平面直角坐标系教案98627
七年级数学下册《平面直角坐标系》教案、教学设计
![七年级数学下册《平面直角坐标系》教案、教学设计](https://img.taocdn.com/s3/m/b713fdac9f3143323968011ca300a6c30c22f1ec.png)
3.坐标变换:通过动画或实物演示,让学生直观感受坐标的平移和伸缩变换,理解变换的规律。
-设想活动:设计坐标变换的互动游戏,让学生在游戏中实践坐标变换,加深理解。
4.解决实际问题:结合实际案例,指导学生运用坐标系解决几何和代数问题,如计算距离、分析物体的移动路径等。
-最后布置课后作业,让学生在实践中进一步巩固所学知识。
五、作业布置
为了巩固学生对平面直角坐标系知识的掌握,培养他们运用坐标系解决实际问题的能力,特布置以下作业:
1.基础作业:
-请学生绘制一个标准的平面直角坐标系,并在坐标系中标出至少10个点,包括各个象限内的点。
-列出5个实际生活中的问题,尝试使用坐标系来描述这些问题,并简要说明坐标系的优点。
作业要求:
-所有作业均要求学生独立完成,书写规范,图形绘制清晰。
-提交作业时,鼓励学生对自己的作品进行简要说明,分享创作思路和心得体会。
-教师将对作业进行及时批改,给予评价和建议,帮助学生找到知识盲点和提高方向。
-各小组讨论坐标变换的规律,并分享自己的发现。
-教师巡回指导,解答学生的疑问,引导他们深入理解坐标变换的原理。
(四)课堂练习
1.教学内容:设计不同难度的练习题,巩固学生对平面直角坐标系的理解。
过程设计:
-布置一些基础题,如给出坐标点让学生画出图形,或给出图形让学生写出坐标点。
-设计一些提高题,如坐标变换的应用题,让学生运用所学知识解决问题。
3.通过数学知识的学习,让学生体会数学的简洁美、逻辑美,提高审美情趣,培养良好的数学素养。
4.培养学生的创新意识,使他们敢于质疑、勇于挑战,形成独立思考和批判性思维的能力。
《平面直角坐标系》优秀教案(精选12篇)
![《平面直角坐标系》优秀教案(精选12篇)](https://img.taocdn.com/s3/m/54a1555e91c69ec3d5bbfd0a79563c1ec5dad729.png)
《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动, 根据课程标准, 教学大纲和教科书要求及学生的实际情况, 以课时或课题为单位, 对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编为大家整理的《平面直角坐标系》优秀教案, 仅供参考, 欢迎大家阅读。
《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书, 七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。
平面直角坐标系是图形与数量之间的桥梁, 有了它我们便可以把几何问题转化为代数问题, 也可以把代数问题转化为几何问题。
本章内容从数的角度刻画了第五章有关平移的内容, 对学生以后的学习起到铺垫作用, 6.1.2节平面坐标系主要是介绍如何建立平面坐标系, 如何确定点的坐标和由点的坐标寻找点的位置, 以及平面坐标系中特殊部位点的坐标特征, 根据学生的接受能力, 我把本内容分为2课时, 这是第一课时, 主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。
2、教学目标根据新课标要求, 数学的教学不仅要传授知识, 更要注重学生在学习中所表现出来的情感态度, 帮助学生认识自我、建立信心。
知识能力:①认识平面直角坐标系, 了解点与坐标的对应系;②在给定的直角坐标系中, 能由点的位置写出点坐标。
数学思考:①通过寻找确定位置, 发展初步的空间观念;②通过学习用坐标的位置, 渗透数形结合思想解决问题:通过运用确定点坐标, 发展学生的应用意识。
情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标, 培养学生合作交流与探索精神;②通过介绍数学家的故事, 渗透理想和情感的教育。
3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误, 确定本节重难点为:重点: 认识平面坐标系难点: 根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征, 以及他们现有知识水平, 通过科学家发现点的坐标形成的经过启迪学生思维, 通过小组合作与交流及尝试练习, 促进学生共同进步, 并用肯定和激励的言语鼓舞、激励学生。
初中数学《平面直角坐标系》教案设计
![初中数学《平面直角坐标系》教案设计](https://img.taocdn.com/s3/m/47ad708f988fcc22bcd126fff705cc1755275fa5.png)
初中数学《平面直角坐标系》教案设计1一、教学目标1. 知识与技能目标- 学生能够准确理解平面直角坐标系的概念,包括横轴、纵轴、原点等要素。
- 掌握点在坐标系中的表示方法,能根据坐标确定点的位置,以及能根据点的位置写出其坐标。
2. 过程与方法目标- 通过小组竞赛活动,培养学生的团队合作能力和竞争意识,同时提高学生在实际操作中运用平面直角坐标系的能力。
- 借助数学史故事的讲述,引导学生学会从历史中汲取知识,培养学生的历史观和科学精神。
3. 情感态度与价值观目标- 让学生认识到数学知识的重要性,激发学生对数学的学习兴趣和探索精神。
- 培养学生在日常生活中善于观察、善于思考的习惯,提高学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点- 平面直角坐标系的概念及点在坐标系中的表示方法。
- 根据坐标确定点的位置和根据点的位置写出其坐标。
2. 教学难点- 理解平面直角坐标系中坐标与点的对应关系。
- 运用平面直角坐标系解决实际问题。
三、教学方法1. 讲授法:讲解平面直角坐标系的概念、要素及点的表示方法。
2. 演示法:通过多媒体演示点在坐标系中的位置变化,帮助学生更好地理解坐标与点的对应关系。
3. 小组竞赛法:组织学生进行小组竞赛活动,提高学生的学习积极性和参与度。
4. 故事讲述法:讲述笛卡尔发明平面直角坐标系的过程,激发学生的学习兴趣和探索精神。
四、教学过程1. 导入新课(5 分钟)- 教师提问:“同学们,在我们的生活中,有没有见过用数字来表示位置的情况呢?”引导学生思考并回答,如电影院的座位号、地图上的经纬度等。
- 教师总结:“在数学中,也有一种方法可以用数字来表示点的位置,那就是平面直角坐标系。
今天,我们就一起来学习平面直角坐标系。
”2. 数学史故事讲述(10 分钟)- 教师讲述笛卡尔发明平面直角坐标系的过程:“在十七世纪,法国数学家笛卡尔生病卧床,他在思考如何用一种新的方法来表示点的位置。
初中数学初二数学上册《平面直角坐标系》教案、教学设计
![初中数学初二数学上册《平面直角坐标系》教案、教学设计](https://img.taocdn.com/s3/m/264fc6b1162ded630b1c59eef8c75fbfc77d94b2.png)
c.如何利用坐标系解决实际问题?
