二次函数有关系数abc经典练习题

合集下载

二次函数中各项系数abc与图像的关系

二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下:1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下;决定张口的大小:∣a ∣越大,抛物线的张口越小.2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关.b 与a 同号,说明02<-a b ,则对称轴在y 轴的左边; b 与a 异号,说明−b 2a >0,则对称轴在y 轴的右边;特别的,b = 0,对称轴为y 轴.3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c )c > 0 抛物线与y 轴的交点在y 轴的正半轴;c < 0 抛物线与y 轴的交点在y 轴的负半轴;特别的,c = 0,抛物线过原点.4 a,b,c 共同决定判别式?=b 2−4ac 的符号进而决定图象与x 轴的交点b 2−4ac >0 与x 轴两个交点b 2−4ac =0 与x 轴一个交点b 2−4ac <0 与x 轴没有交点5 几种特殊情况:x=1时,y=a + b + c ;x= -1时,y=a - b + c .当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0.扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。

一.选择题(共8小题)1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b +2a >02.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( )A .a >0B .b <0C .ac <0D .bc <0.3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个第3题图 第4题图 第5题图 第6题图5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0;②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;③2c﹣b=3;④a+3=c,其中正确的个数()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列给出四个结论中,正确结论的个数是()个①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0;⑤4a﹣2b+c>0.A.2 B.3 C.4 D.58.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个 B.4个 C.3个 D.2个二.填空题(共4小题)9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有.10.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为.11.抛物线y=ax2+12x﹣19顶点横坐标是3,则a=.12.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.三.解答题(共7小题)13.已知:抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的表达式;(2)如果此抛物线沿y轴平移一次后过点(﹣2,1),试确定这次平移的方向和距离.14.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x的增大而减小.15.已知二次函数的图象经过(0,0)(﹣1,﹣1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.16.已知抛物线的顶点坐标是(1,﹣4),且经过点(0,﹣3),求与该抛物线相应的二次函数表达式.17.已知二次函数y=x2﹣4x+5.(1)将y=x2﹣4x+5化成y=a (x﹣h)2+k的形式;(2)指出该二次函数图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而增大?18.如图,二次函数的图象的顶点坐标为(1,),现将等腰直角三角板直角顶点放在原点O,一个锐角顶点A在此二次函数的图象上,而另一个锐角顶点B在第二象限,且点A的坐标为(2,1).(1)求该二次函数的表达式;(2)判断点B是否在此二次函数的图象上,并说明理由.19.已知二次函数y=a(x﹣h)2,当x=4时有最大值,且此函数的图象经过点(1,﹣3).(1)求此二次函数的解析式;(2)当x为何值时,y随x的增大而增大?。

二次函数系数abc与图像的关系

二次函数系数abc与图像的关系

二次函数系数a、b、c与图像的关系1.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的()A B.C.D.2.已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结中,正确的是()A.a>0B.b<0C.c<0D.a+b+c>03.如图,二次函数y=ax2+bx+c的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A .1 B.2 C.3 D.44.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④5.如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个6.已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤4a-2b+c<0,则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤7.已知二次函数y=ax2+bx+c(a≠0)的图象如下图所示,有下列5个结论:①abc<0;②a-b+c>0;③2a+b=0;④b2- 4ac>0;⑤a+b+c>m(am+b)+c(m>1的实数),其中正确的结论有()A.1个B.2个C.3个D.4个二次函数七大综合专题二次函数与三角形的综合题函数中因动点产生的相似三角形问题一般有三个解题途径①求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。

中考数学总复习《二次函数图像与系数的关系》练习题及答案

中考数学总复习《二次函数图像与系数的关系》练习题及答案

中考数学总复习《二次函数图像与系数的关系》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a-b+c>1;③abc>0;④4a-2b+c<0;⑤c-a>1其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤2.已知二次函数y=ax2+bx+c的图象如图所示,那么下列结论中正确的是()A.ac>0B.b>0C.a+c<0D.a+b+c=03.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论:①abc<0;②3a+c=0;③当y>0时,x的取值范围是﹣1≤x<3;④方程ax2+bx+c﹣3=0有两个不相等的实数根;⑤点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是().A.1个B.2个C.3个D.4个4.在平面直角坐标系xOy中,开口向下的抛物线y=ax2+bx+c的一部分图象如图所示,它与x轴交于A(1,0),与y轴交于点B(0,3),则a的取值范围是()A.a<0B.-3<a<0C.a<−32D.−92<a<−325.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是A.B.C.D.6.已知b<0时,二次函数y=ax2+bx+a2-1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.-2B.-1C.1D.27.对于二次函数y=﹣(x+1)2﹣3,下列结论正确的是()A.函数图象的顶点坐标是(﹣1,﹣3)B.当x>﹣1时,y随x的增大而增大C.当x=﹣1时,y有最小值为﹣3D.图象的对称轴是直线x=18.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x…-5-4-3-2-10…y…40-2-204…A.抛物线的开口向下B.当时,y随x的增大而增大C.二次函数的最小值是D.抛物线的对称轴是直线9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.当x≥1时,y随x的增大而增大C.c<0D.当﹣1<x<3时,y>010.如图,在同一平面直角坐标系中,函数y=ax+2(a≠0)与y=−ax2−2x(a≠0)的图象可能是().A.B.C.D.11.已知二次函数y=﹣(x+k)2+h,当x>﹣2时,y随x的增大而减小,则函数中k的取值范围是()A.k≥﹣2B.k≤﹣2C.k≥2D.k≤212.已知:二次函数y=ax2+bx+c的图象如图,则下列答案正确的是()A.a>0,b>0,c>0,△<0B.a<0,b>0,c<0,△>0C.a>0,b<0,c<0,△>0D.a<0,b<0,c>0,△<0二、填空题13.二次函数y=ax2+bx+c(a≠0)的图象如图(虚线部分为对称轴),给出以下6个结论:①abc>0;②a﹣b+c>0;③4a+2b+c>0;④2a<3b;⑤x<1时,y随x的增大而增大;⑥a+b<m(am+b)(m为实数且m≠1)其中正确的结论有(填上所有正确结论的序号)14.已知二次函数y=ax2+bx+c的图象如图所示,则由此可得a0,b0,c 0.(填“<”或“>”)15.老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质:甲:函数的图象经过第一、二、四象限;乙:当x<2时,y随x的增大而减小.丙:函数的图象与坐标轴只有两个交点.已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数.16.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.17.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有。

二次函数abc的关系测试题及答案

二次函数abc的关系测试题及答案

二次函数中a、b、c的作用练习题1、已知二次函数y=ax2+bx+c的图象如图所示;它与x轴的两个交点分别为﹣1;0; 3;0.对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有A.3个 B.2个 C.1个 D.0个2、已知二次函数的图象如图所示;有下列5个结论:①;②;③;④;⑤;的实数其中正确的结论有 BA. 2个B. 3个C. 4个D. 53、小明从如图所示的二次函数的图象中;观察得出了下面五条信息:①;②;③;④;⑤;你认为其中正确信息的个数有A.2个 B.3个 C.4个 D.5个4、已知二次函数的图象如图所示;有下列结论:①;②;③;④.其中;正确结论的个数是A. 1B. 2C. 3D. 45、已知抛物线y=ax2+bx+ca>0的对称轴为直线x=-1;与x轴的一个交点为x 1;0;且0<x1<1;下列结论:①9a-3b+c>0;②b<a;③3a+c>0.其中正确结论的个数是A.0 B.1 C.2 D.36、如图为抛物线y=ax2+bx+c的图象;A、B、C为抛物线与坐标轴的交点;且OA=OC=1;AB>AO;下列几个结论:1abc<0;2b>2a;3a-b=-1;44a-2b+1<0.其中正确的个数是A.4 B.3 C.2 D.1解:1∵该抛物线的开口向上;∴a>0;又∵该抛物线的对称轴x=-<0;∴b>0;而该抛物线与y轴交于正半轴;故c>0;∴abc>0;故本选项错误;2由1知;a>0;-<0;∴b>-2a;故本选项错误;3∵OA=OC=1;∴由图象知:C0;1;A-1;0;把C0;1代入y=ax2+bx+c得:c=1;把A-1;0代入y=ax2+bx+c得:a-b=-1;故本选项正确;4由3知;点A的坐标是-1;0.又∵AB>AO;∴当x=-2时;y<0;即4a-2b+1<0;故本选项正确.综上所述;正确的个数是2个.故选C.7.如图所示;二次函数y=ax2+bx+ca≠0的图象经过点-1;2;且与x轴交点的横坐标为x1、x2;其中-2<x1<-1、0<x2<1.下列结论:①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac中;正确的结论是解:由图知:抛物线的开口向下;则a<0;抛物线的对称轴x=- >-1;且c>0;①由图可得:当x=-2时;y<0;即4a-2b+c<0;故①正确;②已知x=- >-1;且a<0;所以2a-b<0;故②正确;③已知抛物线经过-1;2;即a-b+c=21;由图知:当x=1时;y<0;即a+b+c<02;由①知:4a-2b+c<03;联立12;得:a+c<1;联立13得:2a-c<-4;故3a<-3;即a<-1;所以③正确;④由于抛物线的对称轴大于-1;所以抛物线的顶点纵坐标应该大于2;即:>2;由于a<0;所以4ac-b2<8a;即b2+8a>4ac;故④正确;因此正确的结论是①②③④.8已知抛物线y=ax2+bx+c的图象如图所示;则下列结论:①abc>0;②a+b+c=2;③a<;④b>1.其中正确的结论是A.①②B.②③C.③④D.②④解:①∵抛物线的开口向上;∴a>0;∵与y轴的交点为在y轴的负半轴上;∴c<0;∵对称轴为x=<0;∴a、b同号;即b>0;∴abc<0;故本选项错误;②当x=1时;函数值为2;∴a+b+c=2;故本选项正确;③∵对称轴x=>-1;解得:<a;∵b>1;∴a>;故本选项错误;④当x=-1时;函数值<0;即a-b+c<0;1又a+b+c=2;将a+c=2-b代入1;2-2b<0;∴b>1故本选项正确;综上所述;其中正确的结论是②④;故选D.9、已知:抛物线y=ax2+bx+ca<0经过点-1;0;且满足4a+2b+c>0;以下结论:①a+b>0;②a+c>0;③-a+b+c>0;④b2-2ac>5a2;其中正确的个数有A.1个B.2个C.3个D.4个解:1因为抛物线y=ax2+bx+ca<0经过点-1;0;所以原式可化为a-b+c=0----①;又因为4a+2b+c>0----②;所以②-①得:3a+3b>0;即a+b>0;2②+①×2得;6a+3c>0;即2a+c>0;∴a+c>-a;∵a<0;∴-a>0;故a+c>0;3因为4a+2b+c>0;可以看作y=ax2+bx+ca<0当x=2时的值大于0;草图为:可见c>0;∵a-b+c=0;∴-a+b-c=0;两边同时加2c得-a+b-c+2c=2c;整理得-a+b+c=2c>0;即-a+b+c>0;4∵过-1;0;代入得a-b+c=0;∴c=b-a;再代入4a+2b+c=3b+3a>0;即b>-a∴b>0;a<0;c=b-a >0;又将c=b-a代入b2-2ac=b2-2ab-a=b2-2ab+2a2;∵b2-2ab=bb-2a;b>-a;b-2a>-3a;并且b是正数;∴原式大于3a2.综上可知正确的个数有4个.故选D.10如图;是二次函数y=ax2+bx+c图象的一部分;图象过点A-3;0;对称轴为x=-1.给出四个结论:①b2>4ac;②b=-2a;③a-b+c=0;④b>5a.其中正确结论是.解:①∵图象与x轴有交点;对称轴为x==-1;与y轴的交点在y轴的正半轴上;又∵二次函数的图象是抛物线;∴与x轴有两个交点;∴b2-4ac>0;即b2>4ac;正确;②∵抛物线的开口向下;∴a<0;∵与y轴的交点在y轴的正半轴上;∴c>0;∵对称轴为x==-1;∴2a=b;∴2a+b=4a;a≠0;错误;③∵x=-1时y有最大值;由图象可知y≠0;错误;④把x=1;x=-3代入解析式得a+b+c=0;9a-3b+c=0;两边相加整理得5a-b=-c<0;即5a<b.故正确的为①④.1. B2. B3.C.提示:由二次函数的图象知;∴①;②;正确;由x=-1;③正确;由对称轴;得到∴④2a-3b=0是错误.的;x=2;把代入得⑤是正确的;故选C.4. C5.解:∵y=ax2+bx+ca>0的对称轴为直线x=-1;与x轴的一个交点为x1;0;且0<x1<1;∴x=-3时;y=9a-3b+c>0;∵对称轴是x=-1;则=-1;∴b=2a.∵a>0;∴b>a;再取x=1时;y=a+b+c=a+2a+c=3a+c>0.∴①、③正确.故选C 6.。

