高中数学必修五第三章不等式复习(知识点与例题)

合集下载

高中数学必修五第三章:不等式专题

高中数学必修五第三章:不等式专题

《不等式专题》第一讲:不等式的解法知识要点:一、不等式的同解原理:原理1:不等式的两边都加上(或减去)同一个数或同一个整式,所得不等式与原不等式是同解不等式; 原理2:不等式的两边都乘以(或除以)同一个正数或同一个大于零的整式,所得不等式与原不等式是同解不等式;原理3:不等式的两边都乘以(或除以)同一个负数或同一个小于零的整式,并把不等式改变方向后所得不等式与原不等式是同解不等式。

二、一元二次不等式的解法:一元二次不等式的解集的端点值是对应二次方程的根,是对应二次函数的图像与x 轴交点的横坐标。

二次函数()的图象有两相异实根有两相等实根无实根注意:(1)一元二次方程20(0)ax bx c a ++=≠的两根12,x x 是相应的不等式20(0)ax bx c a ++>≠的解集的端点的取值,是抛物线2(0)y ax bx c a =++≠与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二 次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20(0)ax bx c a ++>≠与20(0)ax bx c a ++<≠的解集。

三、一元高次不等式的解法:解高次不等式的基本思路是通过因式分解,将它转化成一次或二次因式的乘积的形式,然后利用数轴标根法或列表法解之。

数轴标根法原则:(1)“右、上”(2)“奇过,偶不过”四、分式不等式的解法:(1)若能判定分母(子)的符号,则可直接化为整式不等式。

(2)若不能判定分母(子)的符号,则可等价转化:()()()()()()()()()()()()()()()()()()000;0.0000;0.0f xg x f x f x f x g x g x g x g x f x g x f x f x f x g x g x g x g x ⋅≥⎧>⇔⋅>≥⇔⎨≠⎩⋅≤⎧<⇔⋅<≤⇔⎨≠⎩ 五、指数、对数不等式的解法:(1)()()()()()()()()()()1; 01f x g x f x g x a a a f x g x aaa f x g x >>⇔>><<⇔<(2)()()()()()()()()log log (1)0;log log (01)0a a a a f x g x a f x g x f x g x a f x g x >>⇔>>><<⇔<<六、含绝对值不等式的解法:()()()()()()()()()()()()()()()()()()()()()()220;0.;..f x a a f x a f x a f x a a a f x a f xg x f x g x f x g x f x g x g x f x g x f x g x f x g x >>⇔<-><>⇔-<<>⇔<-><⇔-<<>⇔>或或 对于含有多个绝对值的不等式,利用绝对值的意义,脱去绝对值符号。

高中数学必修5第三章《不等式》复习知识点总结与练习

高中数学必修5第三章《不等式》复习知识点总结与练习

高中数学必修5__第三章《不等式》复习知识点总结与练习(一)第一节不等关系与不等式[知识能否忆起]1.实数大小顺序与运算性质之间的关系a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.不等式的基本性质1.在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加,“同向且两边同正的不等式”才可相乘;可乘性中“c 的符号”等也需要注意.2.作差法是比较两数(式)大小的常用方法,也是证明不等式的基本方法.要注意强化化归意识,同时注意函数性质在比较大小中的作用.高频考点1. 比较两个数(式)的大小[例1] 已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较S 3a 3与S 5a 5的大小.[自主解答] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q >0且q ≠1时,S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5)q 4(1-q )=-q -1q 4<0,所以S 3a 3<S 5a 5. 综上可知S 3a 3<S 5a 5.由题悟法比较大小的常用方法 (1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.[注意] 用作商法时要注意商式中分母的正负,否则极易得出相反的结论.以题试法1.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b解析:选A c -b =4-4a +a 2=(2-a )2≥0, ∴c ≥b .将题中两式作差得2b =2+2a 2,即b =1+a 2. ∵1+a 2-a =⎝⎛⎭⎫a -122+34>0,∴1+a 2>a . ∴b =1+a 2>a .∴c ≥b >a . 2. 不等式的性质(2012·包头模拟)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc<0;③a-c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4(2)∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②正确. ∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C.由题悟法1.判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的性质.2.特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试,可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立,则该命题为假命题.以题试法2.若a 、b 、c 为实数,则下列命题正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a <b <0,则a 2>ab >b 2 C .若a <b <0,则1a <1bD .若a <b <0,则b a >ab解析:选B A 中,只有a >b >0,c >d >0时,才成立;B 中,由a <b <0,得a 2>ab >b 2成立;C ,D 通过取a =-2,b =-1验证均不正确. 3. 不等式性质的应用典题导入[例3] 已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围. [自主解答] f (-1)=a -b ,f (1)=a +b . f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].由题悟法利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.以题试法3.若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2.∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7.∴α+3β的取值范围为[1,7].第二节一元二次不等式及其解法[知识能否忆起]一元二次不等式的解集二次函数y=ax2+bx+c的图象、一元二次方程ax2+bx+c=0的根与一元二次不等式ax2+bx+c>0与ax2+bx+c<0的解集的关系,可归纳为:若a<0时,可以先将二次项系数化为正数,对照上表求解.解一元二次不等式应注意的问题:(1)在解一元二次不等式时,要先把二次项系数化为正数.(2)二次项系数中含有参数时,参数的符号会影响不等式的解集,讨论时不要忘记二次项系数为零的情况.(3)解决一元二次不等式恒成立问题要注意二次项系数的符号.(4)一元二次不等式的解集的端点与相应的一元二次方程的根及相应的二次函数图象与x轴交点的横坐标相同高频考点1.一元二次不等式的解法典题导入[例1] 解下列不等式: (1)0<x 2-x -2≤4; (2)x 2-4ax -5a 2>0(a ≠0). [自主解答] (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1,或2<x ≤3. (2)由x 2-4ax -5a 2>0知(x -5a )(x +a )>0. 由于a ≠0故分a >0与a <0讨论. 当a <0时,x <5a 或x >-a ; 当a >0时,x <-a 或x >5a .综上,a <0时,解集为{}x |x <5a ,或x >-a ;a >0时,解集为{}x |x >5a ,或x <-a .由题悟法1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图象,写出不等式的解集.2.解含参数的一元二次不等式可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.以题试法1.解下列不等式: (1)-3x 2-2x +8≥0;(2)ax 2-(a +1)x +1<0(a >0).解:(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0. 解得-2 ≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43. (2)原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a <x <1;当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 2.一元二次不等式恒成立问题典题导入[例2] 已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.[自主解答] 法一:f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1) 时,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3. 要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1; ②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2,由2-a 2≥a ,解得-1 ≤a ≤1. 综上所述,a 的取值范围为[-3,1].法二:令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧Δ>0,a <-1,g (-1)≥0.解得-3 ≤a ≤1.所求a 的取值范围是[-3,1].本题中的“x ∈[-1,+∞)改为“x ∈[-1,1)”,求a 的取值范围.解:令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,1)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧ Δ>0,a <-1,g (-1)≥0或⎩⎨⎧Δ>0,a >1,g (1)≥0.解得-3≤a ≤1,所求a 的取值范围是[-3,1] .由题悟法1.对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.2.一元二次不等式恒成立的条件:(1)ax 2+bx +c >0(a ≠0)(x ∈R ) 恒成立的充要条件是: a >0且b 2-4ac <0.(2)ax 2+bx +c <0(a ≠0)(x ∈R )恒成立的充要条件是: a <0且b 2-4ac <0.以题试法2.(2012·九江模拟)若关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),则实数a 的取值范围是________;若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,则实数a 的取值范围是________.解析:由Δ1<0,即a 2-4(-a )<0,得-4<a <0; 由Δ2≥0,即a 2-4(3-a )≥0,得a ≤-6或a ≥2. 答案:(-4,0) (-∞,-6]∪[2,+∞) 2. 一元二次不等式的应用典题导入[例3] 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. [自主解答] (1)由题意得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价, 所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2]. (2)由题意得20(10-x )(50+8x )≥10 260, 化简得8x 2-30x +13≤0. 解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.由题悟法解不等式应用题,一般可按如下四步进行:(1)认真审题,把握问题中的关键量,找准不等关系; (2)引进数学符号,用不等式表示不等关系; (3)解不等式; (4)回答实际问题.以题试法3.某同学要把自己的计算机接入因特网.现有两家ISP 公司可供选择.公司A 每小时收费1.5元;公司B 在用户每次上网的第1小时内收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算).假设该同学一次上网时间总是小于17小时,那么该同学如何选择ISP 公司较省钱?解:假设一次上网x 小时,则公司A 收取的费用为1.5x 元,公司B 收取的费用为x (35-x )20元.若能够保证选择A 比选择B 费用少,则x (35-x )20>1.5x (0<x <17), 整理得x 2-5x <0,解得0<x <5,所以当一次上网时间在5小时内时,选择公司A 的费用少;超过5小时,选择公司B 的费用少.练习题[小题能否全取]1.(教材习题改编)下列命题正确的是( ) A .若ac >bc ⇒a >b B .若a 2>b 2⇒a >b C .若1a >1b ⇒a <bD .若a <b ⇒a <b答案:D2.若x +y >0,a <0,ay >0,则x -y 的值( ) A .大于0 B .等于0 C .小于0D .不确定解析:选A 由a <0,ay >0知y <0,又x +y >0,所以x >0.故x -y >0. 4.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<5.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c .其中正确的是____________(请把正确命题的序号都填上). 解析:①若c =0则命题不成立.②正确.③中由2c >0知成立. 答案:②③4.若x >y, a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤a y >bx这五个式子中,恒成立的所有不等式的序号是________. 解析:令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此 ①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx,因此⑤不正确. 由不等式的性质可推出 ②④成立. 答案:②④[小题能否全取]1.(教材习题改编)不等式x (1-2x )>0的解集是( ) A.⎝⎛⎭⎫-∞,12 B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎝⎛⎭⎫12,+∞D.⎝⎛⎭⎫12,+∞答案:B2.不等式9x 2+6x +1≤0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-13 B.⎩⎨⎧⎭⎬⎫-13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤13D .R答案:B3.(2011·福建高考)若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)解析:选C 由一元二次方程有两个不相等的实数根,可得:判别式Δ>0,即m 2-4>0,解得m <-2或m >2.4.(2012·天津高考)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =__________,n =________.解析:因为|x +2|<3,即-5<x <1,所以A =(-5,1),又A ∩B ≠∅,所以m <1,B =(m,2),由A ∩B =(-1,n )得m =-1,n =1.答案:-1 15.不等式1x -1<1的解集为________.解析:由1x -1<1得1-1x -1>0,即x -2x -1>0,解得x <1,或x >2.答案:{x |x <1,或x >2}1.(2012·重庆高考)不等式x -1x +2<0的解集为( )A .(1,+∞)B .(-∞,-2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:选C 原不等式化为(x -1)(x +2)<0,解得-2<x <1,故原不等式的解集为(-2,1).2.(2013·湘潭月考)不等式4x -2≤x -2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)解析:选B ①当x -2>0即x >2时,原不等式等价于(x -2)2≥4,解得x ≥4. ②当x -2<0即x <2时,原不等式等价于(x -2)2≤4, 解得0≤x <2.3.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( ) A .(4,5) B .(-3,-2)∪(4,5) C .(4,5]D .[-3,-2)∪(4,5]解析:选D 原不等式可能为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5]4.若(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(-∞,-1)C.⎝⎛⎭⎫-∞,-1311D.⎝⎛⎭⎫-∞,-1311∪(1,+∞) 解析:选C ①m =-1时,不等式为2x -6<0,即x <3,不合题意.②m ≠-1时,⎩⎪⎨⎪⎧m +1<0,Δ<0,解得m <-1311.6.(2012·长沙模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)解析:选C ∵f (x )=ax 2-(a +2)x +1, Δ=(a +2)2-4a =a 2+4>0,∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点, 又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0,解得-1<x <0.7.若不等式k -3x -3>1的解集为{x |1<x <3},则实数k =________.解析:k -3x -3>1,得1-k -3x -3<0,即x -k x -3<0,(x -k )(x -3)<0,由题意得k =1.答案:18.不等式x 2-2x +3 ≤a 2-2a -1在R 上的解集是∅,则实数a 的取值范围是________. 解析:原不等式即x 2-2x -a 2+2a +4≤0,在R 上解集为∅, ∴Δ=4-4(-a 2+2a +4)<0, 即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)9.(2012·陕西师大附中模拟)若函数f (x )=⎩⎪⎨⎪⎧x +5,x <3,2x -m ,x ≥3,且f (f (3))>6,则m 的取值范围为________.解析:由已知得f (3)=6-m ,①当m ≤3时,6-m ≥3,则f (f (3))=2(6-m )-m =12-3m >6,解得m <2;②当m >3时,6-m <3,则f (f (3))=6-m +5>6,解得3<m <5.综上知,m <2或3<m <5.答案:(-∞,2)∪(3,5) 10.解下列不等式: (1)8x -1≤16x 2;(2)x 2-2ax -3a 2<0(a <0).解:(1)原不等式转化为16x 2-8x +1≥0, 即(4x -1)2 ≥0,则x ∈R , 故原不等式的解集为R .(2)原不等式转化为(x +a )(x -3a )<0, ∵a <0,∴3a <-a ,得3a <x <-a .故原不等式的解集为{x |3a <x <-a }.11.一个服装厂生产风衣,月销售量x (件)与售价p (元/件)之间的关系为p =160-2x ,生产x 件的成本R =500+30x (元).(1)该厂月产量多大时,月利润不少于1 300元?(2)当月产量为多少时,可获得最大利润,最大利润是多少? 解:(1)由题意知,月利润y =px -R , 即y =(160-2x )x -(500+30x ) =-2x 2+130x -500.由月利润不少于1 300元,得-2x 2+130x -500≥1 300. 即x 2-65x +900≤0,解得20≤x ≤45.故该厂月产量在20~45件时,月利润不少于1 300元. (2)由(1)得,y =-2x 2+130x -500 =-2⎝⎛⎭⎫x -6522+3 2252, 由题意知,x 为正整数.故当x =32或33时,y 最大为1 612.所以当月产量为32或33件时,可获最大利润,最大利润为1 612元.12.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小.解:由题意知,F (x )=f (x )-x =a (x -m )·(x -n ),当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0 的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .。