2.各小组汇报讨论成果,教师进行点评总结坐标系的实际应用和坐标性质的作用。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
a.填空题:给出一些点的坐标,让学生填写对应的点。
b.选择题:判断坐标的性质,如平移、对称等。
4.小组合作,探讨坐标系的平移、对称性质在解决几何问题中的应用。要求每组选取一个典型问题进行详细解答,并在课堂上进行分享。这个作业有助于培养学生的团队协作能力和表达能力。
5.针对课堂学习内容,撰写学习心得体会,总结自己在平面直角坐标系知识方面的收获和不足。要求字数不少于300字,让学生在反思中不断提高。
4.分层次设计练习题,针对不同水平的学生,提高他们在坐标系知识方面的掌握程度。同时,注重题目的实际应用背景,培养学生的数学建模能力。
5.教学过程中,注重启发式教学,引导学生主动发现问题、解决问题,提高学生的自主探究能力。
6.定期进行课堂小结,帮助学生总结所学知识,形成知识体系。同时,关注学生的学习反馈,调整教学策略,提高教学效果。
2.完成教材课后练习题,包括填空题、选择题和计算题。这些题目涵盖了本节课的重点知识,有助于学生巩固坐标的表示方法和性质,提高运算能力。
3.设计一道实际问题,要求学生运用坐标系知识进行解答。例如:在学校的平面图上,标出教学楼、操场和食堂的位置,并计算它们之间的距离。这个作业旨在培养学生将实际问题转化为数学问题的能力,提高数学建模能力。
难点:将抽象的坐标系与实际情境相结合,运用数学知识解决现实问题。
(二)教学设想
1.采用情境导入法,以生活中的实际问题为例,引导学生认识到坐标系在解决实际问题时的重要性,激发学生的学习兴趣。
平面直角坐标系教案
![平面直角坐标系教案](https://img.taocdn.com/s3/m/23ea89d4ce2f0066f53322f1.png)
《平面直角坐标系》教案
目标确定的依据
1、课程标准相关要求
理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。
2、教材分析
平面直角坐标系的建立是平面解析几何的基础,对今后几何的学习起着重要的作用。
3、学情分析
学生已经学习了数轴,知道了数轴上的点与实数是一一对应的,同时上节课也学习了有序数对,利用有序数对可以表示出一个位置。
本节课主要学习了平面直角坐标系的概念并会画平面直角坐标系.在平面直角坐标系中能由点的位置确定点的坐标.
目标
1、通过自我预习能够用自己的语言说出平面直角坐标系的概念及其组成部分。
2、在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。
3、会描述各象限内及坐标轴上的点的坐标特征。
评价任务
1、能说出平面直角坐标系的各部分名称。
2、会根据坐标描出象限内或坐标轴上的对应点,还能根据点的位置写出坐标。
3、能快速说出各象限内及坐标轴上点的横、纵坐标的符号。
小学数学《平面直角坐标系》教案
![小学数学《平面直角坐标系》教案](https://img.taocdn.com/s3/m/00c9de5b2f3f5727a5e9856a561252d381eb2046.png)
小学数学《平面直角坐标系》教案平面直角坐标系一、教学目标(一)知识与技能:1.了解平面直角坐标系概念;2.学会用坐标表示,能建立适当的直角坐标系描述物体的位置.(二)过程与方法:通过观察了解平面直角坐标系的特征,使学生掌握研究问题的方法,从而学会学习.(三)情感态度与价值观:通过具体情境的探索、交流等数学活动培养学生的团结合作精神和积极参与、勤于思考意识.二、教学重点、难点重点:平面直角坐标系和点的坐标,描出点的位置和建立坐标系.难点:根据点的位置写出点的坐标,适当地建立坐标系.三、教学过程回顾旧知,引入新知在平面内,确定物体的位置一般需要几个数据?有哪些方法?在平面内,确定物体的位置一般需要两个数据.常用的方法:用有序数对来确定,如:(排,列),(组,排),(排,号),(角度,距离),(经度,纬度)等.什么是数轴?规定了原点、正方向、单位长度的直线就构成了数轴.数轴上的点A表示数1.反过来,数1就是点A的位置.我们说数1是点A在数轴上的坐标.同理可知,点B在数轴上的坐标是____;点C在数轴上的坐标是____;点D在数轴上坐标是____.数轴上的点与实数之间存在着__________的关系.思考类似于利用数轴确定直线上点的位置,能不能找到一种方法来确定平面内的点的位置呢?(例如:下图中A、B、C、D各点)法国数学家笛卡儿(Descartes,1596-1650)最早引入坐标系,用代数方法研究几何图形.如图,我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点.有了,平面直角坐标系,平面内的点就可以用一个有序数对来表示了.例如,由点A分别向x轴和y 轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说点A的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4).类似地,请你写出点B,C,D的坐标:B(____ ,____)C(____,____)D(____,____)思考原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?原点O的坐标为(0,0);x轴上的点的纵坐标为0,例如(1,0),(-1,0),…;y轴上的点的横坐标为0,例如(0,1),(0,-1),….如右上图A(3,0),B(-2,0),C(0,2),D(0,-3).建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限和第四象限.坐标轴上的点不属于任何象限.例在平面直角坐标系中描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,-4).解:如图,先在x轴上找出表示4的点,再在y轴上找出表示5的点,过这两个点分别作x轴和y轴的垂线,垂线的交点就是点A.我们知道,数轴上的点与实数是一一对应的.我们还可以得出:对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)(即点M的坐标)和它对应;反过来,对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.也就是说,坐标平面内的点与有序实数对是一一对应的.探究如图,正方形ABCD的边长为6,如果以点A为原点,AB所在直线为x轴,建立平面直角坐标系,那么y轴是哪条线?写出正方形的顶点A、B、C、D的坐标.A(____,____)B(____,____)C(____,____)D(____,____)A(____,____)B(____,____)C(____,____)D(____,____)请另建立一个平面直角坐标系,这时正方形的顶点A、B、C、D的坐标又分别是多少?与同学们交流一下.练习1.写出图中点A,B,C,D,E,F的坐标.A(____,____)B(____,____)C(____,____)D(____,____)E(____,____)F(____,____)2.在图中描出下列各点:L(-5,-3),M(4,0),N(-6,2),P(5,-3.5),Q(0,5),R(6,2).课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思通过平面直角坐标系的有关内容的学习,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生学习数学的积极性和好奇心.。