二次函数系数a、b、c与图像的关系填空题专题练习(含答案).doc

二次函数系数a、b、c与图像的关系填空题专题练习(含答案).doc

二次函数系数a 、b 、c 与图像的关系填空题专题练习1、二次函数y=-x2+bx+c 的图象如图所示,试确定b 、c 的符号;b ____________ 0, c ________ 0.(填不等号)5、已知函数y 二ax"+bx+c 的图象如图所示,则下列结论中:®abc>0;②b 二2。

;③a+b+c<0;④a-b+c>0.正 确的是 _________ •0; (4) b 2-4ac_ 0.如图,已知抛物线y 二ax'+bx+c(aH0)经过原点和点(-2, 0),则2a -3b0.(填 >、V 或二) 象限.0; (3)c则直线y=abx+c 不过第6、已知如图,抛物线y=ax2+bx+c与x轴交于点A(—1, 0)和点B,化简:如夕★如护的结杲为:①c;②b;③b—a;④a —b + 2c.其中正确的有________________ .7、二次函数y=-x2+bx + c的图象如图,则一次函数y=bx+c的图象不经过第_______________ 象限.8、若二次函数x2+bx+c的图象如图,则ac 0 (“V” “>”或“二”)9、已知二次函数y二ax'+bx+c(aH0)的图象如图所示,则在下列代数式:①ac;②a+b+c;③4a-2b+c;④2a+b;⑤圧-4ac中,值大于0的序号为__________________10、如图是二次函数y=ax2 + bx + c(a^0)的图象的一部分,给出下列命题:①a+b + c二0;②b>2a;③ax2+bx+c=0 的两根分别为一3 和1:④a—2b+c>0.其中正确的命题是 ______________ ・(只要求填写正确命题的序号)有以下结论:①abc>0;②a - b+c<0;③2d二b;④4a+2b+c>0;⑤若点(・2, y()和(・3, y2)在该图象上,则yi>y2.其中正确的结论是 ______________ (填入正确结论的序号).12、如图是二次函数ypx'+bx+c 的部分图像,在下列四个结论中正确的是 _________________① 不等式 ax 2+bx+c>0 的解集是-l<x<5;②a-b+c>0;③b 2-4ac>0;④4a+b<0.下列结论:①4a+b 二0;②9a+c>3b ;③8a+7b+2c>0;④当x>・1时,y 的值随x 值的增大而增大.其中正确的结论有 ______________________ (填序号)14>二次函数y=ax^+bx+c (aHO )的图象如图所示,下列结论:①2a+b 二0;②a+c>b ;③抛物线与 x 轴的另一个交点为(3, 0);④abc>0.其中正确的结论是 _____________________ (填写序号).15、如图是二次函数y=ax 2+bx+c 图彖的一部分,图彖过点A ( - 3, 0),对称轴为直线X 二・1,给 出四个结论:①b 2>4ac ;②2a+b 二0;③a+b+c>0;④若点B ( - 2. 5, yj , C ( - 0. 5, y 2)为函数图象上的两 点,则yi<y2.其中正确结论是 __________________ ・图象过点(-1, 0),对称轴为直线x=2,16、如图,是二次函数y=ax2+bx+c (aHO)的图象的一部分,给出下列命题:①abc<0;②b>2a;③a+b+c二0④ax'+bx+c二0的两根分别为・3和1;⑤8a+c>0. 其中正确的命题是____________________________ ・17>二次函数y=ax2+bx+c (aHO)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2 - 4ac>0;④a+b+c<0;⑤la・2b+c<0,其中正确的个数是______________________ .y八18、如图,抛物线y=ax2+bx+c的对称轴是x=-l.且过点(0.5, 0),有下列结论:①abc>0;②a-2b+4c=0;③25a・ 10b+4c=0;④3b+2c>0;⑤a - b^m (am - b);其中所有正确的结论是___________________ .(填写正确结论的序号)19、己知二次函数y=ax2+bx+c (aHO)的图象如图所示,纟合出以下结论: ®b2>4ac;②abc>0③2a-b=0;④8a+c<0;⑤9a+3b+c<0.其中结论正确的是___________ .(填正确结论的序号)x=l20、在二次函数y=ax2+bx+c的图彖如图所示,下列说法中:①b‘・4ac<0;②2占>0;③abc>0;®a-b-c>0,说法正确的是(填序号).21>已知二次函数y=ax2+bx+c (aHO)的图象如图所示,有下列5个结论:①c二0;②该抛物线的对称轴是直线x二・1;③当x=l时,y=2a;④am2+bm+a>0 (mH - 1);⑤设A (100, yi) , B (・100, y2)在该抛物线上,则yi>y2.其中正确的结论有・(写出所有正确结论的序号)22、已知二次函数y=ax2+bx+c (aHO)的图象如图所示,则下列结论:①a+b+c<0;②a - b+c<0;③b+2a<0;④abc>0,其屮正确的是_________________ (填编号)23、如图是二次函数y=ax2+bx+c (aHO)图彖的一部分,现有下列结论:①abc<0;②b?・4ac+5> 0;③2a+b<0;④a-b+c<0;⑤抛物线y=ax2+bx+c (a^O)与x轴的另一个点坐标为(・1, 0), 其屮正确的是(把所有正确结论的序号都填在横线上)y八24、己知实数m, n满足m - n2=l,则代数式n/+2n2+4ni - 1的最小值等于_____________ •25、如图所示,己知二次函数y二ax'+bx+c的图象经过(-1, 0)和(0, -1)两点,则化简代数式_ 乎 + 4 + + 乎 _ 4 二 _______________ .\26如图,抛物线y二ax'+bx+c与x轴交于点A (・1, 0),顶点坐标为(1, n),与y轴的交点在(0, 2)、(0, 3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③_2④3WnW4中,正确的是_______________27、已知二次函数y二ax'+bx+c的图象如图所示,有以下结论:①a+b+cVO;②a - b+c> 1;③abc>0;④4a - 2b+c<0;其中正确的结论是 ______________28、已知二次函数ypx'+bx+c的图象如图所示,它与x轴的两个交点分别为(-1, 0) , (3, 0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有___________________________ .29、已知二次函数y=ax2+bx+c (aHO)的图象如图所示,下列结论:①bV0;②4a+2b+c<0; (3)a・b+c>0;④(a+c) 2<b2.其中正确的是___________________ (把所有正确结论的序号都填在横线上).30^己知二次函数y二ax'+bx + c的图象如图所示,则下列结论:①c二2;②b2—4ac<0;③当x=l时,y的最小值为a+b+c中,正确的有___________________31、已知二次函数y=ax'+bx+c(a^O)的图像如图所示,(1)给出三个结论:①『-4眈>0;②c>0;③b>0,其中正确结论的序号是: ___________ ・(2)给出三个结论:①9a+3b+c〈0:②2c>3b;③8a+c>0,其中正确结论的序号是:________________32、已知抛物线y=ax2+bx+c(a^0)经过点(一1, 0),且顶点在第一象限.有下•列三个结论:①a<0;②a+b+c>0;③一2a >0.其中止确的结论有______________ .丄33>如图,抛物线yi=a (x+2) 2 - 3与2 (x・3) ?+1交于点A(l, 3),过点A作x轴的平行线, 分别交两条抛物线于点B, C.则以下结论:①无论x取何值,y2的值总是正数;②沪1;③当x=0 时,y2 - yi=4④2AB=3AC.34、如图,抛物线"曲"窈-3与卩飞“耳+1交于点八(],3),过点A作x轴的平行_2线,分别交两条抛物线于点B,C.则以下结论:①无论x収何值,乃的值总是正数;②■亍;③当x二0时,y2-yi二6;④AB+AC二10;⑤刃时乃°,其中正确结论的个数是: ________________ .35>函数y二x'+bx+c与y二x的图象如图所示,有以下结论:①b'-4c>0;②3b+c+6=0;③当lVx< 3时,x2+ (b - 1) x+c<0;④JQ+C? = 3迥.其屮正确的有 _______________ .36、如图抛物线y=ax2+bx+c与只轴的一个交点A在点(-2, 0)和(-1, 0)之间(包括这两个点), 定点C是矩形DEFG上(包括边界和内部)的一个动点,贝9:(1)_____________ abc 0(填或“〉”;(2)___________________________ 8的取值范围是.1、答案为:V >;2、答案为:(1)> (2)< (3)> (4)>;3、答案为:>;4、答案为:四;5、答案为:①③④.6、答案为:①③④;7、答案为:四;8、答案为:<;9、答案为:10、答案为11、答案为12、答案为13、答案为14、答案为15、答案为16、答案为17、答案为18、答案为19、答案为20、答案为21、答案为22、答案为23、答案为24、答案为25、答案为26、答案为27、答案为28、答案为29、答案为30、答案为31、答案为32、答案为33、答案为34、答案为35、答案为①②⑤;①③;②④.①③;①③;①④.①④.①③④⑤.3.①③⑤.①②⑤;②③④.①②④⑤.②③.②、④.2a;①③.①③.©:①③④.①③;①;①③①②③;①④.①②④⑤,②③④;参考答案36、答案为:<。

二次函数的图像与系数a、b、c的关系经典习题

二次函数的图像与系数a、b、c的关系经典习题

A B CD yOx yO x yO x yO x yO x 一、二次函数图像与系数a 、b 、c 、关系1、二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,则点c M b a ⎛⎫⎪⎝⎭,在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2、如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )3、二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确的是( )A 、240b ac ->B 、0a >C 、0c >D 、02ba-< 4、二次函数y =ax 2+bx +c 的图象如图3所示,则下列关于a ,b ,c 间关系的判断正确的是( ) A 、ab <0 B 、bc <0 C 、a +b +c >0 D 、a -b +c <05、 二次函数c bx ax y ++=2,图象如图所示,则反比例函数xab y =的图象的两个分支分别在第 象限。