高中数学必修五-不等关系与不等式

高中数学必修五-不等关系与不等式

不等关系与不等式知识集结知识元不等关系与不等式知识讲解1.不等关系与不等式【不等关系与不等式】不等关系就是不相等的关系,如2和3不相等,是相对于相等关系来说的,比如与就是相等关系.而不等式就包含两层意思,第一层包含了不相等的关系,第二层也就意味着它是个式子,比方说a>b,a﹣b>0就是不等式.【不等式定理】①对任意的a,b,有a>b⇔a﹣b>0;a=b⇒a﹣b=0;a<b⇔a﹣b<0,这三条性质是做差比较法的依据.②如果a>b,那么b<a;如果a<b,那么b>a.③如果a>b,且b>c,那么a>c;如果a>b,那么a+c>b+c.推论:如果a>b,且c>d,那么a+c>b+d.④如果a>b,且c>0,那么ac>bc;如果c<0,那么ac<bc.例题精讲不等关系与不等式例1.设a、b、c是互不相等的正数,则下列等式中不恒成立的是()A.|a-b|≤|a-c|+|b-c|B.C.D.例2.已知a,b,c,d∈R,则下列命题中必然成立的是()A.若a>b,c>b,则a>cB.若a>b,c>d,则C.若a2>b2,则a>bD.若a>-b,则c-a<c+b例3.若a,b∈R下列说法中正确的个数为()①(a+b)2≥a2+b2;②若|a|>b,则a2>b2;③a+b≥2A.0B.1C.2D.3不等式比较大小知识讲解1.不等式比较大小【知识点的知识】不等式大小比较的常用方法(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.【典型例题分析】方法一:作差法典例1:若a <0,b <0,则p =与q =a +b 的大小关系为()A .p <qB .p ≤qC .p >qD .p ≥q解:p ﹣q =﹣a ﹣b ==(b 2﹣a 2)=,∵a <0,b <0,∴a +b <0,ab >0,若a =b ,则p ﹣q =0,此时p =q ,若a ≠b ,则p ﹣q <0,此时p <q ,综上p ≤q ,故选:B方法二:利用函数的单调性典例2:三个数,,的大小顺序是()A .<<B .<<C .<<D .<<解:由指数函数的单调性可知,>,由幂函数的单调性可知,>,则>>,故<<,故选:B.例题精讲不等式比较大小例1.已知-1<a<0,b<0,则b,ab,a2b的大小关系是()A.b<ab<a2b B.a2b<ab<bC.a2b<b<ab D.b<a2b<ab例2.a=80.7,b=0.78,c=log0.78,则下列正确的是()A.b<c<a B.c<a<bC.c<b<a D.b<a<c例3.三个数a=,b=()2020,c=log2020的大小顺序为()A.b<c<a B.b<a<cC.c<a<b D.c<b<a当堂练习单选题练习1.已知t=a+4b,s=a+b2+4,则t和s的大小关系是()A.t>s B.t≥sC.t<s D.t≤s练习2.已知a=,b=,c=,则()A.a>b>c B.a>c>bC.b>a>c D.c>b>a练习3.设a=,b=2,c=log32,则()A.b>a>c B.a>b>cC.c>a>b D.b>c>a练习4.设a=(),b=(),c=(),则a,b,c的大小关系为()A.a<b<c B.b<c<aC.a<c<b D.c<a<b练习5.若a=(),b=(),e=log,则下列大小关系正确的是()A.c<a<b B.c<b<aC.a<b<c D.a<c<b填空题练习1._____.不等式≤3的解集是__________练习2.于实数a、b、c,有下列命题①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若c>a>b>0,则;⑤若a>b,,则a>0,b<0.其中正确的是______.练习3.已知a,b∈R,且>1,则下列关系中①②a3<b3③ln(a2+1)<ln(b2+1)④若c>d>0,则其中正确的序号为_____。

高一数学必修5练习:第三章不等式复习课Word版含解析

高一数学必修5练习:第三章不等式复习课Word版含解析

3.
10.铁矿石 A 和 B 的含铁率 a,冶炼每万吨铁矿石的 CO2 的排放量 b 及每万吨铁矿石 的价格 c 如下表:
a b/ c/ 万百
吨万

A 50 1 3 %
B 70 0.5 6 %
某冶炼厂至少要生产 1.9(万吨 ) 铁,若要求 CO2 的排放量不超过 2(万吨 ),则购买铁矿石 的最少费用为 ________(百万元 ).
1 )
2
答案 A
B . (-∞, 2)∪ (3,+∞ )
D.
(-∞,
1 3)∪
(1,+∞ 2
)
解析 由题意知, a<0 , ba=- 56,- 1a=16,
∴ a=- 6, b= 5. ∴ x2- 5x+ 6<0 的解是 (2,3).
2x+ y≤ 40,
x+ 2y≤ 50,
3.若变量 x, y 满足
第三章
章末复习课
— 不等式的性质
— 不等关系 — — 实数比较大小
一元二次不 — 等式的解法
— 一元二次不等式 — 一元二次不
— 等式的应用
不等式 —
二元一次不等式 组 — 与平面区域
— 简单线性规划 — — 简单线性规划
— 简单线性规划的应用
— 算术平均数与几何平均数 — 基本不等式 —
— 基本不等式的应用
x≥ 0,y≥ 0,
为 12,则 2a+ 3b的最小值为 (
)
25
8
11
A. 6
B.3
C. 3
D.4
答案 A
解析
若目标函数 z= ax+by(a>0, b>0) 的最大值
不等式表示的平面区域如图所示阴影部分, 当直线 ax+ by= z(a>0,b>0) 过直线 x- y+ 2

高中数学必修5(人教A版)第三章不等式3.3知识点总结含同步练习及答案

高中数学必修5(人教A版)第三章不等式3.3知识点总结含同步练习及答案

描述:例题:高中数学必修5(人教A版)知识点总结含同步练习题及答案第三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题一、学习任务1. 能从实际情景中抽象出二元一次不等式组;了解二元一次不等式组的集合意义,能用平面区域表示二元一次不等式组.2. 能从实际情景中抽象出一些简单的二元线性规划问题,并能加以解决.二、知识清单平面区域的表示 线性规划 非线性规划三、知识讲解1.平面区域的表示二元一次不等式表示的平面区域已知直线 :,它把坐标平面分为两部分,每个部分叫做开半平面,开半平面与 的并集叫做闭半平面.以不等式解 为坐标的所有点构成的集合,叫做不等式表示的区域或不等式的图象.对于直线 : 同一侧的所有点 ,代数式 的符号相同,所以只需在直线某一侧任取一点 代入 ,由 符号即可判断出 (或)表示的是直线哪一侧的点集.直线 叫做这两个区域的边界(boundary).二元一次不等式组表示的平面区域二元一次不等式组所表示区域的确定方法:①直线定界②由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.l Ax +By +C =0l (x ,y )l Ax +By +C =0(x ,y )Ax +By +C (,)x 0y 0Ax +By +C A +B +C x 0y 0A +B +C >0x 0y 0<0Ax +By +C =0画出下列二元一次不等式表示的平面区域.(1) ;(2).解:(1)① 画出直线 ,因为这条直线上的点不满足 ,所以画成虚线.② 取原点 ,代入 ,所以原点在不等式 所表示的平面区域内,不等式表示的区域如图.3x +2y +6>0y ⩾3x 3x +2y +6=03x +2y +6>0(0,0)3x +2y+6=6>03x +2y +6>0描述:2.线性规划线性规划的有关概念若约束条件是关于变量的一次不等式(方程),则称为线性约束条件(objective function).一般地,满足线性约束条件的解 叫做可行解(feasible solution),由所有可行解组成的集合叫做可行域(feasible region).要求最大(小)值所涉及的关于变量 , 的一次解析式叫做线性目标函数(linearobjectives).使目标函数取得最大值或最小值的可行解叫做最优解.在线性约束条件下,求线性目标函数的最大值或最小值问题叫做线性规划问题(linearprogram).(2)① 画出直线 ,画成实线.② 取点 ,代入 ,所以 不在不等式 表示的平面区域内,不等式表示的区域如图.y =3x (1,0)y −3x =−3<0(1,0)y ⩾3x 画出不等式组 表示的平面区域.解:不等式 表示直线 及右下方的平面区域; 表示直线及右上方的平面区域; 表示直线 及左方的平面区域;所以不等式组表示的平面区域如图中阴影部分.⎧⎩⎨x −y +5⩾0x +y ⩾0x ⩽3x −y +5⩾0x −y +5=0x +y ⩾0x +y =0x ⩽3x =3(x ,y )xy⎩⎨4x+y+10⩾0作出可行域如图中阴影部分所示:可知,图可知,答案:解析:1. 下列各点中,不在 表示的平面区域的是 A .B .C .D .C将 代入得 ,故 不在 表示的平面区域内.x +y −1⩽0()(0,0)(−1,1)(−1,3)(2,−3)x =−1,y =3x +y −1−1+3−1=1>0(−1,3)x +y −1⩽02. 在平面直角坐标系 中,满足不等式组 ,点 的集合用阴影表示为下列图中的 A.B .C .xOy {|x |⩽|y ||x |<1(x ,y )()高考不提分,赔付1万元,关注快乐学了解详情。

