电路理论基础第四版孙立山陈希有主编第7章习题答案详解
电路理论教程答案陈希有
![电路理论教程答案陈希有](https://img.taocdn.com/s3/m/fb5771de941ea76e58fa04d1.png)
电路理论教程答案陈希有【篇一:《电路理论基础》(第三版陈希有)习题答案第一章】电路电流的参考方向是从a指向b。
当时间t2s时电流从a流向b,与参考方向相同,电流为正值;当t2s时电流从b流向a,与参考方向相反,电流为负值。
所以电流i的数学表达式为2a t?2s? i??-3at?2s ?答案1.2解:当t?0时u(0)?(5?9e0)v??4v0其真实极性与参考方向相反,即b为高电位端,a为低电位端;当t??时u(?)?(5?9e??)v?5v0其真实极性与参考方向相同,即a为高电位端,b为低电位端。
答案1.3解:(a)元件a电压和电流为关联参考方向。
元件a消耗的功率为pa?uaia则ua?pa10w??5v ia2a真实方向与参考方向相同。
(b) 元件b电压和电流为关联参考方向。
元件b消耗的功率为pb?ubib则ib?pb?10w1a ub10v真实方向与参考方向相反。
(c) 元件c电压和电流为非关联参考方向。
元件c发出的功率为pc?ucic则uc?pc?10w10v ic1a真实方向与参考方向相反。
答案1.4解:对节点列kcl方程节点③: i4?2a?3a?0,得i4?2a?3a=5a节点④: ?i3?i4?8a?0,得i3??i4?8a?3a节点①: ?i2?i3?1a?0,得i2?i3?1a?4a节点⑤: ?i1?i2?3a?8a?0,得i1?i2?3a?8a??1a若只求i2,可做闭合面如图(b)所示,对其列kcl方程,得 i28a-3a+1a-2a0解得i2?8a?3a?1a?2a?4a答案1.5解:如下图所示(1)由kcl方程得节点①:i1??2a?1a??3a节点②:i4?i1?1a??2a节点③:i3?i4?1a??1a节点④:i2??1a?i3?0若已知电流减少一个,不能求出全部未知电流。
(2)由kvl方程得回路l1:u14?u12?u23?u34?19v回路l2:u15?u14?u45?19v-7v=12v回路l3:u52?u51?u12??12v+5v=-7v回路l4:u53?u54?u43?7v?8v??1v若已知支路电压减少一个,不能求出全部未知电压。
电路理论基础(陈希有)习题解答10-14
![电路理论基础(陈希有)习题解答10-14](https://img.taocdn.com/s3/m/1a24dc83d4d8d15abe234e2c.png)
uC (0 ) uC (0 ) 24V iL (0 ) iL (0 ) 2A
由 KVL 得开关电压:
6
6 3
Ri
u(0 ) uC (0 ) 8 iL (0 ) (24 8 2)V 8V
(b)
答案 10.3 解: t 0 时电容处于开路, i 0 ,受控源源电压 4i 0 ,所以 等 效 电 阻
由换路定律得:
t0
4 4
时 电 感 处 于 短 路 , 故
Ri
(b)
8
3 i L (0 ) 9A 3A ,由换路定律得: 63 iL (0 ) iL (0 ) 3A
求等效电阻的电路如图(b)所示。 ,
等效电阻
Ri (4 // 4) // 8 1.6
时间常数
求稳态值的电路如图(b)所示。 i ( ) 2 2 10V 3 3 4 Ri iL ( ) 4 2 2
(b) (c)
(b)
Ri (
时间常数
6 3 3 1.5 )k 3k 6 3 3 1.5
3 6 3
答案 10.13
解:当 t 0 , r 列 KVL 方程得:
-1-
答案 10.1
解: t
0 时,电容处于开路,故 uC (0 ) 10mA 2k 20V
t 0 时,求等效电阻的电路如图(b)所示。
i 6 3 4i
iL (t ) iL (0 )e t / 3e 2t A (t 0)
电感电压
由换路定律得:
u1 (t ) L
由换路定律得
L / Ri 0.5s
由三要素公式得: 解 得 A 答案 10.9 解:当 t 原始值
电路理论基础第四版 孙立山 陈希有主编 第7章习题答案详解
![电路理论基础第四版 孙立山 陈希有主编 第7章习题答案详解](https://img.taocdn.com/s3/m/02a1e6c858f5f61fb736665f.png)
《电路理论基础》习题7答案答案7.1解:由阻抗并联等效公式得:Ω+=+=---33636310j 110)10j /(110)10j /(10)j (ωωωωZ 阻抗模及幅角分别为:233)10(110)j (ωω-+=Z ,)10arctan()(3ωωθ--=令2/1)j (c=ωZ 求得截止角频率rad/s 103c=ω,故通带及阻带分别为: 通带=ω0~rad/s 103,阻带=ωrad/s 103~∞。
幅频特性和相频特性如图(b)和(c)所示。
1234O(b)|)j (|ωZ 10.7(c)1234O)(ωθο45-ο90-c/ωωc/ωω答案7.2解: RC 并联的等效阻抗RC RC R C R Z RCωωωj 1j /1j /+=+= RCRC Z L Z U U H +==ωωj /)j (12&& RL LC RC L R R /j 11)j 1(j 2ωωωω+-=++= 幅频特性222)/()1(1)j (R L LC H ωωω+-=当0→ω时, 1)j (=ωH ;当∞→ω时,0)j (=ωH所以它具有低通特性。
答案7.3解:设1111111j j 1//C R R R C R Z ωω+==, 2222222j j 1//C R R R C R Z ωω+== 由分压公式得:12122U Z Z Z U &&+= )j 1()j 1()j 1()j (11222111212C R R C R R C R R U U H ωωωω++++==&& 当R 1C 1=R 2C 2时,得212)j (R R R H +=ω,此网络函数模及辐角均不与频率无关。
