因式分解讲义

合集下载

因式分解经典讲义(精)

因式分解经典讲义(精)

第一章分解因式【知识要点】1 .分解因式(1)概念:把一个化成几个的形式,这种变形叫做把这个多项式分解因式。

(2 )注意:①分解因式的实质是一种恒等变形,但并非所有的整式都能因式分解。

②分解因式的结果中,每个因式必须是整式。

③分解因式要分解到不能再分解为止。

2•分解因式与整式乘法的关系整式乘法是_____________________________________________________ ___分解因式是_____________________________________________________ ___所以,分解因式和整式乘法为________ 系。

3•提公因式法分解因式(1 )公因式:几个多项式____________ 因式。

(2 )步骤:①先确定____________,②后____________________ 。

(3)注意:①当多项式的某项和公因式相同时,提公因式后该项变为1。

②当多项式的第一项的系数是负数时,通常先提出“”号。

4•运用公式法分解因式(1 )平方差公式:_____________________________(2 )完全平方公式:____________________________注:分解因式还有诸如十字相乘法、分组分解法等基本方法,做为补充讲解内容。

【考点分析】考点一:利用提公因式法分解因式及其应用【例1】分解因式:【随堂练习】1 .分解因式:,、小34“23小22(1) 2x y 10x y 2x y32(1) 4m 16m 26 m(2) 2x(y z) 3(y z)2(3)x(x y)(x y) x(x y)(4)(3a 4b)(7a 8b) (11a 12b)(7a 8b)号,再提公因式 2m ;( 2)题的公因式为 y z ;(3) 题的公因式为 x(x y) ;答案:(1) 2m(2m 28 »m13);(3)2xy(x y);【例:2】(1 )已知x y 5, xy 6 ,(2 ?)已知ba 6,ab7,解析:(1) 题:2x2y 2 x y 22xy(x(2)题:a|2bab2a b(a答案:(1) 60(2)42(4)题的公因式为7a 8b 。

因式分解分组分解法讲义

因式分解分组分解法讲义
要把这个多项式分解因式,不能提公 因式也不能用公式! 在这里我们把它旳前两项提成一组 并提出公因式 a ;
把它旳后两项提成一组,并提出 公因式 b .
从而得到
a(m n) b(m n)
这时候因为 a(m n)与 b(m n) 又有公因式(m n)
于是能够继续提出公因式 (m n) 从而得到:(m n)(a b)
把下列各式分解因式:
(1)20(x+y)+x+y 解:原式 =20(x+y)+(x+y)
=21(x+y) (3)5m(a+b)-a-b
(2)p-q+k(p-q) 解:原式=(p-q)+k(p-q)
=(p-q)(1+k) (4)2m-2n-4x(m-n)
解:原式=5m(a+b)-(a+b) 解:原式=2(m-n)-4x(m-n)
分组分解法
分组后能直接提公因式
1.什么叫做因式分解? 把一种多项式化成几种整式旳积旳形式, 这种式子变形叫做把这个多项式因式分解, 也叫做把这个多项式分解因式。
2.回忆我们已经学过那些分解因式旳措施? 提公因式法,
公式法——平方差公式,完全平方公式
我们看下面这个多项式
am an bm bn
例1把a2-ab+ac-bc分解因式 分析:把这个多项式旳四项按前两项与后
两项提成两组,分别提出公因式a与c后, 另一种因式恰好都是a-b,这么就能够提 出公因式a-b 。
解法一:a2-ab+ac-bc =(a2-ab)+(ac-bc) ——分组 =a(a-b)+c(a-b) ——组内提公因式
=(a-b)(a+c) ——提公因式

因式分解ppt讲义

因式分解ppt讲义

整式乘法 整式乘法 因式分解
(5).2πR+ 2πr= 2π(R+r)
因式分解
下列代数式从左到右旳变形是因式分解吗?
(1) a2 a a(a 1)
Байду номын сангаас

(2)(a 3)(a 3) a2 9
不是
(3)4x2 4x 1 (2x 1)2
不是
(4)x2 3x 1 x(x 3) 1
(5) x2 1 x( x 1 ) x
阐明
• 本课是在学生学习了整式乘法旳基础上,研究对整 式旳一种变形即因式分解,是把一种多项式转化成 几种整式相乘旳形式,它与整式乘法是互逆变形旳 关系.
你能发觉这两组等式之间 旳联络和区别吗? 它们旳左 右两边有何特点?
a(a+1)=__a_2+_a_____
a2+a=( a ) ( a+1)
(a+b)(a-b)=__a_2_-_b_2____ a2 - b2= ( a+b) ( a-b )
a2-2ab+b2=(a-b)2
十字相乘法
要点: 一拆(拆常数项), 二乘(十字相乘),
三验(验证十字相乘后旳和是否等于一次项.
x2 px q
x
a
x
b
x2+Px+q=(x+a)(x+b),其中p=a+b,q=ab
一般环节与注意点
1 一般环节: 先提公因式,再利用公式或十字相乘,后分组分 解,最终是重新整顿再分解.
注意: 1、要分解到不能再分为止,括号内合并同 类项后注意把数字因数提出来。
2、因式分解旳成果是连乘式。 3、因式分解旳成果里没有中括号。

因式分解讲义(适合0基础的)

因式分解讲义(适合0基础的)

因式分解知识网络详解:因式分解的基本方法:1、提公因式法——如果多项式的各项有公因式,首先把它提出来。

2、运用公式法——把乘法公式反过来用,常用的公式有下列五个:平方差公式()()22a b a b a b -=+-; 完全平方公式()2222a ab b a b ±+=±; 3、分组分解法——适当分组使能提取公因式或运用公式。

