圆与圆的位置关系

合集下载

圆与圆的位置关系(解析版)

 圆与圆的位置关系(解析版)

第50讲:圆与圆的位置关系一、课程标准1、能根据给定圆的方程,判断圆与圆的位置关系2、能用圆与圆的关系方解决一些简单的数学问题与实际问题. 二、基础知识回顾 圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).三、自主热身、归纳总结1、圆C 1:x 2+y 2+2x =0,圆C 2:x 2+y 2+4y =0,则两圆的位置关系是( )A . 内含B . 相交C . 外切D . 外离 【答案】B【解析】圆C 1:(x +1)2+y 2=1,圆C 2:x 2+(y +2)2=22,∴C 1C 2=5,且2-1<5<2+1,∴两圆相交.故选B .2、圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为( )A . 2B . 2 2C . 3D . 23 【答案】B【解析】由⎩⎨⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22=2.由勾股定理得弦长的一半为4-2=2,∴所求弦长为2 2.故选B .3、已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A . 内含B . 相交C . 外切D . 外离 【答案】B 【解析】圆M :x 2+(y -a)2=a 2(a>0),∴⎝ ⎛⎭⎪⎫||a 22+(2)2=a 2,解得a =2,由||2-1<()0-12+()2-12<2+1得两圆相交.故选B .4、知圆C 与圆x 2+y 2+10x +10y =0相切于原点,且过点A(0,-6),则圆C 的标准方程为____. 【答案】(x +3)2+(y +3)2=18【解析】 设圆C 方程为(x -a)2+(y -b)2=r 2(r>0),则由题意得⎩⎨⎧a 2+b 2=r 2,()a +52+()b +52=()r±522,a 2+()b +62=r2解之得圆C 方程为(x +3)2+(y +3)2=18.5、半径为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为_ _ 【答案】(x±4)2+(y -6)2=36.【解析】 由题意知,圆心可设为(a ,6),半径r =6,∴()a -02+()6-32=6-1,∴a =±4,∴所求圆的方程为(x±4)2+(y -6)2=36.6、(河北省石家庄二中2019届期末)已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0与圆C 2:x 2+y 2+2x -2my +m 2-3=0,若圆C 1与圆C 2相外切,则实数m =________. 【答案】2或-5【解析】圆C 1:(x -m )2+(y +2)2=9,圆C 2:(x +1)2+(y -m )2=4,则C 1(m ,-2),r 1=3,C 2(-1,m ),r 2=2.当圆C 1与圆C 2相外切时,显然有|C 1C 2|=r 1+r 2,即m +12+m +22=5,整理得m 2+3m -10=0,解得m =-5或m =2.四、例题选讲考点一、圆与圆的位置关系例1、已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.(1)m 取何值时两圆外切? (2)m 取何值时两圆内切?(3)求m =45时两圆的公共弦所在直线的方程和公共弦的长.【解析】 两圆的标准方程为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m ,圆心分别为M (1,3),N (5,6),半径分别为11和61-m .(1)=11+61-m ,解得m =25+1011.(2)当两圆内切时,因定圆的半径11小于两圆圆心距5,故只有61-m -11=5,解得m =25-1011. (3)当m =45时,4-11<|MN |=5<11+4,两圆相交,其两圆的公共弦所在直线方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0,即4x +3y -23=0.所以公共弦长为=. 变式1、分别求当实数k 为何值时,两圆C 1:x 2+y 2+4x -6y +12=0,C 2:x 2+y 2-2x -14y +k =0相交和相切.【解析】 将两圆的一般方程化为标准方程,得C 1:(x +2)2+(y -3)2=1,C 2:(x -1)2+(y -7)2=50-k ,则圆C 1的圆心为C 1(-2,3),半径r 1=1;圆C 2的圆心为C 2(1,7),半径r 2=50-k ,k<50.从而|C 1C 2|=(-2-1)2+(3-7)2=5. 当|50-k -1|<5<50-k +1,即4<50-k<6, 即14<k<34时,两圆相交.当1+50-k =5,即k =34时,两圆外切; 当|50-k -1|=5,即k =14时,两圆内切. ∴当k =14或k =34时,两圆相切.方法总结:(1)判断两圆的位置关系多用几何法,即用两圆圆心距与半径和或差的关系判断,一般不采用代数法.(2)求两圆公共弦长的方法是在其中一圆中,由弦心距d ,半弦长l2,半径r 所在线段构成直角三角形,利用勾股定理求解.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.考点二 圆与圆的综合问题例2、已知圆C 1:(x -a)2+(y +2)2=4与圆C 2:(x +b)2+(y +2)2=1相外切,则ab 的最大值为________.【答案】 94【解析】 由圆C 1与圆C 2相外切,可得(a +b )2+(-2+2)2=2+1=3,即(a +b)2=9,根据基本不等式可知ab≤⎝ ⎛⎭⎪⎫a +b 22=94,当且仅当a =b 时等号成立.故ab 的最大值为94.变式1、已知圆C 1:(x -a)2+(y +2)2=4与圆C 2:(x +b)2+(y +2)2=1相内切, 则 a 2+b 2的最小值为__________.【答案】 12【解析】 由圆C 1与圆C 2内切,得(a +b )2+(-2+2)2=1,即(a +b)2=1.又由基本不等式a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22,可知a 2+b 2≥(a +b )22=12,当且仅当a =b 时等号成立,故a 2+b 2的最小值为12.变式2、已知圆C 1:(x -a)2+(y +2)2=4与圆C 2:(x +b)2+(y +2)2=1相交”,则公共弦所在的直线方程为______________________. 【答案】 (2a +2b)x +3+b 2-a 2=0【解析】 由题意将圆C 1,圆C 2的方程都化为一般方程,得圆C 1:x 2+y 2-2ax +4y +a 2=0①,圆C 2:x 2+y 2+2bx +4y +b 2+3=0②, 由②-①得(2a +2b)x +3+b 2-a 2=0,即所求公共弦所在直线方程为(2a +2b)x +3+b 2-a 2=0.变式3、已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为( )A. 3B. 8C. 4D. 9 【答案】D【解析】 由题设中可知两圆相内切,其中C 1(-2a ,0),r 1=2;C 2(0,b ),r 2=1,故|C 1C 2|=a 2+4b 2,由题设可知a 2+4b 2=2-1,即a 2+4b 2=1,则1a 2+1b 2=⎝⎛⎭⎫1a 2+1b 2(a 2+4b 2)=5+4b 2a 2+a 2b2≥5+4=9.当且仅当a 2=2b 2时等号成立.故选D.变式4、 已知A ,B 是圆C 1:x 2+y 2=1上的动点,AB =3,P 是圆C 2:(x -3)2+(y -4)2=1上的动点,则|PA →+PB →|的取值范围为____. 【答案】[]7,13【解析】 设AB 的中点为E ,则其轨迹为x 2+y 2=14,|PA →+PB →|=2||PE →,由||PE →∈⎣⎡⎦⎤72,132,∴|PA →+PB →|∈[]7,13.变式5、 求圆心在直线x +y =0上,且过两圆x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0交点的圆的方程.【解析】 (方法1)(利用圆心到两交点的距离相等求圆心)将两圆的方程联立得方程组⎩⎨⎧x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0,解这个方程组求得两圆的交点坐标A(-4,0),B(0,2). 因所求圆心在直线x +y =0上,故设所求圆心坐标为(x ,-x),则它到上面的两上交点(-4,0)和(0,2)的距离相等,故有()-4-x 2+()0+x 2=x 2+()2+x 2,即4x =-12,∴x =-3,y =-x =3,从而圆心坐标是(-3,3).又r =()-4+32+32=10,故所求圆的方程为(x +3)2+(y -3)2=10.(方法2)(利用弦的垂直平分线过圆心求圆的方程)同方法1求得两交点坐标A(-4,0),B(0,2),弦AB 的垂直平分线方程为2x +y +3=0,它与直线x +y =0交点(-3,3)就是圆心,又半径r =10,故所求圆的方程为(x +3)2+(y -3)2=10.(方法3)(用待定系数法求圆的方程)同方法1求得两交点坐标为A(-4,0),B(0,2).设所求圆的方程为(x -a)2+(y -b)2=r 2,∵两点在此圆上,且圆心在x +y =0上,∴得方程组⎩⎨⎧()-4-a 2+b 2=r 2,a 2+()3-b 2=r 2,a +b =0,解之得⎩⎨⎧a =-3,b =3,r =10,故所求圆的方程为(x +3)2+(y -3)2=10.(方法4)设所求圆的方程为x 2+y 2-2x +10y -24+λ(x 2+y 2+2x +2y -8)=0(λ≠-1), 即x 2+y 2-2()1-λ1+λx +2()5+λ1+λy -8()3+λ1+λ=0.可知圆心坐标为(1-λ1+λ,-5+λ1+λ).∵圆心在直线x +y =0上,∴1-λ1+λ-5+λ1+λ=0,解得λ=-2.将λ=-2代入所设方程并化简,求圆的方程为x 2+y 2+6x -6y +8=0.方法总结:圆与圆的综合题目涉及到参数的问题,解题思路就是通过圆与圆的位置关系,寻求参数之间的关系,然后转化为函数的思想进行解决。