3.2《平面直角坐标系》(教案)
![3.2《平面直角坐标系》(教案)](https://img.taocdn.com/s3/m/974d7e12777f5acfa1c7aa00b52acfc789eb9fe9.png)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平面直角坐标系的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对坐标系的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.2《平面直角坐标系》(教案)
一、教学内容
3.2《平面直角坐标系》:本节课我们将围绕以下内容展开:
1.平面直角坐标系的定义与性质;
2.坐标平面上的点与坐标表示方法;
3.坐标轴上点的坐标特点;
4.两个坐标轴将平面分为的四个象限及其特点;
5.各象限内点的坐标规律;
6.相邻象限内点的坐标关系;
7.平行于坐标轴的直线上的点的坐标规律;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平面直角坐标系的基本概念。平面直角坐标系是由两条互相垂直的数轴组成的,它可以准确地表示平面上的点。它是解析几何的基础,对于解决实际问题非常重要。
2.案例分析:接下来,我们来看一个具体的案例。通过地图上的坐标系,我们可以找到某个地点的精确位置,并计算两点之间的距离。
其次,在新课讲授环节,我发现学生在理解坐标系概念和坐标表示方法方面存在一定难度。在讲解过程中,我尽量使用简洁明了的语言和丰富的实例,帮助他们更好地理解。但我也意识到,对于这部分内容,可能需要更多的时间让学生去消化和吸收。在接下来的教学中,我会适当调整教学节奏,给学生更多思考和提问的机会。
再谈谈实践活动,学生们在分组讨论和实验操作环节表现出了很高的热情。他们通过实际操作,对坐标系有了更直观的认识。但同时,我也注意到部分学生在讨论过程中过于依赖同伴,缺乏独立思考。针对这一问题,我将在后续教学中加强对学生的引导,培养他们的自主学习能力。
八年级数学上册《平面直角坐标系》教案
![八年级数学上册《平面直角坐标系》教案](https://img.taocdn.com/s3/m/a8d95b71657d27284b73f242336c1eb91a3733fa.png)
一、教学目标1. 知识与技能:(1)理解平面直角坐标系的定义及特点;(2)掌握坐标轴上的点的坐标特征;(3)学会在平面直角坐标系中确定点的位置;(4)能够运用坐标系解决实际问题。
2. 过程与方法:(1)通过观察、实践,培养学生的空间想象能力;(2)运用合作交流的学习方式,提高学生分析问题和解决问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,激发学生探究数学问题的热情,培养学生的团队协作精神。
二、教学重点与难点1. 教学重点:(1)平面直角坐标系的定义及特点;(2)坐标轴上的点的坐标特征;(3)在平面直角坐标系中确定点的位置;(4)运用坐标系解决实际问题。
2. 教学难点:(1)坐标轴上的点的坐标确定;(2)坐标系中点的运动规律。
三、教学方法1. 情境教学法:通过生活实例引入平面直角坐标系的概念,激发学生兴趣;2. 直观教学法:利用图形、模型等直观教具,帮助学生理解坐标系的特征;3. 合作学习法:引导学生分组讨论,培养学生的团队协作能力;4. 实践操作法:让学生动手操作,提高学生的实践能力。
四、教学准备1. 教师准备:平面直角坐标系模型、PPT等教学资源;2. 学生准备:笔记本、尺子、圆规等学习工具。
五、教学过程1. 导入新课:(1)利用生活实例,如电影院座位、商场购物等,引导学生思考坐标系的作用;(2)展示平面直角坐标系模型,引导学生观察并提问:“你们认为平面直角坐标系有什么特点?”2. 自主学习:(1)让学生阅读教材,了解平面直角坐标系的定义及特点;(2)学生分组讨论,总结坐标轴上的点的坐标特征;(3)学生汇报讨论成果,教师点评并总结。
3. 课堂讲解:(1)讲解坐标轴上的点的坐标确定方法;(2)讲解坐标系中点的运动规律;(3)举例说明如何运用坐标系解决实际问题。
4. 实践操作:(1)学生分组进行实践活动,如在坐标系中确定物体的位置;(2)学生汇报操作成果,教师点评并指导。
5. 课堂小结:(1)教师引导学生总结本节课所学内容;(2)学生分享学习收获和感受。
八年级数学上册《认识平面直角坐标系》教案、教学设计
![八年级数学上册《认识平面直角坐标系》教案、教学设计](https://img.taocdn.com/s3/m/50c7f76c11661ed9ad51f01dc281e53a59025112.png)
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对以下问题进行讨论:
a.坐标系在生活中的应用有哪些?
b.坐标变换的规律是什么?
c.如何用坐标系解决实际问题?
2.小组汇报:各小组选派代表进行汇报,分享本组的讨论成果。
6.总结反思,提高自主学习能力:
在每个知识点学习结束后,引导学生进行总结反思,归纳所学知识。同时,鼓励学生提出疑问,培养学生的自主学习能力。
7.拓展延伸,激发创新意识:
结合坐标系知识,设计具有挑战性的拓展题目,引导学生进行探究。通过拓展学习,激发学生的创新意识,提高学生的数学素养。
四、教学内容与过程
难点:激发学生对坐标系学习的兴趣,提高学生解决实际问题的能力。
(二)教学设想
1.创设情境,引入坐标系概念:
教学伊始,通过生活实例(如地图上的定位、电影院座位选择等)引出坐标系的实际应用,激发学生的兴趣。在此基础上,引导学生思考如何用数学方法描述这些位置,自然地引出坐标系的概念。
2.循序渐进,讲解坐标系知识:
难点:将坐标系与实际问题相结合,进行坐标变换和坐标平移,以及理解函数图像在坐标系中的表示。
2.重点:通过坐标系的引入,培养学生的空间想象能力和逻辑思维能力。
难点:引导学生从实际问题中抽象出坐标系模型,运用坐标系的数学语言描述问题,并解决问题。
3.重点:使学生体会数学与生活的密切联系,增强数学应用的意识。
4.理解函数图像在坐标系中的表示,初步认识函数与坐标系的密切关系,为后续学习函数知识打下基础。
(二)过程与方法
在本章节的教学过程中,教师应采用以下过程与方法:
《平面直角坐标系》教学设计