答案7.4解:因为电路处于谐振状态,故电感与电容串联电路相当于短路,因此有50S12121==+I U R R R R Ω代以Ω=1001R ,解得Ω=1002R 又因为电路处于谐振状态 , 所以 Ω==100C L X X 故有V 5021S12=⨯+==L L L X R R I R X I U 答案7.5解:(1)根据题意,电路发生谐振时,存在下列关系:⎪⎩⎪⎨⎧======V10A1/rad/s 10/14LI U R U I LC L ωω 解得 ⎪⎩⎪⎨⎧==Ω=F 10mH 11.0μC L R 品质因数 1001.010===U U Q L(2)V 9010V 901001)(j ︒-∠=︒-∠⨯︒∠==C I U Cω&& 即有V )90cos(210︒-=t u Cω 答案9.9解:由串联谐振规律得:⎪⎪⎩⎪⎪⎨⎧===∆==Ω=RL Q Q LC R /rad/s 100/rad/s 10/1100030ωωωω 解得 ⎪⎩⎪⎨⎧==Ω=1μμC H 1100L R答案7.6解:(1)F 10034.132.0)8752(117220-⨯=⨯⨯==πωL C Qωω=∆ , 5.3250/875/0==∆=ωωQ R L Q /0ω=, Ω=⨯⨯==65.5025.3/32.08752/0πωQ L R 谐振频率为Hz 759)14121(021c ≈⨯++-=f Q Q f Hz 1009)14121(02c2≈⨯++=f QQ f(2) 谐振时电路的平均功率为:W 071.165.502)65.502/2.23(2200=⨯==R I P 在截止频率处,电流下降至谐振电流0I 的2/1,故功率减小到0P 的一半,所以当Hz 759=f 和Hz 1009=f 时,电路平均功率均为W 535.02/0==P P (3)V 2.812.235.3=⨯===QU U U CL 答案7.7解:由谐振时阻抗为Ω310得 Ω=1000RRLC 并联电路带宽:Q/0ωω=∆(参考题9.16) 由带宽与谐振角频率及品质因数的关系得:10/0=∆=ωωQ RLC 并联电路的品质因数为10/0==G C Q ω 由上式求得:μF10)10001000/(10/100=⨯==ωG C 由C L 00/1ωω=得 H1.0H )1010/(1/15620=⨯==-C L ω答案7.8略 答案7.9解:当两线圈顺接时,等效电感H 05.0221=++=M L L L 谐振角频率s rad 10102005.011361=⨯⨯==-LC ω 取V06︒∠=U &,则谐振时的电流 A 04.0A 1050621︒∠=+︒∠=+=R R U I && 由互感的元件方程得: j124(0.4]V j100.4j20)10[(j )j (j8)V 2(0.4]V j100.4j10)5[(j )j (1212211111+=⨯+⨯+=++=+=⨯+⨯+=++=I M I L R U I M I L R U &&&&&&ωωωω两线圈电压的有效值分别为V 24.882221=+=U ,V 65.12124222=+=U 当两线圈反接时,等效电感H 01.0221'=-+=M L L L 谐振角频率rad/s 10236.2102001.01362⨯=⨯⨯=-ω j8.94(0.4A j22.36)10(j )j (2V A 4.05j )j (2222221211+=⨯Ω+=-+==⨯Ω=-+=I M I L R U I M I L R U &&&&&&ωωωω此时两线圈电压的有效值分别为V 21=U ,V 8.995.84222=+=U 答案7.10略答案7.11图示电路,V )cos(22S t u ω=,角频率rad/s 100=ω,Ω=1R ,F 1021-=C ,F 105.022-⨯=C 。
电路分析基础第四版课后习题答案
![电路分析基础第四版课后习题答案](https://img.taocdn.com/s3/m/3f18e1ff360cba1aa811da91.png)
i = = 0.5A, i 2 = =1A 第一章部分习题及解答1-20 电路如图题 1-15 所示,试求电流源电压 u 和电压源电流 i ; u x , i x 。
i+ u2Rb解:在图中标上节点号,以 c 为参考点,则u a = ( 2 ⋅ 6)V = 12V u b = (3⋅15)V = 45V u x = u a u b + 37V = 20V i = (15 8)A = 7A i x = (7 6)A = 1A x b 1-23+解:在图中标出各支路电流,可得(1 2)V (1 2)V 2∧ 1∧受控源提供电流 = 2i = 1Ap 2∧ = i 2 ⋅ 2 = 0.5Wp 1∧ = i 22 ⋅1 = 1Wp 1V = i 1 ⋅1 = (i + i 2 ) ⋅1 = 1.5W (吸收)p 2V = i 3 ⋅ 2 = ( i i 2 2i ) ⋅ 2 = 5W (提供5W ) p 受控源 = 2i ⋅ 2 = 2W (吸收)吸收的总功率 = (0.5 + 1 + 1.5 + 2) = 5W1-24 解电路如图题所示,u s = 19.5V, u 1 = 1V ,试求R标出节点编号和电流方向。
ai +3∧u∧b+ui2∧4∧i+10ucRiiei1 =u11= 1A, u bc = u1 10u1 = 9Vu bc2u ab = i s ⋅ 3 = 10.5Vu ce = u cb + u ba + u s = (9 + 10.5 19.5) = 0V为确定R,需计算i4,u ce = u cd + u de = 0 ® u de = u cd = 10u1 = 10V故1-33 试用支路电流法求解图题所示电路中的支路电流i1, i2 , i3。
a 1∧ci+6Vb解求解三个未知量需要三个独立方程。
由KCL可得其中之一,即i1 + i2 + i3 = 5对不含电流源的两个网孔,列写KVL方程,得网孔badb网孔bdacb2i1 3i2 + 8 = 08 + 3i2 i3 + 6 = 0i 2 = = 4.5A, i s = i 1 + i 2 = 3.5Ai 3 = = 2.5A, i 4 = i s i 3 = ( 3.5 + 2.5)A = 1A整理得: ♦ 2i 1 2 = 8+ 3i ® ♦i 2 = 2A♥♥♣i 1 + i 2 + i 3 = 5 ♣i 1 = 1A ♠ ♠♠3i 2 i 3 = 2 ♠i 3 = 4A♦ i1 + 8i2 3i3 = 9 ® ♦i2 = 1A♥i3 = 1A® ♦♠(R +R)i M2 R1i M 1 R2i M 3 =u ♠♠♠==0♣i M 1 = 24 u® ♦(3 + 4)i M 3 = u ® ♦ ♥i M 3 i M 1 = 8♥ 第二章部分习题及解答2-1试用网孔电流法求图题所示电路中的电流i和电压u ab。
