基于proe的凸轮机构设计与仿真

合集下载

基于的ProE直摆凸轮机构运动仿真(DOC)

基于的ProE直摆凸轮机构运动仿真(DOC)

摘要本课题所研究的直、摆组合凸轮机构是一种新型的机构类型,该机构通过直动从动件凸轮机构与摆动从动件凸轮机构组成联动凸轮机构,能够将主动件的转动转化为从动件上某点沿预期的曲线轨迹并以预期的运动规律运动。

在对直、摆组合凸轮机构理论分析的基础上,我们对直、摆组合凸轮机构进行了Pro/e 运动仿真,精确求解出了各凸轮的理论廓线、实际廓线及各构件结构尺寸等。

丰富了机械原理学科的设计理论及内容,适应了在机构设计方面许多学者致力于寻求凸轮机构的精确解和使凸轮曲线多样化及从动件轨迹多样化的要求。

最后,选择预期圆线轨迹为例,利用计算机辅助设计(Pro/ENGINEER)对该机构进行零、部件及总体造型分析设计,并利用Pro/ENGINEER对该直、摆组合凸轮机构进行了运动仿真,以验证理论的正确性和可行性。

因此,对直、摆组合凸轮机构进行深入地研究有着较大的理论和现实意义,有广阔的应用前景。

关键词:Pro/e应用组合机构凸轮设计运动仿真AbstractThe Z.B Combinatory Cam Mechanism is a kind of new-type mechanism, it can come into a kind of combinatory-movement mechanism which joints translation driven member cam and swing follower cam .It can translate the revolution of the driving body into a point of the driven body which has the ability to move around the anticipation curvilinear path and move based on the anticipation movement rule.Based on the theory in analyzing Z.B Combinatory Cam Mechanism,we simulate the mechanism in applying VB,solving the profile of theory,reality,cutter of cams,and the subject and dimension of all components exactly.Enriching the design-theory and content of the subject about mechanical principal .Adapting the request of many scholars in component design for searching the exact solution about cam-entity and making the cam-curve various and follower-profile various.Lastly, taking the four-leaf rose curve for example, applying the Pro/ENGINEER to design the curve, entity and motive emulate for verifying the truth and feasibility of the theory.Nowadays, researching the Z.B Combinatory Cam Mechanism, having the significance in theory and reality .The prospect is extensive.Key words:Pro/ENGINEER Application Combination Mechanism Cam Design Motive Emulate目录第一章前言---------------------------------------------------------------------------------------------------11.1 直、摆组合凸轮机构的研究意义---------------------------------------------1 1.2 凸轮机构以及组合机构的研究和发展状况------------------------------------4 1.3 Pro/ENGINEER WildFire软件的简介------------------------------------------5 1.4 本课题的主要研究内容----------------------------------------------------6 第二章直、摆组合凸轮机构基本设计及计算机辅助设计---------------------------72.1 直、摆组合凸轮机构基本设计----------------------------------------------7 2.2 直、摆组合凸轮机构凸轮各种廓线设计--------------------------------------142.2.1直动凸轮廓线求解--------------------------------------------------152.2.1.1 直动凸轮理论廓线-------------------------------------------152.2.1.2 直动凸轮实际廓线-------------------------------------------152.2.2 摆动凸轮廓线求解-------------------------------------------------162.2.2.1 摆动凸轮理论廓线-------------------------------------------162.2.2.2 摆动凸轮实际廓线-------------------------------------------16 2.3 计算机辅助设计---------------------------------------------------------16 2.4 设计举例---------------------------------------------------------------17 2.5 本章小结---------------------------------------------------------------20 第三章直、摆组合凸轮机构Pro/ENGINEER的设计-------------------------------213.1 创建凸轮模型-----------------------------------------------------------21 3.2 运动仿真的设计---------------------------------------------------------23 3.3 Pro/ENGINEER实体运动仿真-----------------------------------------------253.4 机械仿真结果分析及保存-------------------------------------------------29第四章小结----------------------------------------------------------------32 参考文献-------------------------------------------------------------------33第一章前言1.1直、摆组合凸轮机构的研究意义本课题研究的是直、摆组合凸轮机构如图1-1所示。

基于PRO_E的凸轮机构结构设计及其运动仿真分析_毕业设计正文

基于PRO_E的凸轮机构结构设计及其运动仿真分析_毕业设计正文

湖北文理学院毕业设计(论文)正文题目基于PRO/E的凸轮机构结构设计及其运动仿真分析专业机械设计制造及其自动化班级姓名学号指导教师职称┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊基于Pro/E的凸轮机构的结构设计及其运动仿真分析摘要:凸轮机构是机械中一种常用的机构,它结构简单,紧凑,工作可靠,设计方便,利用不同的凸轮轮廓线可以使从动件实现任意给定的复杂运动规律。

同时它兼有传动,导向和控制机构的各种功能和优点。

因此在包装机,纺织机,印刷机,内燃机以及农业机具等具有广泛的运用。

传统的凸轮设计有图解法和解析法,图解法形象直观,结构简单,但是手工作图选取的等分数有限,误差较大,较繁琐。

解析法设计虽然解决了凸轮设计的精度问题,但是要得到完整的凸轮轮廓线需要建立复杂的数学公式,编制复杂的程序,编程和计算工作量大。

总之,传统的运动分析法是一种间断的,静态的分析方法。

本文利用Pro/E强大的三维实体建模功能,建立凸轮机构的装配模型,然后进行运动学分析,仿真凸轮机构的运动情况,最后将所设置的构件的位移,速度,加速度变化情况以表格形式输出,通过修改仿真模型的参数,快速的修改和优化设计方案。

关键词:凸轮机构;Pro/E;三维建模;运动仿真。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊The cam mechanism based on Pro/E structure design andkinematics simulation analysisAbstract:the cam mechanism is a kind of commonly used mechanical mechanism, it has the advantages of simple structure, compact structure, reliable work, convenient design, using different cam contour line allows the follower to realize any given motion law of complex. At the same time it has the drive, guide and control mechanism of the various features and advantages. So in the packaging machine, textile machine, printing machine, internal combustion engines and agricultural machinery is widely used. The traditional cam design graphic method and analytic method, graphical method is visual, simple structure, but the chart manually selected score is limited, the error is large, complex. Analytic design method solves the problem of precision cam design, but to get the full cam contour line need to build a complex mathematical formula, the preparation of complex procedures, programming and calculation. In short, the traditional motion analysis is a kind of discontinuous, static analysis method. In this paper, using Pro/E powerful3D entity modeling function, establish the cam assembly model, then analyses the kinematics simulation of cam mechanism, motion, the setting member of displacement, velocity, acceleration in form of output, by modifying the parameters of the simulation model, rapid modification and optimization design.Key words: cam mechanism; Pro/E;3D modeling; motion simulation.┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊目录1前言 (1)1.1本课题研究的目的和意义 (1)1.2国内外的研究现状及发展趋势 (2)1.3研究的主要内容、途径和技术线路 (3)2凸轮轮廓线的设计 (4)2.1凸轮机构的分类 (4)2.2从动件的运动规律及选取原则 (4)2.3凸轮轮廓线的设计 (5)2.3.1凸轮轮廓线设计方法的基本原理 (5)2.3.2凸轮轮廓曲线的计算 (5)2.4凸轮机构基本尺寸的确定 (7)2.5滚子半径的选择 (8)3凸轮机构的实体建模与装配 (10)3.1Pro/E软件简介.............................. 错误!未定义书签。