![《平面直角坐标系》教学设计](https://img.taocdn.com/s3/m/2f7377b06aec0975f46527d3240c844769eaa006.png)
《平面直角坐标系》教学设计《平面直角坐标系》一、教材分析“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。
因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。
直角坐标系的基本知识是学习全章至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好教学要求,是教好、学好本小节的关键。
(2)过程与方法目标:通过寻找确定点的位置,发展初步的空间观念;通过学习用坐标表示点的位置,渗透数形结合思想,发展学生的应用意识。
(3)情感态度与价值观:通过学习过程中的感受和体会,培养学生合作精神和积极参与、勤于思考、勇于创新的意识,让每个学生都获得自己力所能及的数学知识,增强学生的自信心。
3、教学重、难点与关键教学重点:理解平面直角坐标系的有关概念,由点的位置写出坐标,由坐标描出点的位置。
教学难点:由点的位置写出坐标,并让学生形成数形结合的意识。
关键:横、纵坐标的确定。
二、学情分析:学生在学习了数轴的概念后,已经有了一定的数形结合的意识,积累了一定的由数轴坐标描出数轴上的点及由数轴上的点写出数轴上点的坐标的经验,同时经过前一节《有序数对》的学习,对平面上的点由一个有序数对表示,有了一定的认识,并且经过一个学期的学习,已经具备了初步的逻辑推理能力和空间想象能力,自主探究、合作交流已经成为他们学习数学的重要方式。
三、教法与学法分析教法与学法:数学是一门培养和发展人的思维的重要学科,为了体现以学生为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,所以本节课我采用情景教学法与引导发现法;并以学生独立思考、自主探究、合作交流为主要形式的学习模式。
数学《平面直角坐标系》教学教案
![数学《平面直角坐标系》教学教案](https://img.taocdn.com/s3/m/ac2beb5fae1ffc4ffe4733687e21af45b307fe19.png)
数学《平面直角坐标系》教学教案数学《平面直角坐标系》教学教案模板在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系。
下面小编为大家分享数学《平面直角坐标系》教学教案模板,欢迎大家参考借鉴。
一、教学目标1、知识与技能目标:认识平面直角坐标系,了解点与坐标的对应关系;2、过程与方法目标:通过研究平面直角坐标中数与点的对应关系,能根据坐标描出点的位置;3、情感态度与价值观目标:感受代数与几何问题的相互转换。
体会品面直角坐标系在解决实际问题的作用,培养数学学习兴趣。
二、教学重难点重点:理解平面直角坐标中点与数的一一对应关系;难点:根据坐标描出点的位置,以及坐标轴上的点的坐标特点。
三、教学用具教师准备四张大的纸质坐标格子。
四、教学过程(一)温故知新,导入新课游戏导入:上一节课我们学习了有序数对,大家学习积极性很高,今天老师先考考你们,看你们掌握了多少。
我们将教室里的座位分为八列七排。
a排b号记做有序数对(a,b),同学们先找准自己的数对号。
听老师报数对,若是你自己的数对号,就快速站起来。
反应太慢和站错了都算失败,扣一分;反之加一分。
最后以组为单位,比比哪组得分最高。
我们可以发现,通过教室平面内的有序数对,可以唯一的确定与之对应的同学。
(二)新课教学课本例子:我们知道数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
例如点A数轴上的坐标是-4,点B数轴上的坐标是2;我们说坐标是3.5的点,也可以在数轴上唯一确定。
教师提问1:类似于数轴确定直线上点的位置,能不能找到一种方法来确定平面内点的位置呢?平面内给出任意点A、B、C、D,我们怎么确定这些点的位置学生活动:小a说可以像教室座位一样给任意点编一个横排纵排的号,小B说我们可以每个点列一个数轴···教师活动:引导学生思考,怎么才能用同一标准,方便的确定每一点的位置?结合横纵排编号以及数轴,我们可以综合考虑,引出一个横纵的数轴?得出结论:我们可以在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。
数学《平面直角坐标系》教案
![数学《平面直角坐标系》教案](https://img.taocdn.com/s3/m/601663dba8114431b90dd8d9.png)
《平面直角坐标系》教学设计一、教材分析平面直角坐标系是数形结合的平台,是学生函数图象和平面解析几何的必要基础。
基于学生对数轴的认识,课本首先提出了“怎样建立平面上的点与实数的联系”这一问题,引导学生进行思考。
从电影院里的每一个座位与有序的“正整数对”的对应关系引起联想,通过平面“无限延展”与电影院“座位有限”的差异比较进行理性分析,然后建立平面直角坐标系。
为了降低学习的难度,课本中把平面直角坐标系应含“点与有序实数对的对应法则”,通过具体的操作活动来阐述,再进一步指出“平面内每一个点有唯一的有序实数对与它对应”,由此引进点的坐标的概念。
15.1平面直角坐标系分两课时,这是第一课时.二、学生状态分析学生在实数的学习中知道,每一个实数可以用数轴上唯一的一个点来表示,反过来,数轴上的每一个点也都可以用唯一的一个实数来表示.这样把”数”与”形”相互联系起来研究数学问题,学生并不陌生,再加上为引起学生的联想所给的情景都是学生熟悉的,这样为学生思考”怎样建立平面上的点与实数的联系”提供了直观的认识基础.估计学生在写点的坐标时,横坐标与纵坐标搞反,或不打括号。
强调点的坐标的写法,同时,对于坐标轴上点的坐标表示方法,学生可能存在理解困难,应予以强调。
三、教学目标知识与技能:1.理解平面直角坐标系的有关概念,并能正确画出平面直角坐标系;2.能在给定的直角坐标系中根据点的坐标描出点的位置,由点的位置写出点的坐标。
过程与方法:经历画坐标系、描点、看图等过程,让学生感受“数形结合”的数学思想。
情感态度与价值观:利用游戏、观察、实践、归纳等方法,积淀学生的数学文化涵养,培养热爱数学,勇于探索的精神。
四、教学重点、难点1.教学重点:使学生能正确画出平面直角坐标系,并能在给定的直角坐标系中,根据点的坐标描出点的位置,由点的位置写出它的坐标。
2.教学难点:理解坐标平面内的点与有序实数对的一一对应关系。
五、教学方法探究式教学法。
八年级数学上册《平面直角坐标系》教案、教学设计
![八年级数学上册《平面直角坐标系》教案、教学设计](https://img.taocdn.com/s3/m/e8d61675b5daa58da0116c175f0e7cd18525181e.png)
2.教学目标:
(生的空间观念和逻辑思维能力。
(三)学生小组讨论
1.教学活动设计:
将学生分成小组,针对以下问题进行讨论:
(1)坐标变换的规律是什么?如何运用坐标变换解决实际问题?