电路理论基础课后习题答案 陈希有主编 第七章
![电路理论基础课后习题答案 陈希有主编 第七章](https://img.taocdn.com/s3/m/616ab11fa76e58fafab00396.png)
答案7.1解:设星形联接电源电路如图(a)所示,对称星形联接的三相电源线电压有效值30︒。
即AB 3030)V=538.67cos()V u t t ωω=-︒+︒BC 538.67cos(120)V u t ω=-︒ C A 538.67cos(240)Vu t ω=-︒各相电压和线电压的相量图可表达如图(b)所示。
ABCN(a) U (b)C U -答案7.2解:题给三个相电压虽相位彼此相差120 ,但幅值不同,属于非对称三相电压,须按KVL 计算线电压。
设AN 127V U = BN 127240V =(-63.5-j110)V U =∠︒ C N135120V =(-67.5+j116.9)V U =∠︒ 则A B A N BN BC BN C N C A C N A N(190.5j110)V 22030V (4j226.9)V 226.989V (194.5j116.9)V 226.9149V U U U U U U U U U =-=+=∠︒=-=-=∠-︒=-=-+=∠︒即线电压有效值分别为220V ,226.9V ,226.9V 。
答案7.3设负载线电流分别为A B C i i i 、、,由KCL 可得A B C 0I I I = ++。
又A B C 10A I I I ===,则A B C i i i 、、的相位彼此相差120︒,符合电流对称条件,即线电流是对称的。
但相电流不一定对称。
例如,若在三角形负载回路内存在环流0I (例如,按三角形联接的三相变压器),则负载相电流不再对称,因为0CA CA 0BC BC 0AB AB ',','I I I I I I I I I +=+=+= 不满足对称条件。
而该环流对线电流却无影响,因为每个线电流都是两个相电流之差(如图题7.3),即BCCA BC CA C AB BC AB BC B CA AB CA AB A '','',''I I I I I I I I I I I I I I I -=-=-=-=-=-=AB C图 题7.3如已知负载对称,则相电流也是对称的,每相电流为77.53/10≈A 。
电路理论基础(陈希有主编)第七章ppt
![电路理论基础(陈希有主编)第七章ppt](https://img.taocdn.com/s3/m/8d2bebf7f705cc1754270907.png)
UB (b)
B
Z'
ZC
A'
ZA
N'
C'
ZC
ZB
B'
C'
Y'
ZB
X' B'
(a)
(b)
7.2 星形联接和三角形联接
3. 三相电路的联结 四种连接方式: , , Y, 有四种方式 (1)Y-Y联接
A . UC
+. UA -
A
+. UA -
. IA . IN
.中线(零线) IA A' A'
30°
30°
U CN
N'
C
N U BN
B
IC
C'
ZC
B'
IB
UA
① 线电流等于相电流: I l I P ② 线电压与相电压关系:
U AB U A U B 3U A 30 U BC U B U C 3U B 30 U CA U C U A 3U C 30
例题7.1:确定下列电源相序。
uA 200 cos( t 10 ) uB 200 cos( t 230 )
UB
UA
uC 200 cos( t 110 )
UC
由于uA超前uC角度120o, uC超前uB角度120o.
所以三相电源相位的次序ACB为负序。
7.1 三相制和多相制
如 (习惯取先行相指向后续相) U AB、U BC、U CA
(习惯取电源指向负载) I AA'、I BB'、I CC'
《电工技术(第4版)》习题答案 第7章 交流电动机习题
![《电工技术(第4版)》习题答案 第7章 交流电动机习题](https://img.taocdn.com/s3/m/f3cf4941b42acfc789eb172ded630b1c59ee9b1b.png)
思考与习题一、填空题1.三相异步电动机按转子结构的不同可分为 和 异步电动机两大类。
2.异步电动机的两个基本组成部分: 和 。
3.异步电动机的定子由 、 和 等部分组成。
4.异步电动机的转子由 、 和 等部件组成。
5.合成磁势的旋转速度,仅决定于定子电流的 和 。
6. 与 之比,称为异步电动机的转差率。
7.电磁转矩是 与 的主磁通相互作用而产生的。
8.随着 的增加, 略有下降,所以异步电动机具有硬的机械特性。
9.异步电动机中的损耗可分为 和 两部分。
10. 、 的铜耗和附加损耗随负载而变,称为可变损耗。
11.三相异步电动机的启动性能主要是指 和 。
12.直接启动就是利用 或 把电动机直接接到电网上启动。
13.异步电动机的降压启动有 、 、 、 四种。
14.星形-三角形降压启动靠改变 的接法来降低电压。
15.三相绕组式异步电动机的启动有 、 。
16.三相异步电动机的调速方法有 、 、 三种调速。
17.变极调速方法的优点是 、 、 。
18.变频调速方法可以得到 、 和 的机械特性。
19.异步电动机的制动状态有 、 和 3种。
20.异步电动机的 与 的方向相反时,电动机即进入反接制动状态。
二、选择题1.经常启动的电动机直接启动时引起的电压降不的超过( )。
A 5%B 10%C 15%D 20%2.星形-三角形降压启动的电压只有直接启动电压的( )。
A 1/3B 1/2C 31D 33.三相异步电动机的转差率计算公式是______。
(0n :旋转磁场的转速,n :转子转速)A .00/)(n n n s −=B .n n n s /)(0+=C .)/(00n n n s −=D .)/(0n n n s += 4.三相异步电动机的转速越高,则其转差率绝对值越______。
A .小B .大C .不变D .不一定5.三相对称电流电加在三相异步电动机的定子端,将会产生______。
