人教版九年级数学下全册教案PPT课件
合集下载
人教版九年级数学下册全册课件【完整版】
BD的长分别为x,y. 写出变量 y与 x 之间的关系式,并指出它是什么函
数. A
解:因为菱形的面积等于两条对角线长
乘积的一半,
所以
1 S菱形ABCD 2 xy 180.
B
D
所以变量 y与 x 之间的关系式为
, y 360
x
它是反比例函数.
C
2022/3/14
当堂练习
1. 下列函数中,y 是 x 的反比例函数的是
2022/3/14
思考:反比例函数
(yk≠0)k的自变量 x 的取值范围是什么? x
因例为如x,作在为前分面母得,到不的能第等一于个零解,析因式此自变量 x 的取v值范1围46是3所有
非中零,实t 的数取. 值范围是 t>0,且当 t 取每一个确定的
t
值时但,实v 都际有问唯题一中确,定应的根值据与具其体对情应况.来确定反比例函数自变量的取
2022/3/14
练一练
1. 当m= ±时1 ,
y 是2反x比m 例2 函数.
2. 已知函数 k 必须满足
y (k 2)是(k反比1例) 函数,则
x
k≠2 且 k≠. -1
2022/3/14
二 确定反比例函数的解析式
例2 已知 y 是 x 的反比例函数,并且当 x=2时,y=6.
(1) 写出 y 关于 x 的函数解析式;
解:设 f . 由kv题意知,当 v =50时,f =80,
所以 80 k . 解得 k =4000.
因此
50
当 v=100 时,f =40.
所以当车速为100km/h 时视野为40度.
2022/3/14
f 4000 . v
例4 如图所示,已知菱形 ABCD 的面积为180,设它的两条对角线 AC,
人教版九年级数学下册全册课件(共24份)
A 的 邻 边 b c o sA 斜 边 c
斜边c
∠A的对边a
锐角A的对边与邻边的比叫做锐 A 角∠A的正切,记作tanA,即
∠A的邻边 b
C
A 的 对 边 a ta n A A 的 邻 边 b
二、新课讲解
在Rt△ABC中,∠C=90°,我们把锐角A 的对边与邻边的比叫做锐角∠A的余切,记 作cotA,即
B C
知 识 点 一
A
二、新课讲解
分析:这个问题可以归结为,在Rt△ABC “在直角三角形中,30°角所对的边 等于斜边的一半”,即
A 的对边 BC 1 斜边 AB 2
知 识 点 一
可得AB=2BC=70m,
也就是说,需要准备 70m长的水管. B
第二十八章 锐角三角函数
28.1 锐角三角函数(1)
一、新课引入
如图:在Rt △ABC中,∠C=90°,
B
角:∠A+ ∠B =90°
勾股定理
A ┌ C
边:AC2 + BC2 = AB2
在直角三角形中,边与角之间有什么关 系呢?
一、新课引入
直角三角形ABC可以简记为Rt△ABC; 直角∠C所对的边AB称为斜边,用c表示; 直角边BC称为 ∠A的对边,用a表示;
想一想acacabac在rtabc中c90我们把锐角a的邻边与斜边的比叫做锐角a的余弦记作cosa即结论cos的邻边斜边锐角a的对边与邻边的比叫做锐角a的正切记作tana即的对边的邻边a的邻边斜边在rtabc中c90我们把锐角a的对边与邻边的比叫做锐角a的余切记作cota即的邻边的对边锐角a的正弦余弦正切余切都叫做的锐角三角函数
┓
8
4 8 = = sinA = AB 10 5
人教版九年级下册数学全册精优教学课件
y 12 3. 4
你可以从中归纳出用待定系数法求反比例函数
解析式的一般步骤吗?
比例函数解析式的一般
步骤是:(1)设,即设所求的反比例函数解析 式为 y k(k≠0).(2)代,即将已知条件中对应的
x x、y值代入 y k 中得到关于k的方程.(3)解,即解
x 方程,求出k的值.(4)定,即将k值代入 y k 中,
x 确定函数解析式.
第四部分 知识小结
知识小结
概念 反 比 例 函 数
解析式
一般地,形如 y kx(k 为常数, k ≠ 0)的函数,叫做反比例函数, 其中 x 是自变量,y 是函数.