ProE凸轮机构

ProE凸轮机构

设计步骤
步骤12:单击“机构分析”按钮 ,在“类型”下拉列表中选择“运动学 ”,将帧频设置为100,单击“运行”按钮。
设计步骤
步骤13:单击“生成分析测量结果”按钮 ,创建两个位移测量
设计步骤
步骤14:单击“生成分析的测量结果”按钮 ,进行结果分析。
小结
通过本例可以具备以下软件使用能力 定义凸轮连接关系的能力。 创建运动仿真环境的能力。 制定分析项目和获取测量结果的能力。
设计步骤
步骤3:单击“将元件添加倒组件”按钮 ,调入凸轮(axis.prt)。
设计步骤
步骤4:单击“将元件添加倒组件”按钮 ,使用“销钉”连接集 装配连杆1(connectionrod.prt)。
设计步骤
步骤5:使用“销钉”约束集装配连杆2(drivenpart.prt)。
设计步骤
步骤6:使用两个“销钉”约束集装配连杆3(pole.prt)。
凸轮结构运动仿真
1案Biblioteka :凸轮机构运动仿真案例背景:
模型文件
该机构是摆动滚子从动件平面肋凸轮连杆组合机构。 通过这个案例将学习到凸轮连杆组合机构进行运动仿真的设计方法以及操作步骤
案例建模所要用到的工作台:
装配工作台
案例建模时间 1小时
视频文件在光盘Pre/E-A07中
机构分析:
机构分析
该机构由凸轮驱动一个平行四边形机构,利用平行四边形机构中间 杆的平动特性来实现推送动作。
知识点
机构
机构应用程序 司服电机的添加 机构分析 生成分析的测量结果
设计流程
1.对机构进行转配 并添加连接关系
2.添加司服电机
3.进行机构分析
4.生成分析的测量结果
设计步骤 (Demo)

基于Pro_E4_0的圆柱槽形凸轮参数化设计和仿真加工(精)

基于Pro_E4_0的圆柱槽形凸轮参数化设计和仿真加工(精)

煤矿机械 Coal Mine Machinery Vol.32No.02 Feb. 2011第 32卷第 02期 2011年 02月0引言圆柱凸轮属于空间凸轮的一种 , 一般有槽形和突缘形 , 通过凸轮曲线轮廓将旋转运动转变为从动件的复杂运动来实现不同的功能 , 从动件的运动情况 , 是由凸轮轮廓曲线的形状决定的。

1基于 Pro/E的设计思路根据从动件运动规律及结构要求 , 提供相应的变量和几何参数 , 建立 Pro/E环境下圆柱面坐标表示的凸轮理论廓线方程 ; 在 Pro/E的 Program 编辑器中输入几何参数 , 并给各参数赋初值 ; 通过拉伸生成凸轮毛坯 , 在凸轮毛坯上利用建立的廓线方程分段绘制凸轮廓线 ; 用可变截面扫描功能在凸轮廓线上挖出凸轮的槽形特征 ; 最后在凸轮毛坯上生成内孔 , 并对凸轮外径、高度、内孔进行参数化。

这样只要用户重新运行这个程序并变更参数就能生成新的空间槽形凸轮 , 满足产品设计的需要。

2圆柱槽形凸轮参数化三维实体造型及实例拟设计圆柱槽形凸轮 , 从动件运动规律为正弦加速度运动 , 其推程运动方程为S =h φ-1sin 2πφ′ 回程运动方程为S =h 1-φ+1sin 2πφ′ ′ 式中 S ———从动件位移 ;h ———行程 ;φ———转角 ;准———推程角 ;准′ ———回程角。

2. 1建立 Pro/E环境下的数学表达式(1 驱动参数驱动参数见表 1。

表 1圆柱槽形凸轮的基本参数(2 Pro/E环境下圆柱坐标廓线方程式根据从动件运动方程 , 推导出柱面坐标表示的圆柱槽形凸轮廓线方程如下推程段 r=WJ*0.5theta=t*TCJz=JDGD+H*(t-sin(360*t/2/pi远休段 r=WJ*0.5theta=TCJ+t*YXJz=JDGD+H回程段 r=WJ*0.5theta=TCJ+YXJ+t*HCJ基于 Pro/E4.0的圆柱槽形凸轮参数化设计和仿真加工苏亚辉(宝鸡职业技术学院 , 陕西宝鸡 721000摘要 :根据圆柱槽形凸轮从动件运动规律 , 使用 Pro/E软件的 Program 编程功能实现了全参数化设计 , 并利用 Pro/E的 NC 加工模块对圆柱槽形凸轮的数控加工进行了三维仿真 , 缩短了圆柱槽形凸轮的设计周期 , 提高了生产效率。

基于Pro/E的凸轮参数化设计及ADAMS仿真

基于Pro/E的凸轮参数化设计及ADAMS仿真

基于Pro/E的凸轮参数化设计及ADAMS仿真摘要:基于Pro/ E 平台下进行凸轮的实体参数化设计,并应用ADAMS进行系统仿真,对相关产品的设计提供设计思路和借鉴作用。

关键词:Pro/E;凸轮;参数化;ADAMS1、前言Pro/ENGINEER是目前最先进的计算机辅助设计(CAD)、制造(CAM)和分析(CAE)软件,该系统是一个参数化、基于特征的实体造型系统,并且具有单一数据库功能。

该功能就是将每一个尺寸看作可变参数,而尺寸驱动是参数化设计的重要特点。

所谓尺寸驱动就是以模型的尺寸来决定模型的形状,一个模型由一组可变的尺寸进行定义。

这样只要修改这些参数尺寸,相关模型就会依照尺寸的变化重新生成,达到设计变更的一致性,从而避免或减少重复劳动。

利用虚拟样机仿真分析软件ADAMS的MECHANISM/Pro(Pro/E接口)模块进行系统运动学或动力学仿真,并进行干涉检查,确定运动锁定的位置,计算约束副的作用力等等,从而使产品开发阶段就可以帮助设计者发现设计缺陷,并提出改进的方案,提高产品的可靠性。

使用MECHANISM/Pro(Pro/E接口)模块进行运动学或动力学仿真分析时,一般遵循以下几个步骤①创建或打开Pro/ENGINEER装配模型;②定义刚体;③创建约束副;④添加驱动;⑤应用载荷和弹性连接器;⑥传送模型;⑦观察分析结果。

2、Pro/ENGINEER参数化的凸轮设计凸轮机构由于其结构简单、紧凑,而且从动件的运动规律完全取决于凸轮的轮廓曲线,所以在设计时只要设计适当的轮廓,便可使从动件获得所需的运动规律,因此在机械行业中有的广泛的应用。

