水力压裂裂缝暂堵转向机理与转向规律研究

合集下载

水力压裂多裂缝基础理论研究

水力压裂多裂缝基础理论研究

水力压裂多裂缝基础理论研究水力压裂技术是一种广泛应用于石油、天然气等矿产资源开采中的重要方法。

在水力压裂过程中,由于地层岩性的复杂性和压力传递的特殊性,往往会产生多裂缝现象。

多裂缝的生成、扩展和相互作用对采矿工程的稳定性和安全性具有重要影响,因此针对水力压裂多裂缝的基础理论研究具有重要意义。

本文旨在深入探讨水力压裂多裂缝的基础理论,为相关工程实践提供理论支撑。

水力压裂多裂缝的基础理论主要涉及裂缝的产生原因、特征和影响等方面。

在采矿工程中,地层岩性的不均匀性和应力分布的不确定性是导致多裂缝产生的主要原因。

裂缝的产生会导致地层中的压力重新分布,进而引发裂缝的扩展和相互作用。

多裂缝的特征主要表现在裂缝的数量、形态、大小和方向等方面。

裂缝的数量和形态受地层岩性、开采规模和压力条件等因素影响,而裂缝的大小和方向则与应力分布和地层构造有关。

多裂缝的影响主要表现在以下几个方面:多裂缝会导致地层中的压力重新分布,影响采矿工程的稳定性和安全性。

多裂缝会降低采矿效率,增加采矿成本。

多裂缝还可能引发地面塌陷等地质灾害。

因此,针对水力压裂多裂缝的基础理论研究具有重要意义。

为了深入探讨水力压裂多裂缝的基础理论,本文设计了一系列实验研究。

实验过程中,我们采用了真实地层岩样和实际施工条件,通过模拟水力压裂过程,观察和记录了多裂缝的产生、扩展和相互作用情况。

同时,我们采用了岩石力学测试仪器和压力传感器等设备,对裂缝的数量、形态、大小和方向等特征进行了详细测量。

实验结果表明,地层岩性的不均匀性和应力分布的不确定性是导致多裂缝产生的主要原因。

在采矿工程中,多裂缝的产生会导致地层中的压力重新分布,引发裂缝的扩展和相互作用。

多裂缝的数量和形态受地层岩性、开采规模和压力条件等因素影响,而裂缝的大小和方向则与应力分布和地层构造有关。

为了进一步验证水力压裂多裂缝基础理论的正确性,本文采用了数值模拟方法。

我们建立了水力压裂多裂缝的数值模型,该模型基于弹塑性力学理论,并考虑了地层岩性的不均匀性和应力分布的不确定性等因素。

水力压裂造缝及增产机理

水力压裂造缝及增产机理

52
1.4 水力压裂增产机理
由流体流动的连续性 q1 = q2 = q
pe

ps
=
qBμ ln re / rs 2π kh
ps
− pwf
=
qBμ ln rs / rw 2π ksh
pe

pwf
=
qBμ ln re / rw 2π kh
伤害 距离
k=
ln re / rw
1 k
ln
re
/
rs
+
1 ks
ε
xx
=
Δl l
ε
yy
=
ΔD D
D
σ
xx
=
F A
E = σ xx , v = ε yy
ΔD/2
ε xx
ε xx
E
'
=
1
E −v
2
39
1.3 水力压裂造缝机理及裂缝形态
(σz
>σx
>
σ
垂直缝
y
Vertical Fracture)
σz
σz
(σz >σy >σx垂直缝)
σy
σy
σx σz
σx
最小主应力(Least Principal Stress)
32
1.2 水力压裂施工概述
压裂工程设计软件:
z油藏模拟与压裂设计分析系统 z水平缝脱砂压裂设计软件 zWINQSW全三维压裂设计软件 zFracproPT压裂设计软件 zStimPlan全三维压裂设计软件包 z裂缝性储层测试压裂诊断系统 z综合柱状地应力剖面分析系统 z井筒崩落及横波各向异性地应力方位分析系统

转向压裂

转向压裂

第一章概述 (2)第二章技术原理 (4)一、暂堵转向重复压裂技术原理: (4)二、破裂机理研究 (5)三、重复压裂裂缝延伸方式 (7)第三章重复转向压裂时机研究 (11)1、影响重复压裂效果因素 (11)2、选井选层原则 (11)3、压裂时机确定 (11)第四章暂堵剂(转向剂) (12)1、堵剂性能要求: (12)2、堵剂体系 (12)3、水溶性高分子材料堵剂 (13)4、配套的压裂液 (15)第五章转向压裂配套工艺技术 (15)1、缝内转向压裂工艺技术 (15)2. 缝口转向压裂工艺技术 (17)3、控制缝高压裂技术 (19)4、端部脱砂压裂技术 (20)第六章工艺评价 (20)1.裂缝监测 (20)2.施工压力 (20)3.产能变化 (21)第一章概述我国发现的油气藏中60%以上为低渗透油气藏,往往具有非连续、非均质、各向异性的特点。