A .静止磁场B .脉动磁场C .旋转圆形磁场D .旋转椭圆形磁场6.一般三相异步电动机在起动瞬间的转差率______,在空载时的转差率______,在额定负载时的转差率为______。
电路理论基础第四版孙立山陈希有主编答案
![电路理论基础第四版孙立山陈希有主编答案](https://img.taocdn.com/s3/m/0dc458cca1116c175f0e7cd184254b35eefd1a31.png)
电路理论基础第四版孙立山陈希有主编答案1. 引言《电路理论基础(第四版)》是一本系统介绍电路基本理论和基本分析方法的教材。
本文档是《电路理论基础(第四版)》的答案,提供了教材中习题的解答。
通过这些答案,学生可以检验自己对电路理论的理解,巩固知识点,提高解题能力。
2. 电路理论基础答案2.1 第一章网孔法和节点法的基本概念2.1.1 习题1-1a)略b)略c)略…2.2 第二章电阻网络的基本性质2.2.1 习题2-1a)略b)略c)略…2.3 第三章基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)2.3.1 习题3-1a)略b)略c)略…2.4 第四章电流和电压的计算2.4.1 习题4-1a)略b)略c)略…2.5 第五章电阻串联与并联的简化2.5.1 习题5-1a)略b)略c)略…2.6 第六章电流分压和电压分流2.6.1 习题6-1a)略b)略c)略…2.7 第七章网格分析法2.7.1 习题7-1a)略b)略c)略…2.8 第八章直流电路的戴维南定理2.8.1 习题8-1a)略b)略c)略…2.9 第九章交流电路频率特性2.9.1 习题9-1a)略b)略c)略…2.10 第十章交流电阻、电感和电容的阻抗2.10.1 习题10-1a)略b)略c)略…2.11 第十一章交流电路的功率2.11.1 习题11-1a)略b)略c)略…2.12 第十二章交流电路分析方法2.12.1 习题12-1a)略b)略c)略…3. 结语本文档提供了《电路理论基础(第四版)》的答案,涵盖教材中的习题。
通过阅读答案,学生可以巩固和检验自己的理论知识和解题能力。
希望本答案对学生学习电路理论有所帮助。
电路理论基础(陈希有)课后题答案
![电路理论基础(陈希有)课后题答案](https://img.taocdn.com/s3/m/5574b741767f5acfa1c7cd77.png)
答案13.1解: (1)、(4)是割集,符合割集定义。
(2)、(3)不是割集,去掉该支路集合,将电路分成了孤立的三部分。
(5)不是割集,去掉该支路集合,所剩线图仍连通。
(6)不是割集,不是将图分割成两孤立部分的最少支路集合。
因为加上支路7,该图仍为孤立的两部分。
答案13.2解:选1、2、3为树支,基本回路的支路集合为 {1,3,4},{2,3,5},{1,2,6}; 基本割集的支路集合为 {1,4,6},{2,5,6},{3,4,5}。
答案13.3 解:(1) 由公式l t I B I T t =,已知连支电流,可求得树支电流A 1595111011010654321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡i i i i i i (2) 由公式t t U B U -=l ,已知树支电压,可求得连支电压V 321321100111110654⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡u u u (3) 由矩阵B 画出各基本回路,如图(a)~(c)所示。
将各基本回路综合在一起得题中所求线图,如图13.3(d)所示。
(a)(b)(c)(d)答案13.4解:连支电流是一组独立变量,若已知连支电流,便可求出全部支路电流。
因此除将图中已知电流支路作为连支外,还需将支路3或4作为连支。
即补充支路3或4的电流。
若补充3i ,则得A 11=i ,A 22-=i ,34A 3-i i -=;若补充4i ,则得A 11=i ,A 22-=i ,43A 3-i i -=答案13.5解:树支电压是一组独立变量,若已知树支电压,便可求出全部支路电压。
除将图中已知支路电压作为树支外,还需在支路1、2、3、4、5中任选一条支路作为树支。
即在1u 、2u 、3u 、4u 、5u 中任意给定一个电压便可求出全部未知支路电压。
电路理论基础习题答案
![电路理论基础习题答案](https://img.taocdn.com/s3/m/6aa60d3180eb6294dc886c93.png)
电路理论基础习题答案第一章1-1. (a)、(b)吸收10W ;(c)、(d)发出10W. 1-2. –1A; –10V; –1A; – 4mW.1-3. –0.5A; –6V; –15e –t V; 1.75cos2t A; 3Ω; 1.8cos 22t W.1-4. u =104 i ; u = -104 i ; u =2000i ; u = -104 i ; 1-5.1-6. 0.1A. 1-7.1-8. 2F; 4C; 0; 4J. 1-9. 9.6V,0.192W, 1.152mJ; 16V , 0, 3.2mJ.1-10. 1– e -106t A , t >0 取s .1-11. 3H, 6(1– t )2 J; 3mH, 6(1–1000 t ) 2 mJ;1-12. 0.4F, 0 .1-13. 供12W; 吸40W;吸2W; (2V)供26W, (5A)吸10W. 1-14. –40V , –1mA; –50V, –1mA; 50V , 1mA. 1-15. 0.5A,1W; 2A,4W; –1A, –2W; 1A,2W. 1-16. 10V ,50W;50V ,250W;–3V ,–15W;2V ,10W. 1-17. (a)2V;R 耗4/3W;U S : –2/3W, I S : 2W; (b) –3V; R 耗3W; U S : –2W, I S :5W; (c)2V ,–3V; R 耗4W;3W;U S :2W, I S :5W; 1-18. 24V , 发72W; 3A, 吸15W;24V 电压源; 3A ↓电流源或5/3Ω电阻. 1-19. 0,U S /R L ,U S ;U S /R 1 ,U S /R 1 , –U S R f /R 1 . 