SPC统计过程控制培训教材.ppt
合集下载
SPC统计过程控制培训教材(PPT 72页)
➢ 戴明博士对日本指导质量管理的成功,让美国 人惊醒原来日本工商经营成功的背后竟然有一 位美国人居功最大,故开始对戴明博士另眼看 待。1980年6月24日全国广播公司(NBC)在电视 播放举世闻名的“日本能为什么我们不能”(If Japan Can, Why Can‘t We?),使戴明博士一 夜成名。从此以后美国企业家重新研究戴明的 质量管理经营理念。
步骤8:运用控制限进行控制;
计数控制图和计点控制图
不良品率控制图(P图)
对产品不良品率进行监控时用的控制图 ;
质量特性良与不良,通常服从二项分 布; 当不良率P较小样本量n足够大时,该 分布趋向于正态分布
适用于全检零件或每个时期的检验样本 含量不同。
不良品率控制图(P图)
检验并记录数据 计算平均不合格品率P 计算中心线和控制界限 绘制控制图并进行分析
20世纪50年代以来,科学技术和工业生产的发展,对质量要求越来越高 ,要求人们运用“系统工程”的概念,把质量问题作为一个有机整体加以综 合分析研究,实施全员、全过程、全企业的管理。
SPC(统计过程控制)
--统计性的反馈系统
Statistical: (统计)以概率统计学为基础,用 科学的方法分析数据、得出结论; ——使用数据分析
标准正态分布函数:N(0,1)
小概率事件理解
1.例行检查身体 2.烟雾探测器
正态分布图与控制图
正态分布图与控制图
??那是不是说只有符合正态分布的特性(变量) 才可以用控制图呢?
休哈特实验
休哈特分别从矩形分布和三角分布的总体中,抽取n =4的样本,计算样本均值Xbar,经过多次实验后发 现,Xbar基本符合正态分布。
(William Edwards Deming)
步骤8:运用控制限进行控制;
计数控制图和计点控制图
不良品率控制图(P图)
对产品不良品率进行监控时用的控制图 ;
质量特性良与不良,通常服从二项分 布; 当不良率P较小样本量n足够大时,该 分布趋向于正态分布
适用于全检零件或每个时期的检验样本 含量不同。
不良品率控制图(P图)
检验并记录数据 计算平均不合格品率P 计算中心线和控制界限 绘制控制图并进行分析
20世纪50年代以来,科学技术和工业生产的发展,对质量要求越来越高 ,要求人们运用“系统工程”的概念,把质量问题作为一个有机整体加以综 合分析研究,实施全员、全过程、全企业的管理。
SPC(统计过程控制)
--统计性的反馈系统
Statistical: (统计)以概率统计学为基础,用 科学的方法分析数据、得出结论; ——使用数据分析
标准正态分布函数:N(0,1)
小概率事件理解
1.例行检查身体 2.烟雾探测器
正态分布图与控制图
正态分布图与控制图
??那是不是说只有符合正态分布的特性(变量) 才可以用控制图呢?
休哈特实验
休哈特分别从矩形分布和三角分布的总体中,抽取n =4的样本,计算样本均值Xbar,经过多次实验后发 现,Xbar基本符合正态分布。
(William Edwards Deming)
SPC统计过程控制教材ppt(37张)
– 5、确定各组的频数 – 6、作直方图 – 7、对直方图的观察: 特点, 中间高、两头低、左右对称
7
SPC
3、基础知识
(2)、正态分布 (Normal Distribution) 当抽取的数据个数趋于无穷大而区间宽度趋向于0时,外形轮廓的折线就趋向于光滑的曲
线,即:概率密度曲线。 特点:面积之和等于1。
11
SPC统计过程控制教材(PPT37页)
SPC
• (4)、使用控制图应考虑的问题
– a、控制图用于何处? – b、如何选择控制对象? – c、怎样选择控制图? – d、如何分析控制图? – e、点出界或违反其他准则的处理。 – f、控制图的重新制定。 – g、控制图的保管问题。
SPC统计过程控制教材(PPT37页)
– 1、找出最大值和最小值,确定数据分散宽度 数据分散宽度=(最大值 最小值)
– 2、确定组数 k n
– 3、确定组距 h=(最大值最小值)/组数
– 4、确定各组的边界 第一组的组下限=最小值 最小测量单位的一半 第一组的组上限=第一组的组下限+组距=第二组的组下限 第二组的组上限=第二组的组下限+组距=第三组的组下限,依此类推。
2
SPC
3、为什么要学习SPC(二)?
• 3控制方式与6控制方式的比较:
3
SPC
4、开展SPC工程的步骤
• 培训SPC
– 正态分布等统计基础知识 – 品管七工具:调查表、分层法、散布图、排列图、直方图、因果图、控制图 – 过程控制网图的做法 – 过程控制标准的做法
• 确定关键质量因素
– 对每道工序,用因果图进行分析,造出所有关键质量因素,再用排列图找出 最终产品影响最大的因素,即关键质量因素;
7
SPC
3、基础知识
(2)、正态分布 (Normal Distribution) 当抽取的数据个数趋于无穷大而区间宽度趋向于0时,外形轮廓的折线就趋向于光滑的曲
线,即:概率密度曲线。 特点:面积之和等于1。
11
SPC统计过程控制教材(PPT37页)
SPC
• (4)、使用控制图应考虑的问题
– a、控制图用于何处? – b、如何选择控制对象? – c、怎样选择控制图? – d、如何分析控制图? – e、点出界或违反其他准则的处理。 – f、控制图的重新制定。 – g、控制图的保管问题。
SPC统计过程控制教材(PPT37页)
– 1、找出最大值和最小值,确定数据分散宽度 数据分散宽度=(最大值 最小值)
– 2、确定组数 k n
– 3、确定组距 h=(最大值最小值)/组数
– 4、确定各组的边界 第一组的组下限=最小值 最小测量单位的一半 第一组的组上限=第一组的组下限+组距=第二组的组下限 第二组的组上限=第二组的组下限+组距=第三组的组下限,依此类推。
2
SPC
3、为什么要学习SPC(二)?