低渗油藏必须进行压裂改造,才能获得较好的效果。

随着开采程度的深入,老裂缝控制的原油已近全部采出,传统的平面水力裂缝设计方法和压裂技术已不能满足这类油藏开采的需求。

可以实施暂堵转向重复压裂,在纵向和平面上开启新层,开采出老裂缝控制区以外的原油,有效的稳油控水、提高原油产量和油田采收率,实现油田的可持续发展。

目前,国内外的重复压裂实践主要有以下三种方式:①层内压出新裂缝;②继续延伸原有裂缝;③转向重复压裂。

对于重复压裂中出现的裂缝转向,目前认为主要有三种不同方式:①地应力反转;②定向射孔诱导;③桥堵转向压裂工艺。

对于低渗储层,由于出现地应力场反转的难度较大,而采用定向射孔压裂造成裂缝转向,对储层伤害较大。

近些年,利用桥堵作用堵塞裂缝,形成转向的新裂缝的压裂工艺(缝内转向与缝口转向),经过现场实践,增产显著,逐步成为低渗储层重复改造的首选工艺。

在大规模试验研究的基础上,经过工艺优化配套,建立了以缝内转向压裂工艺为主导的低渗透重复压裂新模式。

它有效地在疏通原有人工主裂缝基础上形成了新的支裂缝,沟通了“死油区”,扩大油井泄油面积。

胜利油田低渗透油藏压裂裂缝暂堵转向技术研究

胜利油田低渗透油藏压裂裂缝暂堵转向技术研究
胜添加利副油标田题 低渗透油 藏压裂裂缝暂堵转 向汇技报人:术研究
目录
PART One
添加目录标题
PART Three
胜利油田低渗透油藏压裂 裂缝暂堵转向技术的原理
PART Five
胜利油田低渗透油藏压裂 裂缝暂堵转向技术的未来 发展
PART Two
胜利油田低渗透油藏压裂 裂缝暂堵转向技术的研究 背景
PART Four
胜利油田低渗透油藏压裂 裂缝暂堵转向技术的实践 应用
PART Six
结论
单击添加章节标题
胜利油田低渗透油 藏压裂裂缝暂堵转 向技术的研究背景
胜利油田低渗透油藏的特点
储层物性差,渗透率低 天然能量不足,产量递减快 开发难度大,需要采用特殊技术 分布范围广,开发潜力大
压裂向技术的原理和作用
暂堵转向技术在胜利油田的应用实 例
添加标题
添加标题
添加标题
添加标题
胜利油田低渗透油藏的特点和挑战
暂堵转向技术对胜利油田的贡献和 效益
应用效果分析
提高采收率:通过压裂裂缝暂堵转向技术,有效提高低渗透油藏的采收率。 降低生产成本:该技术可减少重复压裂次数,降低生产成本。 优化生产参数:根据不同油藏条件,优化压裂施工参数,提高生产效益。 减少环境污染:该技术可减少压裂液的使用量,降低对环境的污染。
强化裂缝监测技术:实时监 测裂缝扩展情况,确保压裂
效果
引入人工智能技术:利用大 数据和机器学习,提高压裂
决策的准确性和科学性
未来发展趋势和展望
技术创新:不断探索和研发更高效、环保的压裂裂缝暂堵转向技术,以 满足油田生产的需求。
智能化发展:利用人工智能、大数据等技术手段,实现压裂裂缝暂堵转 向技术的智能化,提高油田生产效率。

水力压裂裂缝形态的影响因素研究

水力压裂裂缝形态的影响因素研究

水力压裂裂缝形态的影响因素研究水力压裂裂缝形态的影响因素研究[摘要]水力压裂所形成的裂缝形态是影响油气井增产增注的主要因素,而水力压裂施工所形成的裂缝形态各异,受很多因素的影响,包括天然因素和施工因素。

天然因素主要有地应力、天然裂缝等;施工因素主要包括了射孔和排量。

其中地应力是决定裂缝走向的重要条件,天然裂缝和水力裂缝相交后会对水力裂缝的走势造成一定的影响,而射孔的施工会影响地应力的分布,其他的那些因素或多或少的影响着裂缝的延伸,裂缝形态是上述因素综合影响的结果。

通过对水力压裂裂缝形态的研究,对以后不同地层的压裂施工所形成的裂缝形态可以提前猜测,从而得到更有利于增产增注的裂缝形态。

[关键词]水力压裂;裂缝形态;天然因素;施工因素中图分类号:TE357.1 文献标识码:A 文章编号:1009-914X14-0314-01在目前的油田条件下,高含水、低渗透和稠油等不利条件都或多或少的存在于大局部的油水井中。

注水井增注和油气井增产的一项重要的技术措施就是水力压裂,而且这些问题都可以通过水力压裂来解决,在油气层内部形成足够长度的高导流能力的填砂裂缝就是水力压裂的目标所在,使油气水在裂缝中比拟畅快的流动,摩擦阻力也比拟小,以此来提高增产增注的效果。

而判断水力压裂的增产效果好与坏的主要依据就是水力压裂所形成的是水平裂缝还是垂直裂缝,所以研究和判断水力压裂裂缝的有效方法是十分重要的,然而只有了解了裂缝形态所形成的影响因素,才能更好的判断和解释裂缝的形态。

1、天然因素对水力压裂裂缝形态的影响地应力一般分为三个主应力,这三个主应力与水力压裂施工所需要的破裂压力以及裂缝破裂的方向都是直接相关的,水力裂缝发生和延伸的平面一般是与最小主应力相垂直的平面。