要灵活运用“补、凑、拆、分”等技巧。

4、十字相乘法——))(()(2b x a x ab x b a x ++=+++ 【课前回顾】1.下列从左到右的变形,其中是因式分解的是( )(A )()b a b a 222-=-(B )()()1112-+=-m m m(C )()12122+-=+-x x x x (D )()()()()112+-=+-b ab a b b a a2.把多项式-8a 2b 3+16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是(),(A )-8a 2bc (B )2a 2b 2c 3(C )-4abc (D )24a 3b 3c 33.下列因式分解中,正确的是()(A )()63632-=-m m m m (B )()b ab a a ab b a +=++2(C )()2222y x y xy x --=-+-(D )()222y x y x +=+4.下列多项式中,可以用平方差公式分解因式的是()(A )42+a (B )22-a (C )42+-a (D )42--a5.下列各式中,能用完全平方公式分解因式的是().(A )4x 2-1(B )4x 2+4x -1(C )x 2-xy +y 2D .x 2-x +6.若942+-mx x 是完全平方式,则m 的值是()(A )3(B )4(C )12(D )±12 经典例题讲解:提公因式法:提公因式法是因式分解的最基本也是最常用的方法。

它的理论依据就是乘法分配律例:22x y xy -()()p x y q y x ---()()x a b y a b +-+变式练习:1.多项式6a 3b 2-3a 2b 2-21a 2b 3分解因式时,应提取的公因式是()A.3a 2bB.3ab 2C.3a 3b 2D.3a 2b 22.如果()222332x y mx x n -+=--,那么()A .m=6,n=yB .m=-6,n=yC .m=6,n=-yD .m=-6,n=-y3.()()222m a m a -+-,分解因式等于()A .()()22a m m --B .()()21m a m --C .()()21m a m -+D .以上答案都不能4.下面各式中,分解因式正确的是()A.12xyz -9x 2.y 2=3xyz(4-3xy)B.3a 2y -3ay+6y=3y(a 2-a+2)C.-x 2+xy -xz=-x(x 2+y -z)D.a 2b+5ab -b=b(a 2+5a)5.若a+b=7,ab=10,则22ab b a +的值应是()A .7B .10C .70D .176.因式分解1.6x 3-8x 2-4x2.x 2y(x -y)+2xy(y -x)3.()()x m ab m x a +-+4.()()()x x x --+-212运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: 平方差:)b a )(b a (b a 22-+=-完全平方:222)b a (b 2ab a ±=+±立方和:)b ab a )(b a (b a 2233+-+=+立方差:)b ab a )(b a (b a 2233++-=- 例1.把下列各式分解因式:(1)x 2-4y 2(2)22331b a +- (3)22)2()2(y x y x +--(4)442-+-x x例2.(1)已知2=+b a ,利用分解因式,求代数式222121b ab a ++的值 (2)已知0136422=+--+b a b a ,求b a +。

因式分解-讲义

因式分解-讲义

因式分解(一)-一般方法多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例2 分解因式:a3+b3+c3-3abc.例3 分解因式:x15+x14+x13+…+x2+x+1.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.例9分解因式:6x4+7x3-36x2-7x+6.例10 分解因式:(x2+xy+y2)-4xy(x2+y2).1.(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.4、(1)x2-3xy-10y2+x+9y-2= ;(2)x2-y2+5x+3y+4= ;(3)xy+y2+x-y-2= ;(4)6x2-7xy-3y2-xz+7yz-2z2= ;(5)2x2-7xy-22y2-5x+35y-3= .因式分解(二)--求根法分解因式我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例1 分解因式:x3-4x2+6x-4.例2 分解因式:9x4-3x3+7x2-3x-2.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.。

因式分解讲义

因式分解讲义
多项式的公因式应是各项所共有的最高因式,公因式的系数原则上是不定的。但对整系数的多项式, 其公因式的系数一般取所有系数的最大公约数;对分数系数的多项式,其公因式的系数一般取所有分母的 最小公倍数分之一;公因式的字母取各项共有的字母,各相同字母的指数取其次数最低的。公因式可以是 单项式也可以是多项式,有时要进行适当变形才能出现公因式。
到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。
例 2.分解因式: x2 y2 x y ____________
解: x2 y2 x y (x2 y2 ) (x y)
(x y)(x y) (x y) (x y)(x y 1) 说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。
6 / 12
ac bd 0 原式 0
说明:首先要充分利用已知条件 a2 b2 1,c2 d 2 1 中的 1(任何数乘以 1,其值不变),其次利用 分解因式将式子变形成含有 ac+bd 因式乘积的形式,由 ac+bd=0 可算出结果。
例 3. 分解因式: x3 2x 3 分析:此题无法用常规思路分解,需拆添项。观察多项式发现当 x=1 时,它的值为 0,这就意味着
形后再把条件带入,从而简化计算过程。
例 2. 已知 a b c 0,a 3 b3 c3 0 ,
求证: a5 b5 c5 0 证明: a 3 b3 c3 3abc (a b c)(a 2 b2 c2 ab bc ca) 把 a b c 0,a3 b3 c3 0 代入上式, 可得 abc 0 ,即 a 0或 b 0或 c 0 若 a 0,则b c , a5 b5 c5 0 若 b 0或 c 0 ,同理也有 a5 b5 c5 0 说明:利用补充公式确定 a,b,c 的值,命题得证。