求解析式时, ①设 y k ,
x ②由已知条件求出 k .
1
九年级数学下册(RJ)教学课件
第二十六章 反比例函数
第一节 反比例函数 第一课时 反比例函数的意义
1 1. 情景导学
2 2. 新课目标
Contents
目录
3. 新课进行时 4. 知识小结 5. 随堂演练
6. 课后作业
第一部分 情景导学
情景导学
刘翔在2004年雅典奥运会110 m 栏比赛中以12.91s的成 绩夺得金牌,被称为中国“飞人” .如果刘翔在比赛中 跑完全程所用的时间为t s,平均速度为v m/s .你能写出v 与t之间的关系式吗?
第三部分 新课进行时
新课进行时
核心知识点一 反比例函数的定义
问题1 京沪线铁路全 程为 1 463 km,某次列车 的平均速度 v(单位:km/h )随此次列车的全程运行 时间 t(单位:h)的变化 而变化.
(1)平均速度 v,运行时间 t 存在什么数量关系? (2)这两个变量间有函数关系吗?试说明理由 (3)你能写出 v 关于 t 的解析式吗?
新人教版九年级数学下册全册ppt课件
2 000 1 000 100 . ; (3)p ( 1) t ; ( 2) h v S S
概念辨析
2.下列哪些关系式中的 y 是 x 的反比例函数? 2 y (1)y=4x; (2) =3; (3)y=- ; x x 1 2 (4)y=6x+1; (5)y=x -1; (6)y= 2 ; x (7)xy=123 .
例题探究
例1 已知 y 是 x 的反比例函数,并且当 x=2 时, y=6. (1)写出 y 关于 x 的函数解析式; (2)当 x=4 时,求 y 的值.
拓展练习
3.已知 y 与 x2 成反比例,并且当 x=3 时,y=4. (1)写出 y 关于 x 的函数解析式; (2)当 x=1.5 时,求 y 的值; (3)当 y=6 时,求 x 的值.
最新部编本人教版(RJ)九年级数学下册
内含大量动画全真演绎教学内容 打造中学数学高效课堂的首选教学课件
可修改,可直接使用教育部审定版本,首发九年级下册
26.1 反比例函数(第1课时)
情境引入
问题1 京沪线铁路全程为 1 463 km,某次列车的 平均速度 v(单位:km/h)随此次列车的全程运行时间 t(单位:h)的变化而变化. (1)平均速度 v,运行时间 t 存在什么数量关系? (2)这两个变量间有函数关系吗?试说明理由. (3)你能写出 v 关于 t 的解析式吗?
情境引入
问题5
6 6 反比例函数 y 与 y 的图象有什么 x x
共同特征?有什么不同点?不同点是由什么决定的?
问题6 k 取不同的值时,上述结论是否适用于所有 反比例函数?
形成概念
函数 图象形状 k>0 图象位置
图象变化 趋势 函数值 增减规律 在每个象限 内,y 都随 x 的增大而 减小
人教版年九年级数学下册全册课件共份ppt22
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
四、强化训练
解:梯形CDEF和梯形EFAB相似, 由此可得: CD EF EF AB
CD 4, AB 9
4 EF EF 9 EF 6 EF 是梯形的边长
答:四边形A1B1C1D1中最长的边长是15cm。
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
四、强化训练
4、如图,AB∥EF∥CD,CD=4, AB=9,若梯形CDEF与梯形EFAB相似, 求EF的长.
质
认真阅读课本第36至38页的内容,完 成下面练习并体验知识点的形成过程.
例1、图(1)的△A1B1C1是由正△ABC放大后 得到的,观察这两个图形,它们的对应角有 什么关系?对应边又有什么关系呢?
二、新课讲解
相 似
知多 识边 点形 一的
性 质
解:△A1B1C1和△ABC相似
A __=_A1
B_=__B1
2
A. 3
3
B. 2
C.
2 5
4
D. 9
3
2、已知2a-3b=0,b≠0,则a∶b=___2__.
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
四、强化训练
3、已知四边形ABCD和四边形A1B1C1D1相似,四 边形ABCD的最长边和最短边的长分别是10cm和 4cm,如果四边形A1B1C1D1的最短边的长是6cm, 那么四边形A1B1C1D1中最长的边长是多少?