如果压裂裂缝是垂直的,那么水平主应力为最小值;当最小值是垂向主应力时,人工水力裂缝将扩展为水平缝。

水力裂缝总是沿着阻力最小的方向发生及扩展,也就是说在垂直于最小主应力的平面上产生和延伸。

页岩气储层水力压裂裂纹扩展规律研究

页岩气储层水力压裂裂纹扩展规律研究

页岩气储层水力压裂裂纹扩展规律研究1. 前言页岩气作为一种非常重要的天然气资源,已经被广泛应用。

然而,在生产过程中,有一些特殊的挑战,其中最重要的是寻找适当的生产技术。

页岩气储层水力压裂是目前能够有效提高页岩气产量的一种技术。

本文旨在研究页岩气储层水力压裂后裂缝的扩展规律,以便更好地理解页岩气藏的开采机理,并为优化页岩气开采提供指导。

2. 页岩气储层水力压裂原理水力压裂是一种通过将高压水注入油气储层,以形成压力,利用岩石自身的脆性破裂形成裂缝,以释放页岩气的技术。

页岩气储层是一种岩石层,由于其压实度较高,裂缝不易形成,其自然气渗透率较低,导致天然气产量较低。

为了提高页岩气生产效率,需要通过水力压裂来扩大储层裂缝面积,增加气体开采量。

页岩气储层水力压裂的主要机理是压力差,即通过向井口注入高压水,使水在地下压缩,从而形成高压前缘。

压力前缘的到达速度越快,压缩效果越明显,在储层内形成最大的应力差。

当应力差超过岩石地下的抗拉强度时,岩石就会发生断裂,形成裂缝。

水力压裂主要受到多种因素的影响,其中包括注入流量、注入压力、裂缝网络、岩石物性和水路径等因素。

为了更好地控制水力压裂作用,需要对这些因素进行详细的研究和掌握。

3. 裂缝扩展规律研究裂缝的扩展规律是页岩气储层水力压裂的核心问题。

通过对裂缝扩展过程的研究,可以更好地了解页岩气储层的开采特性,为页岩气储层的优化开发提供技术支持。

3.1 裂缝扩展过程在页岩气储层水力压裂过程中,高压水通过注入口迅速进入岩石层内,形成一个高压区域。

在高压区域的受力作用下,岩石发生了断裂,从而形成了一系列裂缝。

这些裂缝的密度和深度是由岩石的物性、注入流量和注入压力等因素来决定的。

裂缝的扩展会受到多个因素的影响,其中最重要的因素是注入水的流量和压力。

注入水的流量越大,扩展的裂缝数量越多,裂缝的长度和深度也越大。

当注入水的压力越高,裂缝的深度和长度也会随之增加。

此外,地质条件和岩石物性也会影响裂缝的扩展过程。

转向压裂

转向压裂
岩心 编号 01 02 03 岩心长度 (cm) 5.0 5.0 5.0 岩心直径 (cm) 2.54 2.54 2.54 注水压差 (MPa) 0.128 0.135 0.147 平均水相渗透率 (μm2) 2.66 2.21 1.93
04
05 06
5.0
5.0 5.0
2.54
1.60 1.60
0.153
随着有机单体的增加,室温下2.5h溶解速度从0.75到全溶,并且通过 实验现象观察,转向剂强度逐渐变小,韧性逐渐增强,有机原料加量为
100g-150g时,80℃2.5h的效果较好,说明有机单体能提供较好的溶解能
力及韧性,但影响转向剂强度。
抗温材料加量的影响
抗温材料,g 40 室温2.5h溶解速度 溶解 80℃2.5h溶解速度 溶解
先监测了前置压裂,该压 裂的目的是打开老缝。加 入暂堵剂堵住老缝后,再 次压裂,以压开新缝.
人工裂缝监测结果
卫357施工曲线
100 90
沙 三 中 3 沙 三 中 4
80 70 60 50 40 30 20 10 0 14:08:56 14:25:35
油压,(0-100)MPa 套压,(0-100)MPa 排量,(0-10)m3/min 密度,(0-2000)kg/m3 液量,(0-300)m3
(6) 垂向地应力为中间主应力物模实验
射孔孔眼1个,平行于水平最小地应力
初始裂缝垂直于垂向地应力方位,即水平裂缝 随着裂缝的延伸,裂缝发生转向,最终垂直于最小地应力方位
(7) 射孔孔眼方位夹角为45°物模实验
垂向地应力为中间主应力,孔眼方位与水平最小地应力方向夹角45°
初始裂缝为即有水平分量、也有垂直分量的斜缝 随着裂缝的延伸,裂缝发生转向,最终垂直于最小地应力方位

暂堵转向重复压裂技术(yida)