6、已知反比例函数xky =的图象如图所示,则二次函数222k x kx y +-=的图象大致为( )7、二次函数y=ax 2与一次函数y=ax +a 在同一坐标系中的图象大致为( )8、函数y=ax 2+bx +c 和y=ax +b 在同一坐标系中,如图所示,则正确的是( )9、在同一直角坐标系内,二次函数y=ax 2+(a +c )x +c 与一次函数y=ax +c 的大致图象,有且只有一个是正确的,正确的是( )10、二次函数y=ax 2+bx +c 与一次函数y=ax +c 在同一坐标系中的图象大致是图中的( )11、在同一坐标系中,函数y=ax 2+bx 与y=xb的图象大致是图中的( )12、已知a <0,b >0,c >0,那么抛物线y =ax 2+bx +c 的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 13、已知二次函数y =ax 2+bx +c 的图象如图1所示,则a ,b ,c 满足( )A .a <0,b <0,c >0B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >014、二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,则点c M b a ⎛⎫⎪⎝⎭,在( )A .第一象限B .第二象限C .第三象限D .第四象限15、已知二次函数2y ax bx c =++(其中000a b c >><,,),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧.以上说法正确的个数为( )A .0 B .1 C .2 D .3二、⊿的符号的判定例1、下图中⊿0<的是( )(A ) (B ) (C ) (D ) (图3)练习:不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( )A.a>0,△>0;B.a>0, △<0;C.a<0, △<0;D.a<0, △<0 三、含a 、b 的代数式符号的判定例1、抛物线y=x 2+2x-4的对称轴是直线( ).A.x=-2B.x=2C.x=-1D.x=1Oy x Oy x y x O y x O ..C A y xOy–1 3 3O xP1 -1O x =1yxy–1 3 3O xP 1 练习:二次函数)1)(3(2-+-=x x y 的图象的对称轴是直线________________.例2、二次函数2(0)y ax bx c a =++≠的图象如图3所示,则①20a b +>②20a b +<③02ba-<④20a b -<⑤20a b ->中正确的有________________________.(请写出序号即可)图4 图5练习:1、二次函数2(0)y ax bx c a =++≠的图象如图4所示,则下列说法不正确的是( ) A .240b ac ->B .0a >C .0c >D .02ba-< 例1、如图5,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则cb a +-的值为 ( )A. 0 B. -1 C. 1 D. 2练习:已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A )第一或第二象限; (B )第三或第四象限;(C )第一或第四象限; (D )第二或第三象限例2已知二次函数c bx ax y ++=2的图象如图所示,那么下列判断正确的是( )(A)abc >0 (B )ac b 42->0(C)2a+b >0 (D )c b a +-24<0练习:1、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( )A .1个 B .2个 C .3个 D .4个2、抛物线y=ax 2+bx+c 的图象如图6,OA=OC ,则( )(A ) ac+1=b; (B ) ab+1=c; (C )bc+1=a; (D )以上都不是图4 图5 图6图2y 0 1x-1 图1O xy-11作业:1、若二次函数c bx ax y ++=2中,a <0,b >0,c <0,042>-ac b ,则此二次函数图像不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax 2+bx+c 的是( )3、二次函数c bx ax y ++=2的图象如图1所示,则下列结论中,正确的个数是( )①0<++c b a ;②0>+-c b a ;③0>abc ;④a b 2= (A )4(B )3(C )2 (D )14、已知二次函数c bx ax y ++=2的图象如图2所示,那么下列判断不正确的是( ) (A)abc >0; (B )ac b 42->0;(C)2a+b >0; (D )c b a +-24<05、二次函数c bx ax y ++=2的图象如图所示,则 abc ,ac b 42-,b a +2,c b a ++这四个式子中, 值为正数的有( )A .4个 B .3个 C .2个 D .1个6、二次函数y =ax 2+bx +c 的图象如图3所示,则下列关于a ,b ,c 间关系的判断正确的是( ) A .ab <0 B .bc <0 C .a +b +c >0 D .a -b +c <07、(2008年安徽省)如图为二次函数y=ax 2+bx +c 的图象,在下列说法中:① ac <0; ②方程ax 2+bx +c=0的根是x 1= -1, x 2= 3 ② a +b +c >0 ④当x >1时,y 随x 的增大而增大。

二次函数经典测试题附答案

二次函数经典测试题附答案

二次函数经典测试题附答案二次函数经典测试题附答案一、选择题1.小明从如图所示的二次函数 $y=ax^2+bx+c$ 的图像中,观察得出了下面五条信息:①$c0$,③$a-b+c>0$,④$b^2>4ac$,⑤$2a=-2b$,其中正确结论是().A。

①②④B。

②③④C。

③④⑤D。

①③⑤解析】本题考查了二次函数图像与系数关系,观察图像判断图像开口方向、对称轴所在位置、与 $x$ 轴交点个数即可得出二次函数系数满足条件。

由抛物线的开口方向判断 $a$ 的符号,由抛物线与 $y$ 轴的交点判断 $c$ 的符号,然后根据对称轴及抛物线与 $x$ 轴交点情况进行推理,进而对所得结论进行判断。

详解】①由抛物线交 $y$ 轴于负半轴,则 $c0$;由对称轴在 $y$ 轴右侧,对称轴为 $x=-\frac{b}{2a}$,又 $a>0$,故$b0$,故②错误;③结合图像得出 $x=-1$ 时,对应 $y$ 的值在 $x$ 轴上方,故 $y>0$,即 $a-b+c>0$,故③正确;④由抛物线与 $x$ 轴有两个交点可以推出 $b^2-4ac>0$,故④正确;⑤由图像可知:对称轴为 $x=-\frac{b}{2a}$,则 $2a=-2b$,故⑤正确;故正确的有:③④⑤。

故选:C。

点睛】本题考查了二次函数图像与系数关系,观察图像判断图像开口方向、对称轴所在位置、与 $x$ 轴交点个数即可得出二次函数系数满足条件。

2.二次函数 $y=ax^2+bx+c$($a\neq0$)图像如图所示,下列结论:①$abc>0$;②$2a+b^2=2$;③当 $m\neq1$ 时,$a+b>am^2+bm$;④$a-b+c>0$;⑤若$ax_1+bx_1=ax_2+bx_2$,且 $x_1\neq x_2$,则 $x_1+x_2=2$。

其中正确的有()A。

①②③B。

②④C。

②⑤D。

二次函数中的符号问题abc△等符号课堂测试练习题

二次函数中的符号问题abc△等符号课堂测试练习题

二次函数中的符号问题(°、b、C、△等符号)预习案回顾知识点:1、抛物线y=ax1+bx+c的开口方向与有关;2、抛物线y=αv2+bx+c与y轴的交点是;3、抛物线y=ax2+bx+c的对称轴是;总结:抛物线产加+法+c的符号问题:(1)。

的符号:由抛物线的开口方向确定开口向上:a>0;开口向下:«<0(2)c的符号:由抛物线与),轴的交点位置确定:交点在X轴上方:OO;交点在X轴下方:c<0;经过坐标原点:C=O(3)b的符号:由对称轴的位置确定:对称轴在y轴左侧:a、b同号;对称轴在y轴右侧:4、b异号;对称轴是),轴:b=0简记为:左同右异(4)从-4"的符号:由抛物线与X轴的交点个数确定:与X轴有两个交点:b2-4ac>0i与X轴有一个交点:b2-4ac=0↑与X轴无交点:b2-4ac<0(5)α+Hc的符号:由X=I时抛物线上的点的位置确定(6)Q-Hc的符号:由X=T时抛物线上的点的位置确定探究案探究一抛物线y=0x2+bx+c如图所示,试确定〃、b、c、△的符号:练一练:1.二次函数y=αχ2+"+C•的图象如图所示,则一次函数y=bx+4的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.已知抛物线),=加+公+c(WO)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A.aX)B.b<0C.CyOD.α+b+c>O3.已知二次函数y=αf+加+c(αwθ)的图象如图,对称轴为“=_1下列结论中正确24 .如图所示的二次函数y="?+云+c 的图象中,刘星同学观察得出了下面四条信息:6.如图是二次函数),=如2+"+°(。

=0)在平面直角坐标系中的图象,根据图形判断:①c >0;②a+b+c <0;③2a-b <0;b 2+Sa>4ac .其中正确的是(填写序1Q的函数的一些结论:①当机=-3时,函数图象的顶点坐标是(1-);②当m>033时,函数图象截X 轴所得的线段长度大于∙∣;③当机<0时,函数在时,),随X 的增大而减小;④当小声0时,函数图象经过同一个点.其中正确的结论有( ) A.®®®®B.①®® C.①③④D.®®9.已知二次函数y=f1√+∕λx +c 的图象如图所示,有以下结论:①a+Z?+c<0;②α-b+c>1:③H?c>0;④4Q -2Z J +C <0;⑤。

二次函数系数判断典型试题

二次函数系数判断典型试题

二次函数系数判断典型试题一.选择题1.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac-b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2-4ac>0,其中正确的个数是()A.1 B.2 C.3 D.43.如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为-1和3,则下列结论正确的是()A.2a-b=0 B.a+b+c>0 C.3a-c=0 D.当a=1/2时,△ABD是等腰直角三角形4.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),其对称轴为直线x=1,下面结论中正确的是()A.abc>0 B.2a-b=0 C.4a+2b+c<0D.9a+3b+c=0 5.二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()A.①②B.①③C.②③D.①②③6.已知二次函数y=ax2+bx=c(a≠0)的图象如图所示,与y轴相交一点C,与x轴负半轴相交一点A,且OA=OC,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2a+b=0;⑤c+1/a=-2.其中正确的结论有()A.③④⑤B.③④C.①②③D.②③④7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a-b<0;②abc<0;③a+b+c<0;④b2-4ac>0;⑤(a+c)2>b2,正确的有()(填序号)A.①②③B.①③⑤C.①③④D.①②③⑤8.如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,下面四条信息:①ab>0;②a+b+c <0;③b+2c>0;④点(-3,m),(6,n)都在抛物线上,则有m<n;你认为其中正确的有()A.①②③B.①②④C.①③④D.②③④9.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=-1;③当x=1时,y=2n;④am2+bn+a>0(a≠-1).其中正确的是()A.①②B.①②③C.①②④D.①②③④10.已知如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0)和点B,化简√(a+c)2+√(c-b)2的结果为①c,②b,③b-a,④a-b+2c,其中正确的有()A.一个B.两个C.三个D.四个11.如图,已知二次函数y=ax2+bx+c的图象与x轴交于(x1,0),(x2,0)两点,且0 1,1<x2<2,与y轴交于点(0,2).下列结论:①a>0,②b2-8a>0,③a+b<0,<x1<④3a+b>0.其中结论正确的个数是()A.4 B.3 C.2 D.112.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a+b+c>0;②a-c <0;③b2-4ac>0;④b<2a;⑤abc>0,其中正确的有()个.A.1 B.2 C.3 D.4 13.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列四个结论正确的是()A.abc>0 B.a+c>b C.b+2a=0 D.b2-4ac<014.如图是二次函数y=ax2+bx+c(a≠0)的图象,有下列判断:①2a+b=0;②当-1≤x≤3时,y≤0;③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2;④9a+3b+c=0,其中正确的是()A.①②③B.①②④C.①③④D.②③④15.如图是二次函数y=ax2+bx+c过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac,②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是()A.②④B.①④C.②③D.①③16.二次函数y=ax2+bx+c(a≠0)图象如图所示,则下列结论中错误的是()A.当m≠1时,a+b>am2+bm B.若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2C.a-b+c>0 D.abc<017.二次函数y=ax2+bx+c的图象如图所示,则下列关系式中正确的有()个.①b<0;②2a-b>0;③b2-4ac>0;④a+b+c>0.A.1 B.2 C.3 D.418.如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为直线x=1,给出五个结论:①bc>0;②a+b+c<0;③方程ax2+bx+c=0的根为x1=-1,x2=3;④当x<1时,y随着x的增大而增大;⑤4a-2b+c>0.其中正确结论是()A.①②③B.①③④C.②③④D.③④⑤19.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0 ②4a+2b+c>0 ③4ac-b2<8a ④1/3<a<2/3⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤。

