二倍角公式PPT课件

合集下载

北师大版(2019)高中数学必修2第4章3.1二倍角公式 课件(共18张PPT).ppt

北师大版(2019)高中数学必修2第4章3.1二倍角公式 课件(共18张PPT).ppt

你能根据二倍角公式解答下面各题吗?看谁做得既快又准
① 2sin15 cos15
③ 1 2sin15

ππ 2 sin cos
88
①1
⑤2
2
②2
2
⑥3
3
② cos22.5 sin 22.5
④ 2cos30 1

2 1
t an75 t an75

3 2

1 2
例1.已知角a是第二象限角,cosα = 3 , 求 sin 2α, cos2α, tan2α 5
点评:直接运用公式将已知角转化为特殊角求值.
根据上题的启示怎样去思考这道题呢?
cos20 cos40 cos80
那这道题又该怎么去解呢?
sin10 sin 30 sin 50 sin 70
1.二倍角的正弦,余弦,正切公式
sin 2α = 2sin α cos α
cos 2α = cos2α sin2α = 2 cos2α
2tan 22.5 (3) 1 tan2 22.5 ;
(4)1 2sin2 75 .
解: (1)原式 1 (2sin15 cos15 ) 1 sin 30 1
2
2
4
(2)原式 cos 2
42
(3)原式 tan 45 1
(4)原式 cos150 cos(180 30 ) cos30 3 2
S2α
cos 2α = cos2α sin2α
C2α
= 2 cos2α 1=1 2sin2α
tan2α = 2 tanα
1 t an2α
T 2α
公式的作用:
1.二倍角公式的作用在于用单角的三角函数来 表达二倍角的三角函数,它适用于二倍角与单 角的三角函数之间的互化问题; 2.二倍角公式是从两角和的三角函数公式中, 取两角相等时推导出来的,记忆时可联想相应 角的公式.

二倍角公式课件

二倍角公式课件

描述
通过二倍角公式,我们可以将一个角 度的三角函数值转化为两个较小角度 的三角函数值的组合,从而简化计算 过程。
二倍角公式的推导过程
推导
二倍角公式的推导主要基于三角函数的加法定理和倍角公式。通过将一个角度的三角函数值表示为两个较小角度的三 角函数值的和或差,再利用三角函数的加法定理进行化简,最终得到二倍角公式。
02
03
04
题目一
计算sin(45°)的值。
答案解析
通过二倍角公式,可以将45° 转换为2×22.5°,然后利用已 知的三角函数值进行计算。
题目二
求cos(135°)的值。
答案解析
利用二倍角公式,将135°转 换为2×67.5°,然后利用已知
的三角函数值进行计算。
THANKS
感谢观看
二倍角公式ppt课件
目录
• 二倍角公式的定义 • 二倍角公式的形式 • 二倍角公式的扩展 • 二倍角公式的应用 • 总结与回顾
01
二倍角公式的定义
Chapter
什么是二倍角公式
定义
二倍角公式是三角函数中一系列用于 计算二倍角度Leabharlann 正弦、余弦和正切的 公式。举例
二倍角公式中最常用的有正弦二倍角 公式、余弦二倍角公式和正切二倍角 公式。
二倍角公式的应用场景
应用领域
二倍角公式在数学、物理、工程等领域都有广泛的 应用。例如,在求解振动问题、波动问题、电磁学 问题等过程中,常常需要用到二倍角公式来化简角 度或计算相关量。
举例说明
在求解振动问题时,常常需要用到正弦二倍角公式 来计算振幅、频率等参数;在求解波动问题时,需 要用到余弦二倍角公式来计算波速、波长等参数; 在求解电磁学问题时,需要用到正切二倍角公式来 计算电场强度、磁场强度等参数。

数学人教A版(2019)必修第一册5.5.1二倍角的正弦、余弦、正切公式(共19张ppt)

数学人教A版(2019)必修第一册5.5.1二倍角的正弦、余弦、正切公式(共19张ppt)
( − ) = +
( + ) = +
两角和差的正弦公式
两角和差的正切公式
( − ) = −
+
( + ) =
1 −