1-20. 6A, 4A, 2A, 1A, 4A; 8V, –10V , 18V . 1-21. K 打开:(a)0, 0, 0; (b)10V , 0, 10V; (c)10V,10V ,0; K 闭合: (a)10V ,4V ,6V; (b)4V ,4V ,0; (c)4V,0,4V; 1-22. 2V; 7V; 3.25V; 2V. 1-23. 10Ω.1-24. 14V .1-25. –2.333V , 1.333A; 0.4V , 0.8A.1-26. 12V , 2A, –48W; –6V , 3A, –54W . ※第二章2-1. 2.5Ω; 1.6R ; 8/3Ω; 0.5R ; 4Ω; 1.448Ω; . R /8; 1.5Ω; 1.269Ω; 40Ω; 14Ω. 2-2. 11.11Ω; 8Ω; 12.5Ω. 2-3. 1.618Ω.2-4. 400V;363.6V;I A =.5A, 电流表及滑线电阻损坏. 2-6. 5k Ω. 2-7. 0.75Ω.2-8. 10/3A,1.2Ω;–5V ,3Ω; 8V ,4Ω; 0.5A,30/11Ω. 2-9. 1A,2Ω; 5V,2Ω; 2A; 2A; 2A,6Ω. 2-10. –75mA; –0.5A.2-11. 6Ω; 7.5Ω; 0; 2.1Ω. 2-12. 4Ω; 1.5Ω; 2k Ω. 2-13. 5.333A; 4.286A. 2-14. (a) –1 A ↓; (b) –2 A ↓, 吸20W. 2-16. 3A. 2-17. 7.33V . 2-18. 86.76W. 2-19. 1V , 4W. 2-20. 64W.2-21. 15A, 11A, 17A. 2-23. 7V , 3A; 8V ,1A. 2-24. 4V , 2.5V, 2V. 2-26. 60V . 2-27. 4.5V. 2-28. –18V .2-29. 原构成无解的矛盾方程组; (改后)4V ,10V . 2-30. 3.33 k , 50 k . 2-31. R 3 (R 1 +R 2 ) i S /R 1 .2-32. 可证明 I L =-u S /R 3 . 2-33. –2 ; 4 .2-34. (u S1 + u S2 + u S3 )/3 . ※第三章3-1. –1+9=8V; 6+9=15V; sin t +0.2 e – t V. 3-2. 155V . 3-3. 190mA.i A0 s 1 12 3 1-e -t t 0 t ms i mA 410 0 t ms p mW 4 100 2 25i , A 0.4 .75 t 0 .25 1.25 ms -0.4 (d) u , V 80 0 10-20 t , ms(f ) u , V 1000 10 t , ms (e)p (W) 100 1 2 t (s) -103-4. 1.8倍.3-5. 左供52W, 右供78W. 3-6. 1; 1A; 0.75A.3-7. 3A; 1.33mA; 1.5mA; 2/3A; 2A. 3-8. 20V , –75.38V.3-9. –1A; 2A; –17.3mA. 3-10. 5V , 20; –2V, 4. 3-12. 4.6. 3-13. 2V; 0.5A. 3-14. 10V , 5k .3-15. 4/3, 75W; 4/3, 4.69W. 3-16. 1, 2.25W. 3-18. 50. 3-19. 0.2A. 3-20. 1A. 3-21. 1.6V . 3-22. 4A; –2A.3-23. 23.6V; 5A,10V . 3-24. 52V . ※第四章4-1. 141.1V , 100V , 50Hz, 0.02s,0o , –120o ; 120 o.4-2. 7.07/0 o A, 1/–45 o A, 18.75/–40.9 oA. 4-3. 3mU , 7.75mA .4-4. 10/53.13o A, 10/126.87o A, 10/–126.87oA,10/–53.13oA ;各瞬时表达式略。
电路理论基础第四版孙立山陈希有主编第7章习题答案详解
![电路理论基础第四版孙立山陈希有主编第7章习题答案详解](https://img.taocdn.com/s3/m/3b345e0b5022aaea988f0f5e.png)
当⑷T 0时,|H (j ⑷)1=1 ;当 g 远时,|H (j ©)| = 0《电路理论基础》习题 7答案答案7.1解:由阻抗并联等效公式得:103/(j«10-) 103Z (j ®) = ----- = --------- Q10 +1 心⑷ 10一) 1+浮10一阻抗模及幅角分别为:103z (j 叽)=1/72 求得截止角频率 叽=103rad/s ,故通带及阻带分别为:= 103rad/s ~比。
幅频特性和相频特性如图(b )和(c )解:RC 并联的等效阻抗RjC _ _R + 1/j «C _1 +j ®RCR + j ⑷ L (1 +j 时 RC ) 1-时 2LC +j ⑷ L/R幅频特性 Z E ) " j 1+(10屯)2Z RCH (j O3^U 2/U 1 = 2L +Z RC0(时)=-arcta nQO -时)答案7.2通带© =0~103rad/s ,阻带 co=1H (严)J(1 -仞2LC)2+(価L/R)2代以 R =10g ,解得 R 2 =100Q 又因为电路处于谐振状态X L=|Xc| =100Q故有品质因数Q 旦斗00 U 0.1(2)■ ■Uc =1 jc) =1N 0吹 10N -90°V =10N -90°V 即有所以它具有低通特性。
答案7.31 R 1 Z 1 =R // --- = ------ 1--- , Z^ R 2 // ------ =R + j o C R + j t3R iR 2 关。