暂堵转向重复压裂技术(yida)
暂堵转向重复义
二、破裂机理研究 三、新裂缝延伸方式
五、堵剂体系
六、配套工艺 七、效果分析
四、时机研究
八、结论
一、研究目的及意义
低渗油藏必须进行压裂改造,才能获得较好 的效果。随着开采程度的深入,老裂缝控制的原 油已近全部采出,可以实施暂堵转向重复压裂, 纵向和平面上开启新层,开采出老裂缝控制区以
效的物质基础; • 研究暂堵转向重复压裂的影响因素、重复压裂时机确定是 获得措施增产的关键; • 堵剂的筛选,确定合适的暂堵剂,是确定施工成败的主要 因素; • 暂堵转向重复压裂可以沟通新的泄油区、启动二、三类油
层,是提高低渗透油气藏开发效益的重要技术手段。
5
本次暂堵转向重复压裂效果
力1.0t
日产液量 日产油量 含水
压裂后日产液9.5m3,日产油7.4t,含水22.1%,日增油能
本次压裂前日产液10.6m3,日产油6.4t,含水39.6%,
0 20 40 60 80
100
八、结论
• 裂缝诱导应力、生产诱导应力叠加决定重复压裂新裂缝是 否转向;
• 目的层控制的剩余油可采储量是暂堵转向重复压裂能否高
外的原油,有效的稳油控水、提高原油产量和油田
采收率,实现油田的可持续发展,研究意义重大。
暂堵转向重复压裂技术原理:
压裂时可以应用化学暂堵剂暂堵老缝,压开新缝。 纵向新层开启;平面裂缝转向。 实施方法:向地层加入暂堵剂,使裂缝或高渗透 层产生滤饼桥堵,后续工作液不能进入,促使新缝 产生。暂堵剂施工完成后解堵。
裂缝中流动,并在裂缝顶部和底部形成人工遮挡层,
阻止裂缝中压力向上下传播,控制裂缝在高度方向上 进一步延伸,形成较长的支撑裂缝。 • 对于暂堵转向的重复压裂改造井,控缝高技术是一 项必要配套技术。

(完整版)水力压裂影响因素研究

(完整版)水力压裂影响因素研究

中国石油大学(北京)现代远程教育毕业设计(论文)水力压裂影响因素研究水力压裂影响因素研究摘要水力压裂一直以来就是低渗透率油气藏增产的主要措施之一。

为了提高压裂措施的增产效果,以尽可能小的投资获得最大的回报,本文在调研了国内外大量水力压裂资料,总结了水力压裂的基本理论知识与基础原理,在此基础上,对影响水力压裂效果的因素进行了分析与优化。

分析认为影响水力压裂的因素主要可分为四大类:一是改造油层选择不当 ;二是压裂参数设计不合理 ;三是压裂液体系选择不合理 ;四是压后油层处理方法不正确。

最后,针对因素分析结果提出了水力压裂优化措施,实践表明,这些措施使得水力压裂效果得到了很好的改善与提高。

关键词:水力压裂;影响;因素;研究i中国石油大学(北京)现代远程教育毕业设计(论文)目录第一章引言 .............................................1 1 11.1问题 的提出 ............................................. 1.2研究概况 ...............................................第二章 水力压裂基本原理 (3)2.1地应力及其分布 ......................................... 2.2井壁应力 ............................................... 2.3造缝条件 ............................................... 2.4裂缝形态判别 ........................................... 2.5水力压裂二维几何模型 ...................................3 4 6 6 7第三章 水力压裂影响因素分析及优化 .....................................................10 3.1油层选择不当 .......................................... 3.2压裂参数设计不合理 .................................... 3.3压裂液体系选择不合理 .................................. 3.4压后油层处理方法不当 .................................. 3.5水力压裂优化 ..........................................10 12 13 14 14 第四章 总结 ..............................................................................................17 参考文献 .. (18)第一章引言1.1问题的提出近年来,低渗透油气田的开发已经越来越引起人们的关注。

水力压裂裂缝暂堵转向机理与转向规律研究

水力压裂裂缝暂堵转向机理与转向规律研究

水力压裂裂缝暂堵转向机理与转向规律研究储层改造是页岩油气、致密油气等非常规油气开发的核心技术,通过水力压裂形成复杂裂缝网络,实现体积改造是水力压裂施工的目标。

当储层可压性较差或应力差较大时,难以形成复杂裂缝网络,通过暂堵逼迫裂缝转向是增强缝网扩展复杂性的重要手段。

到目前为止,虽然现场实践已取得较好成效,但裂缝暂堵转向的力学机理、扩展规律和调控方法等尚处于探索阶段,迫切需要开展人工裂缝暂堵转向机理和规律研究。

本文探索了新的实验方法,发展了水力压裂数值算法,通过岩芯测试、物理模拟和数值模拟研究,对非常规储层的可压性和转向能力、转向剂对裂缝的暂堵规律、裂缝转向扩展规律进行了研究,主要取得成果如下:(1)致密储层成缝能力测试与评价。

储层成缝能力(可压性)是裂缝转向的基础和重要影响因素。

实验发现:(1)页岩存在强微观非均质性,并与矿物成分、天然裂隙和TOC含量等一起,是影响页岩储层成缝能力的重要因素。

(2)流体对页岩的岩石力学性质具有显著影响,并与页岩储层的超低含水饱和度、粘土含量、TOC和微纳米孔隙有关。

(3)基于基质脆性、天然裂隙密度和声发射活动性,建立了综合评价致密储层成缝能力的新方法。

油田现场应用说明此方法是可行的。

(2)裂缝转向机理和规律的真三轴模拟实验研究。

利用真三轴水力压裂物模实验装置,研究了纤维暂堵裂缝的转向扩展规律,得出裂缝转向的主要控制因素为储层成缝能力及其非均质性、水平主应力差、天然裂缝分布、初级裂缝宽度、纤维浓度、粘度与排量等,得到了暂堵形成的条件与图版,并给出了裂缝发生转向时的临界应力差;并以人工裂缝倾角、地应力差、成缝能力和缝内流压为主要参数,建立了裂缝转向能力的评价模型。

(3)基于PGD 法(Proper Generalized Decomposition),针对水力压裂裂缝转向和网络化扩展数值模拟需要,建立并求解了完全耦合条件下水力压裂裂缝扩展模型,PGD算法适合于高效、快速求解以非线性、瞬态、耦合为特征的水力压裂问题,计算速度明显快于传统的有限元方法。