因式分解-讲义(精华版)

因式分解-讲义(精华版)

因式分解两课时(90分钟)开心一笑一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

制胜必备1、理解因式分解的概念2、掌握因式分解的基本方法:提取公因式法、公式法等3、能对简单多项式进行因式分解,并结合实际来应用一鼓作气希尔伯特说:“当我听别人讲解某些数学问题时,常觉得很难理解,甚至不可能理解。

这时便想,是否可以将问题化简些呢?往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。

”秘诀:天才是一份灵感加上九十九份的汗水所成就的!战况分析1.因式分解的定义及与整式乘法的关系(1)因式分解:把一个多项式化为几个整式的积的形式(2)因式分解与整式乘法是互逆运算.2.因式分解的常用方法(1)提公因式法如果一个多项式的各项都含有一个相同的因式,那么这个相同的因式,就叫做公因式. 提公因式法用公式可表示为ma+mb+mc=m (a+b+c ),其分解步骤为:①确定多项式的公因式:公因式为各项系数的最大公约数与相同字母的最低次幂的乘积. ②将多项式除以它的公因式从而得到多项式的另一个因式.(2)运用公式法将乘法公式反过来对某些多项式进行因式分解,这种方法叫做公式法,即a 2-b 2=(a+b)(a-b),a 2±2ab +b 2=(a+b)2.3.因式分解解题的思考顺序(1)一提:如果多项式的各项有公因式,那么先提公因式;(2)二用:如果各项没有公因式,那么可以尝试运用公式法来分解;(3)三查:分解因式,必须进行到每一个多项式都不能再分解为止;分解因式的结果应为整式积的形式。

1.下列因式分解中,正确的是((A)1-x 2=(x+2)(x-2)(B)4x –2x 2–2=-2(x-1)2(C)(x-y)3–(y-x)=(x –y)(x –y+1)(x –y –1)(D)x 2–y 2–x+y=(x+y)(x –y –1)2.下列各等式(1)a 2-b 2=(a+b)(a –b),(2)x 2–3x+2=x(x –3)+2(3)-,(4)x 2+-2-(x -)2从左到右是因式分解的个数为( )(A) 1个 (B)2个 (C)3个 (D)4个 小菜一碟扫除障碍3.若x2+mx+25是一个完全平方式,则m的值是()(A)20(B)10(C)±20(D)±104.若x2+mx+n能分解成(x+2)(x–5),则m=,n=;5.若二次三项式2x2+x+5m在实数范围内能因式分解,则m=;6.若x2+kx-6有一个因式是(x-2),则k的值是;作战之法【兵法案例】分解因式:a3-2a2+a=______【作战策略】因式分解常用的方法有提公因式法、公式法、分组分解法和十字相乘法。

因式分解法ppt课件

因式分解法ppt课件

(1)提公因式法:am+bm+cm= m(a+b+c)
;
( 2)公式法:a²-b²= (a+b)(a-b) ,a²±2ab+b²= (a± b)²
(3)十字相乘法 X
)(x
根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛, 那么物体经过xs 离地面的高度(单位:m) 为10-4.9x².
解 :(1) x(x-4)=2-8x
方程整理,得x²+4x=2,
配方,得x²+4x+4=6, 即(x+2)²=6 开平方,得x+2=± √6,
解得x
=-2+√6,x₂=-2-√6.
解 :(2) x²-4x=0
分解因式,得x(x-4)=0, 所以x=0 或x-4=0, 解得x=0,x₂=4.
解:(3)2 x(x+4)=1
解得
,X

解 :2(x-3)²=x²-9,
2(x-3)²=(x-3)(x+3) (x-3)[2(x-3)-(x+3)]=0 (x-3)[x-9]=0 x₁=3,x₂=9.
练习6 按要求解一元二次方程.
(1)x(x-4)=2-8x
(配方法) .
(2)x²-4x=0
(因式分解法).
(3)2x(x+4)=1 (公式法) .

先配方,再用直接开平方法降
二 配方法 次 方

适用于全部

程 公式法
直接利用求根公式
元二次方程
的 方
先使方程一边化为两个一次因

因式分解法
式乘积的形式,另一边为0,适用于部分一

因式分解ppt课件

因式分解ppt课件

方式.
完全平方式的条件:(1)多项式是二次三项式;(2)首末
两项是两个数(或式子)的平方且符号相同,中间项是这
两个数(或式子)的积的2 倍,符号可以是“+”,也可以
是“-”.
感悟新知
知5-讲
2. 完全平方公式
两个数的平方和加上(或减去)这两个数
的积的2 倍,等于这两个数的和(或差)的平方.
即:a2±2ab+b2=(a±b)2 .
知4-讲
3. 运用平方差公式分解因式的步骤
一判:根据平方差公式的特点,判断是否为平方差,若负
平方项在前面,则利用加法的交换律把负平方项放在后面;
二定:确定公式中的a和b,除a和b是单独一个数或字母外,
其余不管是单项式还是多项式都必须用括号括起来,表示
一个整体;三套:套用平方差公式进行分解;四整理:将
(2)确定另一个因式,另一个因式即多项式除以公因式所
得的商;
(3)写成积的形式.
感悟新知
知3-讲
特别解读
1. 提公因式法实质上是逆用乘法的分配律.
2. 提公因式法就是把一个多项式分解成两个因式的积的形
式,其中的一个因式是各项的公因式,另一个因式是多
项式除以这个公因式所得的商.
感悟新知
知3-练
例 5 把下列多项式分解因式:
感悟新知
例 3 仔细阅读下面例题,解答问题:
知1-练
例题:已知把x2-4x+m分解因式后有一个因式是x
+3,求其另一个因式及m的值.
解:设另一个因式为x+n,则x2-4x+m=(x+3)(x
+n),即x2-4x+m=x2+(n+3)x+3n.
=-,
+=-,
所以
解得
=-.

