数值分析英文版课件.
数值分析英文版chapter 1
Errors
§1 .1 Errors and Significant Digits
1.1.1 Truncation error and round off error
Truncation error: made by numerical algorithms, arise from taking finite number of steps in computation
| x * x1 | 0.00173 0.5 102 4 , | x * x2 | 0.00073 0.5 102 4 , | x * x3 | 0.00027 0.5 1025 ,
According to Definition 1.4, x1, x2 and x3 have 4,4 and 5 significant digits respectively.
7
Integration example (cont.)
Choosing a width of 3, we have
x 2 dx ( x 2 )
3 9 x 3
(6 3) ( x 2 )
x 6
(9 6)
(32 )3 (6 2 )3
27 108 135
Actual value is given by
x 3 93 33 2 x dx 3 3 234 3 3
9
9
Truncation error is then
234 135 99
Can you find the truncation error with 4 rectangles? 2013-12-9
If only 3 terms are used,
数值分析(双语版)a12
1 2
n−1 −
…………
f [ x, x0 , ... , xn−1 ] = f [ x0 , ... , xn ] + ( x − xn ) f [ x, x0 , ... , xn ] n−
+ f [ x , x0 , ... , xn ]( x − x0 )...( x − xn−1 )( x − xn )
Nn(x)
ai = f [ x0, …, xi ]
Rn(x)
§2 Newton’s Interpolation
注:
由唯一性可知 Nn(x) ≡ Ln(x), 只是算法不同,故其 , 只是算法不同, 余项也相同, 余项也相同,即 f ( n +1 ) (ξ x ) f [ x , x 0 , ... , x n ]ω k +1 ( x ) = ω k +1 ( x ) ( n + 1) !
§2 牛顿插值
/* Newton’s Interpolation */
Lagrange 插值虽然易算,但若要增加一个节点时, 插值虽然易算,但若要增加一个节点时, 都需重新算过。 全部基函数 li(x) 都需重新算过。
? ? 将 Ln(x) 改写成 a0?+ a1( x − x0 ) + a2 ( x − x0 )(x − x1 ) + ... + a? ( x − x0 )...(x − xn−1 ) 的形式,希望每加一个节点, 的形式,希望每加一个节点, n
1 + (x − x0) × 2 + … … + (x − x0)…(x − xn−1) × −
数值分析英文课件
or relative forward error of about 1 percent. Since 1.96 = 1.4 , the absolute backward error is
ˆ ∆x = x − x = 1.96 − 2 = 0.04
Computational error = Truncation error + rounding error
• Propagated (传播) vs. computational error 传播)
– x = exact value, – f = exact function,
ˆ x = approx. value ˆ f = its approximation
Backward vs. forward errors
Suppose we want to compute y = f ( x ) , where f : ℜ → ℜ ˆ but obtain approximate value y
Forward Error:
ˆ ˆ ∆y = y − y = f ( x ) − f ( x )
Example of Ill-Posed Problem
x 1 x 1 x 11 1 + 2 + 3 = 2 3 6 1 1 1 13 x1 + x2 + x3 = 3 4 12 2 1 x1 + 1 x2 + 1 x3 = 47 3 4 5 60
2 significant digits rounding
• Problems that are not well-posed are ill-posed.
数值分析课件 第一章 绪论
1 e 0 1 x n e 0 d I n x 1 e 0 1 x n e 1 d x e 1 1 ( ) I n n n 1 1
公式一:I n 1 e [ x n e x 1 0 n 0 1 x n 1 e x d x ] 1 n I n 1
I01 e 01exdx11 e0.63212 记为0I5 0* 6 此公式精确成
初始的小扰动 |E 0|0.51 0 8迅速积累,误差呈递增趋势。 造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
公式二: I n 1 n I n 1 I n 1 n 1 ( 1 I n )
方法:先估计一个IN ,再反推要求的In ( n << N )。 注 意在e此理(N 公论1 式上1)与等公价IN 式。一N 1 1
)
0 .0 6 6 8 7 0 2 2 0
I
12
1 (1 13
I
13
)
0 .0 7 1 7 7 9 2 1 4
I
11
1 (1 12
I
12
)
0 .0 7 7 3 5 1 7 3 2
I
10
1 11
(1
I
11
)
0 .0 8 3 8 7 7 1 1 5
I
1
1 2
(1
I
2
)
0 .3 6 7 8 7 9 4 4
0
2! 3! 4!