(2)配方变换.
1±sin 2α=sin2α+cos2α±2sin αcos α=(sin α±cos α)2.
(3)升幂缩角变换.
1+cos 2α=2cos2α , 1-cos 2α=2sin2α .
(4)降幂扩角变换.
1
1
1
cos α=2(1+cos 2α),sin α=2(1-cos 2α),sin αcos α=2sin 2α.
5.5.1 第三课时
二倍角的正弦、余弦、正切公式
Hale Waihona Puke 学习目标1.会从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、
正切公式.(逻辑推理)
2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变
形运用.(数学运算)
复习回顾
两角和差的余弦公式
两角和与差的正弦、余弦、正切公式
( + ) = −
( + ) = 2 = + = 2
+
2
( + ) = 2 =
=
1 − 1 − 2
新知梳理
二倍角公式
2sin αcos α
2cos2α-1
cos2α-sin2α
2
-1=1-2sin -x;
-x
4

4

2
例题讲解
题型三:化简与证明
例3
(1)化简:cos2(θ+15°)+sin 2(θ-15°)+sin(θ+90°)cos(90°-θ);

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式       课件

θ=
cos2θ-sin2θ=cos 2θ=右边.
法二:右边=cos 2θ=cos2θ-sin2 θ= cos2 θ1-csions22 θθ=cos2 θ(1-tan2 θ)=左边.
所以原式成立.
归纳升华 三角函数式的化简与证明
1.化简三角函数式的要求:(1)能求出值的尽量求出; (2)使三角函数的种类与项数尽量少;(3)次数尽量低.
2.证明三角恒等式的方法:(2)从复杂的一边入手, 左边
证明一边等于另一边;(2)比较法,左边—右边=0, 右边
=1;(3)分析法,即从要证明的等式出发,一步步寻找等 式成立的条件.
(1)sin 2π4·cos 2π4·cos 1π2;
(2)1-2sin2 750°;
(3)tan
1π2-tan1
π. 12
解:(1)原式=122sin
π 24cos
π 24·cos
1π2=12sin
1π2·cos
1π2=142sin
1π2·cos
π 12
=14sin
π6=18.
(2)原式=cos(2×750°)=cos 1 500°=
1+cos(2A+2B)
(1)证明:左边=
2

1-cos(2A-2B)
2

cos(2A+2B)+cos(2A-2B)
2

12(cos 2Acos 2B-sin 2Asin 2B+cos 2Acos 2B+sin
2Asin 2B)=
cos 2Acos 2B=右边,
所以原式成立.
(2)法一:左边=cos2θ1-cossi2nθ2
cos(4×360°+60°)=cos 60°=12.

5.5.1二倍角的正弦、余弦、正切公式课件(人教版)

5.5.1二倍角的正弦、余弦、正切公式课件(人教版)

例6
4
在△ ABC 中, cos A 5
tan 2 A 2B 的值.
, tan B 2 ,求
2A+2B与A,B之间能构成怎样的关系?
解:在△ ABC 中,由 cos A
4
,0
5
A π ,得
2
3
4
sin A 1 cos 2 A 1 ,
5
2
tan tan
2 tan
tan 2 tan

.
2
1 tan tan 1 tan
2
推导
二倍角的余弦公式有三种表达情势:
cos 2 cos sin
2
cos 2 1 2sin
2
cos 2 2 cos 1
2
2
推导
余弦公式,有下面的等价变情势:
cos 2 2 cos 1
2
cos 2 1 2sin
2
1 cos 2 2cos
1 cos 2 2sin
1 cos 2
cos
2
1 cos 2
sin
2
2
2
2

2
1+
2
2
sin 与 cos 的符号由角
24 4

tan 2 A tan 2 B
44
7 3
tan 2 A 2 B


24 4 117 .
1 tan 2 A tan 2 B
1
7 3

解法 2:
4
在△ ABC 中,

二倍角的正弦、余弦、正切公式课件

二倍角的正弦、余弦、正切公式课件

又∵2α∈0,π2,β∈π2,π,
∴2α-β∈(-π,0),∴2α-β=-34π.
[规律方法] 在给值求角时,一般选择一个适当的三角函数,根据题设确定所求角的范围,然后再求出 角.其中确定角的范围是关键的一步.
【活学活用3】 已知tan α=17,sin β= 1100,且α,β为锐角,求α
+2β的值. 解 ∵tan α=17<1,且α为锐角,∴0<α<π4,
类型一 给角求值问题 【例1】 求下列各式的值: (1)sin1π2cos1π2;(2)1-2sin2750°;(3)1-2tatnan125105°0°; (4)sin110°-cos 130°;(5)cos 20°cos 40°cos 80°.
[思路探索] 利用倍角公式或公式变形求值即可.
ππ π 解 (1)原式=2sin122cos12=si2n6=14. (2)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=12. (3)原式=tan(2×150°)=tan 300° =tan(360°-60°)=-tan 60°=- 3. (4)原式=cossi1n01°-0°co3ss1in0°10° =212cossin1100°-°co2s31s0in°10°
【活学活用1】 求下列各式的值:
(1)tan 15°+csoins 1155°°;
(2)tan 20°+4sin 20°的值.
解 (1)原式=csoins 1155°°+csoins 1155°°=sisni2n1155°+°cocsos1251°5°
=sin
1 15°cos
15°=2sin
2 15°cos
θ 2