• 3控制方式与6控制方式的比较:
3
SPC
4、开展SPC工程的步骤
• 培训SPC
– 正态分布等统计基础知识 – 品管七工具:调查表、分层法、散布图、排列图、直方图、因果图、控制图 – 过程控制网图的做法 – 过程控制标准的做法
• 确定关键质量因素
– 对每道工序,用因果图进行分析,造出所有关键质量因素,再用排列图找出 最终产品影响最大的因素,即关键质量因素;
spc培训资料-SPC-统计过程控制(ppt 88页)
重复这三个阶段从而不断改进过程
控制图类型
X-R 均值和极差图
P chart 不合格品
计
计 率控制图
量 X-s均值和标准差图 数 nP chart 不合格品
型
型 数控制图
数 X -R 中位值极差图 数 C chart 缺点数控
据
据 制图
X-MR 单值移动极差 图
U chart 单位缺点 数控制图
控制图的选择方法
流等。(注:数据仅代表单一刀具、冲头、模具等 生产出来的零件,即一个单一的生产流。) 1-1-2 子组频率:在适当的时间内收集足够的数据,这样子组才能 反映潜在的变化,这些变化原因可能是换班/操作人 员更换/材料批次不同等原因引起。对正在生产的产 品进行监测的子组频率可以是每班2次,或一小时一 次等。
12 34 56
计量单位:(mm, kg等)
控制图举例
X图 R图
接上页
测量方法必须保证始终产生准确和精密的结果 不精密
不准确
••••••••
准确
•••••
• ••••
精密
•••••• •••••
使用控制图的准备
1、建立适合于实施的环境 a 排除阻碍人员公正的因素 b 提供相应的资源 c 管理者支持
范围 不受控
(存在特殊原因)
受控 (消除了特殊原因)
时间
过程能力
范围
受控且有能力符合规范 (普通原因造成的变差已减少) 规范下限
规范上限 时间
受控但没有能力符合规范 (普通原因造成的变差太大)
1、分析过程 本过程应做什么? 会出现什么错误? 本过程正在做什么? 达到统计控制状态? 确定能力
计划
措施
每件产品的尺寸与别的都不同
控制图类型
X-R 均值和极差图
P chart 不合格品
计
计 率控制图
量 X-s均值和标准差图 数 nP chart 不合格品
型
型 数控制图
数 X -R 中位值极差图 数 C chart 缺点数控
据
据 制图
X-MR 单值移动极差 图
U chart 单位缺点 数控制图
控制图的选择方法
流等。(注:数据仅代表单一刀具、冲头、模具等 生产出来的零件,即一个单一的生产流。) 1-1-2 子组频率:在适当的时间内收集足够的数据,这样子组才能 反映潜在的变化,这些变化原因可能是换班/操作人 员更换/材料批次不同等原因引起。对正在生产的产 品进行监测的子组频率可以是每班2次,或一小时一 次等。
12 34 56
计量单位:(mm, kg等)
控制图举例
X图 R图
接上页
测量方法必须保证始终产生准确和精密的结果 不精密
不准确
••••••••
准确
•••••
• ••••
精密
•••••• •••••
使用控制图的准备
1、建立适合于实施的环境 a 排除阻碍人员公正的因素 b 提供相应的资源 c 管理者支持
范围 不受控
(存在特殊原因)
受控 (消除了特殊原因)
时间
过程能力
范围
受控且有能力符合规范 (普通原因造成的变差已减少) 规范下限
规范上限 时间
受控但没有能力符合规范 (普通原因造成的变差太大)
1、分析过程 本过程应做什么? 会出现什么错误? 本过程正在做什么? 达到统计控制状态? 确定能力
计划
措施
每件产品的尺寸与别的都不同
SPC 统计过程控制培训课件(PPT 48页)
14
指数分类
SQE Training
1、Cp:分布中心无偏离规格中心时衡量 过程能力的指数;
2、Cpk: 分布中心偏离规格中心时衡量 过程能力的指数;
3、Cpm:目标值与规格中心不一致时衡量 过程能力的指数;
4、Cpu:上单侧过程能力指数; 5、Cpl: 下单侧过程能力指数。
15
SQE Training
过程能力决定于质量因素:人、机、料、法、环, 而与公差无关。过程能力是过程的固有属性。
8
SQE Training
进行过程能力分析的意义
一、保证产品质量的基础工作; 二、提高过程能力的有效手段; 三、找出产品质量改进的方向; 四、向客户证明加工过程的能力。
9
指数分类
SQE Training
Cp,Cpk,Cpm Pp,Ppk,Ppm
5
SQE Training
影 ☆ 人、机、料、法、测、环
响 (5M1E)
过 操作者方面:如操作者的技术水平、熟练 程 程度、质量意识、责任心、管理程度等;
能 设备方面:如设备精度的稳定性,性能
力
的可靠性,定位装置和传动装置的准 确性,设备的冷却、润滑情况等等;
的 材料方面:如材料的成分,配套元器件
指数分类
二、过程性能指数(Process Performance Index) 1、Pp: 分布中心无偏离规格中心时衡量
过程能力的指数; 2、Ppk: 分布中心偏离规格中心时衡量