高中数学必修5(人教A版)第三章不等式3.4知识点总结含同步练习及答案

高中数学必修5(人教A版)第三章不等式3.4知识点总结含同步练习及答案

4 m .所以 x
y = 4 × 120 + 2(2x + = 480 + 320(x +
4 ) x − − − − − 4 ⩾ 480 + 320 × 2√x ⋅ x = 1760,
当且仅当 x =
8 ) × 80 x
4 ,即 x = 2 时,等号成立.所以当 x = 2 时,y min = 1760 . x 答:水池的最低造价为1760元.
如果 a ,b ∈ R+ ,那么
均值不等式可以表达为:两个正实数的算术平均值大于或等于它的几何平均值.均值不等式也称 为基本不等式 .两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积 有最大值. 例题: 设 a > 0,b > 0 ,下列不等式中不成立的是( )
b a A. + ⩾ 2 a b a+b 2 C.ab ⩽ ( ) 2
2.均值不等式的应用 描述: 基本不等式的应用非常广泛,如求函数最值,证明不等式,比较大小,求取值范围,解决实际问 题等.其中,求最值是其最重要的应用 .利用均值不等式求最值时应注意“一正,二定,三相 等”,三者缺一不可. 例题: 求函数 y =
1 + x (x>3)\) 的最小值. x−3 解:因为 x > 3,所以 x − 3 > 0 ,所以 y=
已知 x ,y ∈ R+ ,且 x + 4y = 1,求 xy 的最大值. 且仅当 x =
− − 解:由均值不等式可得 x + 4y ⩾ 2√− x ⋅− 4− y ,当且仅当 x = 4y 时等号成立,所以 xy ⩽ 1 1 1 ,y = 时等号成立,所以 xy 的最大值为 . 2 8 16

数学必修5第三章不等式知识梳理

数学必修5第三章不等式知识梳理

第三章 不等式§3.1 不等关系与不等式1.比较实数a ,b 的大小 (1)文字叙述如果a -b 是正数,那么a >b ; 如果a -b 等于0,那么a =b ;如果a -b 是负数,那么a <b ,反之也成立. (2)符号表示 a -b >0⇔a >b ; a -b =0⇔a =b ; a -b <0⇔a <b .2.常用的不等式的基本性质 (1)a >b ⇔b <a (对称性);(2)a >b ,b >c ⇒a >c (传递性); (3)a >b ⇒a +c >b +c (可加性);(4)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ; (5)a >b ,c >d ⇒a +c >b +d ; (6)a >b >0,c >d >0⇒ac >bd ;(7)a >b >0,n ∈N ,n ≥2⇒a n >b n ;(8)a >b >0,n ∈N ,n ≥2⇒1.比较两个实数的大小,只要考察它们的差就可以了. a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.作差法比较的一般步骤 第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“积”; 第三步:定号,就是确定是大于0,等于0,还是小于0.(不确定的要分情况讨论) 最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.3.不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,千万不可想当然.§3.2 一元二次不等式及其解法(一)1.一元一次不等式一元一次不等式经过变形,可以化成ax >b (a ≠0)的形式.(1)若a >0,解集为⎩⎨⎧⎭⎬⎫x |x >b a ;(2)若a <0,解集为⎩⎨⎧⎭⎬⎫x |x <b a .2.一元二次不等式一元二次不等式经过变形,可以化成下列两种标准形式:(1)ax 2+bx +c >0 (a >0);(2)ax 2+bx +c <0 (a >0).3.一元二次不等式与二次函数、一元二次方程的关系如下表所示:1.解一元二次不等式可按照“一看,二算,三写”的步骤完成,但应注意,当二次项系数为负数时,一般先化为正数再求解,一元二次不等式的解集是一个集合,要写成集合的形式.2.一元二次不等式解集的端点值一般是对应的一元二次方程的根. 3.含参数的一元二次不等式的求解往往要分类讨论,分类标准要明确,表达要有层次,讨论结束后要进行总结.§3.2 一元二次不等式及其解法(二)1.一元二次不等式的解集: (1)f (x )g (x )>0⇔f (x )·g (x )>0; (2)f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x )≤0g (x )≠0; (3)f (x )g (x )≥a ⇔f (x )-ag (x )g (x )≥0. 3.处理不等式恒成立问题的常用方法:(1)一元二次不等式恒成立的情况:ax 2+bx +c >0 (a ≠0)恒成立⇔⎩⎨⎧a >0Δ<0;ax 2+bx +c ≤0 (a ≠0)恒成立⇔⎩⎪⎨⎪⎧a <0Δ≤0.(2)一般地,若函数y =f (x ),x ∈D 既存在最大值,也存在最小值,则: a >f (x ),x ∈D 恒成立⇔a >f (x )max ; a <f (x ),x ∈D 恒成立⇔a <f (x )min .1.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解.若不等式含有等号时,分母不为零.2.对于有的恒成立问题,分离参数是一种行之有效的方法.这是因为将参数予以分离后,问题往往会转化为函数问题,从而得以迅速解决.当然这必须以参数容易分离作为前提.分离参数时,经常要用到下述简单结论:(1)a >f (x )恒成立⇔a >f (x )max ;(2)a <f (x )恒成立⇔a <f (x )min .§3.3 二元一次不等式(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域1.二元一次不等式(组)的概念含有两个未知数,并且未知数的次数是1的不等式叫做二元一次不等式. 由几个二元一次不等式组成的不等式组称为二元一次不等式组. 2.二元一次不等式表示的平面区域在平面直角坐标系中,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0某一侧所有点组成的平面区域,把直线画成虚线以表示区域不包括边界.不等式Ax +By +C ≥0表示的平面区域包括边界,把边界画成实线. 3.二元一次不等式(组)表示平面区域的确定(1)直线Ax +By +C =0同一侧的所有点的坐标(x ,y )代入Ax +By +C 所得的符号都相同.(2)在直线Ax +By +C =0的一侧取某个特殊点(x 0,y 0),由Ax 0+By 0+C 的符号可以断定Ax +By +C >0表示的是直线Ax +By +C =01.二元一次不等式(组)的解集对应着坐标平面的一个区域,该区域内每一个点的坐标均满足不等式(组).常用特殊点法确定二元一次不等式表示的是直线哪一侧的部分.2.画平面区域时,注意边界线的虚实问题.3.求平面区域内的整点个数时,要有一个明确的思路不可马虎大意,常先确定x 的范围,再逐一代入不等式组,求出y 的范围最后确定整数解的个数.3.3.2 简单的线性规划问题(一)线性目标函数关于x ,y 的一次解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 所有可行解组成的集合最优解 使目标函数取得最大值或最小值的可行解线性规划问题 在线性约束条件下求线性目标函数的最大值或最小值问题1.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.2.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.3.3.2 简单的线性规划问题(二)1.用图解法解线性规划问题的步骤: (1)分析并将已知数据列出表格; (2)确定线性约束条件; (3)确定线性目标函数; (4)画出可行域;(5)利用线性目标函数(直线)求出最优解;根据实际问题的需要,适当调整最优解(如整数解等).2.在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.1.画图对解决线性规划问题至关重要,关键步骤基本上是在图上完成的,所以作图应尽可能准确,图上操作尽可能规范.2.在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等)而直接根据约束条件得到的不一定是整数解,可以运用枚举法验证求最优整数解,或者运用平移直线求最优整数解.最优整数解有时并非只有一个,应具体情况具体分析.§3.4 基本不等式:ab ≤a +b2(一)1.如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”号).2.若a ,b 都为正数,那么a +b2≥ab 当且仅当a =b 时,等号成立),称上述不等式为基本不等式,其中a +b2称为a ,b 的算术平均数,ab 称为a ,b 的几何平均数.3.基本不等式的常用推论(1)ab ≤⎝⎛⎭⎫a +b 22≤a 2+b 22 (a ,b ∈R);(2)当x >0时,x +1x ≥2;当x <0时,x +1x ≤-2.(3)当ab >0时,b a +a b ≥2;当ab <0时,b a +ab≤-2.(4)a 2+b 2+c 2≥ab +bc +ca ,(a ,b ,c ∈R).§3.4 基本不等式:ab ≤a +b2(二)1.设x ,y 为正实数(1)若x +y =s (和s 为定值),则当x =y 时,积xy 有最大值,且这个值为s 24.(2)若xy =p (积p 为定值),则当x =y 时,和x +y 有最小值,且这个值为2p . 2.利用基本不等式求积的最大值或和的最小值时,需满足: (1)x ,y 必须是正数;(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值.(3)等号成立的条件是否满足.利用基本不等式求最值时,一定要注意三个前提条件,这三个前提条件概括为“一正、二定、三相等”.1.利用基本不等式求最值必须满足“一正、二定、三相等”三个条件,并且和为定值,积有最大值;积为定值,和有最小值.2.使用基本不等式求最值时,若等号取不到,则考虑用函数单调性求解.3.解决实际应用问题,关键在于弄清问题的各种数量关系,抽象出数学模型,利用基本不等式解应用题,既要注意条件是否具备,还要注意有关量的实际含义.。

高中数学必修五第三章

高中数学必修五第三章

不等式知识点归纳一、两实数大小的比较: 0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<. 二、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+; ④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n n a b a b n n >>⇒>∈N >; ⑧)0,1n n a b a b n n >>>∈N >. 三、基本不等式定理1、整式形式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭2、根式形式:①2a bab +≥(0a >,0b >)②a+b ≤)a 222b +( 3、分式形式:a b +ba≥2(a 、b 同号)4、倒数形式:a>0⇒a+a 1≥2 ;a<0⇒a+a1≤-2四、公式:b1a 12+≤ab ≤2ba +≤222b a + 五、极值定理:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值2p . 六、解不等式1、一元一次不等式: ax>b (a ≠0)的解:当a>0时,x>a b ;当a<0时,x<ab;2、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.3、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2y ax bx c =++()0a >的图象一元二次方程20ax bx c ++=()0a >的根有两个相异实数根1,22b x a-∆=()12x x <有两个相等实数根122b x x a==-没有实数根一元二次不等式的解集20ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >{}12x xx x <<∅ ∅4、解一元二次不等式步骤:一化:化二次项前的系数为整数二判:判断对应方程的根,三求:求对应方程的根,四画:画出对应函数的图像,五解集:根据图像写出不等式的解集 5、解分式不等式:)()(f x g x >0⇔f(x)g(x)>0 ; )()(f x g x ≤0⇔⎩⎨⎧≠≤0)(0)()(f x g x g x 6、解高次不等式:(x-1a )(x-2a )…(x-n a )>07、解含参数的不等式:解形如a 2x +bx+c>0的不等式时分类讨论的标准有:(1)讨论a 与0的大小(2)讨论∆与0的大小(3)讨论两根的大小 七、一元二次方程根的分布问题:方法:依据二次函数的图像特征从:开口方向、判别式、对称轴、函数值三个角度列出不等式组,总之都是转化为一元二次不等式组求解。