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式  课件

14sinπ5π=14. sin5
(2)原式=-122cos2π8-1=-12cosπ4=-
2 4.
(3)原式=tan21π2π-1=-21-taπn21π2
tan12
2tan 12
=-2·tan21×1π2=t-an2π6=-2 3.
在解决这种题型时,要正确处理角的倍半关系.如 4α 是 2α 的二倍角,α 是α2的二倍角,π2-2α 是π4-α 的二倍角.
2α .
求下列各式的值.
(1)cosπ5cos25π;(2)12-cos2π8;
(3)tan1π2-
1 π.
tan12
分析式 把式子变形,使其符合 【思路点拨】子结构 → 正、逆用或变形用形式 → 求值
π π 2π 1 2π 2π 1 4π
sin 解:(1)原式=
5cos 5cos sinπ5
5 =2sins5incπ5os 5 =4ssiinnπ55 =
x
=2sin
xcos cos
x-sin x+sin
xcos x
x
=sin
2xcos x-sin cos x+sin x
x
=sin
1-tan 2x1+tan
xx=sin
2xtanπ4-x
=cosπ2-2xtanπ4-x= =2cos2π4-x-1tanπ4-x.
∵54π<x<74π, ∴-32π<π4-x<-π. 又∵cosπ4-x=-45, ∴sinπ4-x=35,tanπ4-x=-34. ∴原式=2×1265-1×-34=-12010.
• 给值求角问题的求解一般按如下两个步骤进行:
• (1)根据题设条件,求角的某个三角函数值;
• (2)讨论角的范围,必要时还需根据已知三角函数值缩小角 的范围,从而确定角的大小.

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式   课件
练习 1:2sin 15°cos 15°=________.
练习 2:cos2α2-sin2α2=________.
练习 3:1-2tatnan22α2α=________.
2tan α 1-tan2α 练习:1.12 2.cos α 3.tan 4α
二、二倍ቤተ መጻሕፍቲ ባይዱ公式中应注意的问题 (1)对“二倍角”公式应该有广泛的理解. 如 8α 是 4α 的二倍角,α 是α2的二倍角,α3是α6的 二倍角等等.又如 α=2×α2,α2=2×α4,…,2αn =2×2nα+1等等.
∴tan α<0,tan β<0.
∴tan(α+β)=1t-antαan+αttaannββ=-1-3 43= 3,
∵α,β∈-π2,π2,且 tan α<0,tan β<0, ∴α,β∈-π2,0,∴-π<α+β<0,
∴α+β=-23π.
∴cos 2θ=-
1-sin22θ=-
3 2.
利用二倍角公式化简与证明
已已知tatann2β2=β=tanta2αn+2α+co1s2α求.求证证::cos 2α-2c
cos 2α-2cos 2β=1.
分析:本题考查利用二倍角公式证明.首先要降 幂,然后才可以寻找到二倍角的形式,进而寻找到它 们的关系.
(2)当 α=kπ+2π,(k∈Z)时,tan α 的值不存在,
这时求 tan 2α 的值可用诱导公式求得. (3)一般情况下,sin 2α≠2sin α,例如 sin3π≠2sinπ6.
(4)公式的逆用变形
升幂公式:
1+cos α=________,1-cos α=________,
1±sin 2α=________