《2024年裂缝闭合过程中压裂液返排机理研究与返排控制》范文

《2024年裂缝闭合过程中压裂液返排机理研究与返排控制》范文

《裂缝闭合过程中压裂液返排机理研究与返排控制》篇一一、引言在油气田开发过程中,裂缝性油藏的开采常常需要借助压裂技术来提高采收率。

然而,压裂液在裂缝闭合过程中的返排问题一直是影响开采效率和经济效益的关键因素。

因此,研究压裂液返排机理与返排控制,对于提高油田开采效率和经济效益具有重要意义。

本文将针对裂缝闭合过程中压裂液返排的机理进行深入探讨,并提出相应的返排控制策略。

二、压裂液返排机理研究1. 返排现象描述压裂液返排是指在压裂作业完成后,部分或全部压裂液在裂缝闭合过程中被挤出并返回地面的现象。

这一现象受到多种因素的影响,包括地层特性、裂缝形态、压裂液性质等。

2. 返排机理分析(1)地层特性:地层的地质结构、岩石性质、渗透性等因素影响裂缝的闭合速度和压裂液的流动路径。

当地层渗透性较差时,压裂液在裂缝闭合过程中难以迅速排出,易导致返排现象。

(2)裂缝形态:裂缝的形态、宽度、长度等直接影响压裂液的流动和返排。

裂缝形态不规则或宽度变化较大时,压裂液易在局部形成滞留,导致返排困难。

(3)压裂液性质:压裂液的粘度、密度、表面张力等性质也会影响其流动和返排。

高粘度的压裂液更易在裂缝中滞留,不易迅速排出。

3. 影响因素研究根据众多现场试验与实验结果分析,本文认为压裂液返排主要受到以下因素影响:地层压力、裂缝闭合速度、压裂液性质等。

其中,地层压力是影响返排的重要因素之一,当地层压力较高时,有利于压裂液的排出;而裂缝闭合速度则直接影响着压裂液的滞留情况;此外,压裂液的粘度、密度等性质也会对返排产生一定影响。

三、返排控制策略针对压裂液返排问题,本文提出以下控制策略:1. 优化压裂液配方:通过调整压裂液的粘度、密度等性质,降低其滞留性,促进其迅速排出。

同时,采用环保型压裂液,减少对地层的损害。

2. 合理设计裂缝形态:在压裂作业过程中,根据地层特性和需求,合理设计裂缝形态,使其更有利于压裂液的排出。

3. 控制地层压力:通过调整地层压力,使其保持在合适范围内,有利于压裂液的排出。

水力压裂造缝机理

水力压裂造缝机理

2.地应力场确定地应力场确定包括地应力大小和方向。

主要手段主要有:1) 水力压裂法微型压裂(mini-frac)压力曲线计算应力场。

2)实验室分析方法应用定向取心技术保证取出岩心样品的主应力方位与其在地层中主应力方位一致。

岩心从地下三向压应力状态改变到地面自由应力状态,根据岩心各方向的变形确定主应力方位和数值。

(1) 滞弹性应变恢复(ASR)基于岩心与其承压岩体发生机械分离后所产生的应力松弛,按各个方向测量应变并确定主应变轴。

并假定主方向与原位应力主轴相同,按已知的弹性常数和上覆岩层载荷情况间接计算应力值。

(2) 微差应变分析(DSCA)从井底取出的岩心由于应力释放和应变恢复会发生膨胀,产生或重新张开微裂缝。

基于应变松弛作为“应力史”痕迹的思想,应变松弛形成的微裂缝密度和分布与岩心已经出现的应力下降成正比。

通过描述微裂隙分布椭球,即可揭示以前的应力状态。

根据和这些微裂缝相关的应变推断主应力方向,并从应变发生的最大方向估算出最小主应力值。

3) 测井解释方法利用测井(主要是密度测井、自然伽玛测井、井径测井和声波时差测井以及中子测井、自然电位测井等)资料,首先基于纵横波速度与岩石弹性参数之间的关系解释岩石力学参数,再结合地应力计算模式获得连续的地应力剖面。

4) 有限元模拟根据若干个测点地应力资料,借助于有限元数值分析方法,通过反演得到构造应力场。

强烈取决于根据研究工区所建立的地质模型、数学力学模型和边界条件。

此外,测定地应力方向的常用方法还有声波测定、井壁崩落法、地面电位法、井下微地震法和水动力学试井等方法。

3.人工裂缝方位在天然裂缝不发育的地层,压裂裂缝形态取决于其三向应力状态。

根据最小主应力原理,水力压裂裂缝总是产生于强度最弱、阻力最小的方向,即岩石破裂面垂直于最小主应力方向。

当s z最小时,形成水平裂缝(horizontal fracture);当s y最小时,形成垂直裂缝(vertical fracture)。

陆相页岩储层水力裂缝穿层扩展规律

陆相页岩储层水力裂缝穿层扩展规律

文章编号:1000 − 7393(2023)01 − 0076 − 09 DOI: 10.13639/j.odpt.2023.01.010陆相页岩储层水力裂缝穿层扩展规律赵彦昕1,2 许文俊1,2,3 王雷1,2 张光明1,2 赵金洲31. 长江大学石油工程学院;2. 油气钻采工程湖北省重点实验室;3. 油气藏地质及开发工程国家重点实验室 ·西南石油大学引用格式:赵彦昕,许文俊,王雷,张光明,赵金洲. 陆相页岩储层水力裂缝穿层扩展规律[J ]. 石油钻采工艺,2023,45(1):76-84.摘要:陆相页岩储层垂向非均质性强,层间岩性与应力差异大,层间弱界面发育,水力裂缝穿层扩展困难,导致压裂改造效果不佳。