人教版九年级(初三)数学下册全套PPT课件
教材基本内容
判定 性质 正弦 余弦
正切
Байду номын сангаас
中心投影
反比例函数的 性质
平行投影
九 年 级 数 学
主视图 下 册
左视图
俯视图
重难点
位似变换 及作图
相似三角形性质 的实际应用(测 量、建筑等)
三角函数概念、 特殊三角函数值
解直角三角形 及其实际应用
锐角三角函数
锐角三角函数的概念 及转化思想的应用
相似三角形的判定 及相似的性质
教学建议
1、补充比例的有关知识,奠定知识基础。 2、加强与全等三角形的类比较学习,体会知识之间 的联系。 3、本章推理证明的难度增大,注意引导学生提高推 理能力,特别是证明问题方法的多样化和非常规化。 4、善于总结基本图形(“A”、“X”图,一些实际 测量的经典图形等) 5、利用相似解决实际问题时,力求知识化,避免过 难问题。要涉及相似三角形的与圆和函数结合的问 题,培养学生解决综合问题能力。 6、关注学生的学习兴趣和参与程度。
位似中心是原点 对应点的坐标比 为k或-k
相似形
相似多边形
对应角相等, 对应边成比例, 周长的比=相似比 面积的比=相似比的平方
知 识 逻 辑 联 系
两图形位似 对应顶点的连线 交于一点 对应边平行
课时安排 教学时间大约需要13课时,具体安排如下: 27.1 图形的相似 2课时 27.2 相似三角形 6课时 27.3 位似 3课时 数学活动 小结 2课时
相 似
两种投影含义 及简单应用
反比例函数的图 像
认识并会 画三视图
反比例函数
反比例函数的实 际应用
视图与投影
反比例函数 的图像及性 质
新人教版九年级数学下册全套PPT课件
3.已知点 A(x1,y1),B(x2,y2)且x1<0<
都在反比例x2函数
y
k x
(k的<0图) 象上,则y1
与y2的大小关系(从大到小)为
.
y1 >0>y2
y
A
oy1 x2
x1
y2
x
B
4.如图,点P是反比例函数图象上的一
点,过点P分别向x轴、y轴作垂线,若阴
影部分面积为3,则这个反比例函数的
解:(1)根据“杠杆原理” 动力×动力臂 = 阻力×阻力臂
F∙L = 1200×0.5 = 600 , F 600
L
(2)当 L =1.5 时 (3)当 F = 200 时
F 600 400 N 1.5
200 600 得 L 3 L
3 -1.5 = 1.5 (m)
答:动力臂至少要加长1.5m.
(2)把x=4代入
y
12 x
,得
y 12 3. 4
2. 已知y与x2成反比例,并且当x=3时y=4.
(1)写出y与x 的函数关系式,y是x 的反比例函数
吗?
(2)求出当x=1.5时y的值。
解:(1)设
y
k x2 ,把x=3,y=4代入得
k= 4 32= 36.
即
y
36 x2
,不是x的反比例函数。
函数图象画法
描点法
列 表
描 点
连 线
x
y
=
6 x
y=
6 x
注意:①列表时自变量 取值要均匀和对称②x≠0 ③选整数较好计算和描点。
y
6
5
y
=-
6 x
4 3
y
=
6 x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、课堂小结
1.列实际问题中的反比例函数解析式: (1)列实际问题中的函数解析式首先应分析清楚实际 问题中变量之间的关系,建立反比例函数模型解决实 际问题. (2)在列实际问题中的函数解析式时,一定要在关系 式后面注明自变量的取值范围.
2.利用反比例函数解决实际问题的关键:建立反比例 函数模型.
返回目录
数是不是反比例函数. 2.求反比例函数的解析式.
五、独立作业
返回目录
返回目录
26. 1. 2 反比例函数的图象和性质
第1课时
【学习目标】 1.会用描点法画反比例函数的图象. 2.结合图象分析并掌握反比例函数的性质. 3.体会函数的三种表示方法,领会数形结合的思想方法.