因式分解ppt课件

因式分解ppt课件
识别多项式的系数
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。

因式分解四种方法(讲义)

因式分解四种方法(讲义)

因式分解得四种方法(讲义)➢课前预习1.平方差公式:___________________________;完全平方公式:_________________________;_________________________.2.对下列各数分解因数:210=_________; 315=__________;91=__________; 102=__________.3.探索新知:(1)能被100整除吗?小明就是这样做得:所以能被100整除.(2)能被90整除吗?您就是怎样想得?(3)能被哪些整式整除?➢知识点睛1.__________________________________________叫做把这个多项式因式分解.2.因式分解得四种方法(1)提公因式法需要注意三点:①___________________________;②___________________________;③___________________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.运用公式法得时候需要注意两点:①___________________________;②___________________________.(3)分组分解法多项式项数比较多常考虑分组分解法,首先找____________,然后再考虑____________或者_____________.(4)十字相乘法十字相乘法常用于二次三项式得结构,其原理就是:3.因式分解就是有顺序得,记住口诀:“___________________”;因式分解就是有范围得,目前我们就是在______范围内因式分解.➢精讲精练1.下列由左到右得变形,就是因式分解得就是________________.①; ②;③; ④;⑤; ⑥;⑦.2.因式分解(提公因式法):(1); (2);解:原式= 解:原式=(3);解:原式=(4); (5).解:原式= 解:原式=3.因式分解(公式法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5);解:原式=(6);解:原式=(7); (8);解:原式= 解:原式=(9); (10).解:原式= 解:原式=4.因式分解(分组分解法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5); (6).解:原式= 解:原式=5.因式分解(十字相乘法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5); (6);解:原式= 解:原式=(7); (8).解:原式= 解:原式=6.用适当得方法因式分解:(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5);解:原式=(6).解:原式=【参考答案】➢课前预习1.2.210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23.(2)∴能被90整除∴能被1,m,m+1,m-1,m(m+1),m(m-1),(m+1)(m-1),m (m+1)(m-1)整除➢知识点睛1.把一个多项式化成几个整式得积得形式2.(1)①公因式要提尽②首项就是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式得先提公因式②找准公式里得a与b(3)公因式,完全平方公式,平方差公式3.一提二套三分四查,有理数➢精讲精练1.④⑥⑦2.(1)(2)(3)(4)(5)3.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10) 4.(1)(2)(3)(4)(5)(6) 5.(1)(2)(3)(4)(5)(6)(7)(8) 6.(1)(2)(3)(4)(5)(6)。

因式分解-讲义--资料

因式分解-讲义--资料

因 式 分 解类型二、公式法1、利用平方差公式因式分解:()()b a b a b a -+=-22注意:①条件:两个二次幂的差的形式;②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。

例如:分解因式:(1)291x -; (2)221694b a -; (3)22)(4)(n m n m --+2、利用完全平方公式因式分解:()2222b a b ab a ±=+± 注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成 222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量。

例如:分解因式:(1)2961x x +-; ⑵ 36)(12)(2+---n m n m 1682++x x典型例题:例1 用平方差公式分解因式:(1)22)(9y x x -+-; (2)22331n m - 说明 因式分解中,多项式的第一项的符号一般不能为负;分数系数一般化为整系数。

例2 分解因式:(1)ab b a -5;(2))()(44n m b n m a +-+. 说明 将公式法与提公因式法有机结合起来,先提公因式,再运用公式.例3 判断下列各式能否用完全平方公式分解因式,为什么?(1)962+-a a ; (2)982+-x x ; (3)91242--x x ; (4)223612y x xy ++-. 说明 可否用公式,就要看所给多项式是否具备公式的特点.例4 把下列各式分解因式:⑴ 442-+-x x ; ⑵ 22914942y x xy -- ⑶ mn n m 4422+-- 说明:在使用完全平方公式时,要保证平方项前的符号为正,当平方项前的符号是负号 时,先提出负号.例5 分解因式:⑴ 22363ay axy ax ++. ⑵ 22222)(624b a b a +-说明 ⑴分解因式时,首先考虑有无公因式可提,当有公因式时,先提再分解. ⑵分解因式必须进行彻底,直至每个因式都不能再分解为止.例6 分解因式:⑴ 22)(9))(2(6)2(n m n m m n n m +++---;⑵ 4224168b b a a +-;⑶ 1)2(2)2(222++++m m m m .⑷ 63244914b b a a +- ⑸ 1)2(6)2(92+---b a b a说明 在运用完全平方公式的过程中,再次体现换元思想的应用,可见换元思想是重 要而且常用思想方法,要真正理解,学会运用.例7 若25)4(22+++x a x 是完全平方式,求a 的值. 说明 根据完全平方公式特点求待定系数a ,熟练公式中的“a 、b ”便可自如求解.例8 已知2=+b a ,求222121b ab a ++的值. 说明 将所求的代数式变形,使之成为b a +的表达式,然后整体代入求值.例9 已知1=-y x ,2=xy ,求32232xy y x y x +-的值. 说明 这类问题一般不适合通过解出x 、y 的值来代入计算,巧妙的方法是先对所求的代数式进行因式分解,使之转化为关于xy 与y x -的式子,再整体代入求值.例10 证明:四个连续自然数的积加1,一定是一个完全平方数.说明 可用字母表示出四个连续自然数,通过因式分解说明结果是完全平方数.例11 已知x 和y 满足方程组⎩⎨⎧=-=+346423y x y x ,求代数式2249y x -的值。