(2)让学生分享学习收获,提出疑问,教师进行解答;
(3)强调本节课的重点内容,提醒学生课后复习。
2.教学目标:
(1)强化学生对平面直角坐标系的认识,巩固所学知识;
(2)培养学生的归纳总结能力和自主学习能力。
五、作业布置
为了巩固本节课所学知识,提高学生的运用能力,特布置以下作业:
1.基础题:
(1)请在坐标纸上准确画出平面直角坐标系,并标出给定点的坐标;
(3)总结坐标系在本节课中的应用,分享你的学习心得。
作业要求:
1.学生要认真完成作业,注意书写规范,保持作业整洁;
2.鼓励学生在解决问题时,尝试不同的方法和思路,培养创新意识;
3.家长要关注孩子的作业完成情况,适时给予指导和鼓励;
4.教师在批改作业时,要关注学生的解题思路和方法,及时发现并解决学生的疑问。
3.拓展应用:
设计具有挑战性的实际问题,让学生运用坐标系知识解决问题,提高他们的问题解决能力和思维品质。
4.课堂小结:
采用师生互动的方式,总结本节课的重点内容,强化学生对坐标系的认知,巩固所学知识。
5.作业布置:
布置分层作业,既有基础题,也有拓展题,让学生在巩固基础知识的同时,提高自己的能力。
6.教学策略:
3.培养学生勇于探索、严谨治学的精神,使他们形成良好的学习习惯;
4.培养学生运用数学知识解决实际问题的能力,使他们体会数学的价值,增强自信心。
七年级下册数学平面直角坐标系教案
![七年级下册数学平面直角坐标系教案](https://img.taocdn.com/s3/m/2ae665298f9951e79b89680203d8ce2f006665a5.png)
七年级下册数学平面直角坐标系教案在数学里,笛卡尔坐标系也称直角坐标系,是一种正交坐标系。
通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。
今天在这给大家整理了一些七班级下册数学平面直角坐标系教案,我们一起来看看吧!七班级下册数学平面直角坐标系教案1〖教学目标〗(-)知识目标1.认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.2.能在方格纸上建立适当的直角坐标系,描述表示物体的点的位置3.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。
4.认识并能画出平面直角坐标系.(二)能力目标1、通过画坐标系,由点找坐标等过程,进展学生的数形结合意识,合作沟通意识(三)情感目标由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史进展的作用,提高学生参加数学学习活动的乐观性和好奇心。
〖教学重点〗理解平面直角坐标系的有关知识.〖教学难点〗横(或纵)坐标相同的点的连线与坐标轴的关系的探究.〖教学过程〗一、课前布置自学:阅读课本P132~P134,试着做一做本节练习,提出在自学中发现的问题(鼓舞提问).二、师生互动(一)一起沟通课本P132 的“大家谈谈”(二)1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义.[师]大家通过预习肯定对这部分内容已经掌握,下面请一位同学加以叙述.[生]在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常,两条数轴分别置于水平位置与铅直位置、取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,两条数轴的交点O称为直角坐标系的原点.对于平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序实数对(a,b)叫做点P的坐标.2.小结[师生共析](1)数轴与直角坐标系既有区别又有联系.直角坐标系是由相互垂直的两条数轴组成;数轴上点的坐标是一个实数,直角坐标系中点的坐标是一对有序实数;数轴上的点与实数是一一对应的,坐标平面内的点与有序实数对是一一对应的,这就建立了“数”与“形”的联系.(2)怎样确定坐标平面内点的坐标?在直角坐标系中求点的坐标,首先过这点分别向x轴、y轴作垂线,然后把x轴上垂足的坐标作为点的横坐标,把y轴上垂足的坐标作为点的纵坐标,按横坐标在前、纵坐标在后的顺序写在小括号内,并用逗号分开,即可得到点在坐标平面内的坐标.有序实数就是有先后顺序的实数,也就是说(a,b)与(b,a)的意义一般说来是不相同的.(a,b)表示这个点的横坐标是a,纵坐标是b,而(b,a)表示这个点的横坐标是b,纵坐标是a.“先横后纵”这个规定必须记牢(3)点的坐标的意义自坐标平面内P向x轴作垂线,垂足在x轴上的坐标xP叫做点P 的横坐标,自点P作y轴的垂线,垂足在y轴上的坐标yP叫做点P 的纵坐标,横坐标写在纵坐标前面,用括号括起来,就构成一对有序实数对,它就叫做点P的坐标.记作P(xP,yP).点的坐标是一对有序实数,如点A(3,2)其横坐标是3,纵坐标是2;点B(2,3)其横坐标是2,纵坐标是3,因此(3,2)与(2,3)是不同的有序对,它们表示不同的两点(4)坐标平面内的点与有序实数对的关系坐标平面内的点与有序实数对是一一对应的,即一个点对应一个有序实数对,一个有序实数对也对应惟一的点.(三)鼓舞学生讲解老师提供的例题.(例题的设置是分层的,安排不同基础的学生尝试讲解,老师予以补充)例1 此图是某市旅游景点示意图.以“中心广场”为原点,以“西—东”方向直线为横轴,以“南—北”方向直线为纵轴,一个方格的边长看作是一个单位长度,建立直角坐标系,请你表示“碑林”和“大成殿”的位置.分析:“大成殿”在“中心广场”南、西各两个格;“碑林”在“中心广场”北1个格,东3个格.解:“碑林”的位置可表示为(3,1);大成殿的位置可表示为(-2,-2).例2写出图中的多边形ABCDEF各个顶点的坐标.解:各个顶点的坐标分别为:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).[师]上图中各顶点的坐标是否永远不变?[生]不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.[师]你能举个例子吗?[生]可以,若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,则六个顶点的坐标分别为:A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).[师]那大家再思考这位同学的结论是否是永恒的呢?[生]不是.还能再改变坐标轴的位置,得出不同的坐标.[师]请大家在课后继续进行坐标轴的变换,总结一下共有多少种.(为以后的学习做铺垫)三、补充练习作业:P135习题七班级下册数学平面直角坐标系教案2一、目标与要求1.解有序数对的应用意义,了解平面上确定点的常用方法。
平面直角坐标系教案
![平面直角坐标系教案](https://img.taocdn.com/s3/m/f5e02a9d59f5f61fb7360b4c2e3f5727a5e92434.png)
平面直角坐标系教案一、教学目标1. 知识与技能:(1)理解平面直角坐标系的定义及构成;(2)学会在平面直角坐标系中确定点的位置;(3)掌握坐标系的变换方法。
2. 过程与方法:(1)通过实例培养学生的观察、分析能力;(2)利用数形结合思想,培养学生解决问题的能力;(3)学会用坐标系描述和分析实际问题。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养学生的抽象思维能力;(2)培养学生勇于探索、积极进取的精神;(3)感受数学与生活的密切联系,提高学生应用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)平面直角坐标系的定义及构成;(2)坐标系中点的表示方法;(3)坐标系的变换方法。
2. 教学难点:(1)坐标系中点的位置确定;(2)坐标系的变换方法。
三、教学方法1. 情境教学法:通过生活实例引入平面直角坐标系,使学生感受数学与生活的密切联系;2. 数形结合法:利用图形辅助学生理解坐标系中点的表示方法及坐标系的变换;3. 实践操作法:让学生动手实践,在实际操作中掌握坐标系的相关知识。
四、教学准备1. 教具:黑板、粉笔、多媒体课件;2. 学具:练习本、尺子、圆规。
五、教学过程1. 导入新课:(1)利用生活实例,如地图、棋盘等,引导学生思考如何表示点的位置;(2)展示平面直角坐标系图形,引导学生观察其特点。
2. 自主探究:(1)让学生自行研究坐标系中点的表示方法;(2)引导学生发现坐标系的变换规律。
3. 教师讲解:(1)讲解坐标系的定义及构成;(2)详细讲解坐标系中点的表示方法;(3)阐述坐标系的变换方法。
4. 课堂练习:(1)让学生在坐标系中确定给定点的位置;(2)让学生运用坐标系的变换方法解决问题。
5. 总结拓展:(1)让学生总结本节课所学知识;(2)引导学生思考坐标系在实际生活中的应用。
六、教学评估1. 课堂提问:通过提问了解学生对平面直角坐标系概念的理解程度,以及学生在坐标系中表示点和解决问题时的操作能力。
七年级数学《平面直角坐标系》教案
![七年级数学《平面直角坐标系》教案](https://img.taocdn.com/s3/m/6c1635f832d4b14e852458fb770bf78a65293a98.png)
(2)请另建一个平面直角坐标系,这时正方形的顶点A、B、C、D的坐标又分别是多少?