专题01 二次函数图象与系数a、b、c相关的判断问题-2022中考数学二次函数重点题型全国通用解析版

专题01 二次函数图象与系数a、b、c相关的判断问题-2022中考数学二次函数重点题型全国通用解析版

专题01 二次函数图象与系数a 、b 、c 相关结论的判断问题一、单选题1.(2021·山东烟台招远市中考一模)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④30a c +<;⑤1c a ->.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【分析】 从抛物线的开口方向,对称轴,与坐标轴的交点,函数的增减性等去分析判断即可.【详解】∵从图象上看出,直线x =1与抛物线的交点位于第四象限,∴0a b c ++<,故①正确;∵从图象上看出,直线x = -1时,函数有最大值,y =a -b +c ,当x =0时,函数值为y =c =1,∴1a b c -+>,故②正确;∵-12b a=-<0, ∴ab >0,∵c =1,∴0abc >,故③正确;∵0a b c ++<,b =2a ,∴30a c +<,故④正确;∵1a b c -+>,b =2a ,∴1c a ->,故⑤正确.故选D .2.(2021·四川广安市中考真题)二次函数()20y ax bx c a =++≠的图象如图所示,有下列结论:①0abc >,②420a b c -+<,③()a b x ax b -≥+,④30a c +<,正确的有( )A .1个B .2个C .3个D .4个【答案】C【分析】 根据抛物线的开口方向,对称轴,与y 轴交点可得a ,b ,c 的符号,从而判断①;再根据二次函数的对称性,与x 轴的交点可得当x =-2时,y >0,可判断②;再根据x =-1时,y 取最大值可得a -b +c ≥ax 2+bx +c ,从而判断③;最后根据x =1时,y =a +b +c ,结合b =2a ,可判断④.【详解】解:∵抛物线开口向下,∴a <0,∵对称轴为直线x =-1,即12b a-=-, ∴b =2a ,则b <0,∵抛物线与y 轴交于正半轴,∴c >0,∴abc >0,故①正确;∵抛物线对称轴为直线x =-1,与x 轴的一个交点横坐标在0和1之间,则与x 轴的另一个交点在-2和-3之间,∴当x =-2时,y =4a -2b +c >0,故②错误;∵x =-1时,y =ax 2+bx +c 的最大值是a -b +c ,∴a -b +c ≥ax 2+bx +c ,∴a -b ≥ax 2+bx ,即a -b ≥x (ax +b ),故③正确;∵当x =1时,y =a +b +c <0,b =2a ,∴a +2a +c =3a +c <0,故④正确;故选:C .【点睛】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).3.(2021·广东肇庆市九年级月考)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,给出以下结论:①24b ac >;②0abc >;③20a b -=;④80a c +<;⑤930a b c ++<.其中结论正确的个数有( )A .1B .2C .3D .4【答案】C【分析】 观察抛物线与x 轴的交点情况即可对①作出判断;根据抛物线的开口方向、对称轴的位置及抛物线与y 轴的交点位置即可对②作出判断;根据抛物线的对称轴为直线x =1,即可对③作出判断;观察图象当x =-2时,y >0,从而可对④作出判断;观察图象当x =3时,y <0,从而可对⑤作出判断.【详解】抛物线与x 轴有两个交点,240b ac ∴->,即24b ac >,故①正确;抛物线开口向上,0a ∴>,对称轴在y 轴的右侧,0b ∴<,抛物线与y 轴交于负半轴,0c ∴<,0abc ∴>,故②正确;12b a-=, 20a b ∴+=,故③错误;2x =-时,0y >,420a b c ∴-+>,即80a c +>,故④错误;根据抛物线的对称性可知,当3x =时,0y <,930a b c ∴++<,故⑤正确,故选:C .【点睛】本题考查了二次函数的图象与性质,涉及数形结合;对于此类问题,一般是看抛物线的开口方向可确定a 的符号、看对称轴的位置可确定b 的符号、看抛物线与y 轴的交点位置确定c 的符号,看抛物线与x 轴交点的个数确定判别式的符号,根据函数图象可确定2ax bx c ++的符号.关键是熟练掌握二次函数的图象与性质.4.(2021·黑龙江牡丹江市中考真题)如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),与x 轴的一个交点B (3,0),与y 轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:①ab c >0;②﹣2<b 53<-;③(a +c )2﹣b 2=0;④2c ﹣a <2n ,则正确的个数为( )A .1B .2C .3D .4【答案】B【分析】 根据二次函数的图象和性质逐一进行判断即可【详解】解:∵抛物线y =ax 2+bx +c (a ≠0)的开口向上,∴a >0,∵抛物线线y =ax 2+bx +c (a ≠0)的顶点坐标为(1,n ),∴对称轴x =12b a-=, ∴b =-2a <0,∵抛物线与y 轴的交点在(0,﹣3)和(0,﹣2)之间∴-3<c <-2<0, ∴ab c>0;故①正确; ∵抛物线线x 轴的一个交点B (3,0),∴9a +3b +c =0,抛物线线x 轴的一个交点(-1,0),∵b =-2a∴c =32b , ∴-3<32b <-2, ∴﹣2<b 43<-,故②错误; ∵抛物线线x 轴的一个交点(-1,0),∴a -b +c =0,∴(a +c )2﹣b 2=(a +b +c )(a -b +c )=0,故③正确;∵a >0,∴-a <0∵b =-2a∴3a +2b =-a <0∴2c ﹣a >2(a +b +c ),∵抛物线y =ax 2+bx +c (a ≠0)的顶点为(1,n ),∴a +b +c =n ,∴2c ﹣a >2n ;故④错误;故选:B【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),明确以下几点:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;③常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).5.(2021·湖北荆门中考真题)抛物线2y ax bx c =++(a ,b ,c 为常数)开口向下且过点(1,0)A ,(,0)B m (21m -<<-),下列结论:①20b c +>;②20a c +<;③ (1)0a m b c +-+>;④若方程()(1)10a x m x ---=有两个不相等的实数根,则244ac b a -<.其中正确结论的个数是( )A .4B .3C .2D .1【答案】A【分析】根据已知条件可判断0c >,0a b <<,据此逐项分析解题即可.【详解】 解:抛物线开口向下0a ∴<把(1,0)A ,(,0)B m 代入2y ax bx c =++得200a b c am bm c ++=⎧⎨++=⎩2am bm a b ∴+=+20am bm a b ∴+--=(1)()0m am a b -++=21m -<<-0am a b ∴++=,(1)am c a m b ∴=+=-0c ∴>110m ∴-<+<10m +<11022m +∴-<< 1022b a∴-<-< 10b a∴>> 0a b ∴<<①220b c b a b b a +=--=->,故①正确;②220a c a a b a b +=--=-<,故②正确;③ (1)2230a m b c b c b a b b a +-+=-+=---=-->,故③正确;;④若方程()(1)10a x m x ---=有两个不相等的实数根,即2(1)10ax a m x am -++-=22(1)4(1)a m a am ∆=+--222(1)44a m a m a =+-+2244a b b a a a--=-⋅+ 22444b a ab a =+++24()4b a a b a =+++2440b ac a =-+>244ac b a ∴-<,故④正确,即正确结论的个数是4,故选:A .6.(2021·四川达州市中考真题)如图,已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)经过点()2,0,且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫ ⎪⎝⎭;⑤2440am bm b +-≥.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】 ①根据图象开口向上,对称轴位置,与y 轴交点分别判断出a ,b ,c 的正负 ②根据对称轴公式2b x a =-,12x =判断,a b 的大小关系 ③根据2x =时,0y =,比较423a b c ++与0的大小;④根据抛物线的对称性,得到2x =与1x =-时的函数值相等结合②的结论判断即可⑤根据抛物线对称轴找到顶点坐标的纵坐标,比较任意一点与顶点的纵坐标值,即比较函数值的大小即可判断结论.【详解】①图象开口朝上,故0a > ,根据对称轴“左同右异”可知0b <,图象与y 轴交点位于x 轴下方,可知c <00abc ∴>故①正确; ②122b x a =-=得=-a b 0a b ∴+=故②错误;③2y ax bx c =++经过()2,0420a b c ∴++=又由①得c <04230a b c ∴++<故③正确;④根据抛物线的对称性,得到2x =与1x =-时的函数值相等∴ 当1x =-时0y =,即0a b c -+=a b =-20a c ∴+=即12c a=- ∴ 2y ax bx c =++经过,02c a ⎛⎫⎪⎝⎭,即经过(1,0)- 故④正确; ⑤当12x =时,1142y a b c =++, 当x m =时,2y am bm c =++ 0a > ∴ 函数有最小值1142a b c ++∴ 21142am bm c a b c ++≥++ 化简得2440am bm b +-≥,故⑤正确.综上所述:①③④⑤正确.故选D .【点睛】本题考查二次函数图象与性质,二次函数解析式中系数与图象的关系,结合图象逐项分析,结已知条件得出结论是解题的关键.7.(2021·广西福绵九年级期中)二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为直线1x =,给出下列结论:①0abc >;②当2x >时,0y >;③80a c +>;④30a b +<,其中正确的结论有( )A .①②B .①③C .①③④D .②④【答案】B【分析】该函数开口方向向上,则a >0,由对称轴可知,b =−2a <0,与y 轴交点在y 轴负半轴,则c <0,再根据一些特殊点,比如x =1,x =−1,顶点等进行判断即可.【详解】 解:函数开口方向向上,0a ∴>,对称轴为直线1x =,即12b a-=, 20b a ∴=-<, 抛物线与y 轴交点在y 轴负半轴,0c ∴<,0abc ∴>,故①正确,由图象可知,当0x =时,0y c =<,由函数的对称性可知,2x =时,0y c =<,且当1x >时,y 随x 的增大而增大,故②错误,当2x =-时,420y a b c =-+>,即80a c +>,故③正确,320a b a b a a +=++=>,故④错误,综上,正确的是①③,故选:B .【点睛】本题主要考查二次函数图象与系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换是解题关键.8.(2021·山东日照中考真题)抛物线()20y ax bx c a =++≠的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;②()()2242a c b +<;③若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;④抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .1【答案】B【分析】 ①由图象开口方向,对称轴位置,与y 轴交点位置判断a ,b ,c 符号.②把2x =±分别代入函数解析式,结合图象可得22(4)(2)a c b +-的结果符号为负.③由抛物线开口向上,距离对称轴距离越远的点y 值越大.④由抛物线顶点纵坐标为m 可得2ax bx c m ++,从而进行判断21ax bx c m ++=-无实数根.【详解】 解:①抛物线图象开口向上,0a ∴>,对称轴在直线y 轴左侧,a ∴,b 同号,0b >,抛物线与y 轴交点在x 轴下方,0c ∴<,0abc ∴<,故①正确.②22(4)(2)(42)(42)a c b a c b a c b +-=+++-,当2x =时242ax bx c a c b ++=++,由图象可得420a c b ++>,当2x =-时,242ax bx c a c b ++=+-,由图象可得420a c b +-<,22(4)(2)0a c b ∴+-<,即22(4)(2)a c b +<,故②正确.③11|1||(1)|x x +=--,22|1||(1)|x x +=--,12|1||1|x x +>+,∴点1(x ,1)y 到对称轴的距离大于点2(x ,2)y 到对称轴的距离,12|y y ∴>,故③错误. ④抛物线的顶点坐标为(1,)m -,y m ∴,2ax bx c m ∴++,21ax bx c m ∴++=-无实数根.故④正确,综上所述,①②④正确,故选:B .【点睛】本题考查二次函数的图象的性质,解题关键是熟练掌握二次函数2(0)y ax bx c a =++≠中a ,b ,c 与函数图象的关系.9.(2021·山东枣庄中考真题)二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为12x =,且经过点()2,0.下列说法:①0abc <;②20b c -+=;③420a b c ++<;④若11,2y ⎛⎫- ⎪⎝⎭,25,2y ⎛⎫ ⎪⎝⎭是抛物线上的两点,则12y y <;⑤()14b c m am b c +>++(其中12m ≠).正确的结论有( )A .2个B .3个C .4个D .5个【答案】B【分析】 先根据抛物线开口向下、与y 轴的交点位于y 轴正半轴0,0a c <>,再根据对称轴可得0b a =->,由此可判断结论①;将点()2,0代入二次函数的解析式可判断结论②③;根据二次函数的对称轴可得其增减性,由此可判断结论④;利用二次函数的性质可求出其最大值,由此即可得判断结论⑤.【详解】 解:抛物线的开口向下,与y 轴的交点位于y 轴正半轴,0,0a c ∴<>, 抛物线的对称轴为122b x a =-=, 0b a ∴=->, 0abc ∴<,则结论①正确;将点()2,0代入二次函数的解析式得:420a b c ++=,则结论③错误;将=-a b 代入得:20b c -+=,则结论②正确; 抛物线的对称轴为12x =, 32x ∴=和12x =-时的函数值相等,即都为1y , 又当12x ≥时,y 随x 的增大而减小,且3522<, 12y y ∴>,则结论④错误; 由函数图象可知,当12x =时,y 取得最大值,最大值为1111142424a b c b b c b c ++=-++=+, 12m ≠, 214b c am bm c +>++∴, 即1()4b c m am b c +>++,结论⑤正确; 综上,正确的结论有①②⑤,共3个,故选:B .【点睛】本题考查了二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题关键.10.(2021·山东日照九年级月考)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()3,0-,其对称轴为直线12x =-,结合图象分析下列结论:①0abc >;②30a c +>;③当0x <时,y 随x 的增大而增大;④一元二次方程20cx bx a ++=的两根分别为113x =-,212x =;⑤若(),m n m n <为方程()()3230a x x +-+=的两个根,则3m <-且2n >,其中正确的结论有( )个.A .2B .3C .4D .5【答案】B【分析】根据题意和函数图象中的数据,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由函数图象可得,0a <,0b <,0c >, 则0abc >,故①正确;122b a -=-,得a b =, 3x =-时,930y a bc =-+=,60a c ∴+=,6c a ∴=-,33630a c a a a ∴+=-=->,故②正确; 由图象可知,当12x <-时,y 随x 的增大而增大,当102x -<<时,y 随x 的增大而减小,故③错误;抛物线2(0)y ax bx c a =++≠与x 轴交于点(3,0)-,其对称轴为直线12x =-,∴该抛物线与x 轴的另一个交点的坐标为(2,0), 20ax bx c ∴++=的两个根为13x =-,22x =, 211()0a b c x x ∴+⋅+=的两个根为13x =-,22x =,∴一元二次方程20cx bx a ++=的两根分别为113x =-,212x =,故④正确;该函数与x 轴的两个交点为(3,0)-,(2,0),∴该函数的解析式可以为(3)(2)y a x x =+-,当3y =-时,3(3)(2)a x x -=+-∴当3y =-对应的x 的值一个小于3-,一个大于2,∴若m ,()n m n <为方程(3)(2)30a x x +-+=的两个根,则3m <-且2n >,故⑤错误; 故选:B .