11/1e111 e1 x 2d1x11 1 3 2! 50 3! 7 4! 9
取 01ex2dxS4 ,
S4
R4 /* Remainder */
则 R 44 1 !1 9 由 留5 1 !下1 部1 分1 称为截断误差 /* Truncation Error */
数 值 分 析Numerical Analysis
Time Limit Exceeded: Your program tried to run during too much time. This error does not allow you to know if your program would reach the correct solution to the problem.
15
Laboratory Grade (30) = Lab ( i ) i 1
Numerical Analysis Laboratory Projects
1. Input and Output Your program must read from a file “in.txt” (if there is
Accepted: OK! Your program is correct! You will obtain 2 points for correctly solving one problem.
Presentation Error: Your program outputs are correct, but are not presented in the correct way. Check for spaces, justify line feeds...
数值分析(浙江大学)全套课件
数值分析 (第七版 影印版)
Richard L. Burden & J. Douglas Faires (高等教育出版社)
ห้องสมุดไป่ตู้ 学习方法
1.注意掌握各种方法的基本原理 2.注意各种方法的构造手法 3.重视各种方法的误差分析 4.做一定量的习题 5.注意与实际问题相联系
教材 (Text Book) 数值计算方法 郑慧娆等 编著 (武汉大学出版社)
参考书目 (Reference)
➢ Numerical Analysis:Mathematics of Scientific Computing (Third Edition)
数值分析 (英文版 第3版 )
David Kincaid & Ward Cheney(机械工业出版社)
10
n
0
1
102
0
10 1 101 0
2。与计算机不能分离:上机实习(掌握一 门语言:C语言,会用Matlab)
1.2 误差 ( Error )
§1 误差的背景介绍 ( Introduction ) 1. 来源与分类 ( Source & Classification ) 模型误差 ( Modeling Error ): 从实际问题中抽象出数 学模型
1 e x2 dx 0
(第七章的内容:数值积分)
数值分析的特点
1。近似: 由此产生“误差”
在计算数学和应用数学中一个有趣的问题: 什么是零?
1 10 1 10
原点附近
1
在纯数学中,认为此矩阵为满秩矩阵
10 1
但在计算数学中,它却是降秩矩阵 ?
数值分析(双语版)a0
You shouldoor in English or program design, that is not a problem. • The problem is that you must trust yourself, and spend your time on them, and success in it. • I maybe be known as a severe teacher, but I am glad to be your good friend about study and everyday life.
3. How to Submit your Program by E-mail
You may send your source code to: 1051564297@ with “HW” as the title of your e-mail. Note: if you don’t specify the title of your e-mail, there could be a delay of judging. Your C or C++ file must be named as “yourID_problem#.c” (or .cpp). For example, “200808088_03.c” is considered to be the program for solving problem 3 and the author is the student with ID 200808088. The first line of your source code must be a comment line written in the following format: /* Author: Your name; ID:Your ID; No.Problem# */ For example: /* Author: Yao Qiaoling; ID: 98115001; No.03 */
数值分析学习课件
n= 4
3π 5π 7π 9π , t 2 = cos , t 3 = cos , t 4 = cos 10 10 10 10 10 a+b b−a 1 x= t = ( t + 1) + 2 2 2 1 π 1 3π x0 = (cos + 1) ≈ 0.98 , x1 = (cos + 1) ≈ 0.79 2 10 2 10 1 5π 1 7π x2 = (cos + 1) ≈ 0.50 , x3 = (cos + 1) ≈ 0.21 2 10 2 10 1 9π x4 = (cos + 1) ≈ 0.02 为节点作L 以 x0, …, x4 为节点作 4(x) 2 10 , t1 = cos
Take it easy. It’s very Didn’t you say it’s anot so difficult if we consider difficult problem? polynomials only.