过程能力的指数; 3、Ppm:目标值与规格中心不一致时衡量
过程能力的指数; 4、Ppu:上单侧过程能力指数; 5、Ppl: 下单侧过程能力指数。
因 的质量等等;
素
6
SQE Training
指数分类
SQE Training
1、Cp:分布中心无偏离规格中心时衡量 过程能力的指数;
2、Cpk: 分布中心偏离规格中心时衡量 过程能力的指数;
3、Cpm:目标值与规格中心不一致时衡量 过程能力的指数;
4、Cpu:上单侧过程能力指数; 5、Cpl: 下单侧过程能力指数。
15
SQE Training
过程能力决定于质量因素:人、机、料、法、环, 而与公差无关。过程能力是过程的固有属性。
8
SQE Training
进行过程能力分析的意义
一、保证产品质量的基础工作; 二、提高过程能力的有效手段; 三、找出产品质量改进的方向; 四、向客户证明加工过程的能力。
9
指数分类
SQE Training
Cp,Cpk,Cpm Pp,Ppk,Ppm
5
SQE Training
影 ☆ 人、机、料、法、测、环
响 (5M1E)
过 操作者方面:如操作者的技术水平、熟练 程 程度、质量意识、责任心、管理程度等;
能 设备方面:如设备精度的稳定性,性能
力
的可靠性,定位装置和传动装置的准 确性,设备的冷却、润滑情况等等;
的 材料方面:如材料的成分,配套元器件
指数分类
二、过程性能指数(Process Performance Index) 1、Pp: 分布中心无偏离规格中心时衡量
过程能力的指数; 2、Ppk: 分布中心偏离规格中心时衡量
过程能力的指数; 3、Ppm:目标值与规格中心不一致时衡量
过程能力的指数; 4、Ppu:上单侧过程能力指数; 5、Ppl: 下单侧过程能力指数。
因 的质量等等;
素
6
SQE Training
SPC统计过程控制173页PPT培训教材
管理层授权并支持问题调 查和过程改进
当图表有异常信号时, 通 过根本原因分析采取正确 的行动以预防问题的再次 发生
YES
NO NO NO NO
15
YES
YES NO NO NO
YES
YES YES YES YES
为什么我们会关注统计控制?
第一个原因是福特PFMEA流程中要求需要对CC, SC和过程HIC采取 特殊控制, SPC就是其中的一种.
24
控制过程变差 无法控制的
随机的, 不可预知的变差, 影响到每个零件
例如: 普通原因
减少变差需要过程或系统的改变
25
控制过程变差 可控制的
变差是随时间而定的 可以被测量或补偿, 是可预知的 变差的减少通过作业水平的补偿就可以
26
数据类型
计数型
不通过
通过
失败
通过
电子的线路
27
计量型
卡尺
时间
温度
过程是统计受控的 过程是可预测的
稳定的过程状态
22
两种过程状态:普通原因和特殊原因
存在变差的特殊原因
分布不稳定,偏离典型分布
过程是不受控的
如果存在特殊原因,过程输 出随时间将不稳定,同时也 不可预测。
过程是不可预测的 控制图可检出
不稳定的过程状态
23
变差的普通原因和特殊原因
休哈特的贡献就在于发现了:虽然产生变差的来 源包括人、机、料、法、环等各种原因,但可分 为普通原因及特殊原因,后者(特殊原因)在控制 图上有信号,因此,可用来对过程进行控制。
5
引言
当过程超出控制 (Out-of-Control) 或生产了问题零 件的时候应该怎么办?
如何运用平均运行长度 (ARL-Average Run Length) 即 基于变量数据的围堵策略, 包括怎样识别损失函数. 如何采取永久的系统性的纠正措施用于预防问题永远 不再发生.
当图表有异常信号时, 通 过根本原因分析采取正确 的行动以预防问题的再次 发生
YES
NO NO NO NO
15
YES
YES NO NO NO
YES
YES YES YES YES
为什么我们会关注统计控制?
第一个原因是福特PFMEA流程中要求需要对CC, SC和过程HIC采取 特殊控制, SPC就是其中的一种.
24
控制过程变差 无法控制的
随机的, 不可预知的变差, 影响到每个零件
例如: 普通原因
减少变差需要过程或系统的改变
25
控制过程变差 可控制的
变差是随时间而定的 可以被测量或补偿, 是可预知的 变差的减少通过作业水平的补偿就可以
26
数据类型
计数型
不通过
通过
失败
通过
电子的线路
27
计量型
卡尺
时间
温度
过程是统计受控的 过程是可预测的
稳定的过程状态
22
两种过程状态:普通原因和特殊原因
存在变差的特殊原因
分布不稳定,偏离典型分布
过程是不受控的
如果存在特殊原因,过程输 出随时间将不稳定,同时也 不可预测。
过程是不可预测的 控制图可检出
不稳定的过程状态
23
变差的普通原因和特殊原因
休哈特的贡献就在于发现了:虽然产生变差的来 源包括人、机、料、法、环等各种原因,但可分 为普通原因及特殊原因,后者(特殊原因)在控制 图上有信号,因此,可用来对过程进行控制。
5
引言
当过程超出控制 (Out-of-Control) 或生产了问题零 件的时候应该怎么办?