【点睛】本题考查二次函数图象与系数的关系、根与系数的关系、抛物线与x 轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.11.(2021·四川省宜宾市中考一模)二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线2x =,下列结论:①40a b +=;93a c b +>;③8720a b c ++>;④若点()13,A y -、点21,2B y ⎛⎫- ⎪⎝⎭、点37,2C y ⎛⎫ ⎪⎝⎭在该函数图象上,则132y y y <<;⑤若方程(1)(53a x x +-=-)的两根为1x 和2x ,且12x x <,则1215x x <-<<;⑥44a b b a+=-, 其中正确的结论有( )A .3B .4C .5D .6 【答案】A【分析】利用对称轴方程得到−2b a=2,则b =−4a ,于是可对①进行判断;利用x =−3时,y <0可对②进行判断;利用图象过点(−1,0)得到a −b +c =0,把b =−4a 代入得到c =−5a ,则8a +7b +2c =−30a ,然后利用a <0可对③进行判断;根据二次函数的性质,通过比较A 、B 、C 点到对称轴的距离的大小得到y 1<y 2<y 3.则可对④进行判断.根据抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(5,0),则抛物线解析式为y =a (x +1)(x −5),所以方程a (x +1)(x −5)=−3的两根x 1和x 2为抛物线y =a (x +1)(x −5)与直线y =−3的交点的横坐标,于是结合函数图象可对⑤进行判断; 根据b =−4a ,可对⑥进行判断.【详解】解:∵抛物线的对称轴为直线x =−2b a=2, ∴b =−4a ,即4a +b =0,所以①正确;∵x =−3时,y <0,∴9a −3b +c <0,即9a +c <3b ,所以②错误;∵抛物线经过点(−1,0),∴a −b +c =0,而b =−4a ,∴a +4a +c =0,则c =−5a ,∴8a +7b +2c =8a −28a −10a =−30a ,∵a <0,∴8a +7b +2c >0,所以③正确;∵点A (−3,y 1)到直线x =2的距离最大、点C (72,y 3)到直线x =2的距离最小,抛物线开口向下,∴y 1<y 2<y 3.所以④错误.∵抛物线的对称轴为直线x =2,抛物线与x 轴的一个交点坐标为(−1,0),∴抛物线与x 轴的另一个交点坐标为(5,0),∴抛物线解析式为y =a (x +1)(x −5),∴方程a (x +1)(x −5)=−3的两根x 1和x 2为抛物线y =a (x +1)(x −5)与直线y =−3的交点的横坐标,∴x 1<−1<5<x 2;所以⑤正确;∵b =−4a , ∴()()4145a b b a +=-+-=-,故⑥错误; 故选A .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:Δ>0时,抛物线与x 轴有2个交点;Δ=0时,抛物线与x 轴有1个交点;Δ<0时,抛物线与x 轴没有交点.12.(2021·黑龙江齐齐哈尔中考真题)如图,二次函数2(0)y ax bx c a =++≠图象的一部分与x 轴的一个交点坐标为()1,0,对称轴为1x =-,结合图象给出下列结论:①0a b c ++=;②20a b c -+<;③关于x 的一元二次方程20(a 0)++=≠ax bx c 的两根分别为-3和1;④若点()14,y -,()22,y -,()33,y 均在二次函数图象上,则123y y y <<;⑤()a b m am b -<+(m 为任意实数).其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【分析】根据二次函数的图象及性质逐项分析即可判断.【详解】解:∵二次函数2(0)y ax bx c a =++≠图象的一部分与x 轴的一个交点坐标为()1,0, ∴当x =1时,0a b c ++=,故结论①正确;根据函数图象可知,当10x y =-<,,即0a b c -+<,对称轴为1x =-,即12b a -=-, 根据抛物线开口向上,得0a >,∴20b a =>,∴0a b c b -+-<,即20a b c -+<,故结论②正确;根据抛物线与x 轴的一个交点为()1,0,对称轴为1x =-可知:抛物线与x 轴的另一个交点为(-3,0),∴关于x 的一元二次方程20(a 0)++=≠ax bx c 的两根分别为-3和1,故结论③正确;根据函数图象可知:213y y y <<,故结论④错误;当x m =时,2()y am bm c m am b c =++=++,∴当1m =-时,()a b c m am b c -+=++,即()a b m am b -=+,故结论⑤错误,综上:①②③正确,故选:C .【点睛】本题主要考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系.二、填空题13.(2021·北京师大附中九年级月考)二次函数y =ax 2+bx +c 的图象如图所示,下列结论:①abc <0;②3a +c <0;③b 2﹣4ac >0;④16a +4b +c >0.其中正确结论的个数是:___.【答案】3【分析】根据二次函数图象的性质(开口方向、对称轴、与坐标轴交点以及特殊点的值),确定对应代数值的符号即可.【详解】解:图象开口方向向上,所以0a >, 对称轴为12b a-=,20b a =-< 图象与y 轴交点在x 轴下方,∴0c <∴0abc >,①错误;由图象可得,当1x =-时,0y <,即0a b c -+<,∴30a c +<,②正确;图象与x 轴有两个交点,∴240b ac ->,③正确;由图象可知,当2x =-时,0y >,又因为(2,)y -关于1x =对称的点为(4,)y∴当4x =时,0y >,即1640a b c ++>,④正确所以正确的个数为3故答案为3【点睛】此题考查了二次函数的图象与系数的关系,解题的关键是根据函数图象确定出对应代数值的符号.14.(2021·湖北新洲九年级月考)抛物线2y ax bx c =++的对称轴为直线1x =-,部分图象如图所示,下列判断中:①0abc >;②20a b -=;③240b ac ->;④420a b c ++>;其中判断正确的选项是____________.【答案】②③④【分析】利用抛物线开口方向得到a >0,利用抛物线的对称轴方程得到b =2a >0,利用抛物线与y 轴的交点位置得到c <0,则可对①进行判断;利用对称轴方程可对②判断;利用抛物线与x 轴交点个数可对③进行判断; 利用当x =2时,y >0,可对④判断.【详解】解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =2b a-=−1, ∴b =2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①错误;∵b =2a ,∴20a b -=,所以②正确;∵抛物线与x 轴有2个交点,∴Δ=240b ac ->,所以③正确;∵当x =2时,y >0,∴420a b c ++>,所以④正确.故答案是:②③④.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左;当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:Δ=b 2−4ac >0时,抛物线与x 轴有2个交点;Δ=b 2−4ac =0时,抛物线与x 轴有1个交点;Δ=b 2−4ac <0时,抛物线与x 轴没有交点.15.如图是二次函数2y ax bx c =++的图象的一部分;图象过点(3,0)A -,对称轴为1x =-,给出四个结论:①24b ac >;②20a b +=;③0a b c -+=;④5a b <.其中正确的是__________.(填序号)【答案】①④【分析】①由图象与x 轴有交点,对称轴为x =2b a-=﹣1,与y 轴的交点在y 轴的正半轴上,可以推出b 2﹣4ac >0,可对①进行判断;②由抛物线的开口向下知a <0,与y 轴的交点在y 轴的正半轴上得到c >0,由对称轴为x =2b a -=﹣1,可对②进行分析判断;③由x =﹣1时y 有最大值,由图象可知y ≠0,可对③进行分析判断;④把x =1,x =﹣3代入解析式得a +b +c =0,9a ﹣3b +c =0,两边相加整理得5a ﹣b =﹣c <0,即5a <b ,即可对④进行判断.【详解】①∵图象与x 轴有交点,对称轴为x =2b a-=﹣1,与y 轴的交点在y 轴的正半轴上, 又∵二次函数的图象是抛物线,∴与x 轴有两个交点, ∴b 2﹣4ac >0,即b 2>4ac ,故①正确;②∵抛物线的开口向下,∴a <0,∵与y 轴的交点在y 轴的正半轴上,∴c >0,∵对称轴为x =2b a-=﹣1, ∴2a =b ,∴2a +b =4a ,a ≠0,故②错误;③∵x =﹣1时y 有最大值,由图象可知y ≠0,故③错误;④把x =1,x =﹣3代入解析式得a +b +c =0,9a ﹣3b +c =0,两边相加整理得5a ﹣b =﹣c <0,即5a <b ,故④正确;故答案为:①④.【点睛】本题考查了二次函数的图象与系数的关系,解题关键是掌握二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,要注意数形结合思想的运用.16.(2021·贵州黔东南中考真题)如图,二次函数()2=++0y ax bx c a ≠的函数图象经过点(1,2),且与x 轴交点的横坐标分别为1x 、2x ,其中 -1<1x <0,1<2x <2,下列结论:①0abc >;②20a b +<;③420a b c -+>;④当()12x m m =<<时,22am bm c <+-;⑤1b > ,其中正确的有 ___________.(填写正确的序号)【答案】②④⑤【分析】根据二次函数的开口方向、对称轴、与x 轴、y 轴的交点坐标以及过特殊点时系数a 、b 、c 满足的关系等知识进行综合判断即可.【详解】解:抛物线开口向下,a <0,对称轴在y 轴的右侧,a 、b 异号,因此b >0,与y 轴的交点在正半轴,c >0,所以abc <0,故①错误;对称轴在0~1之间,于是有0<-2b a<1,又a <0,所以2a +b <0,故②正确; 当x =-2时,y =4a -b +c <0,故③错误;当x =m (1<m <2)时,y =am 2+bm +c <2,所以am 2+bm <2-c ,故④正确;当x =-1时,y =a -b +c <0,当x =1时,y =a +b +c =2,所以-2b <-2,即b >1,故⑤正确; 综上所述,正确的结论有:②④⑤,故答案为:②④⑤.【点睛】本题考查了二次函数的图象和性质,不等式的性质等知识,掌握抛物线的所处的位置与系数a 、b 、c 满足的关系是正确判断的前提.17.(2021·山东泰安中考真题)如图是抛物线2y ax bx c =++的部分图象,图象过点(3,0),对称轴为直线1x =,有下列四个结论:①0abc >;②0a b c -+=;③y 的最大值为3;④方程210ax bx c +++=有实数根.其中正确的为________(将所有正确结论的序号都填入).【答案】②④【分析】根据二次函数的图象与性质对各项进行判断即可.【详解】解:∵抛物线的开口向下,与y 轴的交点在y 轴的正半轴,∴a <0,c >0,∵抛物线的对称轴为直线x =1, ∴﹣2b a=1,即b =﹣2a >0 ∴abc <0,故①错误;∵抛物线与x 轴的一个交点坐标为(3,0),∴根据对称性,与x 轴的另一个交点坐标为(﹣1,0),∴a ﹣b +c =0,故②正确;根据图象,y 是有最大值,但不一定是3,故③错误;由210ax bx c +++=得2=1ax bx c ++﹣,根据图象,抛物线与直线y =﹣1有交点,∴210ax bx c +++=有实数根,故④正确,综上,正确的为②④,故答案为:②④.【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与性质,会利用数形结合思想解决问题是解答的关键.18.(2021·山东济宁中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的正半轴交于点A ,对称轴为直线1x =,下面结论:①0abc <;②20a b +=;③30a c +>;④方程()20y ax bx c a =++≠必有一个根大于1-且小于0.其中正确的是____(只填序号).【答案】①②④.【分析】根据题意和函数图象,可以判断各个小题中的结论是否成立.【详解】解:由图象可得,a <0,b >0,c >0,则abc <0,故①正确;∵-2b a=1, ∴b =-2a ,∴2a +b =0,故②正确;∵函数图象与x 轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是直线x =1, ∴函数图象与x 轴的另一个交点在点(0,0)和点(-1,0)之间,故④正确;∴当x =-1时,y =a -b +c <0,∴y =a +2a +c <0,∴3a +c <0,故③错误;故答案为:①②④.19.(2021·湖北武汉市九年级月考)如图,二次函数()20y ax bx c a =++>的图象与x 轴交于两点()1,0x ,()2,0,其中101x <<,下列四个结论①0abc <;②20a c -<;③240a b c ++>;④44a b b a+<-,正确的序号是__________.【答案】①④【分析】根据抛物线开口向上,抛物线对称轴,抛物线与y 轴的交点可判断①正确;根据图象与x 轴交于两点(x 1,0),(2,0)和对称轴的位置可判断②错误;当x 12=时,y 的值为14a 12+b +c ,结合对称轴可判断③错误;根据对称轴12b a->;可得2a +b <0,变形可判断④正确; 【详解】解:①∵抛物线开口向上,∴a >0,∵抛物线对称轴在y 轴的右侧,∴b <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①正确;②∵图象与x 轴交于两点(x 1,0),(2,0),其中0<x 1<1, ∴2021222b a ++-<<,∴1322b a -<<, 当322b a -<时,b >﹣3a , ∵当x =2时,y =4a +2b +c =0,∴b =﹣2a 12-c , ∴﹣2a 12-c >﹣3a , ∴2a ﹣c >0,故②错误;③当x 12=时,y 的值为14a 12+b +c , 给14a 12+b +c 乘以4,即可化为a +2b +4c , ∵抛物线的对称轴在1322b a -<<, ∴x 12=关于对称轴对称点的横坐标在32和52之间, 由图象可知在32和2之间y 为负值,2和52之间y 为正值, ∴a +2b +4c 与0的关系不能确定,故③错误; ④∵12b a->, ∴2a +b <0,∴(2a +b )2>0,4a 2+b 2+4ab >0,4a 2+b 2>﹣4ab ,∵a >0,b <0,∴ab <0, ∴2244a b ab+-<, 即44a b b a+-<, 故④正确.故答案:①④.20.(2021·湖北武汉市九年级月考)抛物线()20y ax bx c a =++≠与x 轴交于点()2,0-、()1,0x ,其中110x -<<,0c <,下列四个结论:①0abc >;②20a c -<;③()()30a b a b -->;④若m ,n (m n <)为关于x 的方程()()1210a x x x +-+=的两个根,则32m n -<+<-.其中正确的结论是______(填写序号).【答案】②④【分析】由题意可知,a <0,c <0,由对称轴可知得出b <0,故判断①;由当x =−2时,y =0和当x =−1时,y >0可以判断②;由当x =−1时,a −b +c >0和322b a -->,可以判断③;y =ax 2+bx +c =a (x +2)(x −x 1)向上平移1个单位得到,对称轴不变,可以判断④.【详解】解:∵抛物线()20y ax bx c a =++≠与x 轴交于点()2,0-、()1,0x ,其中110x -<<,0c <,∴抛物线的大致形状为∴a <0,对称轴2b a-<0, ∴b <0, ∴0abc <,故①错误;∵当2x =-时,0y =,即420a b c -+=①,当1x =-时,0y >,即0a b c -+>②,由①得:24b a c =+,把24b a c =+代入②×2得:2(4)+20a a c c -+>,整理得:2a c -<0,故②正确;当1x =-时,+a b c ->0,∴0a b c -->>, 又∵322b a -->, ∴30<-a b ,∴()(3)0a b a b --<,故③错误;∵1(2)()10a x x x +-+=,即y '为21(2)()y ax bx c a a x x =++=+-向上平移1个单位得到,∴12,m n x -<>, ∴3122m n +--<<, ∴32m n -+-<<,故④正确;故答案为:②④.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );△决定抛物线与x 轴交点个数:Δ=b 2−4ac >0时,抛物线与x 轴有2个交点;Δ=b 2−4ac =0时,抛物线与x 轴有1个交点;Δ=b 2−4ac <0时,抛物线与x 轴没有交点.。

