算选C 。
考点:本题主要考查向量的共线及向量的坐标运算.点评:有不同解法,较好地考查考生综合应用知识解题的能力。
11.B 【解析】试题分析:因圆心在直线0=+y x 上,而点(1,1)和点(-1,-1)不在直线上,故C 、D 错;又直线0=-y x 及04=--y x 平行,且都与圆相切,故圆心在第四象限,故A 错,选B.或用直接法求解亦可.考点:1.圆的标准方程;2.直线与圆的位置关系. 12.C 【解析】试题分析:根据题意,由于直线m y x =+与圆m y x =+22相切,则圆心(0,0)到直线x+y=m m 的值为2,故答案为C. 考点:直线与圆的位置关系点评:主要是考查了直线与圆的位置关系的运用,属于基础题。
13【解析】试题分析:由弦心距、半径、弦长的一半构成的直角三角形,应用勾股定理得,直线y x =被圆22(2)4x y +-=截得的弦长为 考点:直线与圆的位置关系点评:简单题,研究直线与圆的位置关系问题,要注意利用数形结合思想,充分借助于“特征直角三角形”,应用勾股定理。
14【解析】试题分析:抛物线的焦点为(3,0)F , 3394k k -=⇒=,所考点:1、椭圆与抛物线的焦点;2、圆的离心率. 151)(,2)2- 【解析】试题分析:需要满足302032k k k k+>⎧⎪->⎨⎪+≠-⎩,解得k 的取值范围为1)(,2)2-.考点:本小题主要考查椭圆的标准方程,考查学生的推理能力. 点评:解决本小题时,不要忘记32k k +≠-,否则就表示圆了. 16【解析】试题分析:设正方体棱长为2,以1D 为原点,建立如图所示的空间直角坐标系,则1(2,1,0)D E =,1(2,0,2)C B =,设1D E 和1BC 公垂线段上的向量为(1,,)n λμ=,则1100n D E n C B ⎧⋅=⎪⎨⋅=⎪⎩,即20220λμ+=⎧⎨+=⎩,21λμ=-⎧∴⎨=-⎩,(1,2,1)n ∴=--,又11(0,2,0)D C =,1146D C n n ⋅=,所以异面直线1D E 和1BC 间的距离为考点:本题主要考查空间向量的应用,综合考查向量的基础知识。
点评:法向量在距离方面除应用于点到平面的距离、多面体的体积外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等. 17.3x -4y+27=0或x=-1. 【解析】试题分析:圆x 2+y 2+6x -4y+9=0,即22(3)(2)4x y ++-=。
点(-1,6)在圆x 2+y 2+6x-4y+9=0外,所以,过点(-1,6)与圆x 2+y 2+6x -4y+9=0相切的直线有两条。
当切线的斜率不存在时,x=-1符合题意;当切线的斜率存在时,设切线方程为6(1)y k x -=+,即60kxy k -++=。
由圆心(-3,2)到切线距离等于半径2所以,切线方程为3x -4y+27=0。
综上知,答案为3x -4y+27=0或x=-1. 考点:直线与圆的位置关系点评:中档题,研究直线与圆的位置关系问题,利用“代数法”,须研究方程组解的情况;利用“几何法”,则要研究圆心到直线的距离与半径比较。
本题易错,忽视斜率不存在的情况。
18.(x-1)2+(y-3)2 =9或(x+1)2+(y+3)2=9 【解析】试题分析:解:设圆心为(a,b),半径为r,因为圆x轴相切,圆心C在直线3x-y=0上,所以b=3a,r=|b|=|3a|,圆心(a,3a)到直线x-y=0的距离由r2-d22 得:a=1或-1所以圆的方程为(x-1)2+(y-3)2 =9或(x+1)2+(y+3)2 =9考点:圆的方程点评:确定出圆心和半径是解决圆的方程的关键,属于基础题。
19【解析】……4分……8分∴所求双曲线方程为……10分……12分考点:本小题主要考查由渐近线方程和双曲线上的点求双曲线方程的方法和双曲线离心率的求法,考查学生的运算求解能力.点评:另外圆锥曲线中离心率是一个比较常考的考点,要准确求解.20【解析】试题分析:设抛物线方程为)0(22>-=ppyx,则焦点F,由题意可得故所求的抛物线方程为y x 82-=,考点:本题主要考查抛物线的标准方程、几何性质,考查抛物线标准方程求法---待定系数法。
点评:本题突出考查了抛物线的标准方程、几何性质,,通过布列方程组,运用待定系数法,使问题得解。
21.(Ⅱ)02=--y x 或02=++y x 【解析】试题分析:(Ⅰ)由已知62=a ,解得3=a所以3222=-=c a b ,所以椭圆C……4分得0312)31(22=+-+kx x k , 直线与椭圆有两个不同的交点,所以0)31(1214422>+-=∆k k 解得 设A (1x ,1y ),B (2x ,2y )……7分PE ⊥AB ,1-=⋅AB PE k k ,解得1±=k , 经检验,符合题意,所以直线l 的方程为02=--y x 或02=++y x 。
……12分 考点:本小题主要考查椭圆标准方程的求解和直线与椭圆的位置关系、弦长公式以及中点坐标公式、斜率公式等的综合应用,考查学生数形结合解决问题的能力和运算求解能力. 点评:圆锥曲线是每年高考的重点考查内容,涉及到直线与圆锥曲线的位置关系时,运算量比较大,要结合图形,数形结合可以简化运算. 22.(1)详见解析;(2)详见解析;答案第7页,总7页 【解析】试题分析:在空间中直线、平面的平行和垂直关系的判定,求空间中的角,可以用相关定义和定理解决,如(1)中,易证EF AP ,AP CD ⊥,所以,EF CD ⊥,但有些位置关系很难转化,特别求空间中的角,很难找到直线在平面内的射影,很难作出二面角,这时空间向量便可大显身手,如果图形便于建立空间直角坐标系,则更为方便,本题就是建立空间直角坐标系,写出各点坐标(1)计算0EF DC ⋅=即可;(2)设(,0,)G x z ,再由0FG CB ⋅=,0FG CP ⋅=解出,x z ,即可找出点G ;(3)用待定系数法求出件可求出平面DEF 的法向量,再求出平面DEF 的法向量与向量平面DB 的夹角的余弦,从而得到结果.试题解析:以,,DA DC DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系(如图),设DA a =,则(0,0,0)D ,(,0,0)A a ,(,,0)B a a ,(0,,0)C a ,(0,0,)P a . 因为(2a EF DC ⋅=-分 ,(FG x =-(,0,0)(2a FG CB x a x ⋅=-=- ()0FG CP x a az ⋅=-==∴G 点坐标为AD 的中点.(3)设平面DEF 的法向量为(,,)x y z =n . 由00DF DE ⎧⋅=⎪⎨⋅=⎪⎩n n 得, 取1x =,则2y =-,1z =,得(1,2,1)=-n .,|||BD BD BD ⋅〈〉==n n n | 所以,DB 与平面DEF 所成角的正弦值的大小为分 考点:空间向量与立体几何.。