如何运用平均运行长度 (ARL-Average Run Length) 即 基于变量数据的围堵策略, 包括怎样识别损失函数. 如何采取永久的系统性的纠正措施用于预防问题永远 不再发生.
SPC统计过程控制培训教材(PPT 116页)
1.了解产品总体性能 2. 取消人为特殊因素造成的极端值以稳定制程 3. 规格趋向目标值 4. 减小差异 5. 審核規格,看看是否適用
MQIP – All Rights Reserved
Bak SPC Training
Aug 1-2 , 2004
MQIP
Your Professional Quality Improvement Partner
◆若初始建立控制图,至少要抽取75个以上 的数据,若样本含量N=3,则至少要抽25组 样本. ◆数据必须是最新的,能确切反映当前的工 序水平. ◆抽样时必须记录数据采集日期、时间、采 集人等信息.24样本均值分布898642 ◆抽样必须是随机的.
MQIP – All Rights Reserved
Bak SPC Training
SPC应用背景篇
课程目的:
>了解SPC的历史由来. >掌握控制图基本原理. >掌握SPC的运用领域. >SPC基本统计概念
MQIP – All Rights Reserved
Bak SPC Training
Aug 1-2 , 2004
Your Professional Quality Improvement Partner
Aug 1-2 , 2004
MQIP 控制图的应用
Your Professional Quality Improvement Partner
… …
… …
… …
… …
… …
… …
… …
… …
… …
… …
数据记录一般格式
样本号 (1)
日期/时间
X1
1
3/12 8:00 AM
统计过程控制SPC培训教材ppt课件
机器 中要因
材料
中要因
小要因
方法
人员 中要因
如 何 做
中要因
小要因
6. 直方图〔Histogram;亦称柱状图〕:将所搜集的测定特性值或结果 值,分为几个相等的区间作为横轴,并将各区间内所测定的特性值或 结果值依所出现的次数累积而成的面积,用柱子排起来的图形,称为 直方图。亦即指用来对特征数据进展分级整理,将杂乱无章的资料, 解析出其规律性,以得出其分布特征的统计分析的方法。
新产品和常规产品〔包括老产品和旧产品〕中, 顾客要求和公司确定的产品和过程特殊特性。
5、 SPC 与 APQP/CP、FMEA、PPAP 和 MSA 的关系:
DFMEA 样件CP
PPAP
MSA
PFMEA
SPC
SPC
〔Ppk≧1.67) 〔Cpk≧1.33〕
试消费CP 消费CP
第一阶段 第二阶段 第三阶段 第四阶段 第五阶段
2、统计过程控制〔SPC〕的定义: 运用诸如控制图等统计技术来分析制造过程或其输 出,以便采取适当的措施,为到达并坚持统计控制 形状从而提高或改良制造过程才干。
3、统计过程控制〔SPC〕的目的: 为了解制造过程以及改善制造过程,藉由对制造
过程才干的分析/评价使其有量化数据/资料。以供作 为产品设计/开发和制造过程设计/开发及其改良、选 择资料、操作人员或作业方法的根据和参考,继续改 进产质量量和效力的价值,到达顾客称心。 4、SPC 实施的范围:
控制限,它能减少I类错误和Ⅱ类错误的净经济损失。它有两个根本
的用途:一是用来断定一个过程能否不断受统计控制;二是用来协助
过程坚持受控形状。亦即指附有控制界限的图表,用以描画样本数据
与界限比较。假设数据超出界限或出现“链〞及非随机图形,表示过 程
SPC统计过程控制培训课件(PPT 80张)
宇宙万物及工业产品大都呈常态分配 变异的原因可分为偶因及异因
偶因属管理系统的范围
例如:身高.体重.智力.考试成绩.所得分配
预防与检测
人 机 法 环 測量 測量
原料
PROCESS
Y=f(x1,x2,….)
Y可视为顾客所要求的产品特性。 但是如果在y进行相应的统计控制 品已经制造出来,只是相当于检验 得好不好,时效已晚。 所以要去探究哪些因素会影响y,
X X X
UCL LCL 全距控制图
建立X-R图的步骤C
C1分析极差图上的数据点 C2识別并标注特殊原因(极差图) C 过 程 控 制 解 释
C3重新計算控制界限(极差图)
超出 链 明显 形
C4分析均值图上的数据点
C5识別并标注特殊原因(均值图)
超出 链 明显
控制图的判读
超出控制界限的点:连续25点出现一个或 任何一个控制界限是该点处于失控状态的
对系统采取措施
局部措施、系统措施示意
UCL
组内变异和组间差异说明
不同槽之间的谓组间变异,我们在于了解在
组间变异大的解决方法
此时的异常将在Xbar图中显示出来 一般的责任是在现场人员,可能是 料,没有依照标准作业方法等。 此种问题比较容易解决,85%应由 员就可以处理。
组内变异大的解决方法
层别的说明
复合
使用控制图的注意事项
控制界限的重新计算
为使控制线适应今后的生产过程, 在 最初的控制线CL、UCL、LCL时, 常 复计算, 以求得切实可行的控制图. 但 经过使用一定时期后, 生产过程有了 加工工艺改变、刀具改变、设备改变
统计过程控制SPC培训教材(PPT 155页)
2. 制造过程的特征 a、任何一个过程都有输入和输出。 b、完成一个过程需开展一系列的活动。 c、完成一个过程必须投入相应的资源。 d、为确保过程的质量,需要对过程中的关键阶段进行必要的检 查、评审、验证。 e、每一个过程本身是价值增加的过程。
第一章 统计过程控制概述
二、产品质量波动
– 产品质量具有波动性和规律性。在生产实践中,即便操作者、 机器、原材料、加工方法、测试手段、生产环境等条件相同, 但生产出的一批产品的质量特性数据却并不完全相同,总是存 在着差异,这就是产品质量的波动性。因此,产品质量波动具 有普遍性和永恒性。当生产过程处于统计控制状态时,生产出 来的产品的质量特性数据,其波动服从一定的分布规律,这就 是产品质量的规律性。
• 有时有利,有时有害。
第一章 统计过程控制概述
例如,原材料的质量不符合规定要求;机器设备带病运转;操作者违反操 作规程;测量工具带系统性误差,等等。由于这些原因引起的质量波动大 小和作用方向一般具有一定的周期性或倾向性,因此比较容易查明,容易 预防和消除。又由于异常波动对质量特性值的影响较大,因此,一般说来 在生产过程中是不允许存在的。
统计过程控制概述
目标值线
范围
如果存在变差的特殊原 因,随着时间的推移, 过程的输出不稳定
预测
时间
???