由分压公式得:7 -U2 = — U I 乙+乙R 2(1+严 R i C i )HCN) == R i (1 +严 R 2C 2)+ R 2(1 + 严 RC I )R 2当R i C i = R 2C 2时,得H (j ⑷)=丄—,此网络函数模及辐角均不与频率无R i +R 2答案7.4解: 因为电路处于谐振状态,故电感与电容串联电路相当于短路,因此有R 1R2 R1+R 2 牛50°所以R I I SU^I 2X ^R +R /X L= 50V答案7.5解:(1)根据题意,电路发生谐振时,©=1/J LC =104rad/sd =U /R=1A 存在下列关系: R =0.10解得 U L"LI =10VL =1mH C =10PFu C =10 J2cos(©t -90o)VQ =t50L/ R , R =2兀咒 875咒 0.32/3.5 =502.650谐振频率为fc -^2Q ^)4p^f -759Hzf c2 =(2d 4Q FW f 0 伽9Hz(2)谐振时电路的平均功率为:2 2P o = I o R =(23.2/502.65)咒502.65 =1.071W在截止频率处,电流下降至谐振电流 1。
电路理论基础(陈希有)课后题答案
![电路理论基础(陈希有)课后题答案](https://img.taocdn.com/s3/m/3f33cb2c2f60ddccda38a077.png)
答案15.1解: 波阻抗Ω500400102003c =⨯==++i u Z终端反射系数133c 2c 22=+-=Z R Z R N故负载承受的电压V k 15.24610200)1331(32222=⨯⨯+=+=++u N u u 答案15.2解:终端反射系数31c c 2=+-=Z Z Z Z N L L始端反射系数1cS cS 1-=+-=Z Z Z Z N这是一个多次反射过程,反射过程如图题15.2所示。
其中v l t d /= 当vlt 20<<时,反射波未达到始端,只有入射波。
mA 30500V 15c 11=Ω===+Z u i i 当vlt v l 42<<时,反射波到达始端, mA 101010302121=--=+-=+++i N N i N i i 当vlt v l 64<<时 ,始端电流为: mA 67.1631031010103022212212121=++--=+-+-=+++++i N N i N N i N N i N i i 达到稳态时mA 15)(211==∞R u i 所以⎪⎩⎪⎨⎧<<<<<<=v l t l/v v l t l/v v l t t i /64 16.67mA /42 10mA /20 mA30)(1 mA 15)(211==∞R u i图题15.2答案15.3解:波从始端传到中点所用的时间为:μs 10s 1010310325831==⨯⨯==-v l t (1)当μs 100<<t 时,入射波从始端发出,尚未到达中点所以 0)(=t i 。
(2)μs 30μs 10<<t 时,入射波已经过中点,但在终端所产生的反射波还没有到达中点。
A 2.0600600240)(c S S 1=+=+==+Z R U i t i(3) μs 60μs 30<<t 时,在终端所产生的反射波已经过中点,并于μs 40=t 时 刻到达始端。
电路分析基础章后习题答案及解析(第四版)
![电路分析基础章后习题答案及解析(第四版)](https://img.taocdn.com/s3/m/fba16df027284b73f3425010.png)
第1章习题解析一.填空题:1.电路通常由电源、负载和中间环节三个部分组成。
2.电力系统中,电路的功能是对发电厂发出的电能进行传输、分配和转换。
3. 电阻元件只具有单一耗能的电特性,电感元件只具有建立磁场储存磁能的电特性,电容元件只具有建立电场储存电能的电特性,它们都是理想电路元件。
4. 电路理论中,由理想电路元件构成的电路图称为与其相对应的实际电路的电路模型。
5. 电位的高低正负与参考点有关,是相对的量;电压是电路中产生电流的根本原因,其大小仅取决于电路中两点电位的差值,与参考点无关,是绝对的量6.串联电阻越多,串联等效电阻的数值越大,并联电阻越多,并联等效电阻的数值越小。
7.反映元件本身电压、电流约束关系的是欧姆定律;反映电路中任一结点上各电流之间约束关系的是KCL定律;反映电路中任一回路中各电压之间约束关系的是KVL定律。
8.负载上获得最大功率的条件是:负载电阻等于电源内阻。
9.电桥的平衡条件是:对臂电阻的乘积相等。
10.在没有独立源作用的电路中,受控源是无源元件;在受独立源产生的电量控制下,受控源是有源元件。
二.判断说法的正确与错误:1.电力系统的特点是高电压、大电流,电子技术电路的特点是低电压,小电流。
(错)2.理想电阻、理想电感和理想电容是电阻器、电感线圈和电容器的理想化和近似。
(对)3. 当实际电压源的内阻能视为零时,可按理想电压源处理。
(对)4.电压和电流都是既有大小又有方向的电量,因此它们都是矢量。
(错)5.压源模型处于开路状态时,其开路电压数值与它内部理想电压源的数值相等。
(对)6.电功率大的用电器,其消耗的电功也一定比电功率小的用电器多。
(错)7.两个电路等效,说明它们对其内部作用效果完全相同。
(错)8.对电路中的任意结点而言,流入结点的电流与流出该结点的电流必定相同。
(对)9.基尔霍夫电压定律仅适用于闭合回路中各电压之间的约束关系。
(错)10.当电桥电路中对臂电阻的乘积相等时,则该电桥电路的桥支路上电流必为零。
电路理论基础第四版-孙立山-陈希有主编-第7章习题答案详解Word版
![电路理论基础第四版-孙立山-陈希有主编-第7章习题答案详解Word版](https://img.taocdn.com/s3/m/b69b289a770bf78a64295425.png)
《电路理论基础》习题7答案答案7.1解:由阻抗并联等效公式得:Ω+=+=---33636310j 110)10j /(110)10j /(10)j (ωωωωZ 阻抗模及幅角分别为:233)10(110)j (ωω-+=Z ,)10arctan()(3ωωθ--=令2/1)j (c=ωZ 求得截止角频率rad/s 103c =ω,故通带及阻带分别为: 通带=ω0~rad/s 103,阻带=ωrad/s 103~∞。
幅频特性和相频特性如图(b)和(c)所示。
(b)--答案7.2解: RC 并联的等效阻抗RCRC R C R Z RCωωωj 1j /1j /+=+= RCRC Z L Z U U H +==ωωj /)j (12 RL LC RC L R R /j 11)j 1(j 2ωωωω+-=++= 幅频特性222)/()1(1)j (R L LC H ωωω+-=当0→ω时, 1)j (=ωH ;当∞→ω时,)j (=ωH所以它具有低通特性。