基于有限元+黏聚力单元法建立了陆相页岩水力裂缝穿层扩展流固耦合模型,与解析解和室内实验结果对比验证了模型的准确性。

基于此模型,采用单因素和正交实验分析法开展算例研究,揭示了各项地质与工程参数对陆相页岩储层水力裂缝穿层扩展行为的控制机理与影响规律。

研究结果表明,层间界面剪切滑移改变水力裂缝垂向扩展路径,限制缝高增长;水力裂缝宽度较大,削弱缝高扩展能力。

高层间界面胶结强度、高垂向应力差、低层间应力差、低抗拉强度差、低弹性模量差、高压裂液黏度、高注入排量,有利于水力裂缝实现穿层扩展,各因素影响程度的主次顺序为层间界面胶结强度>层间应力差/抗拉强度差>压裂液黏度/注入排量>垂向应力差>弹性模量差。

研究成果进一步完善了陆相页岩储层水力压裂穿层扩展基础理论,为陆相页岩储层水力压裂选井、选层和施工方案优化设计提供了理论依据。

关键词:陆相页岩;水力压裂;穿层扩展;数值模拟;工程应用中图分类号:TE357.1 文献标识码: AThrough-layer propagation laws of hydraulic fractures in continental shale reservoirsZHAO Yanxin 1,2, XU Wenjun 1,2,3, WANG Lei 1,2, ZHANG Guangming 1,2, ZHAO Jinzhou 31. College of Petroleum Engineering , Yangtze University , Wuhan 430100, Hubei , China ;2. Hubei Key Laboratory of Oil & Gas Drilling and Production Engineering , Wuhan 430100, Hubei , China ;3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation , SouthwestPetroleum University , Chengdu 610500, Sichuan , ChinaCitation: ZHAO Yanxin, XU Wenjun, WANG Lei, ZHANG Guangming, ZHAO Jinzhou. Through-layer propagation laws of hydraulic fractures in continental shale reservoirs [J ]. Oil Drilling & Production Technology, 2023, 45(1): 76-84.Abstract: Continental shale reservoirs are characterized by strong vertical heterogeneity, large inter-layer lithological and stress differences and developed weak interfaces, which make through-layer propagation of hydraulic fractures difficult, leading to poor fracturing stimulation effects. In this paper, a fluid-solid coupling model of through-layer propagation of hydraulic fractures in continental shale was established based on finite element + cohesive unit method, and its accuracy was verified by comparing the analytical solution with the laboratory experimental result. Based on this model, a case study was carried out by means of single factor and orthogonal experiment analysis method, and the control mechanisms and influence laws of geological and engineering parameters基金项目: 国家自然科学基金“暂堵压裂暂堵剂运移暂堵及裂缝转向机理研究”(编号:52104038);油气藏地质及开发工程国家重点实验室开放基金“陆相页岩气水平井密切割暂堵均衡压裂控制机理与优化研究”(编号:PLN2021-09);湖北省自然科学基金 “鄂西页岩气水平井密切割暂堵均衡压裂控制机理与优化研究”(编号:2022CFB690)。