设计凸轮轮廓的方法主要有作图法和解析法两种,随着计算机技术的发展,现在几乎都是采用解析法设计凸轮轮廓,同时也解决了采用作图法存在的精度问题。

而在Pro/E中可以通过建立方程式生成各段曲线,然后通过各曲线段扫描生成凸轮的实际轮廓曲面,这样设计出的凸轮模型,可以通过改变不同的参数从而获得不同的凸轮实体。

基于pro-e的凸轮设计与仿真

基于pro-e的凸轮设计与仿真

凸轮组件的装配
组件装配
伺服电机的创建
机构的运动( 动画)
谢谢各位老师参与我的答辩
通过样条曲线构建的轮廓
第二章 凸轮的实体建模
第三章 凸轮加工仿真
1.建立凸轮的毛坯,基 于本设计中凸轮形状, 设计用长方体的毛坯。 2.先精加工出凸轮的中 轴,然后基于轴孔装卡。 3.采用指状铣刀进行加 工,刀具半径 24 。
加工仿真界面
仿真过程视频
第四章 机构运动仿真
1.进入装配模型 2.安装支座、凸轮轴、凸轮、连杆等组件 3.进入机构分析界面建立驱动 4.建立凸轮与从动件连接 5.结果分析
第一章 凸轮的设计
1.结构的总体设计 2.从动件运动规律的计算 3.凸轮机构基本尺寸设计 4.凸轮轮廓设计 5.凸照设计要求,将凸 轮极坐标半径(E列 )、凸轮对应转角值 代入电子表格,通过 公式运算计算出在笛 卡尔坐标的凸轮轮廓 点坐标。(F列为横 坐标,G列为纵坐标 )
Pro-e5.0功能介绍
• • • • • • • 1、界面 2、草绘功能 3、建模功能 4、意外退出自动保存。 5、打印可以预览 6、可以计算曲面的质量 7、数控加工与先前版本有所区别
草绘功能
本设计中创建的凸轮立体模型
数控仿真
设计规划
一、凸轮的参数设计 二、凸轮零件的实体建模 三、凸轮加工仿真 四、凸轮装配 五、凸轮的运动仿真 五、零件的数控加工及 NC代码的自动生成
基于pro/e的凸轮设计与模拟加 工仿真
设计人:穆海华
PRO/E简介
Pro/ENGINEER是美国PTC公司所开发的3D实 体模型设计系统,是现代CAD技术发展中的 里程碑。它属于高端的CAD软件,支持复杂 产品开发的多方面需求。与其他同类的设 计软件相比,Pro/ENGINEER不仅功能强大,而 且易学易用,尤其是Pro/ENGINEER的Wildfire 更适合初学者使用。在Pre/ENGINEER提供 的各种功能中,建模(即构建空间实体)是最基 本的应用。

毕业设计(论文)基于proe的四缸内燃机凸轮配气机构的结构设计及运动仿真分析

毕业设计(论文)基于proe的四缸内燃机凸轮配气机构的结构设计及运动仿真分析

湖北文理学院毕业设计(论文)正文题目基于PRO/E的四缸内燃机凸轮配气机构的结构设计及运动仿真分析专业机械设计制造及其自动化班级机制0812班姓名学号指导教师职称2012年5 月23日基于PRO/E的四缸内燃机凸轮配气机构的结构设计及运动仿真分析摘要:配气机构作为内燃机的重要组成部分,其设计合理与否直接关系到内燃机的动力性能、经济性能、排放性能及工作的可靠性、耐久性。

随着内燃机高功率、高速化,人们对其性能指标的要求越来越高,要求其在高速运行的条件下仍然能够平稳、可靠地工作,因而对其配气机构提出了更高的要求。

配气凸轮型线是配气机构的核心部分,配气凸轮型线设计是配气机构优化设计的重要途径之一。

模拟计算和实验研究是内燃机配气机构研究两种重要手段。

运用多体力学的方法对配气机构进行了动态仿真分析,采用数字多体程序的方法,建立了配气系统的理论模型,进行配气机构的运动学、动力学分析,除了得到气门的升程、速度、加速度外,还考虑了摇臂与气门之间的碰撞,以及摇臂支座的柔性。

因此得到气门与摇臂之间的碰撞力,摇臂支座的柔性衬套的受力,气门弹簧力,凸轮轴支座反力,气门座反力及凸轮与摇臂之间的压力角等。

为凸轮型线、摇臂形状和整个配气机构的设计改进提供了重要依据。

利用pro/e强大的分析仿真功能, 对凸轮式配气机构的运动特性以及弹簧刚度对系统运动的影响进行了仿真分析, 得出弹簧刚度与气门振动的关系图, 为改善系统动力学性能和关键零部件设计提供了依据。

利用计算机软件仿真, 有利于降低研发成本并缩短产品的开发周期。

关键词:内燃机;配气机构;凸轮型线;优化设计;汽车;发动机;配气系统;顶置凸轮;动态仿真Based on the PRO / E four cylinder internal combustionengine cam mechanism design and motion simulationanalysisAbstract:The valve train is one of the most important mechanisms in a internal combustion engine, whether the performances are good or bad, that affecting the power performance, economic performance, emissions performance of the engine, as well as affecting the reliability and wear performances of the whole engine. Along with the requests of the engine’s high power, super-speed, people demand a higher index. That is, when the engine runs under a high speed, it can still work steadily and dependably, which demand that the valve train system should have a high performance. Cam profile is the hard core of the valve train, which design is one of the important ways to carry out valve train optimal design. Simulation calculation and experimentation research are two important ways to carry out research and development on valve train of internal-combustion engine.Valve-train has been dynamically simulated by the multi-body method.A theory model has been built for the valve train by using the digital multi-body program.Not only the lift height,speed and acceleration of valve but also the collision between valve and rocker and the flexibility of rocker support are taken into account.Therefore, the collision force between valve and rocker ,loading on the flexible bearing of rocker support, valve spring force, can support counter - force, valve ring counter - force and direction angle of acting force between cam and rocker have been carried out. The important basis on design improvement for cam profile, rocker form and valve form and valve train have been provided.This paper analyzed the dynamic characteristics of a cam-type valve t rain and the influence o f the spring stiffness on the systematic mot ion by using Pr o / E .The relationship between stiffness of spring and vibration of valve was got ten. The work ha s provided a basis for improving the system's dynamic char act eristics and designing the key components. T hereby , computer simulation can cut down the pro duct cost and shorten the development cycle.Key words:Internal combustion engine; Valve train; Cam profile; Optimal design;Automobile Engine Valve -train system Overhead camshaft Dynamic simulation目录1绪论 (5)1.1本课题研究的目的和意义 (5)1.2配气机构优化设计的目的及意义 (6)2基于PRO/E的配气机构的结构设计 (7)2.1配气机构总体骨架设计 (7)2.2凸轮轴设计 (9)2.3凸轮的设计 (9)2.4挺杆的设计 (9)2.5推杆的设计 (9)2.6气门杆的设计 (10)2.7弹簧的设计 (10)2.8使用PRO/E创建配气机构的相关元件 (11)3配气机构的装配 (15)3.1首先装配凸轮轴并准确定位 (15)3.2装配平底从动件 (16)3.3装配弹簧 (17)3.4装配汽门挺杆 (18)4四缸内燃机凸轮配汽机构动态仿真分析 (20)4.1内燃机凸轮配汽机构运动仿真准备工作 (20)4.2内燃机凸轮配汽机构运动仿真分析 (21)5本文总结 (27)参考文献 (29)致谢 (30)1绪论1.1 本课题研究的目的和意义现代内燃机不断向高速高强度方向发展. 作为内燃机三大机构之一的配气机构, 如果设计不当, 势必产生很大的冲击、振动、噪音, 严重时, 气门会产生反跳与飞脱, 这将严重影响到内燃机的动力性与经济性. 同时, 由于速度的提高, 凸轮机构的润滑与磨损也成为一个不可忽视的问题. 现代大功率柴油机普遍采用下置凸轮轴式配气机构,配气机构的好坏又对柴油机的性能指标、可靠性及寿命有着很大的影响,其设计是否优良直接影响柴油机的性能指标。

用proe做机构仿真 ---凸轮机构

用proe做机构仿真 ---凸轮机构

用proe做机构仿真---凸轮机构使用proe做一个凸轮机构本文介绍用proe做机构的方法。

做一个最简单的凸轮机构需要三个实体(如图一)。

凸轮cam、滑块block,承载板base。

如果不想画这三个part,可下载。

开始制作:1、设置工作目录。

2、新建一个asm组合件。

3、安装基板base:Component-Assemble-从弹出的对话框中选择base.prt-open,从图二所示的装配面板中选择-选OK。

即完成第一个另件base的装配。

4、安装凸轮:Component-Assemble-从弹出的对话框中选择cam.prt-open,从图二所示的装配面板中点选Connections出现连接面板(图三)。