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式 课件

已知 sinα=35,cosα=45,则 sin2α等于(
)
A.7B.125源自5C.1225D.2245
[答案] D
[解析] sin2α=2sinαcosα=2245.
已知 cosα=13,则 cos2α等于(
)
A.13
B.23
C.-79
D.79
[答案] C
[解析] cos2α=2cos2α-1=29-1=-79.
[拓展]倍角公式的变形公式 剖析:(1)公式的逆用: 2sinαcosα=sin2α;sinαcosα=12sin2α; cosα=s2isni2nαα; cos2α-sin2α=cos2α; 1-2tatannα2α=tan2α.
(2)公式的有关变形: 1±sin2α=sin2α+cos2α±2sinαcosα =(sinα±cosα)2; 1+cos2α=2cos2α;1-cos2α=2sin2α; cos2α=1+c2os2α;sin2α=1-c2os2α.
自主预习 二倍角的正弦、余弦、正切公式如下表
三角函数
公式
正弦 sin2α= 2sinαcosα
余弦
cos2α=cos2α-sin2α = 2cos2α-1 = 1-2sin2α
正切
2tanα tan2α= 1-tan2α
简记 S(α+β) S2α C(α+β) C2α
T(α+β) T2α
[总结]对倍角公式的理解: ①成立的条件:在公式S2α,C2α中,角α可以为任意角, T2α则只有当α≠k2π+π4(k∈Z)时才成立. ②倍角公式不仅限于2α是α的二倍形式,其他如4α是2α的 二倍、α是α2的二倍、3α是32α的二倍等等都是适用的.
B.π
C.3π

第3课时 二倍角的正弦、余弦、正切公式 课件(共11张PPT) 高一数学人教A版必修第一册

第3课时 二倍角的正弦、余弦、正切公式 课件(共11张PPT) 高一数学人教A版必修第一册
cos 4α = cos [2×(2α)] = 1 −
sin 4α
120
tan 4α =
=−
.
cos 4α
119
注意:“倍”是两个数量间一种相对的关系,如 2α 是 α 的二倍,4α 又是 2α

的二倍,
2


4
的二倍;应准确理解“倍”的含义,灵活运用倍角公式.
学习目标
新课讲授
课堂总结
练一练
3
5
1. 已知 sin (α – π) = ,求 cos 2α 的值.
1 – tan 2A· tan 2B 117
思考:上述题目还有没有其他的解答方法,若有,请说出其他解法,若没
有,请说明理由.
将 tan (2A+2B) 视为 tan 2(A+B),先求出 tan (A+B)的值,再利用倍角公式即可.
学习目标
新课讲授
课堂总结
练一练
2. 已知 tan 2α =
1
,求
3
5.5.1.3 二倍角的正弦、余弦、正切公式
学习目标
新课讲授
课堂总结
1. 掌握二倍角的正弦、余弦、正切公式及其推导过程;(重点)
2. 能灵活运用二倍角公式解决有关的化简、求值等问题.(难点)
学习目标
新课讲授
课堂总结
知识点 1 :二倍角的正弦、余弦、正切公式
忆一忆:按照相应规律,说出所有的和(差)角公式!
sin (α + β) = sinα·cosβ + cosα·sinβ
sin (α − β) = sinα·cosβ − cosα·sinβ
cos (α + β) = cosα·cosβ − sinα·sinβ

二倍角公式课件

二倍角公式课件

sin 2 2sin cos
2
4
四、例题教学(公式变形用)
3.
(2) sin 2π cos 2π
8
8
(cos
2π 8
sin
2π ) 8
解题点拨:对比公式
cosπ 4
cos2α cos 2αsin 2α
2
2
四、例题教学(公式变形用)
(3).
tan22.5 1 tan 2 22.5
x
sin
x)
求函数f (x)的最小正周期。
五、练习深化
1、 已知sin( - ) 3 , 求 cos 2的值
5
解题方法: 用诱导公式 化简函数,再 用二倍角公式
五、练习深化
2、已知tan2
1 3
,求
tan
的值。
解:
tan2
1
2
tan tan
2
1 3
,
解题方法: 应用正切的
6tan 1 tan 2 ,
二、二倍角公式的推导
问题: 由一般的 , 到特殊的两个角相等, 即: , 你得到什么启示?有什么发现?
cos ? sin ?
tan ?
二、二倍角公式的推导
cos cos cos sin sin 令 cos 2 cos 2 sin 2
利用公式 sin 2 cos 2 1变形为:cos2 2 cos2 1
两位伟大的数学家启迪我们, 学习数学的重要性和方法:
数 学 是 知 识 的 工 具, 也 是 其 它 知 识 工 具 的 源 泉, 所 有 研 究
的 科 学 均 和 数 学 有 关。 — —笛 卡 儿
学 习 数 学 要 多 做 习 题, 边 做 边 思 考, 知 其 然, 知 其 所 以 然。