4、写出四边形ABCD各个顶点的坐标,并观察A,B,C,D的横纵坐标有什么关系?
4、通过学生自己探究,既有利于对四个象限概念的理解,又有利于对点的坐标的理解,特别是横坐标、纵坐标的符号规律。
活动三变式练习,巩固新知
问题
1、如图,写出图中A,B,C,D,E,F各点的坐标。
2、在如图的直角坐标系中描出下列各组点A(2,1),B(0,2),C(0,0),D(4,0)并将各点用线段依次连接起来。
知识分析
“平面直角坐标系”是在学生学习了数轴及有序数对的相关知识的基础上进行的。本节首先从学生熟悉的数轴出发,给出数轴上点的坐标的定义,建立了点与坐标的对应关系,从而得到确定直线上点的位置的方法。接着通过“思考”栏目,使学生类比着利用数轴确定直线上点的位置的方法,寻找一种方法来确定平面内点的位置,从而引出平面直角坐标系的有关概念,建立点与坐标(坐标为整数)的对应关系。在后续的学习中,数的范围由有理数扩大到实数,还将进一步研究平面内有序实数对与点的对应关系。通过本节教学,旨在使学生认识平面直角坐标系并会建立平面直角坐标系,了解点与坐标的对应关系;在给定的平面直角坐标系中,能根据坐标(坐标为整数)描出点的位置,能由点的位置写出点的坐标(坐标为整数)。学生经历用数学符号和图形描述现实世界的过程,感受数学与现实世界的联系,体会数学内部“数”与“形”的关系,增强学生“用数学”的意识,培养学生严谨朴实的科学态度和探索精神。
“尝试指导,效果回授”教学法
学法指导
北师大版八年级数学上册:3.2《平面直角坐标系》教案
![北师大版八年级数学上册:3.2《平面直角坐标系》教案](https://img.taocdn.com/s3/m/97d854774a35eefdc8d376eeaeaad1f34693110d.png)
北师大版八年级数学上册:3.2《平面直角坐标系》教案一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。
本节课主要让学生了解平面直角坐标系的定义、特点及应用,掌握坐标轴、坐标点、坐标值等基本概念,并能够利用坐标系解决一些实际问题。
教材通过引入实际情境,激发学生的学习兴趣,引导学生主动探究,培养学生的空间观念和数学思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了实数、一次函数等基础知识,具备了一定的逻辑思维能力和探究能力。
但部分学生对坐标系的概念和应用可能还比较陌生,因此在教学过程中,需要关注这部分学生的学习需求,通过具体实例和操作活动,帮助他们理解和掌握平面直角坐标系的相关知识。
三. 教学目标1.了解平面直角坐标系的定义、特点及应用。
2.掌握坐标轴、坐标点、坐标值等基本概念。
3.能够利用坐标系解决一些实际问题。
4.培养学生的空间观念和数学思维能力。
四. 教学重难点1.重点:平面直角坐标系的定义、特点及应用。
2.难点:坐标轴、坐标点、坐标值等基本概念的理解和运用。
五. 教学方法1.情境导入:通过实际情境引发学生对坐标系的兴趣,激发学生的学习热情。
2.自主探究:引导学生通过观察、操作、思考,自主发现和总结坐标系的基本概念和性质。
3.合作交流:学生进行小组讨论,分享学习心得,互相启发,共同进步。
4.实例分析:通过具体实例,让学生体会坐标系在解决实际问题中的应用价值。
5.练习巩固:设计适量练习题,让学生在实践中巩固所学知识。
六. 教学准备1.教学课件:制作精美、清晰的课件,辅助教学。
2.教学素材:准备一些实际问题和相关图片,用于实例分析。
3.练习题:设计一些具有针对性的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用实际情境,如商场购物时的优惠券坐标系,引导学生关注坐标系在生活中的应用,激发学生的学习兴趣。
提问:你们知道坐标系是什么吗?坐标系有什么作用?2.呈现(10分钟)呈现平面直角坐标系的定义、特点及应用,引导学生初步认识坐标系。
《平面直角坐标系》 教学设计
![《平面直角坐标系》 教学设计](https://img.taocdn.com/s3/m/0f237800793e0912a21614791711cc7931b7783f.png)
《平面直角坐标系》教学设计一、教学目标1、知识与技能目标理解平面直角坐标系的有关概念,能画出平面直角坐标系。
在给定的平面直角坐标系中,能由点的位置写出坐标,由坐标描出点的位置。
2、过程与方法目标经历平面直角坐标系的建立过程,体会数学中的数形结合思想。
通过观察、操作、交流等活动,提高学生的数学思维能力和合作交流能力。
3、情感态度与价值观目标让学生感受数学与生活的密切联系,激发学生学习数学的兴趣。
培养学生勇于探索、敢于创新的精神。
二、教学重难点1、教学重点平面直角坐标系的概念。
点的坐标的确定与表示。
2、教学难点理解坐标平面内的点与有序实数对的一一对应关系。
三、教学方法讲授法、演示法、讨论法、练习法四、教学过程1、情境导入展示一张电影院的座位图,提问学生如何准确地找到自己的座位。
引导学生思考需要通过行数和列数来确定位置。
接着,展示一张地图,提问如何确定一个地点的位置。
从而引出本节课的主题——平面直角坐标系。
2、讲授新课(1)平面直角坐标系的概念教师在黑板上画出两条互相垂直的数轴,水平的数轴称为 x 轴(或横轴),取向右为正方向;竖直的数轴称为 y 轴(或纵轴),取向上为正方向。
两轴的交点 O 称为原点。
这样就建立了一个平面直角坐标系。
(2)点的坐标教师在平面直角坐标系中任意选取一个点 P,过点 P 分别向 x 轴和y 轴作垂线,垂足分别为 M 和 N。
点 M 在 x 轴上对应的数为 a,点 N在 y 轴上对应的数为 b,则有序实数对(a,b)叫做点 P 的坐标。
(3)象限两坐标轴把平面分成四个部分,每个部分称为象限。
坐标轴上的点不属于任何象限。