圆与圆位置关系知识点

圆与圆位置关系知识点

圆与圆位置关系知识点
在几何学中,圆与圆之间的位置关系涉及到它们的相对位置和相交情况。

以下
是一些关于圆与圆位置关系的重要知识点。

1. 内切:当一个圆完全位于另一个圆内部,并且两个圆的边界相切于一个点时,我们称这两个圆为内切圆。

内切圆的半径小于外切圆的半径。

2. 外切:当一个圆完全位于另一个圆外部,并且两个圆的边界相切于一个点时,我们称这两个圆为外切圆。

外切圆的半径大于内切圆的半径。

3. 相离:当两个圆没有任何交点且没有相切点时,我们称这两个圆为相离圆。

4. 相交:当两个圆有交点时,我们称这两个圆为相交圆。

a. 两个圆相交于两个不同的点时,我们称这种相交为普通相交。

b. 当两个圆的圆心重合且半径相等时,这两个圆相交于一条直径线,我们称
这种相交为重合相交。

5. 同心圆:当两个圆的圆心重合但半径不相等时,我们称这两个圆为同心圆。

这些是圆与圆位置关系的基本知识点,它们帮助我们理解圆的排列方式并解决
与圆相关的几何问题。

了解这些知识点可以为我们进一步学习和应用几何学提供基础。

圆与圆的位置关系

圆与圆的位置关系

p A B C D p A B C DA CBP A C P B D §第12讲 圆与圆的位置关系本课是在学习了圆周角与圆心角关系及圆周角相关定理后,对圆的有关知识的一个综合运用。

同时引入了圆与三角形四边形的关系,解决了“圆化方”的问题,可以形成可解图形的问题。

加强我们对圆的认识,提高解决与圆有关推理、论证和计算问题的能力。

【知识点清单】§Ⅰ:两圆位置关系设两圆半径分别为R 和r,圆心距为d ,那么(1)两圆外离 d >R+r (2)两圆外切d=R+r (3)两圆相交 R-r <d<R=r(R ≥r) (4)两圆内切 d=R-r(R >r) (5)两圆内含 d <R-r(R >r)两圆的性质定理:1,如果两圆相切,那么切点一定在连心线上. 2,相交两圆的连心线垂直平分两圆的公共弦.§Ⅱ:与圆有关的比例线段1.相交弦定理及推论:(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等, 如图1,弦AB 、CD 相交于P 点,则有:PA ·PB=PC ·PD(2) 相交弦道理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项,如图2,CD 是弦,AB 是直径,CD ⊥AB ,垂足是点P ,则有:PC 2=PA ·PB (图1) (图2) (图3) (图4) 2切割线定理及推论: (1) 切割线定理:从园外一点引圆的切线和割线,切线长是这点到割线与圆相交的两条线段的比例中项,如图3,PC 是圆的切线,割线PAB ,则PC 2=PA ·PB(2) 切割线定理推论(割线定理)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段的积相等,如图4,PAB 、PCD 是圆的两条割线,则有:PA ·PB=PC ·PD【典例精析】考点1: 圆与圆位置关系【例1】已知⊙O 1和⊙O 2的半径分别为1和5,圆心距为3,则两圆的位置关系是( )A .相交B .内含C .内切D .外切BA O E DCA OBE CD OAB P CBD OT PCAOBPAC 【例2】两圆的圆心坐标分别是(3,0)和(0,1),它们的半径分别是3和5,则这两个圆的位置关系是( )A .相离B .相交C .外切D .内切变式议练:已知⊙O 1和⊙O 2的半径分别为R 和r ,且R ≧r ,R 和r 是方程0362=+-x x 的两根,设O 1O 2=d,那么 (1)若d=7时,试判断⊙O 1和⊙O 2的位置关系;(2)若d=32时,试判断⊙O 1和⊙O 2的位置关系; (3)若d=5时,试判断⊙O 1和⊙O 2的位置关系;(4)若两圆相切时,求d 的取值范围。

圆与圆的位置关系

圆与圆的位置关系

图1扇形、圆与圆的位置关系一、圆和圆的位置关系.1、外离、外切、相交、内切、内含(包括同心圆)这五种位置关系的定义.(1)外离: 两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(2)外切: 两个圆有惟一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时, 叫做这两个圆外切.这个惟一的公共点叫做切点.(3)相交: 两个圆有两个公共点,此时叫做这个两个圆相交.(4)内切: 两个圆有惟一的公共点,并且除了这个公共点以外,一个圆上的都在另一个圆的内部时,叫做这两个圆内切.这个惟一的公共点叫做切点.(5)内含: 两个圆没有公共点, 并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.两圆同心是两圆内的一个特例. 2、相切两圆的性质:如果两个圆相切,那么切点一定在连心线上. 3、 相交两圆的性质:相交两圆的连心线垂直平分公共弦. 二、弧长及扇形的面积1、圆周长公式: 圆周长C=2πR (R 表示圆的半径)2. 弧长公式: 弧长180R n l π= (R 表示圆的半径, n 表示弧所对的圆心角的度数)3、扇形定义:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.4、弓形定义:由弦及其所对的弧组成的图形叫做弓形. 弓形弧的中点到弦的距离叫做弓形高. 5、圆的面积公式.2R S π= (R 表示圆的半径) 6、扇形的面积公式:扇形的面积3602R n S π=扇形 (R 表示圆的半径, n 表示弧所对的圆心角的度数)※弓形的面积公式:(如图5) (1)当弓形所含的弧是劣弧时, 三角形扇形弓形S S S -= (2)当弓形所含的弧是优弧时, 三角形扇形弓形S S S += (3)当弓形所含的弧是半圆时, 扇形弓形S R S ==221π提高试题1、如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )A. (4+cm B. 9 cmC. D.cm第1题 第2题2、如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为( )A .22B .2C .1D .23、已知两圆的半径为R,r 分别是方程X 2-5X+6=0两根,两圆的圆心距为1,两圆的位置关系是( ) A.外离 B.外切 C.内切 D.相交4、已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 ( )A .8πB .9πC .10πD .11π 5、一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 ( ).A .1B .34C .12D .136、 现有一个圆心角为,半径为的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为( )A .B .C .D .7、如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连接DP ,DP 交AC 于点Q .若QO=PQ ,则QA QC的值为( ) (A )132-(B )32(C )23+(D )23+8、已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( ) (A )30° (B )45° (C )60° (D )75°9、如图,已知平行四边形ABCD ,过A 、B 、C 三点的圆交AD 于E ,且与CD 相切。