二倍角的正弦、余弦、正切公式-PPT课件

二倍角的正弦、余弦、正切公式-PPT课件

sin2
1 cos 2
2
cos2
1 cos 2
2
7
思考3:tanα与sin2α,cos2α之间是 否存在某种关系?
tan2
1 cos 2
1 cos 2
tan sin 2 1 cos 2 1 cos 2 sin 2
8
大家学习辛苦了,还是要坚持
继续保持安静
9
思考4:sin2α,cos2α能否分别用 tanα表示?
cos2α=2cos2α-1=1-2sin2α
思考3:在二倍角的正弦、余弦和正切 公式中,角α的取值范围分别如何?
思考4:如何推导sin3α,cos3α与α的
三角函数关系?
6
探究(二):二倍角公式的变通 思考1:1+sin2α可化为什么?
1+sin2α=(sinα+cosα)2
思考2:根据二倍角的余弦公式,sinα, cosα与cos2α的关系分别如何?
sin 4x
tanx 学科网
例4 已知 sin cos π),求cos2α的值.
13,且α∈(0,
17 9
12
小结作业
1.角的倍半关系是相对而言的, 2α是α
的两倍,
4α是2α的两倍,
2

4
的两
倍等等,这里蕴含着换元的思想.
2.二倍角公式及其变形各有不同的特点 和作用,解题时要注意公式的灵活运用, 在求值问题中,要注意寻找已知与未知 的联结点.
3.二倍角公式有许多变形,不要求都记
忆,需要时可直接推导.
13
作业:
P135练习:2,3,4,5.
14
cos 2
1 tan2 1 tan2
sin 2

5.5.1二倍角的正弦余弦正切公式课件共17张PPT

5.5.1二倍角的正弦余弦正切公式课件共17张PPT
1 tan A tan B 2
tan
2A
2B
2 1
tan
tan 2
A B A B
44 117
巩固练习
变式:在ABC中, sin A 4 , tan B 2,
5
tan A 3
求 tan 2 A 2B 的值.
4
分A为钝角和锐角讨论
当A为钝角时,可求得tan(A+B)>0,与题 意不符,舍去
tan( ) tan tan 1 tan tan
tan( ) tan tan 1 tan tan
k (k Z )
2
k (k Z )
2
k (k Z )
2
学习新知 思考:能利用S(±)、C(±)、 T(±)推导出 sin2,cos2,tan2的公式吗?
复习引入 两角和与差的正弦、余弦、正切公式
( S(+) ) ( S(-) )
( C(-) ) ( C(+) )
sin(+)= sincos+cossin sin(-)= sincos-cossin
cos(-)= coscos+sinsin cos(+)= coscos-sinsin
( T(+) ) ( T(-) )
2
和 k , k Z时 ,公 式 才 有 意 义 .
42
学习新知
2.倍角公式
sin2= 2sincos
cos2= cos2-sin2
=1-2sin2
=2cos2-1
tan
2
2 tan 1 tan2
学习新知
1、掌握公式特征的同时,掌握二倍角函数 公式与和角的三角函数公式之间关系.

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式    课件
1 2 ( 5 )2 119 ; 13 169
tan 4 sin 4 (120)169 120 . cos 4 169 119 119
例2.在△ABC中,cos A 4 , tan B 2,求 tan(2A 2B)的值. 5
解法1 在△ABC中,
Байду номын сангаас
由cos A 4 , 0 A , 得 5
sin A 1 cos2 A 1 ( 4 )2 3 . 55
所以tan A sin A 3 5 3 . cos A 5 4 4
tan 2A
2 tan A
2 3 4
24 .
1 tan2 A 1 ( 3)2 7
4
因为tan B 2,
所以tan 2B
1
2
tan tan
B 2B
22 1 22
4. 3
所以tan(2A 2B) tan 2A tan 2B 1 tan 2A tan 2B
1
24 4 73 24 (
4)
44 . 117
73
还可以把 2A 2B 看作 2(A B)
解法2 在ABC中,由cos A 4 , 0 A , 得 5
sin A 1 cos2 A 1 ( 4 )2 3 . 55
cos 2 co( s )
cos2 sin2 2cos2 1 1 2sin2 .
二倍角的余弦公式.
简记为 C2 .
tan
2
tan(
)
2 tan 1 tan2
二倍角的正切公式.
简记为 T2 .
倍角公式
S2 sin 2 2sin cos
C2 cos 2 cos2 sin2 1 2sin2 2cos2 1

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式 课件

两边式子中角间的倍角关系,先用倍角公式统一角,再用
同角三角函数基本关系式等完成证明.
跟踪训练 2
化简:11+ +ssiinn
2θ-cos 2θ+cos
2θ 2θ.