? ??
? ?
目标值线
? ?
预测
时间
范围
第一章 统计过程控制概述
三、影响产品质量波动的因素
什么是波动? 波动就是变差,是过程的单个输出之间不可避免的差别。可以
用 σ 表示。
从微观角度看,引起产品质量波动的原因主要来自6个方面: “人、机、料、法、测、环(5M1E)”。
概率
第一章 统计过程控制概述
二、产品质量波动
– 产品质量具有波动性和规律性。在生产实践中,即便操作者、 机器、原材料、加工方法、测试手段、生产环境等条件相同, 但生产出的一批产品的质量特性数据却并不完全相同,总是存 在着差异,这就是产品质量的波动性。因此,产品质量波动具 有普遍性和永恒性。当生产过程处于统计控制状态时,生产出 来的产品的质量特性数据,其波动服从一定的分布规律,这就 是产品质量的规律性。
• 有时有利,有时有害。
第一章 统计过程控制概述
例如,原材料的质量不符合规定要求;机器设备带病运转;操作者违反操 作规程;测量工具带系统性误差,等等。由于这些原因引起的质量波动大 小和作用方向一般具有一定的周期性或倾向性,因此比较容易查明,容易 预防和消除。又由于异常波动对质量特性值的影响较大,因此,一般说来 在生产过程中是不允许存在的。
统计过程控制概述
目标值线
范围
如果存在变差的特殊原 因,随着时间的推移, 过程的输出不稳定
预测
时间
???
? ??
? ?
目标值线
? ?
预测
时间
范围
第一章 统计过程控制概述
三、影响产品质量波动的因素
什么是波动? 波动就是变差,是过程的单个输出之间不可避免的差别。可以
用 σ 表示。
从微观角度看,引起产品质量波动的原因主要来自6个方面: “人、机、料、法、测、环(5M1E)”。
概率
SPC统计过程控制培训课件ppt(102张)
• 如设备故障,原材料不合格,没有资格的操作工、未按照 作业指导书操作、工艺参数设定不对……
SPC统计过程控制培训课件(PPT102页)
SPC统计过程控制培训课件(PPT102页)
普通原因和特殊原因的区别
存在性 方向
影响大小 消除的难 易度
普通原因 始终
偏向
小
难
特殊原因 有时
或大或小 大
易
SPC统计过程控制培训课件(PPT102页)
(1)、波动的原因:
材料
机器
人
环境
测量
方法
波动原因
SPC统计过程控制培训课件(PPT102页)
(2)、普通原因、特殊原因
• 普通原因:指的是造成随着时间推移具有稳定的且可重 复的分布过程中的许多变差的原因,我们称之为:“处于 统计控制状态”、“受统计控制”,或有时间称“受控”, 普通原因表现为一个稳定系統的偶然原因。只有变差的普 通原因存在且不改变时,过程的输出才可以预测。
SPC统计过程控制培训课件(PPT102页)
(3)、波动的种类:
• 正常波动:是由普通(偶然)原因造成的。如操 作方法的微小变动,机床的微小振动,刀具的正 常磨损,夹具的微小松动,材质上的微量差异等。 正常波动引起工序质量微小变化,难以查明或难 以消除。它不能被操作工人控制,只能由技术、 管理人员控制在公差范围内。
• 3、极差R 样本数据中的最大值Xmax与最小值
Xmin的差值。R= Xmax- Xmin • 4、标准偏差s 、 (1)总体标准偏差 (2)样本的标准偏差
s
N
( X i X )2
i 1
N
n
( X i X )2
i 1
n 1
SPC统计过程控制培训课件(PPT102页)
SPC统计过程控制培训课件(PPT102页)
SPC统计过程控制培训课件(PPT102页)
普通原因和特殊原因的区别
存在性 方向
影响大小 消除的难 易度
普通原因 始终
偏向
小
难
特殊原因 有时
或大或小 大
易
SPC统计过程控制培训课件(PPT102页)
(1)、波动的原因:
材料
机器
人
环境
测量
方法
波动原因
SPC统计过程控制培训课件(PPT102页)
(2)、普通原因、特殊原因
• 普通原因:指的是造成随着时间推移具有稳定的且可重 复的分布过程中的许多变差的原因,我们称之为:“处于 统计控制状态”、“受统计控制”,或有时间称“受控”, 普通原因表现为一个稳定系統的偶然原因。只有变差的普 通原因存在且不改变时,过程的输出才可以预测。
SPC统计过程控制培训课件(PPT102页)
(3)、波动的种类:
• 正常波动:是由普通(偶然)原因造成的。如操 作方法的微小变动,机床的微小振动,刀具的正 常磨损,夹具的微小松动,材质上的微量差异等。 正常波动引起工序质量微小变化,难以查明或难 以消除。它不能被操作工人控制,只能由技术、 管理人员控制在公差范围内。
• 3、极差R 样本数据中的最大值Xmax与最小值
Xmin的差值。R= Xmax- Xmin • 4、标准偏差s 、 (1)总体标准偏差 (2)样本的标准偏差
s
N
( X i X )2
i 1
N
n
( X i X )2
i 1
n 1
SPC统计过程控制培训课件(PPT102页)
SPC(Statistical Process Control) 统计过程控制培训课件