圆与圆的位置关系

圆与圆的位置关系

圆与圆的位置关系知识要点:1.圆与圆的位置关系设两圆半径为R和r,圆心距为d,则两圆的位置关系如下:2.分切线定义:和两个圆都相切的直线叫做两圆的公切线。

当两圆在公切线同旁时,这样的公切线叫做外公切线;当两圆在公切线两旁时,这样的公切线叫做内公切线。

公切线长:公切线上的两个切点间的距离叫做公切线的长。

定理:两圆的两条外分切线长相等,两圆的两条内公切线长也相等。

外公切线的长为;内公切线的长为。

3.相交两圆的性质定理:相交两圆的连心线垂直平分两圆的公共弦。

4.相切两圆的性质定理:相切两圆的连心线经过切点。

1.圆和圆的位置关系(设两圆半径分别为R和r,同心距为d)(1)两圆外离d>R+r;(2)两圆外切d=R+r;(3)两圆相交R-r<d<R+r;(4)两圆内切d=R-r;(5)两圆内含d<R-r。

(同心圆(6)是一种内含的特例)2.有关性质:(1)连心线:通过两圆圆心的直线。

如果两个圆相切,那么切点一定在连心线上。

(2)公共弦:相交两圆的连心线垂直平分两圆的公共弦。

(3)公切线:和两个圆都相切的直线,叫做两圆的公切线。

两个圆在公切线同旁两个圆在公切线两旁3.已知两圆半径分别为R、r,同心距为d,填定下表:名称公共点数圆心距半径关系公切线条数内外外离d=R+r相交d=R-r内含一星级题:1.如果两圆有且只有两条公切线,那么这两圆的位置关系是()A.外离 B.外切 C.相交 D.内含2.如果两圆半径分别为3㎝和5㎝,圆心距为2㎝,则两个圆的位置关系为()。

A.外离 B.外切 C.相交 D.内切3.已知⊙O1和⊙O2内切,它们的半径分别为2㎝和3㎝,则两圆圆心距O1O2= ㎝。

4.半径分别为3㎝和4㎝的两圆外切,那么这两圆的圆心距为㎝。

5.已知半径为R的两个等圆的圆心距为d,那么当两圆外切时,d与R满足的关系式是。

6.已知两圆半径分别为5㎝和2㎝,它们的圆心距为7㎝,则两圆位置关系为。

7.已知:两圆⊙O1与⊙O2的圆心距O1O2=5㎝,两圆的半径分别为㎝和㎝,则这两圆的位置关系是。

圆和圆的位置关系

圆和圆的位置关系
两 圆夕 离々 d r r >l 2 +. 两 圆夕 切 d r r =1 2 +. 两 圆相交 § l 2 d r r r 1 <l 2 广r< +.
两 圆 内切 d l— =r r _ l l 两 圆 内含 ̄ d l一2 = <r r. v 1 I
例王 () 1 已知OO 和OO 的半径分别为 3 m和 6 m, 。 c 两圆 c
如 图( 两 网 内切. , 切点 分别为 A 和 A. 3 相 交 如果 两 厕有两 个公 共点 , 叫两 圆相交 .

如 图⑧ , 圆相交 . 两 综 _ 按 两圆公共 点个 数可 以将 两圆位置关 系细 分 为五种 : L,
① 两 刚外离 :
() 圆相交 ; 2两

. .

2.
讨诊
内切 时 := r, 即 5 1 r dl l R— =3 1 一.
解得 r 8 =.
三 相切两圃的性质
() 1 相切 两 圆是 以两 圆心 连 线为 对称 轴 的轴 对称 图形 .
() 2 相切 两 圆 的切点 一定 在 连心 线上 .
_

共 点 叫 切点. 除公 共 点外 , 个 圆上其 他 点都 在 另 一个 圆 的外 部 , 一
叫两 圆外 切 . 除公 共 点外 , 一个 圆上 其他 点 都在 另一 个 圆 的 内部 ,
另一个 吲上 的其 他点都 在这个 圆的外 部 , 叫两 圆内切.

如 图③ . 圆外切 . 两
如图, = , 为直径的圆与一个以5 P 3以 Q 为半径的圆
相 切 于点 Pi 方 形 A C 的顶 点 A, . E BD B在 大 圆上 , 圆在 正方 形 外 小 部, 与 C 且 D切 于点 Q 求 A 的长. . B 解

判断两圆位置关系的方法

判断两圆位置关系的方法

两圆位置关系的判定方法圆和圆的位置关系有五种:外离、外切、相交、内切、内含.如何判断两圆的位置关系呢?可试用以下三种方法:1、利用定义,即用两圆公共点(交点)的个数来判定两圆的位置关系.公共点的个数0 1 2两圆位置关系外离或内含外切或内切相交因为这个方法较易理解,所以不再举例.2、利用圆心距与两圆半径之间的关系来判断两圆的位置关系:d为圆心距,R与r 分别是两圆的半径,则有以下关系:两圆外切<=>d=R+r;两圆外离<=>d>R+r;两圆内含<=>d<R-r(R>r).两圆相交:<=>R-r<d<R+r两圆内切<=>d=R-r(R>r)举两个例子帮助同学们理解一下:例题1:设⊙O1和⊙O2的半径分别为R、r,圆心距为d,当R=6cm,r=3cm,d=5cm时,⊙O1和⊙O2的位置关系是怎样的?当R=5cm,r=2cm,d=3cm时,⊙O1和⊙O2的位置关系是怎样的?分析:本题主要是考查根据圆心距判定两圆的位置关系,对第①问有R-r<d<R+r,所以两圆相交,对第②问有d=R-r,所以两圆相切.例题2:已知两圆的半径分别为R和r(R>r),圆心距为 d ,若关于x的方程x2-2rx+(R-d)2=0有两个相等的实数根,那么两圆的位置关系为()A、外切B、内切C、外离D、外切或内切分析:这是一道与方程相联系的小综合题,解本题的关键是关于x的方程的判别式等于0,找出d、R、r三者的数量关系,再确定两圆的位置关系.根据题意,得r2-(R-d)2=0,即(r+R-d)(r-R+d)=0,所以d=R+r或d=R-r.,所以答案应该选D.公切线条数 4 3 2 1 0两圆位置关系外离外切相交内切内含例题1:如果两圆的公切线有且只有一条,那么这两个圆的位置关系是()A、相交B、外离C、内切D、外切分析:只要掌握了上表中列出的对应关系,可以马上判断出此两圆的位置关系是内切,所以应该选C.你掌握住了吗?试做以下练习:一、填空:1、如果两个半径不相等的圆有两个公共点,那么这两个圆的位置关系是___,且这两个圆的公切线有___条.2、若两圆的公切线的条数是4条,则两圆的位置关系是____.3、若两圆的半径分别为4cm和2cm,一条外公切线长为4cm,则两圆的位置关系是___.4、在平面直角坐标系中,分别以点A(0,3)与B(4,0)为圆心,以8与3为半径作⊙A和⊙B,则这两个圆的位置关系为____.二、选择:5、若两圆没有公共点,则两圆的位置关系是()A、外离B、内含C、外切D、外离或内含6、已知⊙O1和⊙O2的半径分别为4cm和3cm,圆心距O1O2=5cm,则⊙O1和⊙O2的公切线的条数为()A、1条B、2条C、3条D、4条7、若两圆的直径分别是18+t,18-t(0<t<18),两圆的圆心距d=t,则两圆的位置关系为()A、外切B、内切C、外离D、相交答案:1、相交;2.2、外离;3、相交;4、内切;5、D;6、B;7、B.。