【教学重难点】 重点:理解并掌握反比例函数的图象和性质. 难点:正确画出图象,通过观察、分析,归纳出反比例
样的函数解析式表示?这些函数有什么共同特点? (1)京沪线铁路全程为1 463 km,乘坐某次列车
的平均速度。(单位:km/h)随此次列车的全程运行 时间t(单位:h)的变化而变化.
返回目录
(2)某住宅小区要种植一个面积为1 000 m2的矩形草坪, 草坪的长烈单位:m)随宽x(单位:m)的变化而变化;
它们解决一些综合问题. 难点:学会从图象上分析、解决问题.
返回目录
.
【教学过程与方法】 一、探究新知 阅读教材P7一P8,通过观察、比较进一步理解和
掌握反比例函数及其图象与性质,并独立完成下列 问题.
自学反馈1 填表分析正比例函数和反比例函数的区别:
返回目录
.
返回目录
.
自学反馈2
返回目录
.
返回目录
(3)已知北京市的总面积为1. 68 x 104平方千米,人均 占有的土地面积S(单位:平方千米/人)随全市总人口 数n(单位:人)的变化而变化.
返回目录
返回目录
自学反馈2 下列等式中,y是x的反比例函数吗?若是,指出k的值.
返回目录
二、应用新知
返回目录
返回目录
三、巩固提高
返回目录
四、课堂小结 1.根据反比例函数的定义判断一个给定函
ቤተ መጻሕፍቲ ባይዱ二十六章 反比例函数 第二十七章 相似 第二十八章 锐角三角函数 第二十九章 投影与视图
第二十六章反比例函数
26. 1反比例函数
26. 1. 1反比例函数
【学习目标】 1.使学生理解并掌握反比例函数的概念. 2.能判断一个给定的函数是否为反比例函数,并
会用待定系数法求函数解析式. 3.能根据实际问题中的条件确定反比例函数的
.
二、应用新知
返回目录
.
返回目录
.
返回目录
. 分析: ①根据函数图象在第一象限可得k-2>0,故k >2,故① 正确; ②根据反比例函数的性质可得,另一个分支在第三象 限,故②正确; ③根据反比例函数的性质,图象在第一、三象限时, 在图象的每一分支上y随二的增大而减小,A,B不一定 在图象的同一分支上,故③错误; ④根据反比例函数的性质,图象在第一、三象限时, 在图象的每一分支上y随x的增大而减小,故在函数图 象的某一个分支上取点A(a1,b1)和点B(a2,b2 ),当a1 > a2 时,则b1 < b2,故④正确;故答案为:①②④.
.
返回目录
.
注:反比例函数图象的增减性,应强调在 每个象限内.
返回目录
.
三、巩固提高
返回目录
.
返回目录
.
返回目录
.
四、课堂小结
反比例函数的图象是双曲线: 当k>0时,双曲线的两支分别位于第一、第三象限, 在每个象限内Y值随x值的增大而减小; 当k<0时,双曲线的两支分别位于第二、第四象限, 在每个象限内}值随二值的增大而增大.
返回目录
.
26. 2 实际问题与反比例函数
第1课时
【学习目标】 1.利用反比例函数的知识,分析、解决实际问题. 2.渗透数形结合思想,提高学生用函数观点解决问
题的能力.
【教学重难点】 重点:利用反比例函数的知识,分析、解决实际问题. 难点:分析实际问题中的数量关系,正确写出函数解
析式.
返回目录
.
返回目录
.
三、巩固提高
返回目录
.
返回目录
.
返回目录
.
返回目录
.
四、课堂小结 反比例函数的性质及运用应注意: 1.k的符号决定图象所在的象限,反之,图象所在的
象限决定k的符号. 2.在谈到其增减性时,必须明确指出是在哪个象限内. 3.要注意发挥图象的作用(数形结合).
返回目录
.
五、独立作业
返回目录
画反比例函数的图象应注意:
列表时:自变量的值可以选取一些互为相反数的 值,这样既可简化计算,又便于对称性描点.
列表描点时:要尽量多取一些数值,多描一些点, 这样便于连线,又较准确地表达函数的变化趋势.
连线时:一定要养成按自变量从小到大的顺序, 依次用平滑的曲线连接,从中体会函数的增减性.