(图三)5、接上一步做销钉Pin连接:从绘图区点选凸轮上的圆柱体的圆柱面、接着点选base上10mm孔的圆柱机,紧接着分别点选凸轮与基板的两个接触平面,在连接面板输入值为0。

应该象下图这个样子后先OK完成销钉的连接。

好了,到这一步我们终于做完了第一个机构了。

事实上用这两个part就可做动画了。

下面先试一下一个关键帧动画。

proe提供两种方式做动画,一个是纯动画,好象Flash那样使用关键帧。

另一种是使用驱动方法,下面先介绍一下纯动画的制作方法。

我们要做的事情是使这个凸轮转动。

a、从菜单上选Applications,从下拉菜单中选择Animation(注:如果没有出现Animation,是因为没有安装动画模块,那么这一步做不成,请先安装好动画模块),出现如图动画控制工具箱。

b、点选动画工具箱中的拖拽工具,出现Drag面板如下图。

在Drag面板中点选照相机按钮,这样就创建好了第一个原始位置的关键帧照片。

再拍一次,作为最后一帧。

c、在绘图区直接拖拽凸轮,使其顺时针旋转90度左右,然后点相机按钮拍一次照。

d、重复第上一步分别在180度270度拍一次照。

e、在Drag面板中将Snapshot2改为Snapshot6.-close。

基于proe的凸轮机构设计和仿真

基于proe的凸轮机构设计和仿真

目录中文摘要 (I)英文摘要 (II)第1章任务与课题条件 (1)1.1任务 (1)1.2课题条件 (1)第2章凸轮机构及PRO/E简介 (2)2.1凸轮机构简介 (2)2.2 PRO/E简介 (7)第3章盘形凸轮创建过程 (10)3.1新建零件 (10)3.2创建拉伸特征 (10)3.3创建方程曲线 (10)3.4创建图形特征 (11)3.5创建可变剖面扫描特征 (12)3.6创建孔特征 (12)第4章其余零件设计 (14)4.1从动杆设计 (14)4.2连杆设计 (14)4.3滑块设计 (15)第5章装配 (16)第6章机构仿真 (17)6.1定义凸轮从动连接机构. (17)6.2添加驱动器 (17)第7章运动分析及结果分析 (20)7.1运行分析 (20)7.2结果回放 (21)7.3结果分析 (22)结论 (25)参考文献 (26)致谢 (27)摘要机械产品的运动分析和仿真在机械产品的设计中是不可缺少的重要环节。

在各类机械的传动结构中,凸轮结构有着广泛的应用,根据凸轮机构的设计原理,提出了在pro/e 中实现凸轮设计及实体造型的方法,并主要利用Pro/e Wildfire的运动学分析模块Mechanism对凸轮机构进行了运动学分析和仿真,这对凸轮机构的优化设计将提供较大的帮助。

本文通过对对心直动尖顶盘型凸轮机构进行运动仿真分析,更加明确了该机构的优缺点,对于该机构的优化设计以及该机构以后的用途将提供指导作用。

关键词:凸轮机构 Pro/E 运动仿真运动分析AbstractSimulation technology in the mechanical products design plays an important role. In some mechanical transmission structures,the cam mechanism is used widely, Introducs the method of cam design and modeling in Pro/E,and mainly expiains the kinematics analysis and the simulasion by using Pro/E Wildfire Mechanism ,it will provide useful help to the optimized design of cam mechanism. This article through to the heart of translational knife-edge plate cam mechanism motion simulation analysis, more clearly the advantages and disadvantages, for the optimal design of the mechanism as well as the agency later use will provide guidance.Key Words:cam mechanism ;Pro/E;motion simulation;motion analysis第1章任务与课题条件1.1 任务为了对凸轮机构进行更好的优化设计以及对凸轮机构以后的应用起指导作用,因此基于pro/e对盘型凸轮机构进行设计与运动仿真,并对速度和加速度进行分析,研究该盘型凸轮机构的运动情况,并对该凸轮机构以后的应用作出预测。

基于ProE的凸轮机构运动仿真

基于ProE的凸轮机构运动仿真
Pro/E 软 件 为 机 构 提 供 了 仿 真 分 析 功 能 ,其 中 的 机 构 分 析 模 块 Mechanism,可 以 进 行 装 配 的 运 动 学 、动 力 学 分 析 和 仿真, 能够大大简化机构的设计开发过程, 缩短其开发周 期,减少开发费用,提高产品质量。
本文将以凸轮机构为例介绍其运动仿真的过程, 该凸 轮机构由凸轮、连杆、摆杆 1、摆杆 2、机架五个零件构成。
2 0 1 2. 0191 ( 中下 旬 刊 )
观理察工
基于 Pro/E 的凸轮机构运动仿真分析
中 图 分 类 号 :G712
郭丽
(南京信息职业技术学院 江苏·南京 210046)
文 献 标 识 码 :A
文章编号:1672-7894( 2012) 33-0091-02
摘 要 凸轮机构是各类机器中广泛使用的传动机构,本 文 通 过 Pro/E 软 件 对 凸 轮 机 构 的 实 体 建 模 和 运 动 仿 真 分 析,得到了摆杆的位移、速度、加速度的运动曲线,简化了设 计过程,提高了设计效率。 关键词 凸轮机构 Pro/E 运动仿真 运动分析 Motion Simulation Analysis of the Cam Mechanism with Pro/Engineer // Guo Li Abstract The cam mechanism is a kind of drive mecha- nisms, is widely used in various types of machines. The ar- ticle introduces the model and motion simulation analysis of the cam mechanism with the Pro/E software, gains the dis- placement, speed and acceleration curves of rocker, simpli- fies the design process, improves the design efficiency. Key words the cam mechanism;Pro/E;motion simulation;mo- tion analysis Author's address Nanjing College of Information Technolo- gy,210046,Nanjing,Jiangsu,China

基于proe的机构运动仿真

基于proe的机构运动仿真

软件学习曲线
ProE软件功能强大但学习曲线较陡峭,需要 用户花费一定时间来熟悉和掌握。
未来展望
06
基于ProE的机构运动仿真实践建议
提高仿真的精度和准确性
建立精确的模型
在建模过程中,应充分考虑机构的实际尺寸 、材料属性、装配关系等因素,确保模型与 实际机构的一致性。
优化仿真参数
根据机构运动特性和仿真需求,合理设置仿真参数 ,如时间步长、摩擦系数等,以提高仿真的精度和 准确性。
通过各种渠道宣传推广ProE软件 在机构运动仿真领域的应用,提 高软件的市场知名度和占有率。
THANKS
感谢观看
度和实用性。
02
机构运动仿真概述
机构运动仿真定义
机构运动仿真是一种利用计算机技术对机械机构进行模拟分析的方法,通过建立机构的数学模型,模拟机构的运动轨迹、受 力情况等特性,为机构的设计、优化和性能分析提供依据。
基于ProE的机构运动仿真是指使用ProE软件进行机构运动仿真的过程,ProE是一款广泛应用的CAD/CAE/CAM一体化软件, 具有强大的机构运动仿真功能。
CAM功能
支持数控加工编程,实现自动 化加工。
ProE软件应用领域
机械设计
汽车制造
航空航天
家电行业
用于设计各种机械零件、 机构和装置,如减速器、
连杆机构等。
用于汽车零部件的设计、 分析和优化,提高生产
效率和产品质量。
用于飞机和航天器的零 部件设计、分析和优化,
确保安全可靠。
用于家电产品的设计和 分析,提高产品的美观
机构运动仿真的重要性
提高设计效率
通过机构运动仿真,可以在设计 阶段预测和分析机构的运动性能, 避免后期修改和优化,大大提高 设计效率。