圆与圆的位置关系

圆与圆的位置关系

圆与圆的位置关系【基础知识点】12例题1、如图 ,⊙A与⊙B内切,⊙A与⊙C外切,⊙A、⊙B、⊙C的半径分别是,2+,∠BAC=60°,求BC的长。

2-62,2623、两圆的公切线:和两个圆都想切的直线叫做两圆的公切线,包括外公切线、内公切线。

(1)外公切线:两个圆在公切线同旁时,这样的公切线叫做外公切线。

(2)内公切线:两个圆在公切线两旁时,这样的公切线叫做内公切线。

(3)公切线的长:公切线上两个切点间的距离叫做公切线的长。

4、两圆相交的重要定理:相交两圆的连心线垂直平分公共弦。

例题2、已知⊙1和⊙2的半径分别为8cm和5cm,它们相交于A、B,且AB=6cm,求圆心距O1O2.(自己作图,考虑两种情况,分类讨论:圆心在AB同侧或者异侧)例题3、如图,已知直角三角形ABC的斜边AB为4,内切圆半径为26 ,求三角形ABC的面积。

例题4、(2011•南京)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.例题5、(2008•威海)如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?例题6、(2011•绵阳)如图,在梯形ABCD中,AB∥CD,∠BAD=90°,以AD为直径的半圆O与BC 相切.(1)求证:OB⊥OC;(2)若AD=12,∠BCD=60°,⊙O1与半⊙O外切,并与BC、CD相切,求⊙O1的面积.例题7、(2007•南充)如图是某城市一个主题雕塑的平面示意图,它由置放于地面l上两个半径均为2米的半圆与半径为4米的⊙A构成.点B、C分别是两个半圆的圆心,⊙A分别与两个半圆相切于点E、F,BC长为8米.求EF的长.例题8(2011•黄石)已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论足否成立.例题9、(2006•成都)已知:如图,⊙O与⊙A相交于C,D两点,A,O分别是两圆的圆心,△ABC内接于⊙O,弦CD交AB于点G,交⊙O的直径AE于点△CDE,连接BD.(1)求证:△ACG∽△DBG;(2)求证:AC2=AG•AB;6,15,且CG:CD=1:4,求AB和BD的长(3)若⊙A,⊙O的直径分别为5【课堂练习】一、填空与选择1、(2010•宁夏)如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是__米.2、(2010•菏泽)如图,在正方形ABCD中,O是CD边上的一点,以O为圆心,OD为半径的半圆恰好与以B为圆心,BC为半径的扇形的弧外切,则∠OBC的正弦值为________3、(2008•绍兴)如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,记各阴影部分面积从左到右依次为S1,Ss,S3,…,Sn,则S12:S4的值等于__________。

圆与圆的位置关系

圆与圆的位置关系

练习
2、圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点 为A,B,则线段AB的垂直平分线的方程是( ). A、x+y-1=0 C、x-2y+1=0 B、 2x-y+1=0 D、 x-y+1=0
y 3、如果实数x,y满足(x-2)2+y2=3,试求 x 的 最大值,y-x的最小值.
△<0
△=0 △>0
n=0
两圆相切
两个圆相交
例3. 已知圆C1 : x2+y2+2x+8y-8=0和 圆C2 : x2+y2-4x-4y-2=0,试判断圆C1与圆C2的位 置关系.
练习
1、已知圆C1 : x2+y2+2x+3y+1=0和 圆C2 :x2+y2+4x+3y+2=0,试判断圆C1与圆C2 的位置关系.
; / 河源整形医院 河源整形美容 河源激光整形美容 河源医学整形整容 望都无法实现,冰凝真是对自己又恨又恼,但她更痛恨这受制于人的王府生活。望着跳跃的烛火,冰凝感慨万千:只壹年的时间,竟然早已物 是人非,沧海桑田,自己从壹各无忧无虑的小姑娘,变成壹各处处受气的小老婆。这么大的落差,实在是需要她用很长、很长的壹段时间来消 化,来适应。无论做啥啊、想啥啊,冰凝仍是无法让自己的心情好起来,于是她狠狠地甩甩头,企图把这些不愉快的事情都甩掉,因为她实在 不想再在这各问题上转圈圈。那就想点儿别的事情吧!可是,无论她怎么转念,这念想都要转到宝光寺上面。去年施粥的情景还历历在目,宝 光寺残垣断壁的样子时时地浮现眼前。她太惦记宝光寺咯:庙宇重建得好不好?僧人们的生活苦不苦?香客们去得多不多?越想,却越是觉得 不踏实。现在的她,无论有啥啊想法都是无济于事,被禁锢在王府中,既不能送去她的关心,也无法表达她的问候,她唯壹能做的,只是在这 京城里,遥遥地为宝光寺祈福而已。王爷是参惮礼佛之人,因此王府里建有专门的佛堂――万安堂。看看沙漏,三更天都快要过完咯,佛堂应 该没有人咯吧。于是冰凝唤来吟雪,两各人穿戴整齐,她要去佛堂给宝光寺烧几柱香。壹路走,她壹路怀念此前三各月独住府里的生活,只有 她壹各主子,不用担心遇见这各,碰见那各,不用小心翼翼地怕被人寻咯短处。哪像现在,即使去各佛堂还要小心翼翼,躲到深更半夜。自由 自在的日子真是越想越惬意,越想越令她怀念。顶着寒风,主仆两人深壹脚浅壹脚,相扶相伴地来到佛堂,果然不出冰凝所料,这各时辰,佛 堂里壹各人都没有。自从众人从园子里回来,也只有在深更半夜,冰凝才能自由自在地做壹回自己。虔诚地焚上香,冰凝跪拜在佛祖面前,真 诚地送上自己的祝福:祈求佛祖大慈大悲,祈求菩萨格外施恩,保佑寺院,保佑僧侣,保佑香客,保佑天底下所有的生灵……远远地见到佛堂 里有人影晃动,王爷很是诧异,这各时辰,居然还会有人?怀着万分诧异的心情,待走近之后仔细定睛壹看,门口站着的,居然是怡然居的大 丫环吟雪!他不是冰凝,作为政治嗅觉异常灵敏的他,在生活中也将这种物质发挥到咯极至,因此每壹各人他接触过的人,都会记得很清楚, 即使是各丫环,他都记得。只是这各结果实在是大大出乎他的意料:竟然会是年氏在里面!犹豫咯壹下,最终还是决定进来,他是爷,难道他 还需要怕啥啊人,还需要躲着谁吗?不过,他仍是先嗽咯壹下嗓子,算是提醒壹下她吧。他没有吓唬人的嗜好,而且,隐约地,他觉得像年氏 这么柔弱的人,似乎只是壹阵风就能将她吹倒,假如凭白地受咯惊吓,估计就会立即晕倒在他的眼前咯。她要是昏倒咯,就需要他去扶她,甚 至

圆与圆的位置的关系

圆与圆的位置的关系

两圆位置关系的性质与判定:

0
性R―质r
R+r
d置


同 心 圆
判内 定
内 含
切 相 交
外 切外

数 字 化
例题1:已知⊙O1、⊙O2 的半径为R、r, 圆心距d=5,R=2. (1)若⊙O1与⊙O2外切,求r; (2)若r=7,⊙O1与⊙O2有怎样的位置 关系? (3)若r=4,⊙O1与⊙O2有怎样的位置 关系?
个圆上的点都在另一个圆的内部时,叫两圆内切.
特例
内含:两圆无公共点,并且一个圆上的点都在
另一个圆的内部时,叫两圆内含.
外离
外切
相交
内切 内含(同心圆)
圆 与
分门别类
相离

的 位
相切
置 相交 关

外离 内含 外切
内切
连心线:过两圆心的直线 圆心距:两圆心之间的距离
T. . . 01 02
. T. .
01
02
说明:相切两圆的连心线必经过切点。
观察与思考
相交
外切
外离
探究:在五种位置关系中,两圆的圆心距d与两 圆的半径R、r( R>r )间有什么关系?
内切
内含
同心圆(内含的一种)
r dR
Q O
RQ rO
d
外离
d﹥ R+r
内含
d﹤ R-r
d
Q O
外切 d= R+r
Q
O
d
内切 d= R-r
两圆相交时,d与两圆半径R、r之间的关系 又是怎样的呢? R-r﹤ d﹤ R+r
在A处的一棵树上,拴羊的绳长为3m.