第一象限:x > 0,y > 0;第二象限:x < 0,y > 0;第三象限:x < 0,y < 0;第四象限:x > 0,y < 0。
3、巩固练习(1)教师在平面直角坐标系中给出一些点,让学生写出它们的坐标。
(2)给出一些坐标,让学生在平面直角坐标系中描出相应的点。
八年级数学上册《平面直角坐标系》教案
![八年级数学上册《平面直角坐标系》教案](https://img.taocdn.com/s3/m/047c96b94bfe04a1b0717fd5360cba1aa8118cd7.png)
八年级数学上册《平面直角坐标系》教案一、教学目标1. 知识与技能:(1)理解平面直角坐标系的定义及建立方法;(2)掌握坐标轴、坐标点、坐标值的概念;(3)学会在平面直角坐标系中确定点的位置;(4)能够进行坐标轴上的点的平移和旋转。
2. 过程与方法:(1)通过实际操作,培养学生的空间想象力;(2)利用数形结合的思想,提高学生解决问题的能力;(3)学会利用坐标系进行数据分析。
3. 情感态度价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生合作交流、尊重他人的品质。
二、教学重点与难点1. 教学重点:(1)平面直角坐标系的建立及坐标轴、坐标点的概念;(2)在平面直角坐标系中确定点的位置;(3)坐标轴上的点的平移和旋转。
2. 教学难点:(1)坐标轴、坐标点、坐标值之间的联系;(2)在实际问题中灵活运用坐标系。
三、教学方法1. 情境教学法:通过生活实例引入平面直角坐标系的概念,让学生在实际情境中感受和理解知识;2. 数形结合法:利用图形直观展示坐标轴、坐标点的特征,引导学生发现规律,提高解决问题的能力;3. 小组合作法:鼓励学生分组讨论,培养合作精神和沟通能力;4. 练习法:设计有针对性的练习题,巩固所学知识。
四、教学过程1. 导入新课:通过讲解实际生活中的例子,如地图、棋盘等,引导学生思考如何用数学工具来表示这些事物之间的位置关系;2. 自主学习:让学生通过阅读教材,了解平面直角坐标系的定义及建立方法;3. 课堂讲解:详细讲解坐标轴、坐标点、坐标值的概念,并通过图形直观展示;4. 互动环节:学生分组讨论,探讨如何在平面直角坐标系中确定点的位置;5. 练习巩固:设计相关练习题,让学生动手实践,巩固所学知识;五、课后作业1. 绘制一个简单的平面直角坐标系,标出其中的坐标轴、坐标点;2. 利用平面直角坐标系,解决实际问题,如描述某个物体在平面上的运动轨迹;六、教学评估1. 课堂提问:通过提问了解学生对平面直角坐标系概念的理解程度,以及坐标轴、坐标点、坐标值之间的联系;2. 练习反馈:收集学生的练习作业,分析其对知识的掌握情况,以及解决问题的能力;3. 小组讨论:观察学生在小组合作过程中的表现,了解其合作交流、尊重他人的品质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1234567654321纵排横排7.1.1有序数对【教学目标】1、理解有序数对的意义。
2、能用有序数对表示实际生活中物体的位置3、经历用有序数对表示位置的过程,体验数、符号是描述世界的重要手段,体验数形结合思想【教学重点】利用有序数对准确地表示出一个点的位置 【教学难点】有序数对中有序的理解 教学过程 一、自主学习问题:如果老师要提问同学(下面为某教室平面图)1、只给一个数据“第3列”,你能确定回答问题的同学的位置吗?2、给两个数据“第3列第2排”,你能确定该同学的位置吗?3、你认为在平面中需要几个数据才能确定一个位置?二、合作探究通过找“列数”和“排数”的交叉点,我们就能找个具体的位置。
问题1、(约定“列数”在前,“排数”在后) (1) 请在教室内找到下表用数对表述的位置。
数对列数 排数 列数 排数 1,33,1 4,6 6,4 2,5 5,2 3,66,3(2)观察上面四组数对以及他们所对应的位置,思考:1,3和3,1表示的是不是同一位置?归纳:有顺序的两个数a与b组成的数对,如果约定了前面的数表示“列数”,后面的数表示“排数”,那么a与b组成的数对就表示一个确定的位置。
我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
像表格中的数对可以记作(1,3)、(5,2)(3,6)。
问题2:利用有序数对可以准确表示一个位置,你能举出生活中用有序数对表示地理位置的例子吗?三、巩固训练,游戏情境:下面我们通过游戏来加强同学们对有序数对的了解。
约定“列数”在前,“排数”在后,请找出与以下有序数对相对用的同学(1,5)),(5,1),(2,4),(4,2),(3,3),(7,3),看看叫什么名字?练习1、根据左下图例子(3,2),口答其他圆点的有序数对?练习2、如右下图,红马的位置是(2,1),你能表示出红帅、红车、红炮的位置吗?练习3、如果将一张“12排10号”的电影票记为(12,10),那么(10,12)的电影票表示的位置是,“6排25号”简单记为练习4、下列数据不能确定物体位置的是()A、希望路25号B、北偏东30°C、东经118°,北纬40°D、西南方向50米处四、课堂小结:本节课主要学习了有序数对1、什么叫做有序数对?2、注意的问题:(1)表示平面内的点的位置可以用有序数对;(2)有序数对用符号表示时,中间用逗号隔开,外边必须加小括号。
-4-3-1B A 0327.1.2平面直角坐标系(1)【教学目标】1、掌握平面直角坐标系的有关概念;了解点的坐标的意义2、根据点的位置写出点的坐标,能建立平面直角坐标系,并根据坐标找点;3、通过建立平面直角坐标系的过程,进一步渗透数形结合的思想 【教学重点】平面直角坐标系和点的坐标【教学难点】在平面直角坐标系中根据点的位置写出点的坐标,由坐标描出点 教学过程 一、自主学习问题:(1)什么是数轴,画出数轴.(2)指出课本图6.1.2中A 、B 点所表示的数是什么?并在数轴上描出“-3 ”表示的点在数轴上的位置.(3)数轴上的点与 是一一对应。