返回目录
返回目录
.
五、独立作业
返回目录
.
第2课时
【学习目标】 1.使学生进一步理解和掌握反比例函数及其图象和性质. 2.能灵活运用函数图象和性质解决一些较综合的问题. 3.深刻领会函数解析式与函数图象之间的联系,体会数
形结合及转化的思想方法.
【教学重难点】 重点:理解并掌握反比例函数的图象和性质,并能利用
.
五、独立作业
返回目录
.
返回目录
函数的性质.
返回目录
【教学过程与方法】 一、探究新知 阅读教材P4一P6内容,通过观察、比较,掌握反比例
函数的图象和性质,并独立完成下列问题. 自学反馈1
返回目录
返回目录
阅读教材,理解反比例函数的图象和性质,并独 立完成下列习题.
自学反馈2
返回目录
二、应用新知
解:列表:
返回目录
画图象如下:
【教学过程与方法】 一、探究新知 阅读教材P12-P13,掌握、利用反比例函数解决
实际问题,并独立完成下列填空. 自学反馈1
返回目录
.
返回目录
.
自学反馈2
返回目录
.
返回目录
.
二、应用新知
返回目录
.
返回目录
.
返回目录
.
返回目录
.
三、巩固提高
返回目录
返回目录
.
返回目录
.
返回目录
.
解析式,体会函数的模型思想.
【教学重难点】 重点:理解反比例函数的概念,能根据已知条件写
出函数解析式. 难点:理解反比例函数的概念.
【教学过程与方法】
一、探究新知 阅读教材P2“思考”,通过观察、比较来理解反
比例函数的概念,并独立完成下列问题.
自学反馈1 1.问题:下列问题中,变量间的对应关系可用怎
1.列实际问题中的反比例函数解析式: (1)列实际问题中的函数解析式首先应分析清楚实际 问题中变量之间的关系,建立反比例函数模型解决实 际问题. (2)在列实际问题中的函数解析式时,一定要在关系 式后面注明自变量的取值范围.
2.利用反比例函数解决实际问题的关键:建立反比例 函数模型.
返回目录
数是不是反比例函数. 2.求反比例函数的解析式.
五、独立作业
返回目录
返回目录
26. 1. 2 反比例函数的图象和性质
第1课时
【学习目标】 1.会用描点法画反比例函数的图象. 2.结合图象分析并掌握反比例函数的性质. 3.体会函数的三种表示方法,领会数形结合的思想方法.
【教学重难点】 重点:理解并掌握反比例函数的图象和性质. 难点:正确画出图象,通过观察、分析,归纳出反比例
样的函数解析式表示?这些函数有什么共同特点? (1)京沪线铁路全程为1 463 km,乘坐某次列车
的平均速度。(单位:km/h)随此次列车的全程运行 时间t(单位:h)的变化而变化.
返回目录
(2)某住宅小区要种植一个面积为1 000 m2的矩形草坪, 草坪的长烈单位:m)随宽x(单位:m)的变化而变化;
它们解决一些综合问题. 难点:学会从图象上分析、解决问题.
返回目录
.
【教学过程与方法】 一、探究新知 阅读教材P7一P8,通过观察、比较进一步理解和
掌握反比例函数及其图象与性质,并独立完成下列 问题.
自学反馈1 填表分析正比例函数和反比例函数的区别:
返回目录
.
返回目录
.
自学反馈2
返回目录
.
返回目录
(3)已知北京市的总面积为1. 68 x 104平方千米,人均 占有的土地面积S(单位:平方千米/人)随全市总人口 数n(单位:人)的变化而变化.
返回目录
返回目录
自学反馈2 下列等式中,y是x的反比例函数吗?若是,指出k的值.
返回目录
二、应用新知
返回目录
返回目录
三、巩固提高
返回目录
四、课堂小结 1.根据反比例函数的定义判断一个给定函
ቤተ መጻሕፍቲ ባይዱ二十六章 反比例函数 第二十七章 相似 第二十八章 锐角三角函数 第二十九章 投影与视图
第二十六章反比例函数
26. 1反比例函数
26. 1. 1反比例函数
【学习目标】 1.使学生理解并掌握反比例函数的概念. 2.能判断一个给定的函数是否为反比例函数,并
会用待定系数法求函数解析式. 3.能根据实际问题中的条件确定反比例函数的
.