二.SPC的作用(续)为设备验收提供资料应用SPC统计资料来验证设备能力,保证设备的接受水平提倡一次性将工作做好的精神强调工作质量技术管理人员给生产现场提供良好的服务;生产人员注重提高一次交验合格率。
Statistical Process Control
二.SPC的作用(续)发展企业文化,提高职工素质严谨的工作态度认真负责的精神形成一个有效的分析、解决问题的网络用共同的语言讨论质量问题自我参与和完善的意识
特殊原因
四. 持续改进及统计过程控制概述2.变差的普通原因和特殊原因(续)(通常也叫可查明原因)是指造成不是始终作用于过
每件产品的尺寸与别的都不同
范围但它们形成一个模型,
范围 范围 范围若稳定, 可以描述为一个分布
范围
范围
范围分布可以通过以下因素来加以区分
位置 分布宽度
形状
或这些因素的组合
目标值线
不精密
精密
准确
不准确
• •
••
••••
•
•
•• •
••••
•••
•••
Statistical Process Control
使用控制图的准备1、建立适合于实施的环境a 排除阻碍人员公正的因素b 提供相应的资源c 管理者支持2、定义过程根据加工过程和上下使用者之间的关系,分析每个阶段的影响因素。
Statistical Process Control
三.SPC常用术语解释(续)
名 称
解 释
总 体
又称母体,是指所要研究对象的全体;
样 本
从总体中随机抽取出来的,对它进行测量、分析的一部分个体;
样 品
又称个体,样本中的每一个研究对象;
样本大小
Statistical Process Control
二.SPC的作用(续)发展企业文化,提高职工素质严谨的工作态度认真负责的精神形成一个有效的分析、解决问题的网络用共同的语言讨论质量问题自我参与和完善的意识
特殊原因
四. 持续改进及统计过程控制概述2.变差的普通原因和特殊原因(续)(通常也叫可查明原因)是指造成不是始终作用于过
每件产品的尺寸与别的都不同
范围但它们形成一个模型,
范围 范围 范围若稳定, 可以描述为一个分布
范围
范围
范围分布可以通过以下因素来加以区分
位置 分布宽度
形状
或这些因素的组合
目标值线
不精密
精密
准确
不准确
• •
••
••••
•
•
•• •
••••
•••
•••
Statistical Process Control
使用控制图的准备1、建立适合于实施的环境a 排除阻碍人员公正的因素b 提供相应的资源c 管理者支持2、定义过程根据加工过程和上下使用者之间的关系,分析每个阶段的影响因素。
Statistical Process Control
三.SPC常用术语解释(续)
名 称
解 释
总 体
又称母体,是指所要研究对象的全体;
样 本
从总体中随机抽取出来的,对它进行测量、分析的一部分个体;
样 品
又称个体,样本中的每一个研究对象;
样本大小
SPC统计过程控制培训课件(ppt59页).pptx
i 1
n 1
6. 样本的标准偏差
7. 如:5,9,10,4,7,
s=2.28;
如:7,7,7,6,8,
s=0.63;
6.数据整体分布离平均值越近,标准方差就越小;
数据整体分布离平均值越远,标准方差越大。
二、基本的统计概念-正态分布 ➢正态分布
一种概率分布,生产与科学实验中很多随机变量 的概率分布都可以近似地用正态分布来描述。
如设备的正常震动,刀具的磨损,同一批材料的品质差 异,熟练工人间的替换等。
二、基本的统计概念-波动
➢波动的原因
2. 特殊原因 指的是造成不是始终作用于过程的变差的原因,即当它们
出现时将造成(整个)过程的分布改变。除非所有的特殊原因都 被查找出来并且采取了措施,否則它们将继续用不可预测的方 式来影响过程的输出。如果系统内存在变差的特殊原因,随时 间的推移,过程的输出将不稳定。
统计过程能力控制认识
LOGO
1 统计过程能力控制(SPC)概述
2
基本的统计概念
4 统计过程能力控制(SPC)应用
1 统计过程能力控制(SPC)概述
一、统计过程能力控制(SPC)概述
➢SPC起源与发展
1. 1924年W.A. Shewhart(休哈特)博士发明了品质控制图。 2. 1939年W.A. Shewhart博士与戴明博士合写了《品质观点的
概率
二、基本的统计概念-正态分布
➢正态分布
特点: 中间高,两边低,左右对 称;两边伸向无穷远。
σ越小,分布越集中在μ附 近,σ越大,分布越分散。
µ (mu)- 位置参数和平均值(mean value) ,表示分布 的中心位置和期望值 (sigma) - 尺度参数(分布宽度),表示分布的分散 程度和标准偏差
n 1
6. 样本的标准偏差
7. 如:5,9,10,4,7,
s=2.28;
如:7,7,7,6,8,
s=0.63;
6.数据整体分布离平均值越近,标准方差就越小;
数据整体分布离平均值越远,标准方差越大。
二、基本的统计概念-正态分布 ➢正态分布
一种概率分布,生产与科学实验中很多随机变量 的概率分布都可以近似地用正态分布来描述。
如设备的正常震动,刀具的磨损,同一批材料的品质差 异,熟练工人间的替换等。
二、基本的统计概念-波动
➢波动的原因
2. 特殊原因 指的是造成不是始终作用于过程的变差的原因,即当它们