初中中考数学二次函数a、b、c关系选择题提升练习

初中中考数学二次函数a、b、c关系选择题提升练习

二次函数a、b、c关系选择题提升练习1.如图,抛物线的顶点为,与轴的交点在点和之间,下列结论正确的有( )① ;② ;③ ;④ .A. 1个B. 2个C. 3个D. 4个2.如图,抛物线与轴交于点,其对称轴为直线,结合图象给出下列结论:① ;② ;③当时,随的增大而增大;④关于的一元二次方程有两个不相等的实数根.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>c;⑤a+b>m(am+b)(m≠1的实数),其中结论正确的有()A. ①②③B. ②③⑤C. ②③④D. ③④⑤4.抛物线y=ax 2+bx+c 的对称轴为直线x=﹣1,图象过(1,0)点,部分图象如图所示,下列判断中:①abc >0;②b 2﹣4ac >0;③9a ﹣3b+c=0;④若点(﹣0.5,y 1),(﹣2,y 2)均在抛物线上,则y 1>y 2;⑤5a ﹣2b+c <0.其中正确的个数有( )A. 2B. 3C. 4D. 5 5.如图是抛物线的部分图象,其对称轴为直线,与 轴的交点坐标为,下列结论:①;②;③方程的两根分别是0和2;④方程有一个实根大于2;⑤当时, 随着 的增大而减小. 其中正确..结论的个数是( )A. 2B. 3C. 4D. 5 6.如图,抛物线 与 轴交于点 ,其对称轴为直线,结合图象分析下列结论:①;②;③当 时, 随 的增大而增大;④一元二次方程 的两根分别为,;⑤;⑥若,为方程的两个根,则且,其中正确的结论有( )A. 3个B. 4个C. 5个D. 6个 7.已知,抛物线经过点,且满足9a+3b+c<0,以下结论:①a+b <0;②4a+c <0;③对于任何x ,都有;④.其中正确的结论是( )A. ①②③B. ①②④C. ②③④D. ①②③④8.如图所示,抛物线L:()的对称轴为x=5,且与x轴的左交点为(1,0)则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ .A. ①②③④B. ①②③C. ①③④D. ①④9.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个10.二次函数的部分图象如图所示,图象过点,对称轴为直线x=2,下列结论:① ;② ;③ ;④若点,点,点在该函数图象上,则;⑤若方程的两根分别为和,且,则.其中正确的结论有()A. 2个B. 3个C. 4个D. 5个答案解析部分一、单选题1.【答案】B【解析】【解答】解:∵图象与x轴有两个交点∴b2-4ac>0,即①错误;∵抛物线的顶点为(-1,3)∴y=a(x+1)2+3∵抛物线与x轴的交点在点(-3,0)∴a(-3+1)2+3=0∴a=-即y==(x+1)2+3∵抛物线的顶点为(-1,3),抛物线与x轴的交点在(-3,0)和(-2,0)之间∴当x=1时,a+b+c<0,即②错误;∵-=-1∴2a-b=0,即③正确;∵y=-(x+1)2+3=-x2-x+∴c-a=3,即④正确故答案为:B.【分析】根据图象与x轴的交点即可判断①,继而将x=1代入抛物线的解析式判断②,根据顶点坐标即可判断③,最后根据抛物线的解析式判断④即可。