对水力压裂裂缝延伸方向平行于断层的认识

对水力压裂裂缝延伸方向平行于断层的认识

对水力压裂裂缝延伸方向平行于断层的认识水力压裂是一种通过高压液体将岩石破碎并形成裂缝的技术,广泛应用于石油和天然气开采中。

在水力压裂过程中,裂缝的延伸方向对于有效提高产能和增加采收率至关重要。

根据研究和实践经验,我们可以得出结论:水力压裂裂缝的延伸方向往往是平行于断层的。

断层是地壳中存在的一种地质现象,是岩石在地壳运动中产生的断裂面。

断层可以分为正断层、逆断层和走滑断层等不同类型,而裂缝是断层运动的结果之一。

在地质构造运动过程中,断层与岩石之间会产生巨大的应力,当应力超过岩石强度时,岩石就会发生破裂形成裂缝。

水力压裂技术通过注入高压液体,使岩石发生破碎和裂缝扩展,从而增加岩石的渗透性和储层的有效性。

在水力压裂过程中,裂缝的延伸方向与断层的关系成为了研究的重点。

研究表明,当水力压裂作用的应力场与断层的应力场相互作用时,裂缝更容易沿着断层的延伸方向扩展。

这主要是由以下几个原因所导致的:断层处于地壳中的高应力区域。

断层的存在使周围岩体的应力集中,当水力压裂作用的高压液体注入断层附近时,由于应力集中作用,裂缝更容易沿着断层的延伸方向扩展。

断层具有一定的导向性。

断层通常具有一定的倾角和延伸方向,这使得裂缝在水力压裂过程中更容易沿着断层的倾向延伸。

断层的导向性对裂缝的延伸方向起到了一定的引导作用。

断层破碎带的存在。

断层破碎带是指断层周围的岩石发生了破碎和变形的区域,这使得岩石在水力压裂作用下更容易发生破碎和裂缝扩展。

断层破碎带对裂缝的延伸方向起到了一定的制约作用。

断层的存在对地下应力场产生了改变。

断层的运动会改变地下岩石的应力场分布,使得裂缝更容易沿着断层的延伸方向形成。

断层的存在改变了岩石的力学性质,使得裂缝延伸方向平行于断层更为有利。

水力压裂裂缝的延伸方向往往是平行于断层的。

断层作为地壳中存在的一种地质现象,对裂缝的延伸方向起到了重要的影响作用。

研究和确定裂缝的延伸方向,对于合理设计水力压裂方案、提高采收率和开采效果具有重要意义。

《2024年裂缝闭合过程中压裂液返排机理研究与返排控制》范文

《2024年裂缝闭合过程中压裂液返排机理研究与返排控制》范文

《裂缝闭合过程中压裂液返排机理研究与返排控制》篇一摘要随着石油和天然气开发技术不断发展,裂缝闭合过程中压裂液返排成为了影响采收率和经济效益的关键因素。

本文着重研究压裂液返排的机理,探讨返排控制方法,旨在为提高采收率和保护环境提供理论支持和技术指导。

一、引言在油气田开发过程中,压裂技术是提高油气采收率的重要手段之一。

然而,在裂缝闭合过程中,压裂液返排问题常常出现,不仅影响采收率,还可能对环境造成污染。

因此,研究压裂液返排机理和实施有效的返排控制技术,对提高油气开采效率和环境保护具有重要意义。

二、压裂液返排机理研究1. 压裂液性质及运动特性压裂液返排的主要原因是其具有高粘度和表面活性等特点,能够渗透并填充岩石的裂缝中。

当压力下降或压力差发生变化时,这些性质导致压裂液向生产井或相邻地层反向流动。

2. 裂缝闭合过程分析裂缝闭合过程中,由于岩石的弹塑性变形和压裂液的渗透作用,裂缝逐渐缩小或闭合。

此时,原本在裂缝中的压裂液由于压力变化而发生返排现象。

3. 返排影响因素分析影响因素包括地质因素(如裂缝类型、地应力分布等)和工程因素(如压裂液配比、施工工艺等)。

这些因素相互作用,影响压裂液的返排行为。

三、返排控制方法与技术1. 优化压裂液配方通过改进压裂液配方,减少其粘度、表面活性等特性,从而降低返排的倾向。

同时,合理调整添加剂种类和比例,以提高压裂液的稳定性和可控性。

2. 合理施工工艺设计在施工过程中,根据地质条件和工程需求,合理设计施工参数和施工顺序,以控制裂缝的扩展和闭合过程,从而减少压裂液的返排量。

3. 强化井筒管理加强井筒的清洁和维护工作,减少井筒中的积存物和杂质的干扰,提高井筒的流动性能,降低对压裂液的反向驱动力。

四、实例应用与效果分析通过对某油气田的实际应用,分析采用不同的压裂液配方、施工工艺和井筒管理措施后,压裂液返排量的变化情况。

结果表明,通过优化配方和合理施工工艺设计,可以有效降低压裂液的返排量;同时,强化井筒管理也能显著减少因井筒问题导致的返排现象。

转向重复压裂高效暂堵剂性能评价

转向重复压裂高效暂堵剂性能评价

转向重复压裂高效暂堵剂性能评价付美龙;陈畅;胡泽文【摘要】针对油井施工次数的增加,老井原有的人工裂缝生产潜能逐年降低等问题,提出了转向重复压裂技术,并介绍了水溶性SC-JXSG高效暂堵剂.通过室内静、动态实验评价了暂堵及解堵效果,分析了暂堵剂的浓度、注入量和注入压力对暂堵效率的影响.结果表明:①静态评价实验中,质量分数为3%的暂堵剂在30℃时溶解缓慢,80℃时也需数小时才能充分溶解;②裂缝性岩心暂堵动态实验中,在60℃条件下,注入1 PV质量分数为3%的暂堵剂,暂堵率可高达99%,突破压力梯度高达37.90 MPa/m;在80℃条件下,反向注入10 PV地层水解堵,最终解堵率可达73%.该暂堵剂现场试验效果良好,可以满足压裂暂堵现场施工要求.【期刊名称】《西安石油大学学报(自然科学版)》【年(卷),期】2016(031)005【总页数】5页(P43-47)【关键词】转向重复压裂;水溶性;生产潜能;暂堵剂;暂堵效率;影响因素;长庆油田【作者】付美龙;陈畅;胡泽文【作者单位】长江大学石油工程学院,湖北武汉430100;长江大学石油工程学院,湖北武汉430100;长江大学石油工程学院,湖北武汉430100【正文语种】中文【中图分类】TE39;TQ37付美龙,陈畅,胡泽文.转向重复压裂高效暂堵剂性能评价[J].西安石油大学学报(自然科学版),2016,31(5):43-47.FU Meilong,CHEN Chang,HU Zewen.Performance evaluation of high efficiency temporary plugging agent for steering refracturing[J].Journal of Xi'an Shiyou University (Natural Science Edition),2016,31(5):43-47.目前老井原有的人工裂缝生产潜能越来越小,如果还是采用常规的重复压裂方法延伸老裂缝,便难以达到高产、稳产、提高采收率的目的[1]。