§1.最佳一致逼近 1.最佳一致逼近
最佳一致逼近多项式 /* optimal uniform approximating polynomial */ 的构造:求 n 阶多项式 Pn(x) 使得 || Pn − y ||∞ 最 的构造: 小。
第二讲
§1.最佳一致逼近 1.最佳一致逼近
§1.最佳一致逼近 1.最佳一致逼近
偏差
最佳一致逼近 最佳一致逼近 /* uniform approximation*/
意义下, 最小。 在 || f ||∞ = max | f ( x ) | 意义下,使得 || P − y ||∞ 最小。也称 为minimax problem。 。 偏差点。 若 P ( x0 ) − y( x0 ) = ± || P − y ||∞ ,则称 x0 为± 偏差点。
数值分析——英文关键词
第一章绪论截断误差truncation error舍入误差rounding error; round-off error绝对误差absolute error误差限bounds on error相对误差relative error相对误差限bounds on relative error有效数字significant digit; significant figure数值稳定性numerical stability第二章插值与拟合插值函数interpolating function插值节点interpolation knot; interpolation node插值区间插值多项式interpolation polynomial基函数base function差商difference coefficient向前差分forward difference quotient向后差分backward difference quotient中心差分central difference向前差分算子forward difference operator向后差分算子backward difference operator中心差分算子central difference operator不变算子invariant operator移位算子shifting operator三次样条函数cubic spline function三次样条插值函数cubic spline interpolating function 边界条件boundary condition自然边界条件natural boundary condition周期边界条件period boundary condition最小二乘法曲线拟合least squares curve fitting法方程normal equation第三章数值积分与数值微分数值积分numerical integration数值微分numerical differentiation求积公式quadrature formula求积节点quadrature knot求积系数quadrature coefficients代数精度algebraic accuracy插值型求积公式interpolatory quadrature formula余项remainder term外推法extrapolation method第四章解线性方程组的直接方法消去法cancellation method三角分解法triangular decomposition平方根法square root method追赶法forward elimination and backward substitution 范数norm条件数condition number第五章解线性方程组的迭代法迭代法iteration method收敛convergence发散diverge超松弛迭代法successive over relaxation method第六章非线性方程求根二分法dichotomy method不动点fixed point牛顿法Newton method第八章矩阵特征值问题计算特征值characteristic value特征向量character vector幂法power method反幂法inverse power method。
数值分析第一章基础知识优秀课件
16 周二 3课时 第八章 常微分方程初值问题数值解法[1] 17 周二 3课时 第八章 常微分方程初值问题数值解法[2] 18 周二 3课时 习题课 19 周二 3课时 总复习
注:数值算法演示主要用Matlab和C语言实现,有时采用
Mathematica
实8/7现6 。课郑后州实大验学题201可4-用20任15何学年一硕种士计研算究生工课具程完成数值。分析 Numerical Analysis
4/76
郑州大学2014-2015学年硕士研究生课程 数值分析 Numerical Analysis
预备知识
➢ 微积分和常微分方程; ➢ 线性代数; ➢ 数值计算程序设计
(C/Matlab和Mathematica)
5/76
郑州大学2014-2015学年硕士研究生课程 数值分析 Numerical Ana.1 教学内容时间安排
周次 2 3 4 5 6 7 8 9 10 11
课次 周二 周二 周二 周二 周二 周二 周二 周二 周二 周二
课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时
教学内容 第一章 基础知识 第二章 代数插值[1] 第二章 代数插值[2] 第三章 数据拟合的最小二乘法[1] 第三章 数据拟合的最小二乘法[2] 第四章 数值微分与数值积分[1] 第四章 数值微分与数值积分[2] 习题课 第五章 解线性代数方程组的直接法[1] 第五章 解线性代数方程组的直接法[2]
参考教材
教材
李庆扬,王能超,易大义.数值分析(第五版).北京:清华大学出版社,2008 李清善,宋士仓. 数值方法. 郑州:郑州大学出版社,2007.