基于ProE的CNC自动换刀装置组合凸轮机构建模及仿真研究

基于ProE的CNC自动换刀装置组合凸轮机构建模及仿真研究

学号14071900465毕业设计(论文)题目:基于Pro/E的CNC自动换刀装置组合凸轮机构建模及仿真研究作者胡庆届别2011 届院别机械工程学院专业机械设计制造及其自动化指导教师谭华职称讲师完成时间2011年5月摘要文章首先对目前主流三维设计软件 Pro/Engineer 主要特性进行分析研究,了解计算机仿真的概念、特点及其应用;接着,针对CNC自动换刀系统,着重分析了其双半球形滚子齿式弧面凸轮分度机构结构特点和工作原理,为运动仿真制作奠定基础;继而,以理论分析为基础,提出设计方案。

包括运动规律、共轭特征、点啮合方程、接触轨迹和接触域等。

编写 Pro/Program 程序,实现零件的参数化建模,并提供用 Pro/Program 实现参数化建模的一般方法,对以后建造特征类似的三维模型,在缩短造型周期,节约造型时间方面,具有一定的实用价值;最后,用 Pro/Engineer 对双半球形滚子齿式弧面凸轮机构和ATC其他部件进行实体建模,通过运动仿真,证实所设计的系统具有良好的运动性能,达到预期设计目标。

关键词:Pro/E;自动换刀装置;空间凸轮机构;双半球形滚子齿式弧面凸轮ABSTRACTFirst of all, the paper analyze the main characteristics of the currentmainstream three-dimensional design software—Pro/Engineer and introduce the computer simulation conception, characteristics and applications. Secondly, focus on analyzing institutions of Double hemispherical roller wall-climbing CAM,in order to laying the foundation of motion simulation. Thirdly, Based on theoretical analysis, and presents the design scheme. Including motion, conjugate characteristics, some meshing equation, contact trajectory and contact domain, etc build their geometric math model, compile the Pro/Program procedures, accomplish the parametric modeling of parts, and provide the method of parametric modeling by using Pro/Program module. All these works would have some practical value on reducing the modeling cycle, saving design time when building three-D model with similar characteristics. Finally, Using Pro/e triturated according to double hemispherical roller CAM and ATC wall-climbing entity modeling, other parts through sports simulation, confirmed by design system has good sports performance and achieve expected design goal.Keywords:Pro/Engineer; Automatically change tool device ; Spatial CAM ; Double hemispherical roller CAM curve analysis目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 Pro/Engineer 简介 (1)1.2 运动仿真概述 (3)1.2.1 计算机仿真的基本概念及特点 (3)1.2.2 计算机仿真技术应用 (3)1.3课题研究的背景及意义 (4)1.4主要研究内容和主要工作 (5)2 CNC自动换刀系统总体概况 (6)2.1 加工中心自动换刀装置的发展和特点 (6)2.2 凸轮式自动换刀装置的特点 (6)2.3空间凸轮机构简介 (6)2.3.1 凸轮结构原理 (7)2.3.2凸轮机构特点 (7)2.4 ATC的作用及其组成 (7)2.4.1 ATC的作用 (7)2.4.2 ATC的主要组成 (8)3 运动循环的设计及分析 (11)3.1 确定换刀机械手的运动循环 (11)3.2 确定运动循环组成区段 (11)3.3 确定运动循环内各段的分配轴转角及时间 (12)3.4运动循环图的优化设计 (12)4 数学模型的建立 (14)4. 1凸轮从动件运动规律 (14)4.1.1 凸轮从动件常用运动规律分析 (14)4.1.2 自动换刀机械手中凸轮从动件运动规律的选择 (14)4.2双半球形滚子齿式弧面凸轮分度机构的啮合原理 (15)4.2.1 坐标系的建立 (15)4.2.2 共轭条件及其廓面方程的求解 (17)4.2.3双半球滚子齿式弧面凸轮分度机构的啮合特性分析 (18)4.3媒介点啮合的技术 (21)4.3.1媒介点啮合的由来 (21)4.3.2 点啮合的媒介共轭方法 (21)4.4 媒介点啮合的诱导曲率和接触域 (23)4.4.1 点啮合的诱导曲率 (23)4.4.2点啮合的接触迹 (24)4.5双半球形滚子齿式弧面凸轮分度机构的点啮合方法 (27)4.5.1双半球形滚子齿式弧面凸轮分度机构点啮合方案构思 (27)4.5.2 双半球形滚子齿式弧面凸轮分度机构的接触迹 (28)4.5.3 双半球形滚子齿式弧面凸轮分度机构的诱导曲率和接触域 (29)5基于Pro/E的空间凸轮机构仿真 (32)5.1机构参数 (32)5.2空间凸轮理轮廓面 (32)5.3 凸轮机构实体模型的建立 (33)5.3.1弧面凸轮胚体的建立 (33)5.3.2 分度盘实体模型的建立 (34)5.4 建立运动关系 (35)5.5空间凸轮轮廓面 (37)5.6弧面凸轮分度机构的仿真及分析 (38)5.6.1创建凸轮随动件连接 (38)5.6.2 定义伺服马达 (39)5.6.3 运动仿真及分析 (39)6结论 (40)参考文献 (41)致谢 (43)附录英文翻译 (44)1 绪论1.1 Pro/Engineer 简介Pro/Engineer系统是由美国参数化技术公司PTC(Parametric Technology Corporation)生产的优秀产品,提供了产品的三维模型设计、加工、分析及制图等功能完善的CAD/CAE/CAM解决方法。

ProE的ATC装置中弧面凸轮分度机构设计与仿真

ProE的ATC装置中弧面凸轮分度机构设计与仿真

文章编号:100524014(2006)0420307203基于Pro/E的ATC装置中弧面凸轮分度机构设计与仿真3马志武,陶学恒(大连轻工业学院机械工程与自动化学院,辽宁大连 116034)关键词:弧面凸轮;自动切刀机械手(A TC);Pro/Engineer;运动仿真摘要:弧面凸轮分度机构广泛应用于现代自动机械。

A TC装置中的弧面分度凸轮的工作廓面复杂,而且是不可展曲面,难于设计和精确制造.应用CAD软件Pro/E,能够快速而准确地设计弧面分度凸轮。

同时利用Pro/E的运动仿真功能,检查机构的设计缺陷,对结构进行优化设计。

中图分类号:T H112.2;T H122 文献标识码:ADesign and simulation of globoid cam indexing mechanism based on Pro/EM A Zhi2w u,T A O X ue2heng(School of Mechanical Engineering&Automation,Dalian Institute of Light Industry,Dalian116034,China)K ey w ords:globoid cam;Automatic Tool Changer(A TC);Pro/E;motion simulationAbstract:G loboid cam indexing mechanism is used widely in modern automatic machines.G loboid indexing cam in Automatic T ool Changer(ATC)is difficult to design and manufacture because of the cam’s complicated working profile.Based on the CAD software Pro/E,the cam can be designed precisely and quickly.G loboid cam indexing mechanism can be improved by the motion simulation of Pro/E. 弧面凸轮分度机构,具有分度精度高、啮合刚度大、动态性能好等优点,广泛应用于现代自动机械[122]。