方法一
原式=11- +ccooss
2θ+sin 2θ+sin
22θθ=22csoins22θθ++22ssiinn
θcos θcos
θ θ
二倍角的正弦、余弦、正切公式
1.倍角公式
1
(1)S2α:sin 2α= 2sin αcos α
,sin
α 2cos
α2=
2sin α

(2)C2α:cos 2α= cos2α-sin2α = 2cos2α-1 = 1-2sin2α ;
2tan α (3)T2α:tan 2α= 1-tan2α .
2.倍角公式常用变形 (1)s2isnin2αα= cos α ,2sicnos2αα= sin α ;
跟 解踪原训式练=3 scion已sπ24π知++2sxixn=π4-2sxin=π4c+o15s3x,4πc+o0s<xxπ4<+π4x,=求2csoicnsoππ4s4++2xxx.的值. ∵sinπ4-x=cos4π+x=153,且 0<x<4π,
∴π4+x∈π4,π2,
∴sinπ4+x=
1-cos2π4+x=1123,
(2)cos 3α=cos(2α+α)=cos 2αcos α-sin 2αsin α =(2cos2α-1)cos α-2sin2αcos α =(2cos2α-1)cos α-2(1-cos2α)cos α =2cos3α-cos α-2cos α+2cos3α =4cos3α-3cos α.

《高二数学二倍角》课件

《高二数学二倍角》课件

对后续学习的展望与建议
展望
在后续的学习中,我们将进一步学习三 角函数的和差公式、积化和差与和差化 积公式等,这些公式与二倍角公式有着 密切的联系。通过深入学习这些公式, 我们可以更好地理解和应用二倍角公式 ,提高解决复杂问题的能力。
VS
建议
为了更好地掌握和应用二倍角公式,建议 同学们多做练习题,通过实践来加深对公 式的理解和掌握。同时,也需要注重培养 自己的数学思维和解决问题的能力,以便 更好地应对各种复杂的数学问题。
题目一解析
利用诱导公式和二倍角公式,将sin(α - 2π/3)转化为cos[π/2 + (α - 2π/3)],再利用已知条件计算结果为-1/3 。
题目二解析
利用同角三角函数基本关系式,将1/(2sin^2α + cos^2α)转化为(cos^2α)/(2sin^2α + cos^2α),再利 用已知条件计算结果为3/5。
题目六
已知sin(π/4 - α) = 1/3,求cos(5π/4 + α)的值。
题目四解析
利用诱导公式和二倍角公式,将sin(α - 5π/6)转化为cos[π/2 + (α - 5π/6)],再利用已知条件计算结果为-4/5 。
题目五解析
利用同角三角函数基本关系式,将1/(sin^2α - cos^2α) 转化为(cos^2α)/(sin^2α - cos^2α),再利用已知条件 计算结果为-3/4。
题目九
已知sin(π/6 + α) = √5/5,求cos(7π/6 - α)的值。
题目七解析
利用诱导公式和二倍角公式,将sin(5π/6 + α)转化为cos[π/2 + (5π/6 + α)],再利用已知条件计算结果为7/8。

二倍角的正弦、余弦和正切公式 课件

二倍角的正弦、余弦和正切公式    课件
“探究1”预示本节课我们要研究什么问题? 学习目标:
1.用和角公式推导倍角公式。 2.能运用倍角公式,变形公式,构造公
式进行求值。
提示:怎样对和角公式做适当变换得到二倍 角公式呢?
二倍角公式:
sin2 2sin cos R
cos 2 cos2 sin2 R
tan 2
2 tan 1 tan2
(3)2 5
7 25
tan 2
sin 2 4 ,(0 ),求cos2的值.
解:
5
2
cos 4 ,0
5
2
sin 3
5
cos2 cos2 sin2 ( 4 )2 ( 3 )2
55
7 25
探究2:你能只用cos的值,不求sin的值,直接
二倍角的正弦、余弦和正切公式
1.请写出两角和的正弦、余弦、正切公式
cos( ) cos cos sin sin sin( ) sin cos cos sin tan( ) tan tan
1 tan tan
探究1:你能利用S(+)、C(+)、 T(+)推导出
sin2,cos2,tan2的公式吗?
2 sin 400 cos 400 cos800 2 2sin 200
sin 800 cos 800 2 sin 800 cos800 4 sin 200 2 4sin 200
sin1600 8sin 200
1 8
课下以小组为单位探究下面这道题的解法
sin100 sin 300 sin 500 sin 700
24 24 12
2sin cos sin 1
12 12 6 2
思考:cos 200 cos 400 cos800