高中必修5第三章

高中必修5第三章

高中必修5第三章知识点一:不等式的定义1. 定义:表示不等关系的式子叫不等式,例如,两点之间线段最短,三角形两边之和大于第三边、两边之差小于第三边,等等。

例1:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍.如何用不等式组表示上述所有不等关系? 2. 不等式b a ≥和b a ≤表示:b a ≥表示a >b 或a =b 其中有一个成立即可。

b a ≤表示a <b 或a =b 其中有一个成立即可。

3. 同向不等式和异向不等式:对于两个不等式,如果每一个不等式的左边都大于(或都小于)右边,这样的不等式叫做同向不等式。

如果两个不等式的不等号不同向,那么两个不等式叫做异向不等式。

4. 如果两个实数的差是正数,即:a -b>0,那么有a >b 。

如果两个实数的差是负数,a -b<0,那么有a <b 如果两个实数的差等于零,即:a -b=0,那么有a =b 。

所以,我们经常用差量法来判断两个数的大小情况。

例2:某用户计划购买单价分别为60元、70元的单片软件和盒装磁盘,使用资金不超过500元,根据需要,软件至少买3片,磁盘至少买2盒,用不等式组表示软件数x 与磁盘数y 应满足的条件。

例3 比较下列三组代数式的大小:(1) 2x +3与3x ; (2) 6x +1与4x +2x ;(3) (2x -2y )(x-y)与(2x +2y )(x-y)其中有x<y<0 知识点二:不等式的性质1. 不等式的传递性:已知有a >b ,b >c 则有a >c ;或已知a <b ,b <c 则有a <c2. 不等式的可加性:已知有a >b 则对任意一个数c 有a+c >b+c ;但是只有同向不等式才具有可加性,即:a >b ,c >d a+c >b+d3. 如果a >b ,c >0,那么有ac>bc; 如果a >b ,c <0,那么有ac <bc4. 如果a >b >0,c >d >0,那么有ac >bd5. 如果a >b >0,n ∈N*,那么有n a >n b (n ∈N*)6. 如果a >b >0,n ∈N*,那么有n a >n b (n ∈N*)7. 不等式中的移项法则:a +b >c 则有a >c -b 例1:已知a >b >0,c <0求证:a c >bc 例2:已知a1>b1, x>y 求证:ax x +>by y +例3 若a <b <0,判断下列结论是否成立<1>a1>b 1 <2>ba -1>a1<3>2a >2b <4>a 2c <b 2c 例4 给出三个不等式:①ab >0,②ac >bd , ③bc >ad ,以其中任意两个作条件,余下一个做结论,可组成几个正确命题?知识点三:一元二次不等式的定义及其解法1. 形如a 2x +bx+c<0或 a 2x +bx+c>0的不等式(其中a ≠0),叫做一元二次不等式;使某个一元二次不等式成立的x 的值叫做这个一元二次不等式的解,一元二次不等式的解的全体组成的集合,叫做一元二次不等式的解集。

必修五 第三章 不等式知识点总结及练习

必修五 第三章 不等式知识点总结及练习

不等式31、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.32、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+; ④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n na b a b n n >>⇒>∈N >;⑧()0,1nn a b a b n n >>⇒>∈N >.33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式. 34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2y ax bx c =++()0a >的图象一元二次方程20ax bx c ++=()0a >的根有两个相异实数根1,22b x a-±∆=()12x x <有两个相等实数根122b x x a==-没有实数根一元二次不等式的解集20ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >{}12x xx x <<∅ ∅35、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.36、二元一次不等式组:由几个二元一次不等式组成的不等式组.37、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y 的取值构成有序数对(),x y ,所有这样的有序数对(),x y 构成的集合.38、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P . ①若0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方.②若0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方. 39、在平面直角坐标系中,已知直线0x y C A +B +=. ①若0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域. ②若0B <,则0x y C A +B +>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线0x y C A +B +=上方的区域.40、线性约束条件:由x ,y 的不等式(或方程)组成的不等式组,是x ,y 的线性约束条件.目标函数:欲达到最大值或最小值所涉及的变量x ,y 的解析式. 线性目标函数:目标函数为x ,y 的一次解析式.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 可行解:满足线性约束条件的解(),x y .可行域:所有可行解组成的集合.最优解:使目标函数取得最大值或最小值的可行解. 41、设a 、b 是两个正数,则2a b+称为正数a 、b 的算术平均数,ab 称为正数a 、b 的几何平均数.42、均值不等式定理: 若0a >,0b >,则2a b ab +≥,即2a bab +≥. 43、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.44、极值定理:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值2p .不等式与不等关系1.实数x 大于10,用不等式表示为( )A .x <10B .x ≤10C .x >10D .x ≥102.设a =3x 2-x +1,b =2x 2+x ,x ∈R ,则( )A .a >bB .a <bC .a ≥bD .a ≤b4.比较x 6+1与x 4+x 2的大小,其中x ∈R .一、选择题1.某隧道入口竖立着“限高4.5米”的警示牌,是指示司机要想安全通过隧道,应使车载货物高度h 满足关系为( )A .h <4.5B .h >4.5C .h ≤4.5D .h ≥4.5 2.实数x 的绝对值不大于2,则可用不等式表示为( ) A .|x|>2 B .|x|≥2X k b 1 . c o m C .|x|<2 D .|x|≤2 3.下列不等式中不成立的是( ) A .-1>-2 B .-1<2 C .-1≥-1 D .-1≤-2 4.某高速公路对行驶的各种车辆的速度v 的最大限速为120 km/h ,行驶过程中,同一车道上的车间距d 不得小于10 m ,则可用不等式表示为( )A.⎩⎪⎨⎪⎧v ≤120km/h d ≥10m B .v ≤120(km/h)或d ≥10(m) C .v ≤120(km/h) D .d ≥10(m)5.若A =a 2+3ab ,B =4ab -b 2,则A 、B 的大小关系是( ) A .A ≤B B .A ≥B C .A<B 或A>B D .A>B6.已知M =x 2+y 2-4x +2y ,N =-5,若x ≠2或y ≠-1,则( ) A .M>N B .M<N C .M =N D .不能确定答案:1.C 2.D 3.D 4.A 5.B 6.A1.对于任意实数a ,b ,c ,d ,命题:①若a>b ,c ≠0,则ac>bc ;②若a>b ,则ac 2>bc 2;③若ac 2>bc 2,则a>b. 其中真命题的个数是( )A .0B .1C .2D .3解析:当c<0时,①不正确; 当c =0时,②不正确;只有③正确. 答案:B 2.如果a>b ,给出下列不等式,其中成立的是( ) ①1a <1b ;②a 3>b 3;③a 2+1>b 2+1;④2a >2b . A .②③ B .①③ C .③④ D .②④ 解析:∵a 、b 符号不定,故①不正确,③不正确.∵y =x 3是增函数,∴a>b 时,a 3>b 3,故②正确.∵y =2x 是增函数,∴a>b 时,2a >2b,故④正确. 答案:D 3.已知a ,b 为非零实数,且a<b ,则( )A .a 2<b 2B .a 2b<ab 2C .2a -2b<0 D.1a >1b解析:取a =-4,b =2即可判断选项A 、B 、D 错. 答案:C 4.已知a 、b 满足0<a<b<1,下列不等式中成立的是( )A .a a <b bB .a a <b aC .b b <a bD .b b >b a解析:取特殊值法.令a =14,b =12,则a a =(14)14=(12)12, b b=(12)12,∴A 错.a b =(14)12<(12)12=b b ,∴C 错. b b =(12)12<(12)14=b a,∴D 错. 答案:B5.设0<b<a<1,则下列不等式成立的是( )A .ab<b 2<1 B .log 12b<log 12a<0C .2b <2a <2D .a 2<ab<1解析:∵y =2x 是单调递增函数,且0<b<a<1, ∴2b <2a <21,即2b <2a<2. 答案:C 6.若1a <1b <0,则下列不等式:①a +b<ab ;②|a|>|b|;③a<b ;④b a +ab >2中,正确的不等式是A .①②B .②③C .①④D .③④解析:取a =-1,b =-2,验证排除②③. 答案:C7.一个棱长为2的正方体的上底面有一点A ,下底面有一点B ,则A 、B 两点间的距离d 满足的不等式为________.解析:最短距离是棱长2,最长距离是正方体的体对角线长2 3.故2≤d ≤2 3. 答案:2≤d ≤2 38.若a >b >0,则1a ________1b.解析:∵1a -1b =b -aab ,b -a <0,ab >0,∴b -a ab <0, ∴1a <1b. 答案:< 9.若实数a >b ,则a 2-ab________ba -b 2.(填“>”或“<”)解析:因为(a 2-ab)-(ba -b 2)=(a -b)2,又a >b ,所以(a -b)2>0,即a 2-ab >ba -b 2.7.已知三个不等式:ab>0,bc -ad>0,c a -db>0(其中a 、b 、c 、d 均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是____个.解析:由ab>0,bc -ad>0. 两端同除以ab ,得c a -db>0.同样由c a -db>0,ab>0可得bc -ad>0.⎩⎪⎨⎪⎧bc -ad>0c a -d b>0⇒⎩⎪⎨⎪⎧bc -ad>0bc -adab>0⇒ab>0. 答案:38.下列四个不等式:①a<0<b ;②b<a<0;③b<0<a ;④0<b<a ,其中能使1a <1b成立的充分条件有________.解析:1a <1b ⇔b -a ab<0⇔b -a 与ab 异号,因此①②④能使b -a 与ab 异号. 答案:①②④ 9.(2011·三明模拟)给出下列四个命题:①若a>b>0,则1a >1b ; ②若a>b>0,则a -1a >b -1b ;③若a>b>0,则2a +b a +2b >a b ; ④设a ,b 是互不相等的正数,则|a -b|+1a -b≥2.其中正确命题的序号是________.(把你认为正确命题的序号都填上)解析:①作差可得1a -1b =b -a ab ,而a>b>0,则b -a ab <0,此式错误.②a>b>0,则1a <1b,进而可得-1a >-1b ,所以可得a -1a >b -1b 正确.③2a +b a +2b -a b =b 2a +b -a a +2b a +2b b =b 2-a 2a +2b b =b -a b +a a +2b b<0,错误.④a -b<0时此式不成立,错误. 答案:②一元二次不等式练习:判断下列式子是不是一元二次不等式?(依据是…)(2)03≤+xy (3)(0)3)(2<-+x x (4))1(32->-x x x x 2.如何解一元二次不等式?(1)将不等式化为标准式(等号右边为0,二次项的系数为正) (2)判断△的符号.(3)求方程的根.(4)根据图象写解集.例1:(1)40142>+-x x (2)0322>-+-x x(1)0432>--x x (2)0652<+-x x例2.自变量x 在什么范围取值时,下列函数的值等于0?大于0呢?小于0呢?(1)y=3x 2-6x+2 (2) y=25-x 2例3.求下列函数的定义域 :(1)y=log 2(x 2-3x-4) (2)622--=x x y4.若关于x 的一元二次方程x 2-(m+1)x-m=0有两个不相等的实数根,求m 的取值范围5.已知函数f(x)=213324x x --, 求使函数值大于0的x 的取值范围 4.已知不等式ax 2+bx+6<0的解集是 {x ︳x<-2或x>3 (1)求a,b 的值 (2)求不等式x 2+bx+a>0的解集.例 2 若关于x 的不等式 mx 2-(2m+1)x+m-1≥0 的解集为空集,求m 的取值范围.变式 1:若解集为非空,求m 的取值范围变式2. 若解集为R ,求m 的取值范围不等式的解法---穿根法一.方法:先因式分解,再使用穿根法.注意:因式分解后,整理成每个因式中未知数的系数为正.使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点.②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 x 2-4x+13x 2-7x+2≤1解:(1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图不等式解集为{x ∣x>2或x<-4且x ≠5}. (2)变形为(2x-1)(x-1)(3x-1)(x-2)≥0根据穿根法如图不等式解集为{x |x<1 3 或 1 2≤x ≤1或x>2}. 一、解下列一元二次不等式:1、0652>++x x2、0652≤--x x3、01272<++x x4、0672≥+-x x5、0122<--x x6、0122>-+x x7、01282≥+-x x 8、01242<--x x 9、012532>-+x x 10、0121632>-+x x 11、0123732>+-x x 12、071522≤++x x 13、0121122≥++x x 14、10732>-x x 15、05622<-+-x x 16、02033102≤+-x x 17、0542<+-x x 18、0442>-+-x x 19、2230x x --+≥ 20、0262≤+--x x 21、0532>+-x x22、02732<+-x x 23、0162≤-+x x 24、03442>-+x x 25、061122<++x x 26、041132>+--x x 27、042≤-x28、031452≤-+x x 29、0127122>-+x x 30、0211122≥--x x 31、03282>--x x 32、031082≥-+x x 33、041542<--x x 34、02122>--x x 35、021842>-+x x 36、05842<--x x 37、0121752≤-+x x 38、0611102>--x x 39、038162>--x x 40、038162<-+x x 41、0127102≥--x x 42、02102>-+x x 43、0242942≤--x x 44、0182142>--x x 45、08692>-+x x 46、0316122>-+x x 47、0942<-x 48、0320122>+-x x 49、0142562≤++x x 50、0941202≤+-x x 51、(2)(3)6x x +-< 52、03222<--a ax x 53、0)1(2<--+a x a x221 1 3 1二.填空题1、不等式(1)(12)0x x -->的解集是 ;2.不等式2654x x +<的解集为__________. 3、不等式2310x x -++>的解集是 4、不等式2210x x -+≤的解集是 ; 5、不等式245x x -<的解集是 ; 9、已知集合2{|4}M x x =<,2{|230}N x x x =--<,则集合M N = ; 10、不等式220mx mx +-<的解集为R ,则实数m 的取值范围为 ;11、不等式9)12(2≤-x 的解集为_______ 12、不等式0<x 2+x-2≤4的解集是_________13、若不等式2(2)2(2)40a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是______. 三、典型例题:1、已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围.9.已知一元二次不等式(m -2)x 2+2(m -2)x +4>0的解集为R ,求m 的取值范围2.求函数()2110lg 2+-=x x y 的定义域。