用ProE做机构运动仿真

用ProE做机构运动仿真

用Pro/E做机构运动仿真————凸轮机构一、做一个简单的凸轮机构需要三个实体凸轮cam、滑块block,承载板base。

(如下图所示)。

承载板base凸轮cam滑块block图1 凸轮组件零件图二、开始制作:1、设置工作目录。

2、新建一个asm组合件。

3、安装基板base零件:选择“插入/元件/装配”,从弹出的对话框中选择base.prt,从图二所示的装配面板中选择方式,即缺省方式。

即完成第一个零件base的装配。

4、安装凸轮:选择“插入/元件/装配”,从弹出的对话框中选择cam.prt,从图二所示的装配面板中点选“连接”出现连接面板(图三)。

5、接上一步,在连接类型中选择“销钉Pin”连接,要完成“销钉”连接,必须进行两个约束,即第一是“轴对齐”约束,可从绘图区点选凸轮上的圆柱体的圆柱面、接着点选基体上圆柱孔的圆柱表面(也可分别选择凸轮上圆柱体的轴线及基体上圆柱孔的轴线);第二个约束是“平移”,可分别点选凸轮与基板的两个接触平面,在连接面板输入偏移值为0。

单击“确定”完成“销钉”连接。

其连接效果如图4所示。

6、安装滑块:选择“插入/元件/装配”,从弹出的对话框中选择block.prt,从图二所示的装配面板中点选“连接”出现连接面板(图三)。

在连接面板中的“类型”选项下选择“滑动杆”。

7、点选滑块零件上的圆柱表面,紧接着选基体零件上的圆弧槽的圆柱面作为“轴对齐”限制条件,接着分别选两个接触平面作为“旋转”限制条件,偏移值为0。

如图5所示。

8、在连接面板(图三)中选“移动”选项卡。

拖拽滑块大致到这个图6这个位置,从而完成了我们凸轮机构的连接工作。

图2 装配面板对话框图3 连接面板对话框图4 凸轮与基体连接后的效果图图5 滑块的连接图6 滑块拖动后的位置。

基于Pro/E的高速吹瓶机凸轮传动系统的建模与仿真

基于Pro/E的高速吹瓶机凸轮传动系统的建模与仿真
版社 .0 6 20 .
成 的 制 动 器 温 度 过 高 。除 了 合 理 地 调 整 制 动 器 的 制 动 力 矩 之 外 . 要 避 免 过 高 的 电梯 速 度 和 过 大 的 载 荷 。 还
4 结 束 语
本 文 以 防 爆 电 梯 在 紧 急 制 停 时 制 动 器 温 升 为 研 究
吹 瓶 机 作 为 饮 料 包 装 行 业 中 的 重 要 设 备 目前 发 展 迅 速 , 转 机 为 高 速 吹 瓶 机 中 最 常 用 的 一 种 。 是 和 国 旋 但 外 几 十 年 的 吹 瓶 机 制 造 技 术 和 经 验 相 比 . 国 产 旋 转 机 在 稳 定 性 和 单 模 产 量 上 还 有 很 大 的 差 距 l2 凸 轮 系 统 l1 -。 作 为 旋 转 机 的 核 心 部 件 .对 旋 转 机 的 稳 定 性 和 吹 瓶 效 率 具 有 很 大 的 影 响 。 速 凸 轮 运 动 时 , 构 件 运 动 的 惯 高 各
是 否 具 有 刚 性 冲 击 和 柔 性 冲 击 的 重 要 参 数 . r/ P oE wi f e 的 运 动 学 分 析 模 块 Me h n s 可 以 进 行 运 动 li dr c a im 学 分 析 和 仿 真 , 过 适 当 的设 置 , 获 得 机 构 运 动 时 零 经 可
学分 析 , 得 滚 动 轴承 在 内 凸轮 运动 时的 速 度 和加 速 度 曲线 , 真 结 果发 现 , 获 仿 由作 图法 得 到 的 凸轮 在 工 作 时 滚动 轴 承 的加
速 度 突 变 出现 在 入 坯 前 的过 渡 区域 。 用五 次 样 条 曲 线对 凸轮 过 渡 区域 进 行 优化 设 计 , 拟 结果 显 示 , 次 样 条 曲 线 法得 利模与仿真 r /

基于ProE 5.0的圆柱凸轮多种建模方法 及其多轴仿真加工研究

基于ProE 5.0的圆柱凸轮多种建模方法 及其多轴仿真加工研究

根据圆周长公式:C=π*D (1)计算得出该圆柱体外圆柱的周长为100πmm ,由于圆柱体高度尺寸为100mm ,因此展开平面图中的矩形尺寸应为100πmm×100mm 。

根据展平面开图中所标注的尺寸以及A1、A2、A3、A4各点的角度值θAi ,可以按照比例换算确定其坐标位置,换算公式如下:(2)例如A1点的角度值为64°,可按上述公式换算出A1点的纵坐标值:X A1同理,A2、A3、=216.42mm 、X A4根据上分析和尺寸,可在图1圆柱凸轮零件图10ϕ100ϕ20A2A3A1A40°A1点:64°A2点:112°A3点:248°A4点:296°360°该方法建模基本步骤为:选择一个绘图平面,绘制圆ø100mm→拉伸为ø100mm×100mm 圆柱体→选择穿过圆柱体中心轴线的平面根据换算尺寸绘制圆柱凸轮凹槽轮廓展开曲线S1→在编辑菜单中选择包络命令,将曲线投影到圆柱体外圆面得到凹槽轮廓展开曲线空间曲线S2→利用扫描-切口命令选择凹槽轮廓展开曲线空间曲线为扫引轨迹,绘制10mm×12mm 的矩形作为截面得到圆柱凸轮→孔命令绘制ø20通孔。

注意事项如下:①各点坐标值的正确换算,否则无法精确绘制圆柱凸轮。

②为防止运用包络曲线命令时选错圆柱面,ø20通孔应在最后绘制。

2.2圆柱凸轮环形折弯建模方法环形折弯(Toroidal Bend )命令是一种改变模型形状该方法建模基本步骤为:选择一个绘图平面,绘制100πmm×100mm 的矩形→拉伸100π×100×50mm 长方体选择长方体表面为绘图平面,根据换算尺寸绘制圆柱凸轮凹槽轮廓展开曲线S3→利用扫描-切口命令选择凹槽轮廓展开曲线S3为扫引轨迹,绘制10mm×12mm 的矩形作为截面得到圆柱凸轮凹槽平面展开形状→在“插入”“高级”中选择“环形折弯”命令,在“参照”选项卡下勾选该方法建模基本步骤为:选择一个绘图平面,绘制两个同心圆ø100mm 、ø20mm→拉伸至高度为100mm 的空心圆柱体→插入-模型基准-图形,添加坐标系,根据零件图平面展开所示注尺寸绘制圆柱凸轮凹槽轮廓展开曲线S4→利用可变截面扫描命令选择圆柱体一个端面边线为原点轨迹→点击控制面板上的“草绘”,绘制10mm×12mm的矩形作为截面,同时点击工具-关系,为尺寸S5添加函数关系:sd5=evalgraph (“cam ”,trajpar*360)→移除材料得到圆柱凸轮。

基于Pro/E凸轮机构的设计仿真及运动分析

基于Pro/E凸轮机构的设计仿真及运动分析
字 木交 ; 赢
理论 / 发 ,设计 , 研 嗣造
基 rE 轮 构 设 仿 及 动 析 于Po 凸 机 的 计 真 运 分 /
陈云 召 , 王 豪 长江 大 学 机 械 工 程 学 院 , 北 荆 州 4 4 2 湖 3 0 0)