二倍角的正弦、余弦、正切公式 课件

二倍角的正弦、余弦、正切公式 课件

=2sin(π4c+osx()π4·+coxs()π4+x)=2sin(π4+x).
∵sin(π4-x)=cos(π4+x)=153,且 0<x<π4,
∴π4+x∈(π4,π2),
∴sin(π4+x)= 1-cos2(π4+x)=1123, ∴原式=2×1123=2143.
[一点通] 这类三角函数求值问题常有两种解题途径:一是对 题设条件变形,将题设条件中的角、函数名向结论中的角、函数 名靠拢;另一种是对结论变形,将结论中的角、函数名向题设条 件中的角、函数名靠拢,以便将题设条件代入结论,即解题过程 既要结合已知条件,又要增强目标意识.
二倍角公式
名称
公式
二倍角的正弦 sin 2α= 2sin αcos α
cos 2α= cos2α-sin2α
二倍角的余弦 = 2cos2α-1
= 1-2sin2α
2tan α 二倍角的正切 tan 2α= 1-tan2α
记法 S2α C2α
T2α
[例 1] 求下列各式的值:
(1)sin
π 12 cos
=8sisnin12600°°=18.
[例 2] 已知 sin(π4-x)=153,0<x<π4,求cos(coπs4+2xx)的值. [思路点拨] 注意角的关系(π4+x)+(π4-x)=π2,注意诱导 公式的应用 cos 2x=sin(π2+2x),利用倍角公式解题.
[精解详析]
原式=scions((π2π4++2xx))
=cos 10°+
3sin
10°=2(12cos
10°+
3 2 sin
10°)
2
2
2 sin 40°
2 sin 40°
=2 s2insi4n04°0°=2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我来说,去圆明园是一种凭吊,一种拜谒,甚至是一种提醒。”简要说说作者要“凭吊、拜谒”什么? “提醒”什么呢? 5、简要分析第⑤段中划线句在文中有什么作用? ? 6、请你为圆明园遗址准备一条宣传语,要能揭示遗址给人的警示。(不超过20字,至少用一种修辞手法) ? 参
考答案: 1、A 理由:用拟人手法,容易引起读者的注意;更能表达作者对造成这种现象的悲痛心情(主题)。 2、相同点:都有对祖国的深切的爱。 不同点:艾青是目睹山河破碎、人民涂炭的现实,心中的痛苦。 本文作者是因为部分国人不知铭记历史而十分伤心、难过。 3、“扑”
定要去。 ③是阴凄凄的天,是冷嗖嗖的细雨,和着秋风如刀子一般刮在脸上。沿着浩淼的湖水,我走啊走的,不见一个人影儿。最后,终于走到了那大水法遗址——尽管多少次从上,从教科书中见过这遗址的照片,可当我立在苍苍的天空下,真实地面对着这一片一地一旷野的玉白石块时,
仍感到那来自心底的震撼!依旧华美——我抚摸着那冰冰凉凉的玉石纹理;依旧精致——那欧式的曲线流畅又不羁;依旧贵族——断碎的罗马石柱在苍天下笔直出一派伟岸和傲然。后来我就流泪了,好在周围没人,我没带相机,但那些石块、石柱、石雕连同那灰苍苍的天空一起烙破颓败的乱石间,怎么笑得出来?要唱歌蛮好去那桃红柳绿的绮春园、长春园或是泛舟福海啊!看着这群在破碎的石块遗址前欢笑的老老少少,仰首凝视那高高而破残的罗马柱,眼眶和心口就都隐隐地疼起来。历史呢?耻辱呢?血性呢?! ⑨前些年,曾经围
绕这圆明园需不需要重建有过争论,结果是理智的人们理解了废墟的价值,尊重了历史留给我们残酷的真实,这片废墟留下了。当时,我是为留下拍案叫好。可今日见到这么多在废墟上在遗址前欢笑嘻闹的人群,我有点怀疑留下的必要了,在经过那么多岁月之后,眼前这般断壁残垣,还
表现风来得猛,“砸”表现雨下得大,这样写更能突出作者对人们不理解废墟价值的一种愤怒与悲哀。(言之有理,可酌情给分) 4、凭吊、拜谒无数在此长眠的死难者(中华民族屈辱的历史) 提醒自己不忘历史的耻辱,不能让悲剧重演。(意同即可) 5、一方面突出圆明园今非昔比,