高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题

高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题

第三章章末复习课[整合·网络构建][警示·易错提醒]1.不等式的基本性质不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.2.一元二次不等式的求解方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,共同确定出解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m <x<n.有口诀如下:大于取两边,小于取中间.3.二元一次不等式(组)表示的平面区域(1)二元一次不等式(组)的几何意义:二元一次不等式(组)表示的平面区域.(2)二元一次不等式表示的平面区域的判定:对于任意的二元一次不等式Ax+By+C>0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域.4.求目标函数最优解的两种方法(1)平移直线法.平移法是一种最基本的方法,其基本原理是两平行直线中的一条上任意一点到另一条直线的距离相等;(2)代入检验法.通过平移法可以发现,取得最优解对应的点往往是可行域的顶点,其实这具有必然性.于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.5.运用基本不等式求最值,把握三个条件(易错点) (1)“一正”——各项为正数;(2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.专题一 不等关系与不等式的基本性质1.同向不等式可以相加,异向不等式可以相减;但异向不等式不可以相加,同向不等式不可以相减.(1)若a >b ,c >d ,则a +c >b +d ; (2)若a >b ,c <d ,则a -c >b -a .2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.(1)若a >b >0,c >d >0,则ac >bd ; (2)若a >b >0,0<c <d ,则a c >bd.3.左右同正不等式,两边可以同时乘方或开方:若a >b >0,则a n >b n或n a >nb . 4.若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b.[例1] 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:因为⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )=a 2b -b +b 2a -a = a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭⎪⎫1b -1a =(a 2-b 2)a -b ab =(a -b )2(a +b )ab,因为a >0,b >0,且a ≠b , 所以(a -b )2>0,a +b >0,ab >0,所以⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )>0,即a 2b +b 2a >a +b .归纳升华不等式比较大小的常用方法(1)作差比较法:作差后通过分解因式、配方等手段判断差的符号得出结果. (2)作商比较法:常用于分数指数幂的代数式. (3)乘方转化的方法:常用于根式比较大小. (4)分子分母有理化. (5)利用中间量.[变式训练] (1)已知0<x <2,求函数y =x (8-3x )的最大值; (2)设函数f (x )=x +2x +1,x ∈[0,+∞),求函数f (x )的最小值. 解:(1)因为0<x <2,所以0<3x <6,8-3x >0, 所以y =x (8-3x )=13×3x ·(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时,取等号,所以当x =43时,y =x (8-3x )有最大值为163.(2)f (x )=x +2x +1=(x +1)+2x +1-1,因为x ∈[0,+∞),所以x +1>0,2x +1>0, 所以x +1+2x +1≥2 2. 当且仅当x +1=2x +1, 即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.专题二 一元二次不等式的解法 一元二次不等式的求解流程如下: 一化——化二次项系数为正数.二判——判断对应方程的根. 三求——求对应方程的根. 四画——画出对应函数的图象. 五解集——根据图象写出不等式的解集. [例2] (1)解不等式:-1<x 2+2x -1≤2; (2)解不等式a (x -1)x -2>1(a ≠1).解:(1)原不等式等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0; 由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.将①②的解集在数轴上表示出来,如图所示.求其交集得原不等式的解集为{x |-3≤x <-2或0<x ≤1}.(2)原不等式可化为a (x -1)x -2-1>0,即(a -1)⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0(*), ①当a >1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0,而a -2a -1-2=-a a -1<0,所以a -2a -1<2,此时x >2或x <a -2a -1. ②当a <1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)<0, 而2-a -2a -1=aa -1, 若0<a <1,则a -2a -1>2,此时2<x <a -2a -1; 若a =0,则(x -2)2<0,此时无解; 若a <0,则a -2a -1<2,此时a -2a -1<x <2. 综上所述,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a -2a -1或x >2; 当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <a -2a -1; 当a =0时,不等式的解集为∅; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a -2a -1<x <2.归纳升华含参数的一元二次不等式的分类讨论(1)对二次项系数含有参数的一元二次不等式,要注意对二次项系数是否为零进行讨论,特别当二次项系数为零时需转化为一元一次不等式问题来求解.(2)对含参数的一元二次不等式,在其解的情况不明确的情况下,需要对其判别式分Δ>0,Δ=0,Δ<0三种情况并加以讨论.(3)若含参数的一元二次不等式可以转化成用其根x 1,x 2表示的形如a (x -x 1)(x -x 2)的形式时,往往需要对其根分x 1>x 2、x 1=x 2,x 1<x 2三种情况进行讨论,或用根与系数的关系帮助求解.[变式训练] 定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,某某数a 的取值X 围.解:因为f (x )的定义域为(-1,1),所以⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<1, 所以⎩⎨⎧0<a <2,-2<a <2且a ≠0,所以0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), 所以f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数, 所以1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, 所以a 的取值X 围是(0,1). 专题三 简单的线性规划问题 线性规划问题在实际中的类型主要有:(1)给定一定数量的人力、物力资源,求如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,问怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少. [例3] 某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A ,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:原料 每种产品所需原料/t现有原料数/tAB甲 2 1 14 乙 1 3 18 利润/(万元/t)53____(1)在现有原料条件下,生产A ,B 两种产品各多少时,才能使利润最大?(2)每吨B 产品的利润在什么X 围变化时,原最优解不变?当超出这个X 围时,最优解有何变化?解:(1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14.x +3y ≤18,x ≥0,y ≥0,作出可行域如图所示:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品 245 t ,B 产品 225t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点,则-2≤-5m ≤-13,解得52≤m ≤15.归纳升华解答线性规划应用题的步骤(1)列:设出未知数,列出约束条件,确定目标函数. (2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解. (5)答:作出答案.[变式训练] 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:法一:依题意得,x +1>1,2y +1>1,易知(x +1)·(2y +1)=9,则(x +1)+(2y +1)≥2(x +1)(2y +1)=29=6,当且仅当x +1=2y +1=3,即x =2,y =1时,等号成立,因此有x +2y ≥4,所以x +2y 的最小值为4.法二:由题意得,x =8-2y 2y +1=-(2y +1)+92y +1=-1+92y +1, 所以x +2y =-1+92y +1+2y =-1+92y +1+2y +1-1,≥292y +1·(2y +1)-2=4,当且仅当2y +1=3,即y =1时,等号成立. 答案:B专题四 成立问题(恒成立、恰成立等)[例4] 已知函数f (x )=mx 2-mx -6+m ,若对于m ∈[1,3],f (x )<0恒成立,某某数x 的取值X 围.解:因为mx 2-mx -6+m <0, 所以m (x 2-x +1)-6<0, 对于m ∈[1,3],f (x )<0恒成立⇔⎩⎪⎨⎪⎧1×(x 2-x +1)-6<0,3×(x 2-x +1)-6<0, 即为⎩⎪⎨⎪⎧1-212<x <1+212,1-52<x <1+52,计算得出:1-52<x <1+52.所以实数x 的取值X 围:1-52<x <1+52.归纳升华不等式恒成立求参数X 围问题常见解法(1)变更主元法:根据实际情况的需要确定合适的主元,一般将知道取值X 围的变量看作主元. (2)分离参数法:若f (a )<g (x )恒成立,则f (a )<g (x )min ; 若f (a )>g (x )恒成立,则f (a )>g (x )max . (3)数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化.[变式训练] 已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,某某数a 的取值集合.解:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,所以Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件). 再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,即x 2-(a +4)x +4=0有解,所以Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0. 综上即知a =-8或a =0时,y min =1, 故所某某数a 的取值集合是{-8,0}. 专题五 利用分类讨论思想解不等式 [例5] 解关于x 的不等式x -ax -a 2<0(a ∈R). 分析:首先将不等式转化为整式不等式(x -a )(x -a 2)<0,而方程(x -a )(x -a 2)=0的两根为x 1=a ,x 2=a 2,故应就两根a 和a 2的大小进行分类讨论.解:原不等式等价于(x -a )(x -a 2)<0.(1)若a =0,则a =a 2=0,不等式为x 2<0,解集为∅; (2)若a =1,则a 2=1,不等式为(x -1)2<0,解集为∅; (3)若0<a <1,则a 2<a ,故解集为{x |a 2<x <a }; (4)若a <0或a >1,则a 2>a ,故解集为{x |a <x <a 2}. 归纳升华分类讨论思想解含有字母的不等式时,往往要对其中所含的字母进行适当的分类讨论.分类讨论大致有以下三种:(1)对不等式作等价变换时,正确运用不等式的性质而引起的讨论. (2)对不等式(组)作等价变换时,由相应方程的根的大小比较而引起的讨论. (3)对不等式作等价变换时,由相应函数单调性的可能变化而引起的讨论.[变式训练] 已知奇函数f (x )在区间(-∞,+∞)上单调递减,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试判断f (α)+f (β)+f (γ)的值与0的关系.解:因为f(x)为R上的减函数,且α>-β,β>-γ,γ>-α,所以f(α)<(-β),f(β)<f(-γ),f(γ)<f(-α),又f(x)为奇函数,所以f(-β)=-f(β),f(-α)=-f(α),f(-γ)=-f(γ),所以f(α)+f(β)+f(γ)<f(-β)+f(-γ)+f(-α)=-[f(β)+f(γ)+f(α)],所以f(α)+f(β)+f(γ)<0.。