要: 论述 了基本的凸轮机构 的设计原理 , 以及在 Po 三 维软件 中 行 运动仿真 、 rE / 进 机构和运动分析 , 得到推杆位移 、 速
具 栏 中 选择 应 用 程序 一 机 构 ,右 边 就 会 出现 凸轮 连接 图
机械工程师 21 年 00 第9 3 期8 3
字木 交 ; 赢
理论 / 茧 / 研j 设计 , 造 制
侧 的阻 尼 器 图标 ,出现 阻 尼
器对 话 框 , 在推 杆 中部也 就 是 弹 簧之 间 设 置阻 尼 , 尼常 阻 数 c为 1 0 0 。然 后设 置 伺 服 电动机 , 右侧 选 择 电动 机 图 在
标 , 取 凸轮 与 固定 件之 间的销 钉 作 为传 动轴 。 轮廓 中 选 在
设 计 凸 轮轮 廓 线 时 , 设 凸 轮静 止 不 动 , 假 推杆 相 对 于 凸轮
沿一 ∞方 向反 转 运 动 。得 出推 杆 的一 系列 位 置 , 顶 尖位 其 置连成 的 曲线就 是 凸轮 的轮廓 线 。
2 凸轮 机构 运 动 仿真
设 计 好 凸轮 的 轮廓 后 就可 以在 Po r E中进 行 建 模 , / 这
凸轮机 构在 自动 机 和 自动控 制 装置 中被 广 泛地 运用 , 是相 当 重要 的连 杆件 ,只要设 计 出适 当的 凸轮 轮廓 曲线 , 推 杆就 可 以得 到各 种 预期 的运 动 规 律 , 构 简 单 , 结 响应 迅 速 。凸轮 装 置 的变化 很 多 , 几乎 所有 的任 意动作 都 可 以通 过 此机 构 生成 。但 凸 轮价 格 高 , 易磨 损 , 且 运行 时 噪 声 而 大 , 速 运行 时从 动 件 易产 生 不 稳 定 的跳 动 等 , 以就 要 高 所 尽量使 凸轮结 构合 理 , 大 限度 地发 挥 凸轮 的优 势 。采 用 最 Po r E对 凸轮 进行 仿 真和 机构 运 动分 析 ,可使 我们 的设 计 / 更加 方便 ,为后续 机构 优 化设 计 提供 了一 个好 的参考 , 极 大地 提高 了设计 效率 。对 Po r E的分 析熟 练后 能够很 好 的 / 掌握 A S S等功 能更强 大 的有 限元 分析 软件 。 NY

机制-2011毕业设计任务书_2_基于pro_e的凸轮机构设计与仿真

机制-2011毕业设计任务书_2_基于pro_e的凸轮机构设计与仿真

潍坊学院本科毕业设计任务书课题名称:基于pro/e的凸轮机构设计与仿真课题类别:生产专业:机械设计制造及其自动化年级: 07级本科指导教师:马成习学生姓名:2011年3 月12 日一、课题条件:1.Pro/E软件2.已知凸轮的基圆半径为 Ra=40mm,升程角为 80°(其中 0~40°为等加速运动,40~80°为等减速运动) ,远休止角为20°,回程角为 80°(其中 100~140°为等加速运动,140~180°为等减速运动) ,从动件升程为h=10mm。

3.设计凸轮机构,并对其进行仿真。

二、毕业设计主要内容:1.据课题条件设计凸轮机构;2.绘制凸轮机构总图3.绘制部分主要零件图;4.编写设计说明书一份,字数不少于10000字;5.英文资料翻译,译出字数不少于3000字。

三、计划进度:1.课题实习、调研、方案拟定、资料查阅及英文文献翻译。

2周2.熟悉软件,设计凸轮结构 3周3.绘制凸轮总图及零件图 2周4.对凸轮机构进行仿真 2周5.编写设计说明书 2周6.答辩准备及答辩 1周四、主要参考文献:[1]方建军、刘仕良主编.机械动态仿真与工程分析-Pro/engineer Wildfireg工程应用[M] 北京:化学工业出版社,2004[2]张继春、杨建国著.装配设计与运动仿真及Pro/E实现[M] 北京:国防工业出版社,2006[3]曹岩.Pro/engineer Wildfire 3.0 曲面建模实例精解[M] 北京:机械工业出版社,2007[4]孙江宏译. Pro/engineer机械设计教程.北京:清华大学出版社,2005[5]吴宗泽主编. 机械设计实用手册 .北京:化学工业出版社,2003[6]徐灏.新编机械设计手册.北京:机械工业出版社,1995[7]蔡春源.新编机械设计手册.沈阳:辽宁科学技术出版社,1993[8]沈继飞.机械设计.上海:上海交大出版社,1998[9]黄锡恺.机械原理.北京:高等教育出版社,2006[10]廖汉元、孔建益、钮国辉主编.机械原理[M] 北京:机械工业出版社,1997指导教师马成习教研室主任2011年3 月20 日年月日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录中文摘要 (I)英文摘要 (II)第1章任务与课题条件 (1)1.1任务 (1)1.2课题条件 (1)第2章凸轮机构及PRO/E简介 (2)2.1凸轮机构简介 (2)2.2 PRO/E简介 (7)第3章盘形凸轮创建过程 (10)3.1新建零件 (10)3.2创建拉伸特征 (10)3.3创建方程曲线 (10)3.4创建图形特征 (11)3.5创建可变剖面扫描特征 (12)3.6创建孔特征 (12)第4章其余零件设计 (14)4.1从动杆设计 (14)4.2连杆设计 (14)4.3滑块设计 (15)第5章装配 (16)第6章机构仿真 (17)6.1定义凸轮从动连接机构. (17)6.2添加驱动器 (17)第7章运动分析及结果分析 (20)7.1运行分析 (20)7.2结果回放 (21)7.3结果分析 (22)结论 (25)参考文献 (26)致谢 (27)摘要机械产品的运动分析和仿真在机械产品的设计中是不可缺少的重要环节。

在各类机械的传动结构中,凸轮结构有着广泛的应用,根据凸轮机构的设计原理,提出了在pro/e 中实现凸轮设计及实体造型的方法,并主要利用Pro/e Wildfire的运动学分析模块Mechanism对凸轮机构进行了运动学分析和仿真,这对凸轮机构的优化设计将提供较大的帮助。

本文通过对对心直动尖顶盘型凸轮机构进行运动仿真分析,更加明确了该机构的优缺点,对于该机构的优化设计以及该机构以后的用途将提供指导作用。

关键词:凸轮机构 Pro/E 运动仿真运动分析AbstractSimulation technology in the mechanical products design plays an important role. In some mechanical transmission structures,the cam mechanism is used widely, Introducs the method of cam design and modeling in Pro/E,and mainly expiains the kinematics analysis and the simulasion by using Pro/E Wildfire Mechanism ,it will provide useful help to the optimized design of cam mechanism. This article through to the heart of translational knife-edge plate cam mechanism motion simulation analysis, more clearly the advantages and disadvantages, for the optimal design of the mechanism as well as the agency later use will provide guidance.Key Words:cam mechanism ;Pro/E;motion simulation;motion analysis第1章任务与课题条件1.1 任务为了对凸轮机构进行更好的优化设计以及对凸轮机构以后的应用起指导作用,因此基于pro/e对盘型凸轮机构进行设计与运动仿真,并对速度和加速度进行分析,研究该盘型凸轮机构的运动情况,并对该凸轮机构以后的应用作出预测。