因式分解(完全平方公式)课件

因式分解(完全平方公式)课件
公式
$x^2+4x+4=(x+2)^2$
解析
这是一个完全平方公式,其中$a=x$,$b=2$,$c=2$。将$a$和$b$的平方和 加上$2ab$得到$(x+2)^2$。
实例二
公式
$(x+y)^2=x^2+2xy+y^2$
解析
这是一个完全平方公式,其中$a=x$,$b=y$,$c=y$。将$a$和$b$的平方和加上$2ab$得到 $(x+y)^2=x^2+2xy+y^2$。
完成因式分解
如果多项式可以被完全分解为 几个整式的积,则因式分解完
成。
03
完全平方公式的概念和形 式
完全平方公式的定义
完全平方公式是指一个多项式等于一 个平方数与另一个平方数的乘积。
完全平方公式通常表示为 a^2+2ab+b^2或a^2-2ab+b^2,其 中a和b是实数。
完全平方公式的形式
完全平方公式可以表示为(a+b)^2或(a-b)^2,其中a和b是任意实数。 展开后得到a^2+2ab+b^2或a^2-2ab+b^2。
实例三
公式
$(a+b)^2=a^2+2ab+b^2$
解析
这是一个完全平方公式,其中$a=a$,$b=b$,$c=b$。将$a$和$b$的平方和加上$2ab$得到 $(a+b)^2=a^2+2ab+b^2$。
05
因式分解(完全平方公式) 的练习题
练习题一:将下列多项式因式分解
题目1
$x^2 - 4x + 4$
应用在数学问题中
因式分解是解决某些数学 问题的重要方法,如解方 程、求值等。

七年级下-数学-因式分解-讲义

七年级下-数学-因式分解-讲义

定义:把一个多项式化成几个整式的积的形式因式分解的意义与整式乘法的关系:互逆提取公因式法:)(c b a m mc mb ma ++=++因式分解的主要方法 平方差公式:()()b a b a b a -+=-22 因式分解 公式法完全平方公式:()2222b ab a b a +±=±因式分解的一般步骤:先看能否用提取公因式,再看能否用公式法因式分解的应用4.1 因式分解知识点:一般地,把一个多项式化成几个整式的积的形式,叫做因式分解,也叫分解因式。

考点①:判断因式分解。

关键:1、等式右边是几个整式乘积的形式2、是否分解彻底;3、用整式乘法来检验因式分解的正确性。

例1:下列各式从左到右的变形中,是因式分解的是()A. ()2132-22+-=+x x x B. ()()111222-+=-+xy xy xy y x C. ()x x y xy y x -=-2233 D. ()()y x y x y x 32329422++-=+- 例2:检验下列因式分解是否正确.(1) ()()1212122+-=-a a a(2) ()()3393-+=-x x x x x(3) ()()3824112++=+-m m m m(4) ()()y x y x y xy x +-=-+2222 考点②:已知因式或其中一个因式,求原多项式的系数。

关键:1、将因式的乘积用整式乘法做化简,再与原多项式一项一项对比。

2、若只知一个因式,则将另一个因式设为类似mx-n 的形式,再与已知因式相乘做化简,最后与原多项式对比。

例1:若()()43--x x 是多项式122+-ax x 分解因式的结果,则a 的值是______. 例2:若()3-x 是多项式122+-ax x 分解因式的结果,则a 的值是______. 例3:若()3-x 是多项式a x x +-72分解因式的结果,则a 的值是______.例4:甲、乙两名同学分解因式b ax x++2时,甲看错了b ,分解结果为()()42++x x ;乙看错了a ,分解结果为()()91++x x ,则.____=-b a考点③:将考点②反过来,已知原多项式和它的因式分解的其中一个因式,求另一个因式.例1:()ab aby abx ab 749147-=+--,括号里应填()A . y x 721++- B. y x 72-1+- C. y x 7-2-1 D. y x 721-+例2:已知将122-+x x 因式分解得到的一个因式是()3-x ,另一个因式是_________.考点④:利用因式分解简单计算.例1:(1)2012012- (2)223565-4.2 提取公因式法知识点一:公因式1. 一般地,一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.2. 多项式各项的公因式应是各项系数的最大公约数与各项都含有的相同字母的最低次幂的积.知识点二:提取公因式法3. 如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行因式分解,这种方法叫做提取公因式法。