二、合作探究思考:类似于利用数轴确定直线上点的位置, 能不能找到一种办法来确定平面点的位置呢?(如下左图中的四个点A 、B 、C 、D )我们可以在平面内画出两条互相垂直、原点重合的数轴来表示,如上右图. 用平面内两条互相垂直、 原点重合的数轴组成平面直角坐标系. 水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向;两坐标的交点为平面直角坐标系的原点。
注意:在一般情况下,两条坐标轴所取的单位长度是一致的。
三、讲练结合例1、请你在图中标出点A 、B 、C 、D 、 E 、F 在直角坐标系中的坐标。
解:由图可知,各点的坐标分别是: A (4,3)、 B (-2,3) C (-4,-1)、D (2,-2)E(0,5)、F(3,0)分析讲解:(-2,3)就叫做点B的坐标,其中-2是点B的横坐标,3是点B的纵坐标。
四、巩固练习1、在平面内,两条的数轴组成平面直角坐标系。
2、请同学们在练习本上尝试建立一个平面直角坐标系,并描出点(1)A(3,7)B(2,-4)C(-5,-3)O(0,0)(2)D(0,5)E(0,-3)F(0,6)(3)G(3,0)H(-2,0)I(-4,0)思考:观察第(2)(3)组的点的坐标和坐标系中的位置,你能发现什么样的规律?结论:1、(2)组的点都在y轴上,他们的点的横坐标都是0,2、(3)组的点都在x轴上,他们的点的横坐标都是0,3、原点的坐标是(0,0),它位于两坐标轴的交点。
强调:(1)画平面直角坐标系时,别忘了标x轴、y轴的正方向及x轴、y轴的名称。
(2)写坐标时要加小括号,括号内先横后纵,中间用逗号隔开,例如(2,5)。
3、(1)如果点P(1,a-1)在x轴上,那么a= ,P点坐标为________.(2)如果点P(a+2,a)在y轴上,那么a= ,P点坐标为________.(3)如果点P(a,a−2)在x轴上,那么a= ,P点坐标为________.(4)如果点P(a-1,b−2)在原点,那么a= ,b= ,P点坐标为________.4、如右图:下列说法正确的是()A、点A的横坐标是4B、点A的横坐标是-4C、点A的坐标是(4,-2)D、点A的坐标是(-2,4)五、课堂小结:(1)什么叫做平面直角坐标系?(2)画直角坐标系的时候要注意什么?六、拓展练习:1、点A(2,-7)到x轴的距离为,到y轴的距离为2、点P位于y轴左方,距离y轴3个单位长度,位于x轴的上方,距离x轴4个单位长度,则点P的坐标是7.1.3平面直角坐标系(2)【教学目标】1、掌握各象限内点的坐标符号的特点。
2、了解关于坐标轴对称的点的坐标特点,及平行于坐标轴的直线上的点的坐标特点3、经历探索点的位置与坐标之间的关系的过程,发展学生有条理、清晰的阐述自己的观点的能力【教学重点】平面直角坐标系中的特殊点的特点与规律【教学难点】探索特殊点与坐标之间的关系教学过程一、自主学习问题1:请在平面直角坐标系中描出下列各个点,并注意观察各点坐标与所处的位置间的规律。
A(3,2)B(-3,-2)C(3,-2)D(-3,2)E(2,3)F(-2,-3)G(2,-3)H(-2,3)I(0,4)J(4,0)K(-4,0)L(0,-4)问题2:请在平面直角坐标系中描出下列各个点,并注意观察各点坐标与所处的位置间的规律。
A(3,4)B(2,5)C(6,6)D(-3,2)E(-2,3)F(-4,1)G(-2,-3)H(-5,-3)I(-6,-4)J(4,-1)K(3,-2)L(2,-4)二、合作探究1、定义:如图,建立平面直角坐标系后,坐标平面被两条坐标轴分成四个部分,分别叫做第一象限,第二象限,第三象限,第四象限。
坐标轴上的点不属于任何象限。
2、探索象限上的点的坐标特点问题3:观察上面问题1、2我们画出来的平面直角坐标系中的点,大家找一找哪些是第一象限上的点?组成他们的坐标的有序数对有什么特点?第二、第三、第四象限呢?讨论结果:(1)各象限内点的坐标符号若点P(a,b)在第一象限,那么0b,简记为(+,+)>>a,0若点P(a,b)在第二象限,那么0>b,简记为(—,+)a,0<若点P(a,b)在第三象限,那么0<b,简记为(—,—)<a,0若点P(a,b)在第四象限,那么0<b,简记为(+,—)a,0>(2)坐标轴上的点x轴上的点纵坐标为0,y轴上的点横坐标为0,原点坐标为(0,0)以上结论用表格填写如下:点的位置横坐标符号纵坐标符号坐标简记为第一象限第二象限第三象限第四象限在x轴上在正半轴上在负半轴上在y轴上在正半轴上在负半轴上原点同?(2)观察问题1中点A与D、B与C、F与G位置上有什么关系?坐标有什么异同?讨论结果:点A与C、B与D分别关于x轴对称,它们的横坐标相同,纵坐标互为相反数;点A与D、B与C、F与G分别关于y轴对称,它们的纵坐标相同,横坐标互为相反数。
即点P(a,b)关于x轴对称的点的坐标是(a,b-);点P(a,b)关于y轴对称的点的坐标是(a-,b)。
三、巩固练习,熟练技能1、若点P(a,b)在第二象限内,则a,b的取值范围是()A、0>a,0>b B、0>a,0<b C、0<a,0>b D、0<a,0<b2、若0>a,2-<b,则点(a,2+b)应在()A、第一象限B、第二象限C、第三象限D、第四象限3、若点N(5+a,2-a)在y轴上,则点N的坐标是4、若点P(a,b)在第三象限内,则点Q(a,ba-)应在()A、第一象限B、第二象限C、第三象限D、第四象限5、建立一个平面直角坐标系,描出点A(-2,4)、B(3,4),画出直线AB,若点E为直线AB上的点,则点E的纵坐标是什么?如果有一些点在平行于y轴的直线上,那么这些点的横坐标有什么特点?讨论结果:纵坐标相同的点所在直线平行于x轴;平行于y轴的直线上的点横坐标相同。
四、课堂小结:本节课主要学习了平面直角坐标系中点的坐标特点。
五、。