答案7.3解:设1111111j j 1//C R R R C R Z ωω+==, 2222222j j 1//C R R R C R Z ωω+== 由分压公式得:12122U Z Z Z U += )j 1()j 1()j 1()j (11222111212C R R C R R C R R U U H ωωωω++++== 当R 1C 1=R 2C 2时,得212)j (R R R H +=ω,此网络函数模及辐角均不与频率无关。
答案7.4解:因为电路处于谐振状态,故电感与电容串联电路相当于短路,因此有50S12121==+I U R R R R Ω代以Ω=1001R ,解得Ω=1002R 又因为电路处于谐振状态 , 所以 Ω==100C L X X 故有V 5021S12=⨯+==LL L X R R I R X I U 答案7.5解:(1)根据题意,电路发生谐振时,存在下列关系:⎪⎩⎪⎨⎧======V10A1/rad/s 10/14LI U R U I LC L ωω 解得 ⎪⎩⎪⎨⎧==Ω=F 10mH 11.0μC L R 品质因数 1001.010===U U Q L(2)V 9010V 901001)(j ︒-∠=︒-∠⨯︒∠==C I U Cω即有V )90cos(210︒-=t u Cω 答案9.9解:由串联谐振规律得:⎪⎪⎩⎪⎪⎨⎧===∆==Ω=R L Q Q LC R /rad/s 100/rad/s10/1100030ωωωω 解得 ⎪⎩⎪⎨⎧==Ω=1μμC H 1100L R答案7.6解:(1)F 10034.132.0)8752(117220-⨯=⨯⨯==πωL C Qωω=∆ , 5.3250/875/0==∆=ωωQ R L Q /0ω=, Ω=⨯⨯==65.5025.3/32.08752/0πωQ L R 谐振频率为Hz 759)14121(021c ≈⨯++-=f Q Q f Hz 1009)14121(02c2≈⨯++=f QQ f(2) 谐振时电路的平均功率为:W 071.165.502)65.502/2.23(2200=⨯==R I P 在截止频率处,电流下降至谐振电流0I 的2/1,故功率减小到0P 的一半,所以当Hz 759=f 和Hz 1009=f 时,电路平均功率均为W 535.02/0==P P (3)V 2.812.235.3=⨯===QU U U CL 答案7.7解:由谐振时阻抗为Ω310得 Ω=1000RRLC 并联电路带宽:Q/0ωω=∆(参考题9.16) 由带宽与谐振角频率及品质因数的关系得:10/0=∆=ωωQ RLC 并联电路的品质因数为10/0==G C Q ω 由上式求得:μF10)10001000/(10/100=⨯==ωG C 由C L 00/1ωω=得 H1.0H )1010/(1/15620=⨯==-C L ω答案7.8略 答案7.9解:当两线圈顺接时,等效电感H 05.0221=++=M L L L 谐振角频率rad 10102005.011361=⨯⨯==-LC ω 取V06︒∠=U ,则谐振时的电流 A 04.0A 1050621︒∠=+︒∠=+=R R U I 由互感的元件方程得: j124(0.4]V j100.4j20)10[(j )j (j8)V 2(0.4]V j100.4j10)5[(j )j (1212211111+=⨯+⨯+=++=+=⨯+⨯+=++=I M I L R U I M I L R U ωωωω两线圈电压的有效值分别为V 24.882221=+=U ,V 65.12124222=+=U 当两线圈反接时,等效电感H 01.0221'=-+=M L L L 谐振角频率rad/s 10236.2102001.01362⨯=⨯⨯=-ω j8.94(0.4A j22.36)10(j )j (2V A 4.05j )j (2222221211+=⨯Ω+=-+==⨯Ω=-+=I M I L R U I M I L R U ωωωω此时两线圈电压的有效值分别为V 21=U ,V 8.995.84222=+=U 答案7.10略答案7.11图示电路,V )cos(22S t u ω=,角频率rad/s 100=ω,Ω=1R ,F 1021-=C ,F 105.022-⨯=C 。
电路理论基础第四版 孙立山 陈希有主编 第4章习题答案详解
![电路理论基础第四版 孙立山 陈希有主编 第4章习题答案详解](https://img.taocdn.com/s3/m/37a064630b4c2e3f56276310.png)
教材习题4答案部分(p126)答案4.1解:将和改写为余弦函数的标准形式,即234c o s (190)A 4c o s (190180)A 4c o s (10)A 5s i n (10)A 5c o s (1090)A 5c o s (80)A i t t t i t t t ωωωωωω=-+︒=+︒-︒=+︒=+︒=+︒-︒=-︒电压、电流的有效值为123100270.7V , 1.414A22452.828A , 3.54A22U I I I ========初相位12310,100,10,80ui i i ψψψψ====-相位差111010090ui ϕψψ=-=-=- 11u i u i 与正交,滞后于;2210100ui ϕψψ=-=︒-︒= u与同相;3310(80)90ui ϕψψ=-=︒--︒= u与正交,u 超前于答案4.2()()()().2222a 10c o s (10)V -8b 610a rc t g 10233.1V ,102c o s (233.1)V -6-20.8c 0.220.8a r c t g 20.889.4A ,20.8c o s (89.4)A 0.2d 30180A ,302c o s (180)A m u t Uu t I i t I i t ωωωω=-︒=+∠=∠︒=+︒=+∠=∠-︒=-︒=∠︒=+︒答案6.3解:(a)利用正弦量的相量表示法的线性性质得:11221,U I n U I n ==- (b)磁通相量通常用最大值表示,利用正弦量的相量表示法的微分性质得:m j m U N ω=Φ(c) 利用正弦量的相量表示法的线性性质与微分性质得:j U R I L I