因此下面将对对心直动尖顶盘型凸轮机构进行设计与运动仿真,从而力争达到课题任务。

如图1.1所示图1.1对心直动尖顶盘型凸轮机构1.2 课题条件盘型凸轮的基圆半径为 Ra=40mm,升程角为 80°(其中 0~40°为等加速运动,40~80°为等减速运动) ,远休止角为20°,回程角为 80°(其中 100~140°为等加速运动,140~180°为等减速运动) ,从动件升程为h=10mm。

第2章凸轮机构及pro/e简介2.1 凸轮机构简介凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。

凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。

凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。

凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。

与凸轮轮廓接触,并传递动力和实现预定的运动规律的构件,一般做往复直线运动或摆动,称为从动件。

凸轮机构在应用中的基本特点在于能使从动件获得较复杂的运动规律。

因为从动件的运动规律取决于凸轮轮廓曲线,所以在应用时,只要根据从动件的运动规律来设计凸轮的轮廓曲线就可以了。

凸轮机构广泛应用于各种自动机械、仪器和操纵控制装置。

凸轮机构之所以得到如此广泛的应用,主要是由于凸轮机构可以实现各种复杂的运动要求,而且结构简单、紧凑。

原理由凸轮的回转运动或往复运动推动从动件作规定往复移动或摆动的机构。

凸轮具有曲线轮廓或凹槽,有图2.1 推杆运动规律图盘形凸轮、圆柱凸轮和移动凸轮等,其中圆柱凸轮的凹槽曲线是空间曲线,因而属于空间凸轮。

从动件与凸轮作点接触或线接触,有滚子从动件、平底从动件和尖端从动件等。

尖端从动件能与任意复杂的凸轮轮廓保持接触,可实现任意运动,但尖端容易磨损,适用于传力较小的低速机构中。

为了使从动件与凸轮始终保持接触,可采用弹图2.2 圆柱凸轮机构簧或施加重力。

具有凹槽的凸轮可使从动件传递确定的运动,为确动凸轮的一种。

一般情况下凸轮是主动的,但也有从动或固定的凸轮。

多数凸轮是单自由度的,但也有双自由度的劈锥凸轮。

凸轮机构结构紧凑,最适用于要求从动件作间歇运动的场合。

它与液压和气动的类似机构比较,运动可靠,因此在自动机床、内燃机、印刷机和纺织机中得到广泛应用。

但凸轮机构易磨损,有噪声,高速凸轮的设计比较复杂,制造要求较高。

凸轮机构的分类按凸轮形状分1)盘形凸轮2)移动凸轮3)圆柱凸轮按从动件型式分1)尖底从动件;2)滚子从动件;3)平底从动件优点结构简单、紧凑、设计方便,可实现从动件任意预期运动,因此在机床、纺织机械、轻工机械、印刷机械、机电一体化装配中大量应用。

缺点1)点、线接触易磨损;2)凸轮轮廓加工困难;3)行程不大凸轮机构从动件位移s(或行程高度h)与凸轮转角Φ(或时间t)的关系称为位移曲线。

从动件的行程h有推程和回程。

凸轮轮廓曲线决定于位移曲线的形状。

在某些机械中,位移曲线由工艺过程决定,但一般情况下只有行程和对应的凸轮转角根据工作需要决定,而曲线的形状则由设计者选定,可以有多种运动规律。

传统的凸轮运动规律有等速、等加速-等减速、余弦加速度和正弦加速度等。

等速运动规律因有速度突变,会产生强烈的刚性冲击,只适用于低速。

等加速-等减速和余弦加速度也有加速度突变,会引起柔性冲击,只适用于中、低速。

正弦加速度运动规律的加速度曲线是连续的,没有任何冲击,可用于高速。

为使凸轮机构运动的加速度及其速度变化率都不太大,同时考虑动量、振动、凸轮尺寸、弹簧尺寸和工艺要求等问题,还可设计出其他各种运动规律。

应用较多的有用几段曲线组合而成的运动规律,诸如变形正弦加速度、变形梯形加速度和变形等速的运动规律等,利用电子计算机也可以随意组合成各种运动规律。

还可以采用多项式表示的运动规律,以获得一连续的加速度曲线。

为了获得最满意的加速度曲线,还可以任意用数值形式给出一条加速度曲线,然后用有限差分法求出位移曲线,最后设计出凸轮廓线。

一些自动机通常用几个凸轮配合工作,为了使各个凸轮所控制的各部分动作配合协调,还必须在凸轮设计以前先编制一个正确的运动循环图。

用电子计算机进行凸轮廓线设计能提高效率,并能从多方面综合考虑进行优化设计。

这样可用以求得各种运动规律下的从动件的位移、速度、加速度等值和凸轮廓线坐标值,算出凸轮廓线上任意点的曲率半径、压力角和应力,满足接触强度和抗磨的角度,以获得最小尺寸的凸轮,而且还可画出凸轮的空间图形。

凸轮容易磨损,主要原因之一是接触应力较大。

凸轮与滚子的接触应力可以看作是半径分别等于凸轮接图2.3 盘型凸轮机构触处的曲率半径和滚子半径的两圆柱面接触时的压应力,可用赫芝公式进行计算,应使计算应力小于许用应力。

促使凸轮磨损的因素还有载荷特性、几何参数、材料、表面粗糙度、腐蚀、滑动、润滑和加工情况等。

其中润滑情况和材料选择对磨损寿命影响尤大。

为了减小磨损、提高使用寿命,除限制接触应力外还要采取表面化学热处理和低载跑合等措施,以提高材料的表面硬度。

推杆运动规律多项式运动规律 1)一次多项式运动规律设凸轮以等角速度ω转动,再推程时,凸轮的运动角为0δ ,推杆完成行程h,当采用一次多项式运动规律时,则有01s c c δ=+ 011//0v ds dt c dv dt ωα====在始点处0,0s δ== ,在终点处0,s h δδ==。

则可得000,1/c c h δ==,故推杆推程的运动方程为0/s h δδ=0/v h ωδ=0α=在回程时,因规定推杆的位移总是由最低位置算起,故推杆的位移s 是逐渐减小的,而其运动方程为0(1/')s h δδ=-0/'v h ωδ=-0α=式中,0'δ为凸轮回程运动角,注意凸轮的转角δ 总是从该段运动规律的起始位置计量起。

有上述可知,推杆此时作等速运动,故又称其为等速运动规律,但推杆在运动开始和终止的瞬时,因速度有突变,所以这时推杆在理论上将出现无穷大的加速度和惯性力,因而会使凸轮机构受到极大的冲击,这种冲击成为刚性冲击。

2)二次多项式运动规律 其表达式为2012s c c c δδ=++ 12/2v ds dt c c ωωδ==+22/2dv dt c αω==这时推杆的加速度为常数,为了保证凸轮机构运动的平稳性,通常应使推杆先做加速运动,后做减速运动,设在加速段和减速段凸轮运动角及推杆的行程各占一半。

这时,推程加速段的边界条件为在始点处 0,0,0s v δ=== 在终点处 0/2,/2s h δδ==将其代入上式,可求得201200,0,2/c c c h δ=== ,故推杆等加速推程段的运动方程为2202/s h δδ=204/v h ωδδ=2204/h αωδ=由上式可知,在此阶段,推杆的位移s 与凸轮转角δ的平方成正比,故其位移曲线为一段向上弯的抛物线。

推程减速段的边界条件为 在始点处0/2,/2s h δδ== 在终点处0,,0s h v δδ===将其代入上式,可得201020,4/,2/c h c h c h δδ=-==-,故推杆等减速推程段的运动方程为2202(0)/s h h δδδ=--()2004/v h ωδδδ=-2042/h αωδ=-这时推杆的位移曲线为一段向下弯曲的抛物线。

相关文档
最新文档