页岩水平井多簇喷砂射孔暂堵转向压裂裂缝扩展规律

页岩水平井多簇喷砂射孔暂堵转向压裂裂缝扩展规律

页岩水平井多簇喷砂射孔暂堵转向压裂裂缝扩展规律
邹雨时;李彦超;杨灿;张士诚;马新仿;邹龙庆
【期刊名称】《石油勘探与开发》
【年(卷),期】2024(51)3
【摘要】采用真三轴压裂模拟系统开展了页岩水平井多簇喷砂射孔暂堵转向压裂模拟实验,研究了暂堵剂粒径、暂堵剂浓度、单簇射孔数和簇数对封堵提压、多裂缝转向规律及暂堵剂分布的影响。

结果表明:缝内小粒径组合+段内大粒径组合暂堵剂有利于提高封堵压力并促进裂缝多期性转向,添加纤维的组合可快速憋压至超高,但易产生沿着井筒扩展的纵向缝;暂堵峰值压力随暂堵剂浓度的增加而提升,但暂堵剂浓度达到一定值后,进一步增加暂堵剂浓度并不能显著提高暂堵峰值压力;岩样破裂压力和暂堵峰值压力随单簇射孔数增加呈下降趋势,较少的单簇射孔数有利于提高破裂压力及暂堵峰值压力,对多簇裂缝扩展的控制作用更显著;较少的簇数不利于人工裂缝总数及复杂程度的提升,较多的簇数难以实现有效封堵。

缝内暂堵时暂堵剂主要分布在复杂裂缝区域,特别是多裂缝相交处,而段内暂堵时暂堵剂优先分布于形成复杂缝的射孔簇孔眼附近。

【总页数】11页(P624-634)
【作者】邹雨时;李彦超;杨灿;张士诚;马新仿;邹龙庆
【作者单位】中国石油大学(北京)油气资源与探测国家重点实验室;中国石油集团川庆钻探工程有限公司页岩气勘探开发项目经理部
【正文语种】中文
【中图分类】TE352
【相关文献】
1.页岩暂堵转向压裂水力裂缝扩展物模试验研究
2.裂缝性页岩暂堵压裂复杂裂缝扩展模型与暂堵时机
3.页岩气水平井段内多簇缝口暂堵转向压裂数值模拟
4.页岩气藏暂堵转向压裂裂缝扩展规律模拟
5.松辽盆地致密气藏暂堵转向压裂裂缝扩展规律研究
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水力压裂裂缝暂堵转向机理与转向规律研究储层改造是页岩油气、致密油气等非常规油气开发的核心技术,通过水力压裂形成复杂裂缝网络,实现体积改造是水力压裂施工的目标。

当储层可压性较差或应力差较大时,难以形成复杂裂缝网络,通过暂堵逼迫裂缝转向是增强缝网扩展复杂性的重要手段。

到目前为止,虽然现场实践已取得较好成效,但裂缝暂堵转向的力学机理、扩展规律和调控方法等尚处于探索阶段,迫切需要开展人工裂缝暂堵转向机理和规律研究。

本文探索了新的实验方法,发展了水力压裂数值算法,通过岩芯测试、物理模拟和数值模拟研究,对非常规储层的可压性和转向能力、转向剂对裂缝的暂堵规律、裂缝转向扩展规律进行了研究,主要取得成果如下:(1)致密储层成缝能力测试与评价。

储层成缝能力(可压性)是裂缝转向的基础和重要影响因素。

实验发现:(1)页岩存在强微观非均质性,并与矿物成分、天然裂隙和TOC含量等一起,是影响页岩储层成缝能力的重要因素。

(2)流体对页岩的岩石力学性质具有显著影响,并与页岩储层的超低含水饱和度、粘土含量、TOC和微纳米孔隙有关。

(3)基于基质脆性、天然裂隙密度和声发射活动性,建立了综合评价致密储层成缝能力的新方法。

油田现场应用说明此方法是可行的。

(2)裂缝转向机理和规律的真三轴模拟实验研究。

利用真三轴水力压裂物模实验装置,研究了纤维暂堵裂缝的转向扩展规律,得出裂缝转向的主要控制因素为储层成缝能力及其非均质性、水平主应力差、天然裂缝分布、初级裂缝宽度、纤维浓度、粘度与排量等,得到了暂堵形成的条件
与图版,并给出了裂缝发生转向时的临界应力差;并以人工裂缝倾角、地应力差、成缝能力和缝内流压为主要参数,建立了裂缝转向能力的评价模型。

(3)基于PGD 法(Proper Generalized Decomposition),针对水力压裂裂缝转向和网络化扩展数值模拟需要,建立并求解了完全耦合条件下水力压裂裂缝扩展模型,PGD算法
适合于高效、快速求解以非线性、瞬态、耦合为特征的水力压裂问题,计算速度明显快于传统的有限元方法。

(4)应用PGD算法进行了裂缝转向的模拟,结论与真三轴物理模拟结果一致。

裂缝转向主要控制因素为储层性质、水平主应力差、缝间干扰、裂缝暂堵效率、粘度与排量等。

在低应力差、较短裂缝间距条件下,缝间干扰强,裂缝端部较容易发生转向;天然裂缝剪切滑移对裂缝转向具有明显影响,在剪应力和流体压力联合作用下,裂缝更易转向;在转向处裂缝宽度和净压力发生突变,缝宽变窄,净压力降低。

本文研究成果将为非常规油气转向压裂改造提供理论依据和技术支持。

相关文档
最新文档