二、应用新知
返回目录
.
返回目录
.
返回目录
. 分析: ①根据函数图象在第一象限可得k-2>0,故k >2,故① 正确; ②根据反比例函数的性质可得,另一个分支在第三象 限,故②正确; ③根据反比例函数的性质,图象在第一、三象限时, 在图象的每一分支上y随二的增大而减小,A,B不一定 在图象的同一分支上,故③错误; ④根据反比例函数的性质,图象在第一、三象限时, 在图象的每一分支上y随x的增大而减小,故在函数图 象的某一个分支上取点A(a1,b1)和点B(a2,b2 ),当a1 > a2 时,则b1 < b2,故④正确;故答案为:①②④.
.
返回目录
.
注:反比例函数图象的增减性,应强调在 每个象限内.
返回目录
.
三、巩固提高
返回目录
.
返回目录
.
返回目录
.
四、课堂小结
反比例函数的图象是双曲线: 当k>0时,双曲线的两支分别位于第一、第三象限, 在每个象限内Y值随x值的增大而减小; 当k<0时,双曲线的两支分别位于第二、第四象限, 在每个象限内}值随二值的增大而增大.
返回目录
.
26. 2 实际问题与反比例函数
第1课时
【学习目标】 1.利用反比例函数的知识,分析、解决实际问题. 2.渗透数形结合思想,提高学生用函数观点解决问
题的能力.
【教学重难点】 重点:利用反比例函数的知识,分析、解决实际问题. 难点:分析实际问题中的数量关系,正确写出函数解
析式.
返回目录
.
返回目录
.
三、巩固提高
返回目录
.
返回目录
.
返回目录
.
返回目录
.
四、课堂小结 反比例函数的性质及运用应注意: 1.k的符号决定图象所在的象限,反之,图象所在的
象限决定k的符号. 2.在谈到其增减性时,必须明确指出是在哪个象限内. 3.要注意发挥图象的作用(数形结合).
返回目录
.
五、独立作业
返回目录
画反比例函数的图象应注意:
列表时:自变量的值可以选取一些互为相反数的 值,这样既可简化计算,又便于对称性描点.
列表描点时:要尽量多取一些数值,多描一些点, 这样便于连线,又较准确地表达函数的变化趋势.
连线时:一定要养成按自变量从小到大的顺序, 依次用平滑的曲线连接,从中体会函数的增减性.
返回目录
返回目录
.
五、独立作业
返回目录
.
第2课时
【学习目标】 1.使学生进一步理解和掌握反比例函数及其图象和性质. 2.能灵活运用函数图象和性质解决一些较综合的问题. 3.深刻领会函数解析式与函数图象之间的联系,体会数
形结合及转化的思想方法.
【教学重难点】 重点:理解并掌握反比例函数的图象和性质,并能利用
.
五、独立作业
返回目录
.
返回目录
函数的性质.
返回目录
【教学过程与方法】 一、探究新知 阅读教材P4一P6内容,通过观察、比较,掌握反比例
函数的图象和性质,并独立完成下列问题. 自学反馈1
返回目录
返回目录
阅读教材,理解反比例函数的图象和性质,并独 立完成下列习题.
自学反馈2
返回目录
二、应用新知
解:列表:
返回目录
画图象如下:
【教学过程与方法】 一、探究新知 阅读教材P12-P13,掌握、利用反比例函数解决
实际问题,并独立完成下列填空. 自学反馈1
返回目录
.
返回目录
.
自学反馈2
返回目录
.
返回目录
.
二、应用新知
返回目录
.
返回目录
.
返回目录
.
返回目录
.
三、巩固提高
返回目录
返回目录
.
返回目录
.
返回目录
.
解析式,体会函数的模型思想.
【教学重难点】 重点:理解反比例函数的概念,能根据已知条件写
出函数解析式. 难点:理解反比例函数的概念.
【教学过程与方法】
一、探究新知 阅读教材P2“思考”,通过观察、比较来理解反
比例函数的概念,并独立完成下列问题.
自学反馈1 1.问题:下列问题中,变量间的对应关系可用怎