圆和圆的位置关系

圆和圆的位置关系
人生的意义网https:///

城市里过分的静,哪怕是短暂的,就有一种时光停滞之感,静得让人不安、疑虑重重。人们已被声响渗透全身。 ? 前不久我去了一个山村,带去读的几本书,其中有一本是席勒文集。那天下午无所事事,我走到村外的一株大樟树下,坐在落满樟叶的坡上,一页页地翻动。我不时地让眼 睛离开书页,看着眼前的;秋景。稻谷已是金黄,待割;荒草尖流露着枯意,生命进入了末端.有时头顶的树叶就落在段落,是黄里带红的那一种。四周的山水、田园静谧。秋天的装饰、生存的装饰,在午后的阳光下泛着简洁的光。这时席勒的一段话就飘入我的眼帘,“当一个人离开尘嚣 伫立在豁朗的天穹之下,当他幽居村舍,漫步田间之时,他看到一朵模模样寻常的花儿,一片明媚的春光,一块覆盖着青苔的山石,一声声鸟雀的啁啾,蜜蜂的嗡嗡……”天哪!席勒描述的春景,其中的和谐和浑然,与我此时的情致不是如出一辙么。一两声的鸟鸣,一两声的牛哞,一两 声的羊咩,是如此这般巧妙穿插生动地点缀。幽居只有指出村,城市是无来由论说幽居的,城里只能说蛰伏击。蛰伏是不从容闲雅的,幽居则享受天然不尽。这么说当然不是指村民们在生活中都不弄出些声响,而是这些声响也相应地天然质朴。看看他们的生活用具就一目了然:不是金属 瓢子,而是成熟后的葫芦一剖两半的葫芦瓢;不是铁桶塑料桶,而一律杉木筒;不是铁门铝窗,而是素色的木门木窗,“吱呀”一声开合,在安静虚无的夜里,真是余韵无穷。就是大热天,村上也不置电扇空调,大人小孩一柄棕树叶编织成的团扇,足以消解让人厌烦的漫长夏季。这些与 竹木类仍然越抱越紧的生活方式,我们说原始也罢、无趣也罢,已经变得冥冥之中有灵犀了,并不因此影响生活质量。他们的生息是循四季进展开的,他们是世袭通晓四季音符的人。 ? 城乡声响的迥异,使人预测有的声响要被改造、被同化。声响的两大类别就是市声和村声。事实明, 市声已向村声推进了,这使城市边缘的村庄变得声调失去常态,有些古怪离奇。其中一部分山村的和谐之声走失,是与老一辈故去有瓜葛的。我这里说的地方戏,你要认识一代人的心灵,完全可以从腔调入手,找到其中的情结。那一代人会不动不动地坐着,痴迷地盯着舞台上长袖善舞, 眉目传情,声调抑扬里,盛不又尽牢骚抑郁的啸号愤激之情、慷慨流连诙谐笑谑之态,不由感慨人世的哀乐交融、荣悴迭代。台上曾经的名角,被台下的人灼灼目光追逐着。多少时日过去了,某一个唱腔隐约漾起,还会令人涌起如梦如烟的往事,重又再现玉手传笺的美丽夜色,不能淡忘 舞台上那临风玉立缟衣吹拂的滋味。这一代人不见了,下一代人鲜有耐性,和谐之声遂为嘈切,更遑论从腔调的游移中庄周之幻化、曼傅之诙谐了。上一代人的至乐,被下一代人倾听的方式不同,对于声响必有取舍。所谓生命就是如此,有生有死,有湮没有更新。声响不也是一种生命?! 在一些文化积淀厚实的人家里,累代相传的都是琅琅书声。书声无论在什么时节,不管是初涉诗书的孩童,还是腹笥充实的老者,书声都长久怡人。没有人会嫌书声。一落破旧的老宅,由于有了书声,使它变得生机勃发,使人见到希望。书声是不分贫贱的,甚至在声调里,它的平民色彩 还会浓一些。它盛满了平头百姓的秘密,循着书声,可以追溯一个家族的过去,以及未来的走向。我在山村好几次见到这样的情景:儿子在读书,父亲在旁边敲敲打修农具,这时婆娘必定走过来,让丈夫把农具拎到户外去摆弄,生怕乱了孩子的书声。晚间的山村没有电灯,油灯最亮的那 一盏一定是属读书小儿的,习惯在点亮时再把灯芯挑高一点。其他房间则一片昏黄或漆黑一团。这些细节很多年来都让我萦绕于怀。尽管我在旁边听着,却听不懂,孩子的乡音太重。我依旧觉得这是上好的声响。后来,听说有几个小孩就在书声中考进城来了。在噪声这般繁重的空间,他 们还能一如既往地固守内心的安宁吗? 对于噪声,我们更多的替肉体担心,因为肉体受到了伤害,让我们寝食不安日渐枯瘦,日子的节奏在潦潦草草中随便带过,从容不迫成了奢望.,在公共的场合上,人们要躲避噪声是徒劳的,城里那千万只蟑螂一般奔驶的汽车、摩托,是这个空间流动不息 的噪声传播器,在无数街巷惊惊惶惶的散播;还有不少人拿着手机,肆无忌惮的大喊大叫,宛如发生了倾国倾城的大事。于是噪声的种类比以前增添了品种,噪声量也不得不成立治理噪声的组织。可是对付无所不在的噪声,还是另人招架不及。噪声生命力正在增强,运动的状态使它们不 分城南城北,涵盖了整个城市。我想起了古人有过庭院深深深几许的佳句,佳句犹存,永远会喜欢那样的庭院。庭院成了单元房,那些梦中的回廊、花径、天井消失了,幽深的长景一浅显,噪声就长驱直入。 现在我们就爱说古人坐得住。宁静是古文人的恋人,拥之而坐。宁静使人心绪 淡远,举止斯文而有雅气。坐品宁静,可以由此穿透到永久,与那时的人相聚。古文人的息息相通,从氛围上来解是同一个谜底,他们有那么多的暗合之处,如合符契另人惊艳。至于为什么会这般相似,有时只能是永久的秘密了,让他们发生同样的思索和爱情,在宁静中诞生、长大、故 去。后来的空间转为“现代”,声响也变得难以捉控了。多了一种声响,静坐书斋就多了一份踌躇。当一个人守不住他的冷板凳,有许多梦想今生是注定无法实现了。渴望在蓝天白云间飞翔,迎接八面来风,这是很多浪漫气息的。商海漫游、仕途拼搏,更多的人习惯了觥筹交错中的热闹, 习惯了前呼后唤的虚荣。当然,对于独处默坐的书斋生活再也不会习惯了。那个曾经闭合的范围里,曾经是精神意义上的家园,成为破旧的空巢。 水汪汪的眼 ? 对于深度的感受,我不是从书本开始的———一个不谙世事的孩童,很难领会数字给予的启蒙,譬如我们身处海平面多少米。 我不能不一次又一次地发现,成年后对于深度的认识,都要缘于孩童时代的亲眼所见。可以肯定指出,家园中曾经有过三眼汪汪的古井,如同三枚饱满滋润的水印子,钤盖在我敏感的皮肤上。 ? 观察着疏朗的枝叶向上生长的时候,对于古井低于人们行走的平面,我是油然产生奇怪的— ——既然向下发掘可以获得清亮的井水,那么,一定也会有很多未知的宝藏隐匿。多雨潮湿的地方啊,掘一眼井不算难事,可本意真是如此吗?我会觉得在这个家园里,掘地三尺另有企图,最终以一泓清泉的涌出作为回报。随着这些不知哪个朝代掘出的水井存世,井的周遭理所当然成了 果林和菜园———井的延续改造了生活的面目,比掘出其他宝藏都清纯和透彻。 ? 井的出现使我对于深度有了抚摸的可能。间接地通过井绳,与深井接触。平静的水面,随着邻里结伴汲水,三四个小木桶此落彼起,烂银子似的荡漾波光。甚至在早睡的梦里,还能听到大人们借着洁白的 月色浇灌、木桶击水或者桶帮与井壁磕碰的声响。朴素的温馨之夜,在清流的泼洒中走进安宁。一眼古井,经过漫长时日的打磨,已经泰然地与人亲和,不需要后人特意花费心机护理,只管使用便是。这也让人们对古井的牵挂最少,似乎前人的一次性劳动,后人得以永享安逸。对于轻松 地享用,自然削弱了古井的重要———人的本性通常如此,譬如那些会讨会要咋呼不休的人,往往得到满足;而斯文缄默者,被人淡忘。在我那时学会的几个成语里,都是对井的不敬———井底之蛙、坐井观天,贬低的口吻里,分明涉及了井的固有状态,它的狭窄如“眼”,缺乏闳大的 格局和开阔的气派,由此受到牵连。只有与井为邻的人才知道,古井的周围远比其他地方翠绿和润泽,有一缕缕草浆汁水的生生气息在井栏边无声地漾开;夏日里干渴的黄蜂和蜾蠃会结伴而来,伏在井沿凹下的水渍里。没有人去追问古井的来源,对于清亮照人的水和井内黑暗下去的视线, 即便联想纷起,却没有一个人表示贪欲———共同拥有,人们的心态大都平静得如同井内之水。 ? 区分新井和古井的差别是轻易的。新井内被砌起的石条全是崭新和锐利,白生生的茬口流露着火气,动荡的木桶不小心被磕碰,绳索被磨砺,马上露出伤痕。新井的水不时涌动着,水色浑 浊,携带着土腥味。掘井人需要有足够的耐性等待清澈,每日汲出大量的水用于浇灌,期望浊去清来。不须太久,新井躁动的情绪被净化如一面不动的镜子,风吹不到,皱纹不生。井水的清冽、甘甜,传出后,来来往往的人就多了起来。时间慢慢地流过,井水总停留在一个水平面上,从 未见少。 ? “取之无尽,用之不竭”,记得小学老师把这八个字赋予了一个伟大的思想。我脑子一闪而过的,是老家那几眼黑洞洞的水井,这无疑是最感性和具体的。我甚至想,一些用语,如果乐于迎合思想和主义,对于涉世不深的少年,领会也许失之千里万里。完全可以用身旁的、 日常的材料,大大缩短领会的长度———漫无边际地撕扯,只能让人无奈。至少,你感到诚惶诚恐。一切认识都毋须安排,要刻在头脑里剜却不去的,只能靠自己在岁月行走中获得的某些机缘。它自然而然地进入,比灌输的更不易风化。 ? 时日在井底下流失。当年锋棱锐利已经成为钝 拙,曾经崭新的色泽变得泛黄,一些黧黑的苔藓,星星点点地附在井壁上,让人一眼望下去,发出井已老矣的感叹。冬温夏凉,井水在浑然无声的节候里默契转换。这样的井,是苍天幽深的眼神,水汪汪地穿透一切天机世相。水与水是不可相比的,波来波往、潮起潮落,流动的水是时间 的一种表征,印着时间的旅程。井水恰恰相反,一汪地静止索默,涵养着安宁,让人觉察不出它的意图。这也是古井难以枯竭也不溢涨的缘由,让人体验着静止的微妙———掘井之前,这口井的命数如何,是无从意料的,只能掘下去,这口井的个性才会显露。井和主人,只能靠机缘产生 联系,那种掘井不成反而掘出了兵马俑的失败例子,只能归结为人与井没有缘分。 ? 不能如愿的井让人难堪。当初那位手执罗盘看风水的江湖术士已经走远,掘到底才知道———问题来了。有的井水量涓滴;有的则过于充沛,溢出不止;还有的不可食用。对于地下的奥秘,人所知之甚 少,井下结构令人一筹莫展。动土之前据说要焚香敬拜的,这些对土地虔诚的人,重视这一道心灵的手续。揭破与水一层之隔的土皮,生命就汩汩而出了。泉眼的太旺与不足都是祸害,过程显然被浪费了。对于目的性很强的人来说,有价值与否要看结果。一眼井让人失望了,必须果断地 填埋。掘出来的土才见到阳光,又匆匆返回潮湿的地下,堆挤压实。这时主人庆幸的是,好似一个出了瓶