参考资料
1.关治,陈景良. 数值计算方法. 北京:清华大学出版社,1990. 2.周铁,徐树方等. 计算方法. 北京:清华大学出版社,2006. 3.徐翠微,孙绳武. 计算方法引论. 北京:高等教育出版社,2005. 4.John H.Mathews, Kurtis D.Fink. 数值方法(MATLAB版). 北京:电子
数值分析第一课
Introduction
What is Numerical Analysis?
What is numerical analysis?
Numerical analysis is the main part of Computional Methods. It involves the study, development, and analysis of algorithms for obtaining numerical solutions to various mathematical problems.
( 1) 2
s
c 1023
(1 f )
0 10000000011 10111001000100000…00000000000
s0 c 1 210 0 29 0 22 1 21 1 20 1024 2 1 1027
1 3 4 5
numericalsolutionsnonlinearsystemsequations非线性方程组的数值解chapterpolynomialapproximation插值法与多项式逼近contentstextchapternumericaldifferentiationintegration数值微分和数值积分chapterinitialvalueproblemsordinarydifferentialequationsodes常微分方程的初值问题chapterdirectmethodssolvinglinearsystems求解线性方程组的直接方法chapteriterativetechniquesmatrixalgebra矩阵代数的迭代解法problemusingequationsalgebracalculusdifferentialequationspartialdifferentialequationsetc
数值分析英文版课件 3
6
3的根x*的近似解序列。
1 bn an n1 (b a) 2
而xn是[an,bn]的中点,所以有
1 1 | xn x | (bn an ) n (b a) 2 2
*
n
lim xn x*
7
3.2.1 二分法 (3)
为求解方程 f(x)=0 的根 x*,假设
有一个近似值 xk ≈ x* f ’’存在且连续
因 f (x*)=0, 则:
'' f ( ) ' f ( x ) f ( xk ) f ( xk )( x xk ) ( x x k )2 2 若 f ' (x*) ≠0,
今日主题
第三章:非线性方程的数值解法
3.1 引言 3.2 二分法和试位法 3.3 不动点迭代法 3.4 迭代加速收敛的方法 3.5 Newton 迭代法
1
今日主题
第三章:非线性方程的数值解法
3.1 引言 3.2 二分法和试位法 3.3 不动点迭代法 3.4 迭代加速收敛的方法 3.5 Newton 迭代法
( x x* ) g ( x ) m ( x) mg ( x) ( x x* ) g '( x)
所以x*是方程 m(x)=0 的单根
33
3.5.2 Newton 法的重根情形 (5)
应用Newton法,迭代函数为:
m ( x) f ( x) f '( x) ( x) x x ' m '( x) [ f ( x)]2 f ( x) f ''( x)
数值分析英文版课件1
则有
B
Qn (
f
) Qn (
f
)
max 0kn
f ( xk )
f ( xk )
( x )dx
a
21
8.5.2 Gauss 型求积公式的稳定性与收 敛性(3)
关于Gauss 求积公式
b
(
a
x
)
f
(
x
)dx
n
k 0
Ak( n
)
f
(
xk( n
)
)
的收敛性有如下定理,上式中特别标出了求积系 数与节点和 n 有关。
2
8.5 Gauss 型求积公式(3)
对于给定的节点数目 n+1,适当调整其位置,是 否会提高求积公式的代数精度?