《因式分解》ppt课件

《因式分解》ppt课件
因式分解涉及多次运算,强调 计算的准确性,避免后续步骤
出错。
常见错误及纠正方法
分解不彻底
有些学生在因式分解时,不能完全将多项式转化为整式的 积的形式。应指导学生检查每一步的分解是否正确,并确 保所有项都已正确分解。
误用公式
学生在使用公式法进行因式分解时,可能会误用公式。应 确保学生理解并记住正确的公式,并能够正确应用。
在几何图形中,通过因式分解可以计算图形的面积和周长,特别 是在处理一些不规则图形时。
分割与拼接图形
通过因式分解的方法,可以将一个几何图形分割成若干个简单图形, 或者将若干个简单图形拼接成一个复杂的图形。
解决几何问题
因式分解在解决一些几何问题中也有应用,如证明勾股定理、解决 几何图形的面积和体积等问题。
在解方程中的应用
分解因式解方程
对于一些一元二次方程,可以通过因式分解的方 法来求解,简化计算过程。
判断根的性质
通过因式分解,可以判断一元二次方程根的性质, 如根的和与积、根的判别式等。
解决代数问题
因式分解在解代数方程中有着广泛的应用,如求 解一元一次方程、分式方程等。
在几何图形中的应用
面积与周长的计算
THANK YOU
感谢各位观看
题目2: 把下列多项式分解因 式:3x^2 - 6xy + 3y^2。
题目3: 把下列多项式分解因 式:4a^2 - 8ab + 4b^2。
进阶练习题
提升技巧难度
题目2: 把下列多项式分解因式:(2a + b)^2 - (a b)^2。
题目1: 把下列多项式分解因式:(x + 2y)^2 - (x y)^2。
重要性
总结词
因式分解在数学中具有重要意义,是解决许多数学问题的关 键步骤。

因式分解经典讲义【范本模板】

因式分解经典讲义【范本模板】

第六讲、分解因式第一部分:方法介绍提公因式法。

:ma+mb+mc=m(a+b+c)1、多项式3222315520m n m n m n +-的公因式是( ) A 、5mn B 、225m n C 、25m n D 、25mn2.把(x -y )2-(y -x )分解因式为( ) A .(x -y )(x -y -1) B .(y -x)(x -y -1) C .(y -x )(y -x -1) D .(y -x )(y -x +1)3、用提提公因式法分解因式5a (x -y )-10b ·(x -y),提出的公因式应当为( ) A 、5a -10b B 、5a +10b C 、5(x -y) D 、y -x4、nx ny - 5、()()m m n n n m -+-6、计算 9992+9997、已知:x +y=21,xy=1。

求x 3y +2x 2y 2+xy 3的值.运用公式法.(1)(a+b )(a —b ) = a 2—b 2 ----———-—a 2-b 2=(a+b )(a —b );(2) (a ±b)2 = a 2±2ab+b 2 —-— a 2±2ab+b 2=(a ±b )2;(3) (a+b )(a 2-ab+b 2) =a 3+b 3-————- a 3+b 3=(a+b)(a 2—ab+b 2);(4) (a —b )(a 2+ab+b 2) = a 3-b 3 —-—-——a 3-b 3=(a-b)(a 2+ab+b 2). 下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c )2;(6)a 3+b 3+c 3—3abc=(a+b+c )(a 2+b 2+c 2—ab-bc-ca);例1、若k —12xy+9x 2是一个完全平方式,那么k 应为( )A 。

2 B.4 C 。

2y 2 D 。

第三讲因式分解PPT课件

第三讲因式分解PPT课件

① x2-5x+6
1
-2
1
-3
解:原式=(x-2)(x-3)
② a2-a-2
1
1
1
-2
解:原式=(a+1)(a-2)
【例 4】 (2011·台湾)下列四个多项式,是 2x2+5x-3 的因式的只能为
( A)
A.2x-1
B.2x-3
C.x-1
D.x-3
2x²-5x-3
4x²+10x+6
⑷分组分解法: a3 a2 a 1
(1)、提公因式法: 公因式的确定:
ma + mb + mc = m(a+b+c)系数取所有系数的最大公约数,
字母取相同的字母, 指数取最低指数。
练习:把下列各式分解因式
① 6x3y2-9x2y3+3x2y2
)②p(y-x)-2(x-y)
解:原式=3x2y2(2x-3y+1)
解:原式=p(y-x)+2(y-x) =(y-x)(p+2)
综合运用多种方法分解因式
知能迁移 4 (1)分解因式:a5-a (2)分解因式:(x+2)(x+4)+x2-4 (3)(解2012(·x+临2沂)(x)+分4解)+因x式22-:4a-6ab+9ab2= ________=.x22+6x+8+x22-4 (4)在=实2x数22+范6x围+内4 分解因式:x4-4
(2)运用公式法:
例题精析
【例 1】 (1)(2013·广东湛江)分解因式:x2-4=___x_2-__4_=__(_x_+__2_)(_x_-__2_)____. (2)(2013·江苏苏州)分解因式:a2+2a+1=___a_2+__2_a_+__1_=__(_a_+__1_)2_____. (3)(2013·山东滨州)分解因式:5x2-20=__5_x_2_-__2_0_=__5_(_x_+__2_)(_x_-__2_)_. (4)(2013·湖南益阳)分解因式:xy2-4x=___x_y2_-__4_x_=__x_(_y+__2_)_(_y_-__2_) __.

因式分解讲义

因式分解讲义
13、把-8m3+12m2+4m分解因式,结果是()
A、-4m(2m2-3m) B、-4m(2m2+3m-1)
C、-4m(2m2-3m-1) D、-2m(4m2-6m+2)
14、把多项式-2x4-4x2分解因式,其结果是()
A、2(-x4-2x2) B、-2(x4+2x2) C、-x2(2x2+4) D、-2x2(x2+2)
7、a2-4(a-b)2=(__________)·(__________)
8、a(x+y-z)+b(x+y-z)-c(x+y-z)= (x+y-z)·(________)
9、16(x-y)2-9(x+y)2=(_________)·(___________)
10、(a+b)3-(a+b)=(a+b)·(___________)·(__________)
例8已知 ,求 的值.
说明将所求的代数式变形,使之成为 的表达式,然后整体代入求值.
例9已知 , ,求 的值.
说明这类问题一般不适合通过解出 、 的值来代入计算,巧妙的方法是先对所求的代数式进行因式分解,使之转化为关于 与 的式子,再整体代入求值.
三、巩固练习
一、填空题
1.分解因式: .
2.分解因式: .
11、x2+3x+2=(___________)(__________)
12、已知x2+px+12=(x-2)(x-6),则p=_______.
三、解答题
1、把下列各式因式分解。
(1)x2-2x3(2)3y3-6y2+3y
(3)a2(x-2a)2-a(x-2a)2(4)(x-2)2-x+2
(5)25m2-10mn+n2(6)12a2b(x-y)-4ab(y-x)
2、用提提公因式法分解因式5a(x-y)-10b·(x-y),提出的公因式应当为()