圆与圆的位置关系

圆与圆的位置关系

圆与圆的位置关系圆与圆的位置关系一、主要知识点1、(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。

如图,BC 切⊙O 于点B ,AB 为弦,∠ABC 叫弦切角,∠ABC=∠D 。

(2)相交弦定理。

圆的两条弦AB 与CD 相交于点P ,则PA 〃PB=PC 〃PD 。

(3)切割线定理。

如图,PA 切⊙O 于点A ,PBC 是⊙O 的割线,则PA 2=PB 〃PC 。

(4)推论:如图,PAB 、PCD 是⊙O 的割线,则PA 〃PB=PC 〃PD 。

2、圆和圆的位置关系有五种,分别是外离、外切、相交、内切、内含。

其中,外离和内含统称为相离;外切和内切统称为相切;同心圆是内含的一种特殊情况。

3、如果用4、相切(外切、内切)的两圆组成的图形是轴对称图形,它的对称轴是两圆心所连的直线,并且切点一定在对称轴上。

5、如果两圆相切,那么切点一定在连心线上。

6、相交两圆的连心线垂直且平分公共弦(即两圆交点所连线段)。

(1)图 (2)图 (3)图 (4)图D 二、例题讲解1. 已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是( ) (A)内含 (B)内切 (C)相交 (D) 外切2.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( )(A)1cm (B)7cm (C) 10cm (D) 1cm 或7cm3.两圆半径为5和r ,圆心距为8,当两圆相交时,r 取值范围是 4.两圆直径分别为6、8,圆心距为10,则这两圆的最多公切线条数是 5.如图,⊙O 1和⊙O 2外切于P ,外公切线与连心线夹角为30 °, ⊙O 1半径为3 cm ,⊙O 2半径为1 cm ,则AC 的长为 。

6、如图所示,⊙O 1与⊙O 2内切于点A ,并且⊙O 1的半径是⊙O 2的直径,O 1B 为⊙O 1的半径,交⊙O 2于点C ,AD 是公切线,∠O 1AC=50°,则∠BAD=( )7、(2010安徽芜湖)若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为__________.8、(2010湖北省咸宁)如图,两圆相交于A ,B 两点,小圆经过大圆的圆心O ,点C ,D 分 别在两圆上,若100AD B ∠=︒,则AC B ∠的度数为 A .35︒B .40︒C .50︒D .80︒9、已知,C 是圆O 的直径AB 上一点,圆B 过点C ,与AB 的延长线交于点D ,与圆O 的一个交点为E ,EC 的延长线交圆O 于点F ,BF 交圆B 于点G ,连结AE 、DE 。