出现时将造成(整个)过程的分布改变。除非所有的特殊原因都 被查找出来并且采取了措施,否則它们将继续用不可预测的方 式来影响过程的输出。如果系统内存在变差的特殊原因,随时 间的推移,过程的输出将不稳定。
统计过程能力控制认识
LOGO
1 统计过程能力控制(SPC)概述
2
基本的统计概念
4 统计过程能力控制(SPC)应用
1 统计过程能力控制(SPC)概述
一、统计过程能力控制(SPC)概述
➢SPC起源与发展
1. 1924年W.A. Shewhart(休哈特)博士发明了品质控制图。 2. 1939年W.A. Shewhart博士与戴明博士合写了《品质观点的
概率
二、基本的统计概念-正态分布
➢正态分布
特点: 中间高,两边低,左右对 称;两边伸向无穷远。
σ越小,分布越集中在μ附 近,σ越大,分布越分散。
µ (mu)- 位置参数和平均值(mean value) ,表示分布 的中心位置和期望值 (sigma) - 尺度参数(分布宽度),表示分布的分散 程度和标准偏差
SPC统计过程控制培训教材(共 87张PPT)
常用概率分布简介
连续型分布:
正态分布:当质量特性(随机变量)由为数众多的因素影响,而又
没有一个因素起主导作用的情况下,该质量特性的值的变异分布,一般 都服从或近似服从正态分布。
离散型分布:
二项分布:一个事物只有两种可能的结果,其值的分布一般服从
二项分布;
泊松分布:稀有事件的概率分布一般服从柏松分布。
上海NQA认证有限公司
22
SPC控制图
SPC控制图对两种错误的预防
错判是虚发警报的错误:由于偶然原因造成数据点超出 控制限的情况,从而造成将一个正常的总体错判为不正 常,在控制限为正负3情况下,这样的概率小于3‰;
漏判是漏发警报的错误,也就是判断当数据点在控制限 内的异常,所以,SPC增加了对界内数据点趋势的判断 准则。
漏判是漏发警报的错误:也称为第II类错误,在过程存 在异常变异时,如被监控的总体的均值或标准偏差发生改 变,仍会有一部分数据在上下控制限之内,从而发生漏 报的错误,这种错误用β表示。
上海NQA认证有限公司
21
SPC控制图
SPC控制图对两种风险预防
漏报
错 报
解决 方案
错报:3σ控制限 漏报:判断准则
上海NQA认证有限公司
SPC的统计理论基础
中心极限定理
设X1,X2,…..,Xn是n个独立分布的随机量,分布的均 值为μ,方差为σ2,则在n较大时,有
(1 )X
1
+X
2
+...+X
n
=
n
X
i
i=1
近似服从均值为nμ,方差为nσ2的正态分布。
( 2 )X
=
X
1
+X
连续型分布:
正态分布:当质量特性(随机变量)由为数众多的因素影响,而又
没有一个因素起主导作用的情况下,该质量特性的值的变异分布,一般 都服从或近似服从正态分布。
离散型分布:
二项分布:一个事物只有两种可能的结果,其值的分布一般服从
二项分布;
泊松分布:稀有事件的概率分布一般服从柏松分布。
上海NQA认证有限公司
22
SPC控制图
SPC控制图对两种错误的预防
错判是虚发警报的错误:由于偶然原因造成数据点超出 控制限的情况,从而造成将一个正常的总体错判为不正 常,在控制限为正负3情况下,这样的概率小于3‰;
漏判是漏发警报的错误,也就是判断当数据点在控制限 内的异常,所以,SPC增加了对界内数据点趋势的判断 准则。
漏判是漏发警报的错误:也称为第II类错误,在过程存 在异常变异时,如被监控的总体的均值或标准偏差发生改 变,仍会有一部分数据在上下控制限之内,从而发生漏 报的错误,这种错误用β表示。
上海NQA认证有限公司
21
SPC控制图
SPC控制图对两种风险预防
漏报
错 报
解决 方案
错报:3σ控制限 漏报:判断准则
上海NQA认证有限公司
SPC的统计理论基础
中心极限定理
设X1,X2,…..,Xn是n个独立分布的随机量,分布的均 值为μ,方差为σ2,则在n较大时,有
(1 )X
1
+X
2
+...+X
n
=
n
X
i
i=1
近似服从均值为nμ,方差为nσ2的正态分布。
( 2 )X
=
X
1
+X
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均值 (X bar)
一组测量值的均值,群体平均值用μ表示
极差(Range)
一个子组、样本或总体中最大与最小值之差
标准差σ(Sigma) (Standard Deviation)
单值(Individual)
过程输出的分布宽度或从过程中统计抽样值(例如:子组均值)的分布宽 度的量度,用希腊字母σ或字母 s(用于样本标准差)表示。样本标准差也 可用σP表示
四、管制图的种类 五、计数型数据管制图
1、p 图/不良率控制图 2、np图/不合格品数控制图 3、c 图/不良(缺陷)数控制图 4、u 图/单位不良(缺陷)数控制图 六、计量型数据管制图
1、与过程相关的管制图 2、使用控制图的准备 3、 X bar-R 图 4、 X bar-s 图 5、 X med-R图 6、 X -Rm图 七、管制图的选择方法 八、过程能力分析及管制图的判读 1、过程能力分析 2、管制图判读