二次函数系数a、b、c与图像的关系----精选练习题

二次函数系数a、b、c与图像的关系----精选练习题

二次函数系数a、b、c与图像的闭系之阳早格格创做知识重心二次函数y=ax2+bx+c系数标记的决定:(1)a由扔物线启心目标决定:启心目标进与,则a>0;可则a<0.(2)b由对付称轴战a的标记决定:由对付称轴公式x=推断标记.(3)c由扔物线与y轴的接面决定:接面正在y轴正半轴,则c>0;可则c<0.(4)b24ac的标记由扔物线与x轴接面的个数决定:2个接面,b24ac>0;1个接面,b24ac=0;不接面,b24ac<0.(5)当x=1时,可决定a+b+c的标记,当x=1时,可决定ab+c的标记.(6)由对付称轴公式x=,可决定2a+b的标记.一.采用题(共9小题)1.(•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列道法:①c=0;②该扔物线的对付称轴是曲线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中精确的个数是()A.1B.2C.3D.4 2.(•仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下论断:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有精确论断的序号是()A.③④B.②③C.①④D.①②③3.(•北阳二模)二次函数y=ax2+bx+c的图象如图所示,那么闭于此二次函数的下列四个论断:①a<0;②c>0;③b2﹣4ac>0;④<0中,精确的论断有()A.1个B.2个C.3个D.4个4.(•襄乡区模拟)函数y=x2+bx+c与y=x的图象如图,有以下论断:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中精确论断的个数为()A.1B.2C.3D.4 5.(•宜都会模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对付称轴为x=﹣1,且过面(﹣3,0)下列道法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是扔物线上的二面,则y1>y2.其中道法精确的是()A.①②B.②③C.②③④D.①②④6.(•莆田量检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象接y轴于背半轴,对付称轴正在y轴的左侧,则m的与值范畴是()A.m>2 B.m<3 C.m>3 D.2<m<3 7.(•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过面A(﹣3,0),对付称轴为x=﹣1.给出四个论断:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中精确论断的个数是()A.1个B.2个C.3个D.4个8.(•乐山市中区模拟)如图,扔物线y=ax2+bx+c与x轴接于面A(﹣1,0),顶面坐标为(1,n),与y轴的接面正在(0,2)、(0,3)之间(包罗端面).有下列论断:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中精确的是()A.①②B.③④C.①③D.①③④9.(•齐齐哈我二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴接于面(﹣1,0),(x1,0),且1<x1<2,下列论断精确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个10、(•沉庆)已知扔物线y=ax2+bx+c(a≠0)正在仄里曲角坐标系中的位子如图所示,则下列论断中,精确的是()A、a>0B、b<0C、c<0D、a+b+c>011、(•俗安)已知二次函数y=ax2+bx+c的图象如图,其对付称轴x=1,给出下列截止①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤ab+c<0,则精确的论断是()A、①②③④B、②④⑤C、②③④D、①④⑤12、(•孝感)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相接,其顶面坐标为(12,1),下列论断:①ac<0;②a+b=0;③4acb2=4a;④a+b+c<0.其中精确论断的个数是()A、1B、2C、3D、4问案一.采用题(共9小题)1.(•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列道法:①c=0;②该扔物线的对付称轴是曲线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中精确的个数是()A.1B.2C.3D.4考面:二次函数图象与系数的闭系.分解:由扔物线与y轴的接面推断c与0的闭系,而后根据对付称轴及扔物线与x轴接面情况举止推理,从而对付所得论断举止推断.解问:解:扔物线与y轴接于本面,c=0,(故①精确);该扔物线的对付称轴是:,曲线x=﹣1,(故②精确);当x=1时,y=a+b+c∵对付称轴是曲线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③过失);x=m对付应的函数值为y=am2+bm+c,x=﹣1对付应的函数值为y=a﹣b+c,又∵x=﹣1时函数博得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④精确).故选:C.面评:本题考查了二次函数图象与系数的闭系.二次函数y=ax2+bx+c(a≠0)系数标记由扔物线启心目标、对付称轴、扔物线与y轴的接面、扔物线与x轴接面的个数决定.2.(•仙游县二模)已知二次函数y=ax2+bx+c (a≠0)的图象如图所示,给出以下论断:①a+b+c <0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有精确论断的序号是()A.③④B.②③C.①④D.①②③考面:二次函数图象与系数的闭系.博题:数形分离.分解:由扔物线的启心目标推断a的标记,由扔物线与y轴的接面推断c的标记,而后根据对付称轴及扔物线与x轴接面情况举止推理,从而对付所得论断举止推断.解问:解:①当x=1时,y=a+b+c=0,故①过失;②当x=﹣1时,图象与x轴接面背半轴明隐大于﹣1,∴y=a﹣b+c<0,故②精确;③由扔物线的启心背下知a<0,∵对付称轴为0<x=﹣<1,∴2a+b<0,故③精确;④对付称轴为x=﹣>0,a<0∴a、b同号,即b>0,由图知扔物线与y轴接于正半轴,∴c>0∴abc<0,故④过失;∴精确论断的序号为②③.故选:B.面评:二次函数y=ax2+bx+c系数标记的决定:(1)a由扔物线启心目标决定:启心目标进与,则a>0;可则a<0;(2)b由对付称轴战a的标记决定:由对付称轴公式x=﹣推断标记;(3)c由扔物线与y轴的接面决定:接面正在y轴正半轴,则c>0;可则c<0;(4)当x=1时,不妨决定y=a+b+c的值;当x=﹣1时,不妨决定y=a ﹣b+c的值.3.(•北阳二模)二次函数y=ax2+bx+c的图象如图所示,那么闭于此二次函数的下列四个论断:①a<0;②c>0;③b2﹣4ac>0;④<0中,精确的论断有()A.1个B.2个C.3个D.4个考面:二次函数图象与系数的闭系.博题:数形分离.分解:由扔物线的启心目标推断a与0的闭系,由扔物线与y轴的接面推断c 与0的闭系,而后根据对付称轴及扔物线与x轴接面情况举止推理,从而对付所得论断举止推断.解问:解:①∵图象启心背下,∴a<0;故本选项精确;②∵该二次函数的图象与y轴接于正半轴,∴c>0;故本选项精确;③∵二次函数y=ax2+bx+c的图象与x轴有二个不相共接面,∴根的判别式△=b2﹣4ac>0;故本选项精确;④∵对付称轴x=﹣>0,∴<0;故本选项精确;综上所述,精确的论断有4个.故选D.面评:本题主要考查了二次函数的图象战本量,解问本题闭键是掌握二次函数y=ax2+bx+c系数标记的决定,干题时要注意数形分离思维的使用,共教们加强锻炼即可掌握,属于前提题.4.(•襄乡区模拟)函数y=x2+bx+c与y=x的图象如图,有以下论断:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中精确论断的个数为()A.1B.2C.3D.4考面:二次函数图象与系数的闭系.分解:由函数y=x2+bx+c与x轴无接面,可得b2﹣4c<0;当x=﹣1时,y=1﹣b+c>0;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,既而可供得问案.解问:解:∵函数y=x2+bx+c与x轴无接面,∴b2﹣4ac<0;故①精确;当x=﹣1时,y=1﹣b+c>0,故②过失;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③精确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④精确.故选C.面评:主要考查图象与二次函数系数之间的闭系.此题易度适中,注意掌握数形分离思维的应用.5.(•宜都会模拟)如图是二次函数y=ax2+bx+c 图象的一部分,其对付称轴为x=﹣1,且过面(﹣3,0)下列道法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是扔物线上的二面,则y1>y2.其中道法精确的是()A.①②B.②③C.②③④D.①②④考面:二次函数图象与系数的闭系.分解:根据扔物线启心目标得到a>0,根据扔物线的对付称轴得b=2a>0,则2a﹣b=0,则可对付②举止推断;根据扔物线与y轴的接面正在x轴下圆得到c<0,则abc<0,于是可对付①举止推断;由于x=﹣2时,y<0,则得到4a﹣2b+c<0,则可对付③举止推断;通过面(﹣5,y1)战面(2,y2)离对付称轴的近近对付④举止推断.解问:解:∵扔物线启心进与,∴a>0,∵扔物线对付称轴为曲线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②精确;∵扔物线与y轴的接面正在x轴下圆,∴c<0,∴abc<0,所以①精确;∵x=2时,y>0,∴4a+2b+c>0,所以③过失;∵面(﹣5,y1)离对付称轴要比面(2,y2)离对付称轴要近,∴y1>y2,所以④精确.故选D.面评:本题考查了二次函数图象与系数的闭系:二次函数y=ax2+bx+c(a≠0),二次项系数a决断扔物线的启心目标战大小,当a>0时,扔物线进与启心;当a<0时,扔物线背下启心;一次项系数b战二次项系数a共共决断对付称轴的位子:当a与b共号时(即ab>0),对付称轴正在y轴左;当a与b同号时(即ab<0),对付称轴正在y轴左.(简称:左共左同).扔物线与y轴接于(0,c).扔物线与x轴接面个数:△=b2﹣4ac>0时,扔物线与x轴有2个接面;△=b2﹣4ac=0时,扔物线与x轴有1个接面;△=b2﹣4ac<0时,扔物线与x轴不接面.6.(•莆田量检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象接y轴于背半轴,对付称轴正在y轴的左侧,则m的与值范畴是()A.m>2 B.m<3 C.m>3 D.2<m<3考面:二次函数图象与系数的闭系.分解:由于二次函数的对付称轴正在y轴左侧,根据对付称轴的公式即可得到闭于m的不等式,由图象接y轴于背半轴也可得到闭于m的不等式,再供二个不等式的大众部分即可得解.解问:解:∵二次函数y=x2+(2﹣m)x+m﹣3的图象接y轴于背半轴,∴m﹣3<0,解得m<3,∵对付称轴正在y轴的左侧,∴x=,解得m>2,∴2<m<3.故选:D.面评:此题主要考查了二次函数的本量,解题的闭键是利用对付称轴的公式以及图象与y轴的接面办理问题.7.(•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过面A(﹣3,0),对付称轴为x=﹣1.给出四个论断:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中精确论断的个数是()A.1个B.2个C.3个D.4个考面:二次函数图象与系数的闭系.分解:由扔物线的启心目标推断a与0的闭系,由扔物线与y轴的接面推断c 与0的闭系,而后根据对付称轴及扔物线与x轴接面情况举止推理,从而对付所得论断举止推断.解问:解:∵扔物线的启心目标背下,∴a<0;∵扔物线与x轴有二个接面,∴b2﹣4ac>0,即b2>4ac,①精确;由图象可知:对付称轴x==﹣1,∴2a=b,2a+b=4a,∵a≠0,∴2a+b≠0,②过失;∵图象过面A(﹣3,0),∴9a﹣3b+c=0,2a=b,所以9a﹣6a+c=0,c=﹣3a,③精确;∵扔物线与y轴的接面正在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0,④精确.故选C.面评:考查了二次函数图象与系数的闭系,解问本题闭键是掌握二次函数y=ax2+bx+c(a≠0)系数标记由扔物线启心目标、对付称轴、扔物线与y轴的接面、扔物线与x轴接面的个数决定.8.(•乐山市中区模拟)如图,扔物线y=ax2+bx+c与x轴接于面A(﹣1,0),顶面坐标为(1,n),与y轴的接面正在(0,2)、(0,3)之间(包罗端面).有下列论断:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中精确的是()A.①②B.③④C.①③D.①③④考面:二次函数图象与系数的闭系.分解:①由扔物线的对付称轴为曲线x=1,一个接面A(﹣1,0),得到另一个接面坐标,利用图象即可对付于选项①做出推断;②根据扔物线启心目标判决a的标记,由对付称轴圆程供得b与a的闭系是b=﹣2a,将其代进(3a+b),并判决其标记;③根据二根之积=﹣3,得到a=,而后根据c的与值范畴利用不等式的本量去供a的与值范畴;④把顶面坐标代进函数剖析式得到n=a+b+c=c,利用c的与值范畴不妨供得n的与值范畴.解问:解:①∵扔物线y=ax2+bx+c与x轴接于面A(﹣1,0),对付称轴曲线是x=1,∴该扔物线与x轴的另一个接面的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①精确;②根据图示知,扔物线启心目标背下,则a<0.∵对付称轴x==1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②过失;③∵扔物线与x轴的二个接面坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,=﹣3,则a=.∵扔物线与y轴的接面正在(0,2)、(0,3)之间(包罗端面),∴2≤c≤3,∴﹣1≤≤,即﹣1≤a ≤.故③精确;④根据题意知,a=,=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,≤≤4,≤n≤4.故④精确.综上所述,精确的道法有①③④.故选D.面评:本题考查了二次函数图象与系数的闭系.二次函数y=ax2+bx+c系数标记由扔物线启心目标、对付称轴、扔物线与y轴的接面扔物线与x轴接面的个数决定.9.(•齐齐哈我二模)已知二次函数y=ax2+bx+c (a>0)的图象与x轴接于面(﹣1,0),(x1,0),且1<x1<2,下列论断精确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个考面:二次函数图象与系数的闭系.分解:由扔物线的启心目标推断a与0的闭系,由扔物线与y轴的接面推断c 与0的闭系,而后根据对付称轴及扔物线与x轴接面情况举止推理,从而对付所得论断举止推断.解问:解:①∵y=ax2+bx+c(a>0)的图象与x轴接于面(﹣1,0),(x1,0),且1<x1<2,∴对付称轴正在y轴的左侧,即:﹣>0,∵a>0∴b<0,故①精确;②隐然函数图象与y轴接于背半轴,∴c<0精确;③∵二次函数y=ax2+bx+c(a>0)的图象与x轴接于面(﹣1,0),∴a﹣b+c=0,即a+c=b,∵b<0,∴a+c<0精确;④∵二次函数y=ax2+bx+c(a>0)的图象与x轴接于面(﹣1,0),且a>0,∴当x=﹣2时,y=4a﹣2b+c>0,故④精确,故选D.面评:主要考查图象与二次函数系数之间的闭系,会利用对付称轴的范畴供2a 与b的闭系,以及二次函数与圆程之间的变换,根的判别式的流利使用.。

2.4(6)抛物线与系数a,b,c关系练习题及答案

2.4(6)抛物线与系数a,b,c关系练习题及答案

2.4(6)二次函数图象位置与a ,b ,c 练习题及答案1. 如图抛物线的图象,以下结论:①0<abc ②当1x =时,函数有最大值;③当13x x =-=或时, y 的值都等于0. ④024<++c b a 其中正确结论的个数是( )A.1B.2C.3D.42已知二次函数y=ax 2+bx+c (a ≠0)的图象如图3所示,下列结论:①abc >0 ②2a+b <0 ③4a -2b+c <0 ④a+c >0,其中正确结论的个数为( )A 、4个B 、3个C 、2个D 、1个 3. 小明从图1所示的二次函数y=ax 2+bx+c 的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号) 4如图,是二次函数 y =ax 2+bx +c (a ≠0)的图象的一部分, 给出下列命题 : ①a+b+c=0;②b >2a ;③ax 2+bx+c=0的两根分别为-3和1;④a-2b+c >0.其中正确的命题是.(填写的序号)5. 二次函数y=ax 2+bx+c 的图象如图1所示,则下列结论中,正确的个数是( )①a+b+c <0;②a-b+c>0;③abc>0;④b=2a A.4 B.3 C.2 D.1x图1图16.二次函数y=ax2+bx+c的图象如图2所示,那么下列判断正确的是。