圆与圆的位置关系的判断方法

圆与圆的位置关系的判断方法

圆与圆的位置关系的判断方法李吉文一、圆与圆的位置关系的判断方法有两种,一种是~d r 法,另一种是判别式法D .以下详解这两种方法. 1、~d r 法根据两圆心距与两圆径的大小关系来判断: ①外离Ûd R r >+; ②外切Ûd R r =+;③相交ÛR r d R r -<<+; ④内切Ûd R r =-; ⑤内含Ûd R r <-.其中,R 是大圆的半径,r 是小圆的半径,如果是等圆,那么两圆就没有内含这种位置关系了.2、判别式法D已知22111:0C x y D x E y F ++++=1⊙,半径为r 和222222:0C x y D x E y F ++++=⊙,半径为R ,且R r >判断两圆的位置关系:两圆的方程相减,得 121212()()()0D D x E E y F F -+-+-=简记为 0A x B yC ++= 其中220A B +? (1) 将(1)式代入其中一个圆的方程中,消去x 或y ,可得一个关于y 或x 一元二次方程,记为20ay by c ++=或20ax bx c ++=,其中0a >①0D >?两圆有两个公共点(相交);②0D =?两圆有一个公共点(内切或外切); ③0D <?两圆无公共点(内含或外离);以上②③中,如何区分内切和外切,内含和外离呢?请看以下数学思想方法: 将问题转化为小圆的圆心与大圆的位置关系(亦即点圆位置关系)来判断!如果圆心1C 在圆2C 的外面,即d R >,那么两圆外切或外离;如果圆心1C 在圆2C 的内部,即d R <,那么两圆内切或内含.二、两圆方程作差的意义两圆作差后得到的方程:121212()()()0D D x E E y F F -+-+-=简记为 0A x B yC ++= 其中220A B +? (1) 其意义为①当两圆相交时,方程(1)是相交弦所在的直线方程; ②当两圆相切时,方程(1)是过切点的公切线的方程; ③当两圆没有公共点时,方程(1)没有特别的含义.三、应用举例例题1 已知22:2440C x y x y ++--=1⊙和222:1090C x y x +-+=⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程.【解析】方法一:~d r 法圆心1(1,2)C -,半径3r =,圆心2(5,0)C ,半径4R =,则1,7R r R r -=+= 两圆圆心距为(1,7)d =所以,两圆相交,将两圆的方程相减可得 124130x y --= 即为相交弦的方程. 方法二:判别式法D将两圆的方程相减,得 124130x y --= 即 1334y x =-(2) 将(2)式代入222:1090C x y x +-+=⊙得 21604723130x x -+=24724160313224640D =-创=>所以,两圆相交,相交弦所在直线的方程是124130x y --=.【变式训练】 已知22:650C x y y +-+=1⊙和222:870C x y x +-+=⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程.例题2 已知22:4210C x y x y +--+=1⊙和222:142410C x y x y +--+=⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程. 【解析】方法一:~d r 法圆心1(2,1)C ,半径2r =,圆心2(7,1)C ,半径3R =,则1,5R r R r -=+= 两圆圆心距为5d R r ===+所以,两圆外切,将两圆的方程相减可得 4x = 即为所求公切线的方程. 方法二:判别式法D将两圆的方程相减,得 4x = (3) 将(3)式代入222:142410C x y x y +--+=⊙得2210y y -+= 2(2)4110D =--创=所以,两圆相切.小圆圆心1(2,1)C ,坐标代入222:142410C x y x y +--+=⊙中,有222214241211422141170x y x y +--+=+-??=>所以,两圆是外切关系,所求公切线的方程4x =.【变式训练】1.已知22:1C x y +=1⊙和222:6890C x y x y +--+=⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程. 2.已知22:46120C x y x y +--+=1⊙和222:680C x y x y +--=⊙,判断两圆的位置关系.。

第三十讲圆与圆的位置关系

第三十讲圆与圆的位置关系
A交于A、B两点,且点O2在⊙O1上.
(1)如图(1),AD是⊙O2的直径,连结BD并延长交⊙O1 于点C,求证:CO2⊥AD. (2)如图(2),AD是⊙O2的一条弦,连结DB并延长交 ⊙O1于点C,,那么O2C所在的直线是否于AD垂直?证明 你的结论. A O2 D B O1 C D F O2 E B C (2 ) A O1
d
(A)外离
(B)相切
(C)相交
(D)内含
(2)已知⊙O1的半径为 3 5 cm, ⊙O2的半径的半 径为5cm, ⊙O1和⊙O2相交于点D、E,若两圆的公共 弦长为6cm,则两圆的圆心距O1O2的长为( C ) (A)2cm(B)10cm(C)2cm或10cm(D)4cm或10cm (3)两圆的圆心距为1.8,半径分别为方程4x2-20x+21=0 的两根,则两圆的位置关系是( D ) (A)外离 (B)相切 (C)相交 (D)内含
2.两圆的连心线性质: (1)相切两圆的连心线必经过切点; (2)相交两圆的连心线,垂直平分两圆的公共 弦,并且平分两外公切线所夹的角.
(3)相离两圆的连心线平分内、外公切线所夹的角.
3.两圆的公切线的性质:
(1)两圆的外公切线长= d ( R r ) ( d R r ) 2 2 d ( R r ) (d R r ) (2)两圆的内公切线长=
第三十讲圆与圆的位置 关系
知识要点:
1.两圆的位置关系:设R、r(R>r)为两圆的半 径,d为圆心距,则
(1)两圆外离 (2)两圆外切 (3)两圆相交 (4)两圆内切 (5)两圆内含
d>r+R d=R+r
R-r<d<R+r
d=R-r d<R-r
注意:两圆相切包含外切和内切,两圆相离包含 外离和内含。

圆和圆的位置关系

圆和圆的位置关系
动画
两个圆的位置关系 :
外离
外切
相交
内切
内含
同心圆
(内含的特殊形式)
两个圆的五种位置关系:
两圆外离:两个圆没有公共点,并且每个圆上的点都在另一个圆
的外部时,叫做这两个圆外离 。
两圆外切:两个圆有唯一公共点,并且除了这个公共点一的公共点叫做切点。
相 两圆相交:两个圆有两个公共点时,叫做这两圆相交。
切 两圆内切:两个圆有唯一公共点,并且除了这个公共点 外,一个圆上的点都在另一个圆的内部时,叫做这两
个圆内切。 这个唯一的公共点叫做切点。
两圆内含:两个圆没有公共点,并且一个圆上的点都在另一
个圆的内部时,叫做这两个圆内含。
; 乐动体育 LD乐动

,贪饕险诐,不闲义理,不示以大化,而独驱以刑罚,终已不改。故曰:导之以礼乐,而民和睦。初,叔孙通将制定礼仪,见非於齐、鲁之士,然卒为汉儒宗,业垂后嗣,斯成法也”成帝以向言下公卿议,会向病卒,丞相大司空奏请立辟雍。案行长安城南,营表未作,遭成帝崩,群臣引以定谥。 及王莽为宰衡,欲耀众庶,遂兴辟雍,因以篡位,海内畔之。世祖受命中兴,拨乱反正,改定京师於土中。即位三十年,四夷宾服,百姓家给,政教清明,乃营立明堂、辟雍。显宗即位,躬行其礼,宗祀光武皇帝於明堂,养三老、五更於辟雍,威仪既盛美矣。然德化未流洽者,礼乐未具,群下 无所诵说,而庠序尚未设之故也。孔子曰“辟如为山,未成一匮,止,吾止也”今叔孙通所撰礼仪,与律令同录,臧於理官,法家又复不传。汉典寝而不著,民臣莫有言者。又通没之后,河间献王采礼乐古事,稍稍增辑,至五百馀篇。今学者不能昭见,但推士礼以及天子,说义又颇谬异,故君 臣长幼交接之道浸以不章。乐者,圣人之所乐也,而可以善民心。其感人深,移风易俗,故先王著其教焉。夫民有血、气、心、知之性,而无哀、乐、喜