因式分解ppt课件

因式分解ppt课件

02
03
04
因式分解的基本概念:定义、 性质、方法等
因式分解的技巧:提公因式、 平方差公式、十字相乘法等
因式分解的应用:代数式化简 、解方程等
Hale Waihona Puke 学习方法:理论学习、练习、 小组讨论等
因式分解的应用与重要性
01
02
03
04
代数式化简
利用因式分解简化复杂的代数 式,提高计算效率
解方程
通过因式分解将方程转化为多 个简单方程,便于求解
因式分解的作用
有助于理解方程的解 法
可以用于解决一些数 学问题,如求根、解 方程等
可以将一个复杂的多 项式简化成易于理解 的形式
课程目标和学习方法
掌握因式分解的基本方法 学习如何将一个多项式分解成几个整式的乘积
通过练习,达到能够快速、准确地完成因式分解的目标
02
因式分解的基本概念
整式和因式的定义
分解6a4b3+18a3b2+12a2b
首先,我们可以发现6a4b3和18a3b2可以组合成一项,得到(6a4b3+18a3b2),接着观察多项式,我 们可以发现12a2b可以单独列出来,所以原多项式可以分解为(6a4b3+18a3b2)+12a2b。
应用题中的例子
在一个水池设计中,需要将一个圆形的水池分割成若干个小 的区域,这时候就需要使用到因式分解的方法,将圆形水池 的面积分解成若干个小的面积之和,这样就可以更加方便地 进行设计和规划。
掌握因式分解的方法
因式分解的方法有很多种,初学者可能难以掌握。解决办 法是加强对方法的学习,可以通过大量的练习来掌握。
解决因式分解的问题
因式分解的问题可能比较复杂,初学者可能难以解决。解 决办法是加强对问题的分析,学会拆解问题,找出合适的 解决方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。但有时需要经过适当 的组合、变形后,方可使用公式。
用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。因此,正确掌握公式法 因式分解,熟练灵活地运用它,对今后的学习很有帮助。
下面我们就来学习用公式法进行因式分解
题型展示:
对于二次三项 ax2 bx c ( a、b、 c 都是整数,且 a
0 )来说,如果存在四个整数
a1, c1, a 2, c2
满 足 a1a 2 a, c1c2 c , 并 且 a1c2 a2c1 b , 那 么 二 次 三 项 式 ax 2 bx c 即
a1 a2 x 2 a1c2 a 2 c1 x c1c2 可以分解为 a1 x c1 a 2 x c2 。这里要确定四个常数 a1, c1 , a2 , c2 ,
ac bd 0 原式 0
说明:首先要充分利用已知条件 a2 b 2 1, c 2 d 2 1 中的 1(任何数乘以 1,其值不变) ,其次利用 分解因式将式子变形成含有 ac+bd 因式乘积的形式,由 ac+bd=0 可算出结果。
例 3. 分解因式: x 3 2x 3 分析:此题无法用常规思路分解,需拆添项。观察多项式发现当
说明:先提取公因式,再用完全平方公式分解彻底。
提高练习
1. 利用提公因式法简化计算过程
例:计算 123 987 268 987
1368
1368
456 987 1368
521 987 1368
2. 分解因式:
( 1) 4m2 n3 12m3n2 2mn
( 2) a 2 xn 2
abxn 1
acxn
adxn
方法一·提公因式法
1 、提公因式法分解因式的一般形式,如 : ma+mb+mc=m ( a+b+c ).
这里的字母 a 、 b 、 c、 m 可以是一个系数不为 1 的、多字母的、幂指数大于 1 的整式 .
2 、提公因式法分解因式,关键在于观察、发现多项式的公因式
.
3 、找公因式的一般步骤
(1 )若各项系数是整系数,取系数的最大公约数; (2 )取相同的字母,字母的指数取较低的; (3 )取相同的多项式,多项式的指数取较低的 . (4 )所有这些因式的乘积即为公因式 . 4 、注意事项:
yx y
mx 5y 6
-6 可分解成 2 3 或 3 2 ,因此,存在两种情况:
例 1:因式分解: x 3 4 xy 2 ________。 解: x 3 4xy 2 x( x 2 4y 2 ) x( x 2y)( x 2 y)
说明:因式分解时,先看有没有公因式。此题应先提取公因式,再用平方差公式分解彻底。
例 2:分解因式: 2x 3 y 8x 2 y 2 8 xy 3 _________。 解: 2x 3 y 8x2 y 2 8xy 3 2xy( x2 4xy 4 y2 ) 2 xy( x 2 y)2
说明:拆添项法也是分解因式的一种常见方法,请同学们试拆一次项和常数项,看看是否可解?
常见题型 例 1.分解因式: 1 m 2 n 2 解: 1 m 2 n 2 2 mn
1 (m 2 2mn n 2 )
2 mn
_____________。
1 (m n)2
(1 m n)(1 m n)
说明:观察此题是四项式,应采用分组分解法,中间两项虽符合平方差公式,但搭配在一起不能分解 到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。
(2) 8a(x y)2 4b( y x)
6. 计算与求值 29× 20.03+72 ×20.03+13 × 20.03 - 14× 20.03.
7、 . 先化简,再求值
11 a(8 - a)+ b( a- 8) - c(8 - a) ,其中 a=1,b= , c= .
2
2
8、已知 2x
y
1 , xy
分析和尝试都要比首项系数是 1 的类型复杂,因此一般要借助画十字交叉线的办法来确定。 下面我们一起来学习用十字相乘法因式分解。
题型展示
例 1. 若 x 2 y 2 mx 5 y 6 能分解为两个一次因式的积,则 m 的值为(