高级中学必修五第三章不等式专业题材复习资料

高级中学必修五第三章不等式专业题材复习资料

高中数学必修五不等式复习一、不等式与不等关系4.不等式的主要性质: (1)对称性:a b b a <⇔>. (2)传递性:c a c b b a >⇒>>,. (3)加法法则:c b c a b a +>+⇒>; d b c a d c b a +>+⇒>>,. (4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,. bd ac d c b a >⇒>>>>0,0. (5)倒数法则:ba ab b a 110,<⇒>>. (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且. (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且.二、不等式解法1.一元二次不等式及其解法0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根abx x 221-== 无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x xx <<∅ ∅2.分式不等式解法3.简单不等式恒成立问题若不等式()Af>在区间D上恒成立,则等价于在区间D上()minx>f x A若不等式()Bf<在区间D上恒成立,则等价于在区间D上()maxx<f x B三、线性规划(一)二元一次不等式组与平面区域(二)简单线性规划问题四、基本不等式5.利用基本不等式求最值五、典型例题变2.下列结论正确的是 ( ) A .若a b >,则ac bc >B .若a b >,则22a b >C .若a c b c +<+,0c <,则a b >D a b >a b >3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是例2、解下列不等式(1)2230x x --≥ (2)2280x x -++> (3)405x x ->- (4)405x x -≥-(5)112x ≥(6)已知R a ∈,解关于x 的不等式()()01<--x x a .变、若不等式02<--b ax x 的解集为{}32<<x x ,则=+b a变变1. 若21x y +=,则24xy+的最小值是______2.3. 如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________,a+b 的取值范围是_________.例5、1. 积为定值(1)函数1y x x=+ (x >0)的最小值是 . (2)设2a >,12p a a =+-的最大值是 .(3)函数1y x x=+ (x <0)的最小值是 .(4)变、 (1)2232x y x +=+的最小值是 .(2). 2. 和为定值(1),y=x(4-x) 的最大值是 . (2), 的最大值是 .例6、“1”的妙用1.2.已知正数,x y 满足21x y +=,则yx 11+的最小值为______题型四、线性规划问题例7、在不等式326x y +<表示的区域内的点是( )A. (0,2)B. (1,1)C. (1,0)D. (2,0)例8、若实数x,y 满足不等式组330,230,10,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则x+y 的最大值为例9、不等式组0,34,34xx yx y≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域的面积等于( )A.32B.23C.43D.34例10、某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,如何安排甲、乙两车间每天生产计划使得总获利最大?。

必修五第三章不等式知识点+例题+练习+答案

必修五第三章不等式知识点+例题+练习+答案

不等式知识点复习及例题+练习+答案一、不等式与不等关系1、应用不等式(组)表示不等关系; 不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(同向可加) (4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(同向同正可乘)(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式 例题:题型一:不等式的性质1.对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若; ②b a bc ac >>则若,22;③22,0b ab a b a >><<则若; ④ba b a 11,0<<<则若;⑤baa b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0; ⑧11,a b a b>>若,则0,0a b ><。

其中正确的命题是____题型二:比较大小(作差法、函数单调性、中间量比较,基本不等式) 2.设0x y <<,比较22()()x y x y +-与22()()x y x y -+的大小;3.比较1+3log x 与)10(2log 2≠>x x x 且的大小题型三:求范围4.已知31<+<-b a ,42<-<b a ,求b a 32+的取值范围。

整理高中数学必修五第三章不等式复习(知识点与例题)

整理高中数学必修五第三章不等式复习(知识点与例题)

课题一元二次不等式及其解法20 年月日A4打印/ 可编辑1.一元一次不等式与函数关系首先,我们来回忆两个知识点:其一,是对平面直角坐标系的认识同学们看一下坐标图,在x轴上方的y值及x轴下方的y值有什么特点。

其二。

现在我们来看看,2x+4>0的解是什么?请从图上读出它的取值范围:(2)二次函数图像(a>0)与x轴的关系及函数值y的正负性。

当Δ>0时,图像如下:设x1,x2为函数对应方程的两根,即ax2+bx+=0两根,现在我们来看看,当y>0时,对应的x的取值和当y<0时,对应的x的取值。

你们能用一句话来总结一下:“大于零,两根之外,小于零,两根之间”。

现在(a>0)时的一元二次不等式你能求解吗?例:x2+3x+2≥0练习:(1)x2+2x>0;(2)(x+2)2−4x+8≤0;(3)9x2+24x+16<0;(4)x2−15x+56>0;下面我们来看一下Δ=0和Δ<0的情形,其图像如下,你们能说出这时候不等式的解吗?a>0,Δ=0时,函数图像于x轴只有一个交点,这时,除x=−b2a外,其余的都在x轴的上方,所以“大于零,解集为{x|x≠−b2a},小于零无解。

” a>0,Δ<0时,函数图像于x轴没有交点,图像都在x轴的上方,所以“大于或等于零,解集为R,小于零无解。

”到这里为止,我们已经解决a>0时的一元二次不等式的求解方法,那么当a<0时,我们怎么求解呢?例如:−x2+2x>0.这个问题,留给大家在课下去讨论。

下节课请同学们讲解讨论现在,我们来总结一下a>0时解一元二次不等式的一般方法:第一步:a>0,判断Δ第二步:解对应的一元二次方程;为:{x|x≤−2或x≥−1}Δ=0时,大于零,只要求x≠−b2a,小于零无解。

Δ<0时,大于零解集为R,小于零无解。

学生在老师的提示下尝试归纳总结,口述出自己归纳的结论,可以在同学间讨论,彼此补充不足。

高中数学必修5(人教A版)第三章不等式3.2知识点总结含同步练习及答案

高中数学必修5(人教A版)第三章不等式3.2知识点总结含同步练习及答案

(2)因为
为整式不等式
解得 x <
3 或 x > 4,所以原不等式的解集为 2 3 ∣ {x ∣ x < 或x > 4} . ∣ 2
4.高次不等式的解法 描述: 高次不等式的解法 解一元高次不等式一般利用数轴穿根法(或称根轴法)求解,其步骤是: (1)将 f (x) 最高次项系数化为正数; (2)将 f (x) 分解为若干个一次因式的乘积或二次不可分因式的乘积; (3)求出各因式的零点,并在数轴上依次标出; (4)从最右端上方起,自右至左依次通过各根画曲线,遇到奇次重根要一次穿过,遇到偶次重根 要穿而不过; (5)记数轴上方为正,下方为负,根据曲线显现出的 f (x) 的值的符号变化规律,写出不等式 的解集. 例题: 解不等式 (x + 2)(x + 1)2 (x − 1)3 (x − 2) < 0 . 解:不等式中各因式的实数根为 −2,−1,1 ,2 . 利用根轴法,如图所示.
2 )(x − a) ⩽ 0 . a 2 2 ① 当 < a ,即 a > √2 时,原不等式的解集为 {x| ⩽ x ⩽ a}. a a 2 2 ② 当 > a ,即 0 < a < √2 时,原不等式的解集为 {x|a ⩽ x ⩽ }. a a 2 ③ 当 = a ,即 a = √2 时,原不等式的解集为 {x|x = √2 } . a 2 (3)当 a < 0 时,原不等式化为 (x − )(x − a) ⩾ 0 . a 2 2 ① 当 < a ,即 −√2 < a < 0 时,原不等式的解集为 {x|x ⩽ 或x ⩾ a} . a a 2 2 ② 当 > a ,即 a < −√2 时,原不等式的解集为 {x|x ⩽ a或x ⩾ }. a a 2 ③ 当 = a ,即 a = −√2 时,原不等式的解集为 R. a

高中数学必修5__第三章《不等式》复习知识点总结与练习(二)

高中数学必修5__第三章《不等式》复习知识点总结与练习(二)