①abc>0;②b2-4ac>0,③2a+b>0;④4a-2b+c<07.二次函数y=ax2+bx+c(a≠0)的图象如图3所示,下列结论:①abc>0 ②2a+b<0 ③4a-2b+c<0 ④a+c>0其中正确结论的个数为()A、4个B、3个C、2个D、1个8上图3是抛物线y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是()A.②④ B.①④ C.②③ D.①③9抛物线y=ax2+bx+c(a>0)的对称轴为直线x=-1,与x轴的一个交点为(x1,0),且0<x1<1,下列结论:①9a-3b+c>0;②b<a;③3a+c>0.其中正确结论的个数是()A、0 B、1 C、2 D、310.抛物线y=ax2+bx+c的图象如图,它与x轴的两个交点分别为(﹣1,0),(3,0)对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.1 B.2 C.3 D.4参考答案1解:根据函数图象,:a<0,c>0,对称轴x=1,b>0,与x轴交于(-1,0)(3,0)两点.①abc<0,正确;②当x=1时,函数有最大值,正确;③当x=-1或x=3时,函数y的值都等于0,正确;④当x=2时,y=4a+2b+c>0,错误;答案:C2 解:①:∵抛物线的开口向下,∴a<0,∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0,∵抛物线对称轴在y轴右侧,∴对称轴为x=-b/2a>0,又∵a<0,∴b>0,故abc<0;故本选项错误;②∵对称轴为x=-b/2a<1,a<0,∴-b>2a,∴2a+b<0;故本选项正确;③根据图示知,当x=-2时,y<0,即4a-2b+c<0;故本选项正确;④由图可知当 x=-1 时,y=a-b+c<0,∴a+c<b>0,即不确定a+c<0;故本选项错误;综上所述,②③共有2个正确.故选C.②由对称轴x=-b/ 2a =-1,得 b=2a 所以②b>2a错误。

二次函数系数abc符号的关系

二次函数系数abc符号的关系

y
解析:⑴根据题意 得:
,
3
解得
所以抛物线的解析式为
-1 O
x
⑵令
解得
根据图象可得当函数值y为正数时,自变量x的取值范围是
y
ox
y
o
x
四、二次函数y=ax2+bx+c(a≠0)的几个特
例:
y
y=a+b+c
1、当x=1 时,
y=a-b+c
2、当x= -1时, y=4a+2b+c
-2 -1 o 1 2
x
3、当x=2时,
y=4a-2b+c
…………… ……………
练4习、:当二x=次-2函时数, y=ax2+bx+c(a≠0)的图
练习:1、二次函数y=ax2+bx+c(a≠0)的图象
如图所示,则a、b、c的符号为( B ) y
A、a<0,b>0,c>0 B、a<0,b>0,c<0
C、a<0,b<0,c>0 D、a<0,b<0,c<0 o
x
2、二次函数y=ax2+bx+c(a≠0)的图象
如图所示,则a、b、c的符号为( A )

△=0时抛物线与x轴有一个交点
△<0时抛物线于x轴没有交点
练习:填空
(1)函数y=ax2 +bx+c(a 0)的函数值恒为正的
条件为:
,恒为负的条件为:

(2)已知抛物线y=ax2 +bx+c的图象在x轴的下方,
则方程ax2 +bx+c 0的解的情况为

二次函数有关abc练习题

二次函数有关abc练习题

二次函数有关 a、b、c 练习题3、已知二次函数y ax 2bx c(a0 )的图象如图所示,有下列四个结论:① b 0② c 0③ b24ac 0 ④a b c 0 ,其中正确的个数有()A.1个B.2个C.3个D.4个4、已知二次函数y ax2bx 1 的大致图象如图所示,那么函数y ax b 的图象不经过()A.第一象限B.第二象限 C .第三象限D.第四象限3456、小强从如图所示的二次函数y ax 2bx c 的图象中,观察得出了下面五条信息:(1)a 0 ;(2) c 1 ;(3) b0 ;(4) ab c0 ;(5) a b c0 .你认为其中正确信息的个数有()A.2 个B. 3 个C. 4 个D.5个6898、已知二次函数24a2b cy ax bx c的图象如图.则下列5a b c,个代数式: ac ,,2a b , 2a b 中,其值大于0 的个数为()A. 2 B 3C、4D、59 、已知二次函数y ax 2bx c 的图象如图所示,有以下结论:①a b c0 ;②a b c 1 ;③ abc0 ;④ 4a2b c0 其中所有正确结论的序号是()A.①②B.①③④ C .①②③D.①②③④10、小明从图所示的二次函数y ax 2bx c 的图象中,观察得出了下面五条信息:①c0 ;② abc 0;③ a b c0 ;④2a3b0;⑤ c4b0,你认为其中正确信息的个数有()A. 2个B. 3个C.4个 D .5个11、二次函数y ax 2bx c 的图象如图所示,若点A(1, y )、 B( 2, y)是它图象上的两12点,则 y1与 y2的大小关系是()A. y1y2B. y1y2C. y1y2D.不能确定101112、若 A ( -4 , y 1), B ( -3 ,y 2), C ( 1,y 3)为二次函数 y=x 2+4x-5 的图象上的三点,则 y 1, y 2,y 3 的大小关系是()A.y < y < yB.y2 <y < y3 C.y< y < y2 D.y1< y 3<y212313113、若 A ( 13 , y 1 ),B ( 5 , y 2 ), C ( 1, y 3 )为二次函数 y x 24x 5 的图象上的三点,4 4 4则 y 1 , y 2 , y 3 的大小关系是()A . y 1y 2 y 3 B . y 2 y 1 y 3 C . y 3y 1 y 2D . y 1 y 3 y 214、二次函数 yax 2 bxc 图象如图所示,则点 A(b 2 4ac , b) 在第 ___ 象限.ax 2a 15 、 如 图 为 二 次 函 数 ybx c 的 图 象 , 给 出 下 列 说 法 : ① ab 0 ; ② 方 程ax 2 bx c 0 的根为 x 1 1, x 2 3;③ a b c 0 ;④当 x 1 时, y 随 x 值的增大而 增大;⑤当 y 0时, 1 x 3 .其中,正确的说法有.14151616、如图所示, 抛物线 y ax 2bx c a0 )与 x 轴的两个交点分别为 A( 1,0) 和 B(2,0) ,(当 y 0 时, x 的取值范围是.17、已知二次函数y ax 2 bx c 的图象与 x 轴交于点( -2,0 )、 ( x 1 ,0) ,且 1 x 12 ,与y 轴的正半轴的交点在( 0,2 )的下方.下列结论:①4a2b c 0 ;② a b0 ;③2a c 0 ;④ 2a b 10 .其中正确结论的是.1.如图,点 A ,B 的坐标分别为( 1, 4)和( 4, 4),抛物线 y = a ( x - m )2+ n 的顶点在线段 AB 上运动,与 x 轴交于 C 、D 两点( C 在 D 的左侧),点C 的横坐标最小值为- 3,则点D 的横坐标最大值为()A .-3B.1 C. 5D. 82.已知 y = 2x 2 的图象是抛物线,若抛物线不动,把 x 轴、 y 轴分别向上、向右平移2 个单位,那么在新坐标系下抛物线的解析式是()A . y = 2( x - 2)2+2 B. y =2( x + 2) 2- 2C . y = 2( x - 2)2-2D . y = 2( x + 2)2+ 23.在平面直角坐标系中,将抛物线物线的解析式是( ) A . y =-( x + 1)2+ 2 BC . y =-( x - 1)2+ 2Dy x 2 2x 3 绕着它与 y 轴的交点旋转 180°,所得抛. y =-( x - 1) 2+ 4. y =-( x + 1) 2+ 44. 二次函数 ykx 2 6x 3 的图像与 x 轴有交点,则 k 的取值范围是A 、 k 3B 、 k3 且 k 0 C 、 k 3 D 、 k 3 且 k 05.y ax 2bx c的图象如图( 7)所示,那么关于x 的方程 ax2 bx c 2 0的已知函数根的情况是()A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根8.如图为二次函数 y=ax 2+ bx + c 的图象,在下列说法中:① ac < 0;②方程 ax 2+ bx + c=0 的根是 x 1= -1, x 2= 3③ a + b + c >0 ④当 x > 1 时, y 随 x 的增大而增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数有关a 、b 、c 练习题
班级_________ 姓名_________
1、(2009 黑龙江大兴安岭)二次函数)0(2≠++=a c bx ax y 的图象如图,下列判断错误的是 ( )
A .0<a
B .0<b
C .0<c
D .042<-ac b
(1) (2) (3)
2、(2009年兰州)二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( )
A .a <0 B.abc >0 C.c b a ++>0 D.ac b 42->0
3、(2009年广西南宁)已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列四
个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )
A .1个
B .2个
C .3个
D .4个
4、(2008四川 凉山州)已知二次函数21y ax bx =++的大致图象如图所示,那么函数y ax b =+的图象不经过( )
A .一象限
B .二象限
C .三象限
D .四象限
(4) (5) (6)
5、(2009年齐齐哈尔市)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数()
A .4个
B .3个
C .2个
D .1个
6、(2009年济宁市)小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下
面五条信息:(1)0a <;(2) 1c >;(3)0b >;(4) 0a b c ++>; (5)0a b c -+>. 你认为其中正确信息的个数有( )
A .2个
B .3个
C .4个
D .5个
7、(2008甘肃兰州)已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( )
A .1个
B .2个
C .3个
D .4个
(7) (8) (9)
8、(2009年鄂州)已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c , 4a -2b+c ,2a+b ,2a -b 中,其值大于0的个数为( )
A .2
B 3
C 、4
D 、5
9、(2009年黄石市)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( )
A .①②
B . ①③④
C .①②③⑤
D .①②③④⑤
10、(2008年陕西省)已知二次函数2y ax bx c =++(其中000a b c >><,,),
关于这个二次函数的图象有如下说法:
①图象的开口一定向上;
②图象的顶点一定在第四象限;
③图象与x 轴的交点至少有一个在y 轴的右侧.
以上说法正确的个数为( )
A .0
B .1
C .2
D .3
11、(2008湖北鄂州)小明从图所示的二次函数
2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有( )
A .2个
B .3个
C .4个
D .5个
12、(2008湖北武汉)下列命题:
①若0a b c ++=,则240b ac -≥;
②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根;
③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;
④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3.
其中正确的是( ).
A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.
13、(2009年深圳市)二次函数c bx ax y ++=2的图象如图所示,若点A (1,y 1)、B (2,
y 2)是它图象上的两点,则y 1与y 2的大小关系是( )
A .21y y <
B .21y y =
C .21y y >
D .不能确定
(11) (13)
14、(2008山东 滨州)若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5
的图象上的三点,则y 1,y 2,y 3的大小关系是( )
A.y 1<y 2<y 3
B.y 2<y 1<y 3
C.y 3<y 1<y 2
D.y 1<y 3<y 2
15、(2008山东东营)若A (1,413y -
),B (2,45y -),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是( )
A .123y y y <<
B .213y y y <<
C .312y y y <<
D .132y y y <<
16、(2008 湖北 天门)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,下列结论: ①abc >0;②2a +b <0;③a -b +c <0;④a +c >0,其中正确结论的个数为_________.
(16) (17)
17、(2008 青海)二次函数2y ax bx c =++图象如图所示,则点2(4)b A b ac a
--,在第
_________象限.
18、(2009年内蒙古包头)已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,
,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=; ②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.
19、(2009年甘肃庆阳)如图为二次函数2y ax bx c =++的图象,给出下列说法: ①0ab <;②方程20ax bx c ++=的根为1213x x =-=,;③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.
其中,正确的说法有 .(请写出所有正确说法的序号)
(19) (20)
20、(2009年本溪)如图所示,抛物线2y ax bx c =++(0a ≠)与x 轴的两个交点分别为(10)
A -,和(20)
B ,,当0y <时,x 的取值范围是 .
21、(2009年湖州)已知抛物线2y ax bx c =++(a >0)的对称轴为直线1x =,且经过点()()212y y -1,,, 试比较1y 和2y 的大小:1y _2y (填“>”,“<”或“=”)。

相关文档
最新文档