A. 1
B. -1
C. 1
解: x 2 y 2 mx 5y 6 x
D. 2
1
(n
为正整数)
( 3) a(a b) 3 2a 2 (b a) 2 2ab(b a) 2
3. 计算: ( 2)11 ( 2)10 的结果是(
A. 2100
B. 210

C. 2
D. 1
方法三·分组分解法
【知识精读】
把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.分组时要用到添括号:
2 ,求 2 x 4 y 3
x 3 y 4 的值 .
8
方法二·公式法
【知识精读】
把乘法公式反过来,就可以得到因式分解的公式。
主要有:平方差公式
a 2 b 2 ( a b)( a b)
完全平方公式
a 2 2ab b2 (a b )2
立方和、立方差公式
a 3 b 3 (a b) ( a 2 ab b 2 )
括号前是“ +”号,括到括号里的各项都不变符号;括号前面是“
-”号,括到括号里的各项都改变符号
分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。使用这种方法的关键在于分 组适当,而在分组时,必须有预见性。能预见到下一步能继续分解。而“预见”源于细致的“观察” 多项式的特点,恰当的分组是分组分解法的关键。
应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元
,分析
二次方程,函数等学习中也有重要作用。
题型展示: 例 1. 分解因式: m 2 (n 2 1) 4mn n 2 1
解: m 2 (n 2 1) 4mn n 2 1
m 2 n 2 m 2 4 mn n 2 1 ( m 2 n 2 2 mn 1) ( m 2 2mn n2 ) ( mn 1) 2 ( m n) 2 ( mn m n 1)( mn m n 1)
例 2.分解因式: x 2 y 2 x y ____________
解: x 2 y 2 x y (x 2 y 2 ) ( x y)
(x y)( x y) ( x y) (x y)( x y 1) 说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。
例 3. 分解因式: x 3 3x 2 4x 12 ____________ 解: x 3 3x 2 4x 12 x 3 4x 3x 2 12
题型展示: 1 、将下列各式分解因式:
( 1 ) 3a(x y) - 2b(x y) ;
( 2 ) 12(m n) 2 18(m n ) 3 ; (3 ) 3(2 x y) 6( y 2 x ) 3 ;
( 4 ) 1 a 2b( p 2 q ) 3 ab2 (q p 2 ) 2 ;
4
8
2 、下列分解因式结果正确的是 ( )
2
2
1
1
1
( m 1) ( m 2) ( m 3)
2
2
2
1 m2 4
说明:本题属于条件求值问题,解题时没有把条件直接代入代数式求算过程。
例 2. 已知 a b c 0, a 3 b 3 c3 0 , 求证: a5 b5 c5 0 证明: a 3 b3 c3 3abc (a b c)( a2 b 2 c2 ab bc ca) 把 a b c 0, a 3 b3 c3 0 代入上式,
可得 abc 0 ,即 a 0 或 b 0 或 c 0 若 a 0 ,则 b c , a5 b5 c5 0 若 b 0 或 c 0 ,同理也有 a5 b5 c5 0 说明:利用补充公式确定 a, b, c 的值,命题得证。
例 3. 若 x 3 y 3 27, x 2 xy y 2 9 ,求 x 2 y 2 的值。
x 1是 x 3 2x 3的一个因式,因此变形的目的是凑 x 1 这个因式。
x=1 时,它的值为
0 ,这就意味着
解一(拆项) :
3
3
3
x 2x 3 3x 3 2x 2x
3( x 1)( x 2 x 1) 2 x( x 2 1)
(x 1)( x 2 x 3)
解二(添项) : x 3 2x 3 x 3 x 2 x 2 2x 3 x 2 (x 1) ( x 1)( x 3) ( x 1)( x 2 x 3)
解: x 3 y 3 (x y)( x2 xy y 2 ) 27
且 x 2 xy y 2 9
x y 3, x2 2xy y2 9 (1)
又 x 2 xy y2 9
(2)
两式相减得 xy 0
2
2
所以 x y 9
说明:按常规需求出 x, y 的值,此路行不通。用因式分解变形已知条件,简化计算过程。
常见题型:
C.13
D.- 13
2、若 4x3- 6x2=2x2(2 x+k) ,则 k=________.
3、 .2( a- b) 3- 4( b- a) 2=2( a- b) 2(________). 4、 .36 × 29- 12× 33=________.
5、分解因式
(1) ( x y)( x y) ( x y)2
说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把 方和平方差公式。
4mn 分成 2mn 和 2mn,配成完全平
例 2. 已知: a2 b 2 1, c 2 d 2 1,且 ac bd 0 ,求 ab+cd 的值。
相关文档
最新文档