⾼中数学必修5__第三章《不等式》复习知识点总结与练习(⼆)⾼中数学必修5__第三章《不等式》复习知识点总结与练习(⼆)第三节⼆元⼀次不等式(组)及简单的线性规划问题[知识能否忆起]1.⼆元⼀次不等式(组)表⽰的平⾯区域(1)在平⾯直⾓坐标系中⼆元⼀次不等式(组)表⽰的平⾯区域:不等式表⽰区域Ax+By+C>0 直线Ax+By+C=0某⼀侧的所有点组成的平⾯区域不包括边界直线Ax+By+C≥0包括边界直线不等式组各个不等式所表⽰平⾯区域的公共部分(2)⼆元⼀次不等式表⽰的平⾯区域的确定:⼆元⼀次不等式所表⽰的平⾯区域的确定,⼀般是取不在直线上的点(x0,y0)作为测试点来进⾏判定,满⾜不等式的,则平⾯区域在测试点所在的直线的⼀侧,反之在直线的另⼀侧.2.线性规划中的基本概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的⼀次不等式(或⽅程)组成的不等式(组) ⽬标函数关于x,y的函数解析式,如z=2x+3y等线性⽬标函数关于x,y的⼀次解析式可⾏解满⾜线性约束条件的解(x,y)可⾏域所有可⾏解组成的集合最优解使⽬标函数取得最⼤值或最⼩值的可⾏解线性规划问题在线性约束条件下求线性⽬标函数的最⼤值或最⼩值问题确定⼆元⼀次不等式表⽰的平⾯区域时,经常采⽤“直线定界,特殊点定域”的⽅法.(1)直线定界,即若不等式不含等号,则应把直线画成虚线;若不等式含有等号,把直线画成实线;(2)特殊点定域,即在直线Ax+By+C=0的某⼀侧取⼀个特殊点(x0,y0)作为测试点代⼊不等式检验,若满⾜不等式,则表⽰的就是包括该点的这⼀侧,否则就表⽰直线的另⼀侧.特别地,当C≠0时,常把原点作为测试点;当C=0时,常选点(1,0)或者(0,1)作为测试点.2.最优解问题如果可⾏域是⼀个多边形,那么⽬标函数⼀般在某顶点处取得最⼤值或最⼩值,最优解就是该点的坐标,到底哪个顶点为最优解,只要将⽬标函数的直线平⾏移动,最先通过或最后通过的顶点便是.特别地,当表⽰线性⽬标函数的直线与可⾏域的某条边平⾏时,其最优解可能有⽆数个.⼆元⼀次不等式(组)表⽰平⾯区域典题导⼊x-y≥-2,4x+3y ≤200与不等式组=10-y+x直线2)湖北⾼考2011·(1]例[表⽰的平⾯区域的公共点有( )A.0个B.1个C.2个D.⽆数个[⾃主解答]由不等式组画出平⾯区域如图(阴影部分).,即43=-ABk<2恰过点=10-y+x2直线直线2x+y-10=0与平⾯区域仅有⼀个公共点A(5,0).[答案]B由题悟法⼆元⼀次不等式(组)表⽰平⾯区域的判断⽅法:直线定界,测试点定域.注意:不等式中不等号有⽆等号,⽆等号时直线画成虚线,有等号时直线画成实线.测试点可以选⼀个,也可以选多个,若直线不过原点,测试点常选取原点.以题试法x-y≥0,x+y-2≤0,y≥a若满⾜条件)海淀期中2012·()1.(1的整点(x,y)恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a的值为( )x+y≥0,x-y+4≥0,x≤a不等式组,在平⾯直⾓坐标系中)北京朝阳期末2012·()2(所表⽰的平⾯区域的⾯积是9,则实数a的值为________.解析:(1)不等式组所表⽰的平⾯区域如图中阴影部分,当a=0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a=-1时,正好增加(-1,-1 ),(0,-1),(1,-1),(2,-1),(3,-1)5个整点,故选C. (2)不等式组所表⽰的平⾯区域是如图所⽰的△ABC,且A(-的长为BC,>a,故4≤ABC△S的⾯积ABC≤a,若)a,-a(C,)4+a,a(B,)2,2 1.=a,解得9=)4+a2(·)2+a(12=ABC △S的⾯积,由⾯积公式可得4+a2答案:(1)C (2)1求⽬标函数的最值典题导⼊x-y≥-1,x+y≤3,x≥0,y≥0,满⾜约束条件y,x设)新课标全国卷2012·()1(2]例[则z=x-2y的取值范围为________.x≥0,y≤1,2x -2y +1≤0,满⾜y ,x 已知实数)⼴州调研2012·()2(若⽬标函数z =ax +y (a ≠0)取得最⼩值时的最优解有⽆数个,则实数a 的值为________.[⾃主解答] (1)依题意,画出可⾏域,如图阴影部分所⽰,显然,)0,3(A ;当直线过点3取得最⼩值为-z 时,)2,1(B 过点z2(2)画出平⾯区域所表⽰的图形,如图中的阴影部分所⽰,平移直线ax +y =0,可知当平移到与直线2x -2y +1=0重合,即a =-1时,⽬标函数z =ax +y 的最⼩值有⽆数多个.[答案] (1)[-3,3] (2)-112,1仅在点)0≠a (y +ax =z 条件变为⽬标函数)2(若本例处取得最⼩值,其它条件不变,求a 的取值范围.解:由本例图知,当直线ax +y =0的斜率k =-a >1,即a <-1时,满⾜条件,所求a 的取值范围为(-∞,-1).由题悟法1.求⽬标函数的最值的⼀般步骤为:⼀画⼆移三求.其关键是准确作出可⾏域,理解⽬标函数的意义.2.常见的⽬标函数有: (1)截距型:形如z =ax +by .ab=-y :转化为直线的斜截式by +ax =z 求这类⽬标函数的最值常将函数.的最值z 的最值间接求出zb通过求直线的截距,z b +x.2)b -y +(2)a -x =(z 形如:距离型)2( .y -bx -a=z 形如:斜率型)3( 注意:转化的等价性及⼏何意义.以题试法x +y≥0,x -y≤0,0≤y≤k,满⾜y ,x 其中,y +x 2=z 设)1.(2若z 的最⼤值为6,则k 的值为________;z 的最⼩值为________.)y ,x (M 若点),0,1(A 点,是坐标原点O 已知)2(.|的最⼩值是________+则|,上的⼀个动点解析:(1)在坐标平⾯内画出题中的不等式组表⽰的平⾯区域及直线2x +y =6,结合图形分析可知,要使z =2x +y 的最⼤值是6,直线y =k 必过直线2x +y =6与x -y =0的交点,即必过点(2,2),于是有k =2;平移直线2x +y =6,当平移到经过该平⾯区域内的点(-2,2)时,相应直线在y 轴上的截距达到最⼩,此时z =2x +y 取得最⼩值,最⼩值是z =2×(-2)+2=-2.可错误!=|+|,)y ,1+x (=+依题意得,)2(视为点(x ,y )与点(-1,0)间的距离,在坐标平⾯内画出题中的不等式组表⽰的平⾯区域,结合图形可知,在该平⾯区域内的点中,由点(-1,0)向直线x +y =2引垂线的垂⾜位于该平⾯区域内,且与点(-1,0)的距离最⼩,因此.322=|-1+0-2|2的最⼩值是|+|322)2( 2- 2)1(答案:线性规划的实际应⽤典题导⼊[例3](2012·四川⾼考)某公司⽣产甲、⼄两种桶装产品.已知⽣产甲产品1桶需耗A 原料1千克、B 原料2千克;⽣产⼄产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶⼄产品的利润是400元.公司在⽣产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排⽣产计划,从每天⽣产的甲、⼄两种产品中,公司共可获得的最⼤利润是(B .2 400元C .2 800元D .3 100元 [⾃主解答] 设每天分别⽣产甲产品x 桶,⼄产品y 桶,相应,在坐标平⾯y 400+x 300=zx +2y≤12,2x +y≤12,x≥0,y≥0,元,则z 的利润为内画出该不等式组表⽰的平⾯区域及直线300x +400y =0,平移该直线,当平移到经过该平⾯区域内的点A (4,4)时,相应直线在y 轴上的截距达到最⼤,此时z =300x +400y 取得最⼤值,最⼤值是z =300×4+400×4=2 800,即该公司可获得的最⼤利润是2 800元.[答案] C由题悟法与线性规划有关的应⽤问题,通常涉及最优化问题.如⽤料最省、获利最⼤等,其解题步骤是:①设未知数,确定线性约束条件及⽬标函数;②转化为线性规划模型;③解该线性规划问题,求出最优解;④调整最优解.以题试法3.(2012·南通模如c 及每万吨铁矿⽯的价格b 的排放量2冶炼每万吨铁矿⽯的CO ,a 的含铁率B 和A 矿⽯铁)拟下表:a b (万吨) c (百万元)A 50% 1 3 B70%0.56则购买铁矿⽯),万吨(的排放量不超过22若要求CO ,铁)万吨(某冶炼⼚⾄少要⽣产1.9的最少费⽤为________百万元.解析:可设需购买A 铁矿⽯x 万吨,B 铁矿⽯y 万吨,y≥0,0.5x+0.7y≥1.9,x+0.5y≤2,则根据题意得到约束条件为⽬标函数为z=3x+6y,画出不等式组表⽰的平⾯区域如图所⽰当⽬标函数经过(1,2)点15.=2×6+1×3=minz时⽬标函数取最⼩值,最⼩值为答案:15第四节基本不等式[知识能否忆起]a+b2≤ab⼀、基本不等式.>0b>0,a:基本不等式成⽴的条件时取等号b=a当且仅当:等号成⽴的条件.2⼆、⼏个重要的不等式).同号b,a(2≥ab+ba);R∈b,a(ab2≥2b∈b,a(a2+b22≤2a+b2);R∈b,a(2a+b2≤ab三、算术平均数与⼏何平均数基本不等式可叙述为2的算术平均数为b,a则,>0b,>0a设.两个正数的算术平均数不⼩于它们的⼏何平均数:四、利⽤基本不等式求最值问题已知x>0,y>0,则:)积定和最⼩:简记(.p有最⼩值是2y+x,时yp是定值xy如果积)1()和定积最⼤:简记(.p24有最⼤值是xy,时y=x那么当且仅当,p是定值y+x如果和)2(1.在应⽤基本不等式求最值时,要把握不等式成⽴的三个条件,就是“⼀正——各项均为正;⼆定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.ab ,ab 2≥b +a 对于公式.2.的转化关系b +a 和ab 两个公式也体现了,要弄清它们的作⽤和使⽤条件及内在联系,2 3.运⽤公式解题时,既要掌握公式的正⽤,也要注意公式的逆⽤,例如a 2+b 2≥2ab 逆⽤就是ab ≤a2+b22;a +b 2≥ab (a ,b >0)逆⽤就是ab ≤a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成⽴的条件利⽤基本不等式求最值典题导⼊.的最⼤值为________x +4x+2)=x (f 则,0<x 已知)1( 1]例[ (2)(2012·浙江⾼考)若正数x ,y 满⾜x +3y =5xy ,则3x +4y 的最⼩值是( )245A.285B. C .5D .6 [⾃主解答] (1)∵x <0,∴-x >0,.错误!-2=x +4x+2=)x (f ∴.时等号成⽴2=-x ,即4-x=x ,当且仅当-4=42≥)x -(+4x -∵,2=-4-2≤错误!-2=)x (f ∴∴f (x )的最⼤值为-2.1.=? ??5+135≥? ????3x y +12y x 15+135=?3x y +4+9+12y x 15=? ????1y +3x ·)y 4+x 3(·15=y 4+x 3∴ 5.的最⼩值为y 4+x 3∴,)时取等号y 2=x 当且仅当(5=3x y ·12yx2× [答案] (1)-2 (2)C本例(2)条件不变,求xy 的最⼩值.,x·3y2≥y3+x=xy5,则>y,>x∵解:.时取等号y3=x,当且仅当122525的最⼩值为xy∴由题悟法⽤基本不等式求函数的最值,关键在于将函数变形为两项和或积的形式,然后⽤基本不等式求出最值.在求条件最值时,⼀种⽅法是消元,转化为函数最值;另⼀种⽅法是将要求最值的表达式变形,然后⽤基本不等式将要求最值的表达式放缩为⼀个定值,但⽆论哪种⽅法在⽤基本不等式解题时都必须验证等号成⽴的条件.以题试法.的最⼤值为________2xx2+1)=x(f则,0时>x当)1.(1.的最⼩值为________b9+alog+a2已知log)天津⾼考2011·()2((3)已知x>0,y>0,xy=x+2y,若xy≥m-2恒成⽴,则实数m的最⼤值是________.,1=22≤2x+1x=2xx2+1=)x(f∴,>x∵)1(解析:.时取等号x=x当且仅当,1≥)ab(2log得1≥b2log+a2log由)2(.)时取等号b2=a,即b23当且仅当(a+2b23×2≥b23+a3=b9+a3∴,2≥ab即,)时取等号b2=a当且仅当b2+a∵⼜18.=23×2≥b9+a3∴18.有最⼩值b9+a3时,b2=a即当-m恒成⽴,得-m,于是由8≥xy,得2xy2≥y2+x=xy,>y,>x由)3(2≤8,即m≤10.故m的最⼤值为10.答案:(1)1 (2)18 (3)10基本不等式的实际应⽤典题导⼊[例2] (2012·江苏考)如图,建⽴平⾯直⾓坐标系xOy ,x 轴在地平⾯上,y 轴垂直于地平⾯,单位长度为1千⽶,某炮位于坐标原点.已知炮弹发射后的120-kx =y 轨迹在⽅程炮的射程是指炮弹落地点的横坐标.与发射⽅向有关k 其中,表⽰的曲线上)0>k (2x )2k +1(.(1)求炮的最⼤射程;(2)设在第⼀象限有⼀飞⾏物(忽略其⼤⼩),其飞⾏⾼度为3.2千⽶,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.>k ,0>x ,由实际意义和题设条件知0=2x )2k +1(120-kx ,得0=y 令)1( ]⾃主解答[0,.时取等号1=k ,当且仅当10=202≤20k +1k=20k 1+k2=x 故所以炮的最⼤射程为10千⽶.成⽴2a )2k +1(120-ka =3.2,使0>k 存在?,所以炮弹可击中⽬标0>a 因为)2( 有正根0=64+2a +ak 20-2k 2a 的⽅程k 关于? 0≥)64+2a (2a 4-2)a 20-(=Δ判别式? ?a ≤6.所以当a 不超过6千⽶时,可击中⽬标.由题悟法利⽤基本不等式求解实际应⽤题的⽅法(1)问题的背景是⼈们关⼼的社会热点问题,如“物价、销售、税收、原材料”等,题⽬往往较长,解题时需认真阅读,从中提炼出有⽤信息,建⽴数学模型,转化为数学问题求解.(2)当运⽤基本不等式求最值时,若等号成⽴的⾃变量不在定义域内时,就不能使⽤基本不等式求解,此时可根据变量的范围⽤对应函数的单调性求解.以题试法2.(2012·福州质检)某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提⾼1元,销售量将相应减少2000件,要使销售的总收⼊不低于原收⼊,该商品每件定价最多为多少元?(2)为了扩⼤该商品的影响⼒,提⾼年销售量.公司决定明年对该商品进⾏全⾯技术⾰16公司拟投⼊.元x 并提⾼定价到,新和营销策略改⾰15,投⼊50万元作为固定宣传费⽤,万元作为技改费⽤)600-2x (x 万元作为浮动宣传费⽤.试问:当该商品明年的销售量a ⾄少应达到多少万件时,才可能使明年的销售收⼊不低于原收⼊与总投⼊之和?并求出此时每件商品的定价.解:(1)设每件定价为t 元,,8×25≥t ? ??8-t -251×0.2依题意,有 40.≤t ≤25,解得0≤000 1+t 65-2t 整理得因此要使销售的总收⼊不低于原收⼊,每件定价最多为40元.(2)依题意,x >25时,有解,x 15+)600-2x (16+50+8×25≥ax 不等式.有解15+x 16+150x ≥a 时,25>x 等价于 10.2.≥a ∴,)时,等号成⽴30=x 当且仅当(10=150x ·16x2≥x 16+150x ∵因此当该商品明年的销售量a ⾄少应达到10.2万件时,才可能使明年的销售收⼊不低于原收⼊与总投⼊之和,此时该商品的每件定价为30元.练习题[⼩题能否全取]1.(教材习题改编)如图所⽰的平⾯区域(阴影部分),⽤不等式表⽰为( )A .2x -y -3<0B .2x -y -3>0C .2x -y -3≤0D .2x -y -3≥0 解:选B将原点(0,0)代⼊2x -y -3得2×0-0-3=-3<0,所以不等式为2x -y -3>0.x≥1,y≤2,x -y≤0,满⾜y 、x 已知实数)教材习题改编(.2则此不等式组表⽰的平⾯区域的⾯积是( )12A. 14B.1.C18D. .12=1×1×12=△S ∴作出可⾏域为如图所⽰的三⾓形, A 选解析: )(的最⼩值是y -x =z 则x≥0,x +2y≥3,2x +y≤3满⾜约束条件y ,x 若)安徽⾼考2012·(.3 A .-3B .0 32C.3.D 解析:选Ax≥0,x +2y≥3,2x +y≤3得可⾏域如图中阴影部分所⽰,根据z =x -y 得y =x -z ,平移直线y =x ,当其经过点(0,3)时取得最⼩值-3.4.写出能表⽰图中阴影部分的⼆元⼀次不等式组是__________.x≤0,0≤y≤1,2x -y +2≥0.由可⾏域知不等式组为解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一对一个性化辅导教案题型1:简单的高次不等式的解法例1:解下列不等式(1)340x x ->; (2)22(1)(56)0x x x --+<; (3)221021x x x +-≥+练习: 解不等式(1)232532≥-+-x x x ; (2)0)4)(23()7()12(632>----x x x x题型2:简单的无理不等式的解法例1:解下列不等式 (1)21x -> (2)2x +<题型3:指数、对数不等式例1:若2log 13a<,则a 的取值范围是( ) A .1a > B .320<<aC .132<<aD .320<<a 或1a >练习: 1、不等式2x x 432>-的解集是_____________。