圆与圆的位置关系

 圆与圆的位置关系
【答案】A
7.(2010²宁德)如图,在 7³4 的方格(每 个方格的边长为 1 个单位长)中, ⊙A 的半径 为 1,⊙B 的半径为 2,将⊙A 由图示位置向 右平移 1 个单位长后, 与静止的⊙B 的位 ⊙A 置关系是( ) A.内含 B.内切 C.相交 D.外切
【解析】⊙O 向右平移 1 个单位长后与⊙B 有唯一的交点,由图可知⊙A 与⊙B 外切. 【答案】D
(1)证明:∵⊙O2 过点 O,∴O1O2=r, 又∵⊙O1 的半径也是 r, ∴点 O2 在⊙O1 上.
(2)△NAB 是等边三角形. 证明: MN⊥AB, ∴∠NMB=∠NMA=90°. ∴BN 是⊙O2 的直径,AN 是⊙O1 的直径. 即 BN=AN=2r, 2 在 BN 上, 1 在 AN 上, O O 连结 O1O2,则 O1O2 是△NAB 的中位线. ∴AB=2O1O2=2r,∴AB=BN=AN. 即△NAB 是等边三角形.
5.(2010²南京)如图,以 O 为圆心的两个 同心圆中,大圆的弦 AB 是小圆的切线,C 为 切点.若两圆的半径分别为 3 cm 和 5 cm,则 AB 的长为__cm.( ) A.4 cm B.5 cm C.6 cm D.8 cm
【解析】连结 OC、OA,因为 AB 是小圆的切线,所以 OC⊥AB,又因为两同心圆的半径分别为 3 cm 和 5 cm. 所以在 Rt△OCA 中,OC=3,OA=5,所以 AC=4,所 以 AB=2AC=2³4=8(cm).
考点二 三角形多边形的内切圆 1.与三角形(多边形)内切圆有关的一些概念 (1)和三角形各边都相切的圆叫做三角形的内切 圆,内切圆的圆心叫做三角形内心,这个三角形叫做 圆的外切三角形; (2)和多边形各边都相切的圆叫做多边形的内切 圆,这个多边形叫做圆的外切多边形. 2.三角形的内心的性质 三角形的内心是三角形三条角平分线的交点,它 到三边的距离相等,且在三角形内部.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与圆有关的位置关系(第五课时)
24.2.3圆与圆的位置关系(1)
◆随堂检测
1.已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距020=7cm ,则两圆的位置关系为( )
A .外离
B .外切
C .相交
D .内切
2.已知1O ⊙和2O ⊙相切,1O ⊙的直径为9cm ,2O ⊙的直径为4cm .则12O O 的长是( )
A .5cm 或13cm
B .
C .
D .或
3.已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( )
A .01d <<
B .5d >
C .01d <<或5d >
D .01d <≤或5d >
4.一个等腰梯形的高恰好等于这个梯形的中位线,若分别以这个梯形的上底和下底为直径作圆,则这两个圆的位置关系是( )
A.相离
B.相交
C.外切
D.内切
5.如图,在平面直角坐标系中,点1O 的坐标为(40)-,,
以点1O 为圆心,8为半径的圆与x 轴交于A B ,两点,过A 作直线l 与x 轴负方向相交成60°的角,且交y 轴于C 点,以点2(135)O ,为圆心的圆与x 轴相切于点D .求直线l 的解析式.
◆典例分析
若两圆半径r 和R 分别为2和6,圆心距d 为5,请判断两圆的位置关系
分析:本题虽然简单,却是常见的易错题.很多同学对两圆位置关系的判定思路不明确,由268,5r R d +=+==,直接得d r R <+,得到两圆内含的错误结论.
解:∵r R +=2+6=8,且R r -=6-2=4,∵48d <<,∴R r d r R -<<+. ∴两圆相交.
◆课下作业
●拓展提高
1.如图所示,⊙O 的半径为7cm ,点A 为⊙O 外一点,OA=15cm ,求:
(1)作⊙A 与⊙O 外切,并求⊙A 的半径是多少
(2)作⊙A 与⊙O 相内切,并求出此时⊙A 的半径.
2.要在一个矩形纸片上画出半径分别是4cm 和1cm 的两个外切圆,该矩形纸片面积的最小..值.
是_________. 3.已知
1O 和2O 的半径分别为3cm 和2cm ,且121cm O O =,请判断1O 与2O 的位置
关系.
4.若半径为1cm 或2cm 的两圆外切,那么与这两个圆都相切且半径为3的圆有多少个
5.如图,AB ,BC 分别是O ⊙的直径和弦,点D 为BC 上一点,弦DE 交O ⊙于点E ,交AB 于点F ,交BC 于点G ,过点C 的切线交ED 的延长线于H ,且HC HG =,连接BH ,交O ⊙于点M ,连接MD ME ,.
求证:(1)DE AB ⊥;(2)HMD MHE MEH ∠=∠+∠. ●体验中考
1.(2009年,陕西省)图中圆与圆之间不同的位置关系有( )
A .2种
B .3种
C .4种
D .5种
2.(2009年,益阳市)已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( ) H
M B
O F
G C
A D
A O
B . D . A .
C .
3.(2009年,绍兴市)如图,A ⊙,B ⊙的半径分别为1cm ,2cm ,圆心距AB 为5cm .如果
A ⊙由图示位置沿直线A
B 向右平移3cm ,
则此时该圆与B ⊙的位置关系是_____________.
参考答案:
◆随堂检测
.
.
.
. 高等于上下底和的一半,等于两圆半径之和.
5.解:由题意得|4||8|12OA =-+=,∴A 点坐标为(120)-,. ∵在Rt AOC △中,60OAC ∠=°
,OC =,
∴C
点的坐标为(0-,
. 设直线l 的解析式为y kx b =+,由l 过A C 、两点,
得012b k b ⎧-=⎪⎨=-+⎪⎩
解得b k ⎧=-⎪⎨=⎪⎩ ∴直线l
的解析式为:y =-
◆课下作业
●拓展提高
1.(1)⊙A 与⊙O 外切时⊙A 的半径是8cm.
(2)⊙A 与⊙O 内切时⊙A 的半径是22cm.
. 矩形的长为9,宽为8,9×8=72.
3.解:已知1O 和2O 的半径分别为3cm 和2cm ,且121cm O O =,所以12r r d -=,所以1O 和2O 的位置关系为内切.
4.解:有三种情况共5个圆.
○1与⊙1O 和⊙2O 都相外切(存在2个);
○2与⊙1O 和⊙2O 都相内切(存在1个);
○3和⊙1O 和⊙2O 中的一个内切,另一个外切(存在2个).
5.(1)证明:连接OC ,∵HC HG =,∴HCG HGC ∠=∠. ∵HC 切O ⊙于C 点,∴190HCG ∠+∠=°,
∵OB OC =,∴12∠=∠.∵3HGC ∠=∠,∴2390∠+∠=°. ∴90BFG ∠=°,即DE AB ⊥.
(2)连接BE .由(1)知DE AB ⊥.∵AB 是O ⊙的直径, ∴BD BE =.∴BED BME ∠=∠.
∵四边形BMDE 内接于O ⊙,∴HMD BED ∠=∠.
∴HMD BME ∠=∠.∵BME ∠是HEM △的外角,
∴BME MHE MEH ∠=∠+∠.∴HMD MHE MEH ∠=∠+∠.
●体验中考
. 相交、内切.
.
3.外切.。

相关文档
最新文档