例8.5.1 对于求积公式
1
f ( x )dx A0 f ( x0 ) A1 f ( x1 )
1
试确定其节点 x0, x1 及求积系数 A0, A1,使其代 数精度尽可能高
22
8.5.2 Gauss 型求积公式的稳定性与收 敛性(4)
定理8.5.5
设 f C [a, b]
令 Qn ( f ) n Ak( n ) f ( xk( n ) ) k 0
则有
b
lim
n
Qn
(
f
)
( x ) f ( x )dx
a
23
今日课题
第八章 数值积分与数值微分
8.1 Newton-Cotes求积公式 8.2 复合求积公式 8.5Gauss型求积公式
那么相应的正交多项式为 Legendre多项式 Pn(x)
P0 ( x ) 1
Pn (
数值分析(英文版)
Please show the condition under which A is positive definite.
2013-12-9 7
§0.2 Foundation of Calculus
1, derivative and differentiation derivative of elementary functions (sinx)’, (cosx)’,(xa)’,(lnx)’,(ax)’ derivative of composite function (sin2x+a2x)’ (tan(1+x2))’ (f(g(x)))’ high order derivative of functions the Taylor’s expansion of a function f(x)
h2 h3 h4 h5 f x h f x f x h f x f x f x f x 2! 3! 4 5 h2 h3 h4 h5 f 0 h f 0 f 0h f 0 f 0 f 0 f 0 2! 3! 4 5
h2 h3 f x h f x f x h f x f x 2! 3! x4 h 64 2
2013-12-9
12
Example (cont.)
Solution: (cont.) Since the higher order derivatives are zero,
Please give AT, 2A, |A|, A-1, Rank(A), BC,AB-B.
2013-12-9
5
3, Please describe Cramer Rule about the linear system of equations. 4, Solve the following linear system of equations
4.3 4.4 (英文)
x→x
(a) Since the iterative function of Newton’s method is f (x) (x − x∗)q(x) ϕ(x) = x − =x− , ∗ )q (x) f (x) mq(x) + (x − x we have q(x) ϕ (x) = 1 − mq(x) + (x − x∗)q (x) −(x − x∗) Then q(x) . mq(x) + (x − x∗)q (x)
Home Page Title Page
(4.3.6)
Page 5 of 20
Go Back
is the iterative function.
Full Screen
Close
Quit
4.3.3 Newton’s Downhill Method
Definition 4.3.4 Newton’s downhill method is an iterative technique of the form f (xk−1) xk = xk−1 − λ , for k = 1, 2, · · · , (4.3.7) f (xk−1) where the constant λ is called the downhill factor, which is selected such that |f (xk )| < |f (xk−1)|, for k = 1, 2, · · · . (4.3.8)
Home Page
converges linearly to x∗; but (b) the sequence {xk } defined by the modified Newton’s method f (xk−1) , for k = 1, 2, · · · , (4.3.11) xk = xk−1 − m f (xk−1) converges at least quadratically to x∗.
《数值分析》第五章课件
取 h = 0.2 ,要求保留六位小数.
校正: cn+1 = y n + 2 ( y n' + mn' +1 )
解:Euler 迭代格式为
校正的改进:
1 y n +1 = c n +1 + ( p n +1 − c n+1 ) 5
yk +1 = yk + 0.2(− yk − xk yk2 ) = 0.8 yk − 0.2 xk yk2
差分方程:关于未知序列的方程.
例如: y n +3 = 5 y n + 2 − 3 y n +1 + 4 y n
例如: y ' ' ( x) − a ( x) y '+b( x) y + c( x) = 0
3
4
微分方程的应用情况
实际中,很多问题的数学模型都是微分方程. 常微分方程作为微分方程的基本类型之一,在 理论研究与工程实际上应用很广泛. 很多问题 的数学模型都可以归结为常微分方程. 很多偏 微分方程问题,也可以化为常微分方程问题来 近似求解.
且
可得,
y(xn+1) − yn+1 = hf y (xn+1,η)[ y(xn+1) − yn+1] − h2 '' y (xn ) + O(h3 ) 2
f (xn+1, y(xn+1)) = y' (xn+1) = y' (x n ) + hy'' (xn ) + O(h2 )
19
20
2 考虑到 1 − hf y ( xn+1 ,η ) = 1 + hf y ( xn+1 ,η ) + O(h ) ,则有