正态分布中,任一点出现在 μ±1σ內的概率为: P(μ-1σ<X< μ+1σ) = 68.27% μ±2σ內的概率为 :P(μ-2σ<X< μ+2σ) = 95.45% μ±3σ內的概率为: P(μ-3σ<X< μ+3σ) = 99.73%
◆正态分布有一个结论对质量管理很有用,即无论无论均值μ和标准差σ取何值,产品质量 特性值落在μ±3σ之间的概率为99.73。
过程能(Process Capability) 是指按标准偏差为单位来描述的过程均值和规格界限的距离,用Z来表示。
移动极差(Moving Range) 两个或多个连续样本值中最大值和最小值之差。
2、正态分布的基本知识
◆在中心线或平均值两侧呈现对称之分布 ◆常态曲线左右两尾与横轴渐渐靠近但不相交
◆曲线下的面积和为 1 如下例:
◆用于制程特征分析的参数 Ca: 制程准确度 Cp: 制程精密度/潜力 Pp: 初期制程潜力 Cpk: 制程能力 Ppk: 初期制程能力 PPM: 百万分之不良率 Sigma s:規格标准差 Sigma a:制程标准差 Sigma p:样本标准差
◆平均数、中位数、众数、全距、平方和、变异数、及标准差的计算
例:100个螺丝直径直方图。图中的直方高度与该组的出现频数成正比
螺丝直径直方图
直方图趋近光滑曲线
将各组的頻数用资料总和N=100相除,就得到各组的频率,它表示螺丝直径属于各组的可能性大小 。显然,各组频率之和为1。若以直方面积来表示该组的频率,则所有直方面积总和也为1。
在极限情况下得到的光滑曲线即为分布曲线,它反映了产品质量的统计规律,如分布曲线图所示.
◆于是落在μ±3σ之外的概率为100%一99.73%= 0.27%。 ◆而超过一侧,即大于μ-3σ或小于μ+3σ的概率为0.27%/2=0.135%≈1 ‰ 。如正态分布曲
线图。这个结论十分重要。控制图即基于这一理论而产生。
红色代表 实际制程 分布形态
蓝色代表规 格分布形态
3、主要的统计参数
◆用于品质管制图分析的参数 XUCL:X bar管制图的管制上限 Xbar:Xbar管制图的中心值 XLCL:Xbar管制图的管制下限 RUCL:R管制图的管制上限 Rbar:R管制图的中心值 RLCL:R管制图的管制下限
普通原因 (Common Cause) 特殊原因(Special Cause)
造成变差的一个原因,它影响被研究过程输出的所有单值;在控制图分析中 ,它表现为随机过程变差的一部分。
一种间断性的,不可预计的,不稳定的变差根源。有时被称为可查明原因, 它存在的信号是:存在超过控制限的点或存在在控制限之内的链或其它非随 机性的图形。
SPC(统计过程控制)培训教材
Statistical Process Control
作成:Jack 日期:2010.07.20
课程大纲
一、什么是SPC 1、SPC的含义 2、SPC的作用与特点
二、基本的统计概念 1、主要的统计学名词 2、正态分布的基本知识 3、主要统计参数
三、持续改进及SPC概述 1、过程控制控制的是什么 2、局部措施和对系统采取措施 3、控制图
统采取措施的指南。 ◆特点:
-SPC是全系统的,全过程的,要求全员参加,人人有責。这
点与TQM的精神完全一致。
-SPC強调用科学方法(主要是统计技术,尤其是控制图理论来
保证全程的预防。 -SPC不仅用于生产过程,而且可用于服务过程一一切管理过
程。
二、基本的统计概念 1、主要的统计学名词-1
名称
解释
一个单个的单位产品或一个特性的一次测量,通常用符号 X 表示。
中心线(Central Line) 过程均值(Process Average) 变差(Variation)
控制图上的一条线,代表所给数据平均值。
一个特定过程特性的测量值分布的位置即为过程均值,通常用 X 来表示。
过程的单个输出之间不可避免的差别;变差的原因可分为两类:普通原因和 特殊原因。
一、SPC的含义
1、什么是SPC ◆SPC --Statistical Process
Control (统计过程控制) ◆含义--利用统计技术对过程中
的各个阶段进行监控,从而达到保 证产品质量的目的。
2、SPC的作用与特点
◆作用: -确保制程持续稳定、可预测。 -提高产品质量、生产能力、降低成本。 -为制程分析提供依据。 -区分变差的特殊原因和普通原因,作为采取局部措施或对系
平均数(X bar) X bar=(x1+x2+……x n)/N
中位数(Me) 众数(Mo) 全距(R) 平方和 (S)
将数据从小到大或大至小依次排列,位居中央的数称为中位数。 一群数据中,再现次数最多的数。 一组数值中最大值与最小值之差:R=Max-Min 各数值与平均值之差之平方总和: S=Σ(X-X)2
变异数 [V(X)] 平方和除以数据个数: V(X)= S/n= Σ(X-X)2 /n
标准差n = √Σ(X-X)2 /n
◆标准差的计算 -規格標準差 —σs 读做Sigma Spec
σs---3σ= σs---6σ=
USL– LSL 6
USL– LSL 12
-样本标准差—σp 读做Sigma Pattern