2、不等式12log (2)0x +≥的解集是_____________。

3、设()f x = 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式()2f x >的解集为( ) A .(1,2)(3,)⋃+∞ B.)+∞C.(1,2))⋃+∞ D .(1,2)题型4:不等式恒成立问题例1:若关于x 的不等式2122x x mx -+>的解集是{|02}x x <<,则m 的值是_____________。

练习:一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( )A .10B . 10- C. 14 D .14-例2:已知不等式2(1)0x a x a -++<,(1)若不等式的解集为(1,3),则实数a 的值是_____________。

(2)若不等式在(1,3)上有解,则实数a 的取值范围是_____________。

(3)若不等式在(1,3)上恒成立,则实数a 的取值范围是_____________。

例3:若一元二次不等式042≤+-a x ax 的解集是R 则a 的取值范围是_____________。

练习:已知关于x 的不等式()()012422≥-++-x a x a 的解集为空集,求a 的取值范围。

已知关于x 的一元二次不等式ax 2+(a-1)x+a-1<0的解集为R ,求a 的取值范围. 若函数f(x)=)8(62++-k kx kx 的定义域为R ,求实数k 的取值范围. 解关于x 的不等式:x 2-(2m+1)x+m 2+m<0. 例12 解关于x 的不等式:x 2+(1-a)x-a<0.线性规划例题选讲:题型1:区域判断问题例1:已知点00(,)P x y 和点A (1,2)在直线0823:=-+y x l 的异侧,则( ) A .02300>+y x B .<+0023y x 0C .82300<+y xD .82300>+y x练习:1、已知点(1,2)P -及其关于原点的对称点均在不等式012>+-by x 表示的平面区域内,则b 的取值范围是__________。

2、原点和点(1,1)在直线0x y a +-=的两侧,则a 的取值范围_________。

题型3:画区域求最值问题若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,(1)求2x y +的最大值; (2)求x y -的最小值; (3)求11y x ++的取值范围; (4)求2y x -的取值范围; (5)求22x y +的最大值; (6的最小值。

题型4:无穷最优解问题2)例1:已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≥⎨⎪≤⎩,使ay x z +=(0a >)取得最小值的最优解有无数个,则a 的值为( )A 、3-B 、3C 、1D 、1练习:给出平面区域(包括边界)如图所示,若使目标函数(0)z ax y a =+>取得最大多个,则a 的值为( ) ()A 14()B 35 ()C 4 ()D 53题型5:整点解问题例1:强食品安全管理,某市质监局拟招聘专业技术人员x 名,行政管理人员y 名,若x 、y 满足4y xy x ≤⎧⎨≤-+⎩,33z x y =+的最大值为( ) A .4B .12C .18D .24练习:1、某所学校计划招聘男教师x 名,女教师y 名, x 和y 须满足约束条件25,2,6.x y x y x -≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师人数最多是( )A .6B .8C .10D .122、满足2x y +≤的点(,)x y 中整点(横纵坐标都是整数)有( )A 、9个B 、10个C 、13个D 、14个题型6:线性规划中的参数问题例1:已知0a >,,x y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .14B .12C .1D .2练习:1、设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点00(,)P x y ,满足0022x y -=,求得m 的取值范围是( )A .4,3⎛⎫-∞ ⎪⎝⎭B .1,3⎛⎫-∞ ⎪⎝⎭C .2,3⎛⎫-∞- ⎪⎝⎭D .5,3⎛⎫-∞- ⎪⎝⎭2、设不等式组0,02036x y x y x y -+-⎧⎪-+⎨⎪⎩≤≥≥,表示的平面区域为D ,若直线20kx y k -+=上存在区域D 上的点,则k 的取值范围是________。

线性规划问题的推广-----利用几何意义解决最值问题解题思路:1、找出各方程、代数式的几何意义;2、找出参数的几何意义;3、画图求解。

例1:若直线1y kx =-()k R ∈与圆22(1)1x y +-=有公共点,则k 的取值范围是___________。

练习:1、点(,)P x y 在圆22:(2)3C x y -+=上,则yx的最大值为_______。

2、已知点)4,1(A ,)1,3(B ,点),(y x P 在线段AB 上,则1+x y的取值范围为________。

例2:若直线20x y b -+=与圆5)2()1(22=++-y x 有公共点,则b 的取值范围为_______。

练习:1、已知x ,y 满足22240x y x y +-+=,则2x y -的取值范围是__________。

2、若60125=+y x ,则22)1(y x ++的最小值为________。

3、已知点),(y x P 为圆2)1()1(:22=++-y x C 上任意一点,则22)1()1(-++y x 的取值范围为____。

线性规划作业1、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是_______。

2、已知点(,)P x y 的坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,点O 为坐标原点,那么||PO 的最小值等于_______,最大值等于_____。

3、设x 、y 满足的约束条件⎪⎩⎪⎨⎧≤+≥≥12340y x x y x ,则132+-x y 的最大值为_______。

4、设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为______。

5、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z x ay =-(0a >)取得最小值的最优解有无数个,则a 的值为( )A 、3-B 、3C 、1-D 、16、若实数,x y 满足2045x y x y +-≥⎧⎪≤⎨⎪≤⎩则s y x =-的最小值为____________。

7、已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=m ( ) A. 2- B. 1- C. 1 D. 48、设不等式组0,02036x y x y x y -+-⎧⎪-+⎨⎪⎩≤≥≥,表示的平面区域为D ,若直线0kx y k -+=上存在区域D 上的点,则k 的取值范围是____________。

基本不等式22111111nnn na a a a n a nna a ++++≤≤≤++例题选讲:题型1:基本不等式应用条件的判断例1: 已知a,b R ∈,下列不等式中不正确的是( ) (A )2ab b a 22≥+ (B )ab 2b a ≥+ (C )4a 4a 2≥+ (D )4b b422≥+练习:在下列函数中最小值为2的函数是( )()A 1y x x=+()B 33x xy -=+ ()C 1lg (110)lg y xx x =+<< ()D 1sin (0)sin 2y x x x π=+<<题型2:+≥a b例1:若0x >,则2x x+的最小值为 。

练习:若0x >,求123y x x=+的最小值。

例2:当x 时21>,求128-+x x 的最小值及对应的x 的值. 练习:若3x >,求13y x x =+-的最小值。

例3:设x 、y 为正数, 则14()()x y xy++的最小值为( ) A. 6 B.9 C.12 D.15例4:当x>1时,不等式11x a x +≥-恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞)D .(-∞,3]例5:函数)0(4)(≠+=x xx x f 的值域是_____________。

题型3:2a b ab 2⎛⎫+≤ ⎪⎝⎭的应用例1:若01x <<,求(1)y x x =-的最大值。

练习: 1、若102x <<,求(12)y x x =-的最大值为________。

2、若0x >,则y x =________。

题型4:构造基本不等式解决最值问题例1:求函数221()x x f x x-+=(0x >)的值域。

练习: 1、2()24=-+xf x x x (0x >)的值域是________。

2、)1(11072->+++=x x x x y 的最小值为_________。

(分离法、换元法)根式判别法把函数转化成关于x 的二次方程()0,=y x F ,通过方程有实根,判别式0 ∆,从而求得原函数的值域.对于形如,g fx ex cbx ax y ++++=22其定义域为R ,且分子分母没有公因式的函数常用此法。

相关文档
最新文档