另一方面突出对遗址前欢笑的老老少少的痛心和强烈的不满。 6、符合要求即可,例如:知耻而后勇,知耻而后进。 千岛湖春游 ①高一那年,我们学校组织去千岛湖春游。 ②新来的李老师一宣布这个令人兴奋的消息,教室里马上被大家的喧闹声炸响。同学们纷纷问起一些关于春游要注
该题分层赋分 (1)不存在关联。 第一层:理解肤浅,只是笼统地说二者无关系。 示例一:父女的善良和文字的力量是两回事。 实例 现代文阅读训练题及答案 圆明园 ? 阅读下面文章,完成文后问题。 ①一直以为,圆明园是哭泣的。英法联军蹂躏着她的肌体,摧毁着她的骨骼,冲天
大火燃烧的是一个民族的自尊,百多年的疼痛如那西洋楼的残臂断垣穿越百年的风雨永远存在——伫立在那西洋楼大水法的遗址前,我无法不感受圆明园的疼痛,感受一个民族的屈辱和疼痛,是那种切肤的痛。 ②是十年前,去的圆明园。没有人愿去,说是那么远,又没啥看的。我说我肯
意的事项和所交的费用等问题。最后,李老师问了一句:“大家还有什么问题吗?”很长时间,没有人举手也没有人站起来,谁也没有注意到角落里来自山区的那个女孩子,(甲)她犹豫着举起手,手指颤抖着却没有张开来,嘴张了几张却没有声音。但她还是站了起来,用极低的声音问:
能提醒人们对一个多世纪前那场噩梦的记忆,那场中华民族的灾难与奇耻大辱?! ⑩该是来圆明园,天就要阴的。一阵沙尘扑面而来,豆大的雨点砸了下来,劈头劈脸,欢笑的人群直往外冲。剩下我一人,静静地,在洁白的石块上坐下,对着这大水法遗址,对着这华美残破的罗马石柱,和
苍天,和这些断壁残垣一起落泪哭泣…… 1、从下面两个选项中为本文选一个标题,并说明理由。 A、哭泣的圆明园
B、今非昔比的圆明园 标题:_________(填序号) 理由:______________________________________________________________________ 2、艾青在《我爱这土地》
中写“为什么我的眼里常含泪水”,上文结尾也写到了“流泪”,简要分析“眼泪”背后两位作者思想感情的异同。 3、文中的语言富有表现力,请结合句中加点的词语作简要分析。 一阵沙尘扑面而来,豆大的雨点砸了下来,劈头劈脸,欢笑的人群直往外冲。 ? 4、文章第④段的“对
成为心房上一幅水不磨灭的壁画。 ④十年后的今日,我说,再去圆明园。对我来说,去圆明园是一种凭吊,一种拜谒,甚至是一种提醒。说出这些我不怕别人说我矫情,我就是这样想的。 ⑤进了圆明园,才发现今非昔比。十年前的清寂不复存在,曾经寂静的圆明园一片喧嚣。柳绿桃红
藤紫,满目春色也罢,昔日皇族的休闲园址,也该平常百姓流连赏目,门票从五角涨到二十五元也罢,这遗址这偌大的园子要人管理也得养活自己。装饰华丽的人力车左右缠着:去福海?去绮春风?就十元,拖您去西洋楼您哪!谢了您哪,我说,我就是想自个儿走走。 ⑥往前,沿着湖边再
往前,穿过紫藤架,右拐,是了,是遗址,大水法遗址。 ⑦想不到的是西洋楼遗址这儿,竟也有这许多的人!一群系着红领巾的孩子尖叫着互掷着石子,一群看来是高中生或是中专生的少男少女咬着棒棒糖儿在海宴堂遗址前高声唱着“对面的女孩走过来走过来”;几位看上去似干部样的
人笑眯眯地摆好阵势在镌刻着“圆明园”字样的大理石碑前照像,那捧着相机的说:笑!笑啊!这群人就腆着发福的肚皮蠢蠢地笑了。在大水法遗址前,就是那小时在书中看到,十年前在那儿哭泣的五根大罗马柱那儿,一对情侣旁若无人地拥抱亲吻! ⑧刹那,我有点不知所措。亲吻示爱干
二倍角公式
.
1
1.复习两角和的正弦、余弦、正切公式:
.
2
二倍角公式
提出问题:在两角和与差的正弦、余弦、
正切公式中,若
,则得二倍角的
正弦、余弦、正切公式。
.
3
二倍角公式
二倍角的正、余弦公式
1 2sin2
二倍角的正切公式
.
4
;单创:https:///article/20190920/925754.shtml ;
相关文档
最新文档