ω=+答案4.3解:电压表和电流表读数为有效值,其比值为阻抗模,即22()/R L U I ω+=将已知条件代入,得2222100V (2π50)15A 100V (2π100)10R L R L ⎧+⨯⨯=⎪⎪⎨⎪+⨯⨯=⎪Ω⎩联立方程,解得13.7m H ,5.08L R ==Ω答案4.4 解:(a) RC 串联电路中电阻电压与电容电压相位正交,各电压有效值关系为2222215040V 30V U UU =-=-= 电流的有效值为30V3A 10C CU I I X ====Ω (b)302A 60V C CUX I ==Ω⨯= 60V1.2A50R U I R ===ΩRC 并联电路中电阻电流与电容电流相位正交,总电流有效值为222221.22.33C R I I I A A =+=+= (c)30130C CCU X I A V ==Ω⨯= 由30215C L C L LLU V UU X I I A X ==⇒===Ω 并联电容、电感上电流相位相反,总电流为1L C I I I A =-=电阻电压与电容电压相位正交,总电压为:2222304050C R U U U V V =+=+=答案4.5略 答案4.6解:设100V R U =∠,则 S 10A ,1090V (1001090)V 10245V 10245V2135A j -j 10(102135)A jA 190A RR L L R R L C C R C U I U jX I RU U U U I X I I I ==∠==∠=+=∠︒+∠︒=∠︒∠︒===∠︒Ω=+=∠︒+∠︒==∠所求电流有效值为S 1A I =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电路理论基础》习题7答案答案解:由阻抗并联等效公式得:Ω+=+=---33636310j 110)10j /(110)10j /(10)j (ωωωωZ 阻抗模及幅角分别为:233)10(110)j (ωω-+=Z ,)10arctan()(3ωωθ--=令2/1)j (c=ωZ 求得截止角频率rad/s 103c=ω,故通带及阻带分别为: 通带=ω0~rad/s 103,阻带=ωrad/s 103~∞。
幅频特性和相频特性如图(b)和(c)所示。
--答案解: RC 并联的等效阻抗RCRC R C R Z RCωωωj 1j /1j /+=+= RCRC Z L Z U U H +==ωωj /)j (12&& RL LC RC L R R /j 11)j 1(j 2ωωωω+-=++= 幅频特性222)/()1(1)j (R L LC H ωωω+-=当0→ω时, 1)j (=ωH ;当∞→ω时,0)j (=ωH所以它具有低通特性。
答案解:设1111111j j 1//C R R R C R Z ωω+==, 2222222j j 1//C R R R C R Z ωω+== 由分压公式得:12122U Z Z Z U &&+= )j 1()j 1()j 1()j (11222111212C R R C R R C R R U U H ωωωω++++==&& 当R 1C 1=R 2C 2时,得212)j (R R R H +=ω,此网络函数模及辐角均不与频率无关。
答案解:因为电路处于谐振状态,故电感与电容串联电路相当于短路,因此有50S12121==+I U R R R R Ω代以Ω=1001R ,解得Ω=1002R 又因为电路处于谐振状态 , 所以Ω==100C L X X 故有V 5021S12=⨯+==LL L X R R I R X I U 答案解:(1)根据题意,电路发生谐振时,存在下列关系:⎪⎩⎪⎨⎧======V10A1/rad/s 10/14LI U R U I LC L ωω 解得 ⎪⎩⎪⎨⎧==Ω=F 10mH 11.0μC L R 品质因数 1001.010===U U Q L (2)V 9010V 901001)(j ︒-∠=︒-∠⨯︒∠==C I U Cω&& 即有V )90cos(210︒-=t u Cω答案解:由串联谐振规律得:⎪⎪⎩⎪⎪⎨⎧===∆==Ω=R L Q Q LC R /rad/s 100/rad/s10/1100030ωωωω 解得 ⎪⎩⎪⎨⎧==Ω=1μμC H 1100L R答案解:(1)F 10034.132.0)8752(117220-⨯=⨯⨯==πωL C Qωω=∆ , 5.3250/875/0==∆=ωωQ R LQ /0ω=, Ω=⨯⨯==65.5025.3/32.08752/0πωQ L R 谐振频率为Hz 759)14121(021c ≈⨯++-=f Q Q f Hz 1009)14121(02c2≈⨯++=f QQ f(2)谐振时电路的平均功率为:W 071.165.502)65.502/2.23(2200=⨯==R I P 在截止频率处,电流下降至谐振电流0I 的2/1,故功率减小到0P 的一半,所以当Hz 759=f 和Hz 1009=f 时,电路平均功率均为W 535.02/0==P P (3)V 2.812.235.3=⨯===QU U U CL 答案解:由谐振时阻抗为Ω310得 Ω=1000RRLC 并联电路带宽:Q/0ωω=∆(参考题) 由带宽与谐振角频率及品质因数的关系得:10/0=∆=ωωQ RLC 并联电路的品质因数为10/0==G C Q ω 由上式求得:μF10)10001000/(10/100=⨯==ωG C 由C L 00/1ωω=得 H1.0H )1010/(1/15620=⨯==-C L ω答案略 答案解:当两线圈顺接时,等效电感H 05.0221=++=M L L L 谐振角频率rad 10102005.011361=⨯⨯==-LC ω 取V06︒∠=U &,则谐振时的电流 A 04.0A 1050621︒∠=+︒∠=+=R R U I && 由互感的元件方程得: j124(0.4]V j100.4j20)10[(j )j (j8)V 2(0.4]V j100.4j10)5[(j )j (1212211111+=⨯+⨯+=++=+=⨯+⨯+=++=I M I L R U I M I L R U &&&&&&ωωωω两线圈电压的有效值分别为V 24.882221=+=U ,V 65.12124222=+=U 当两线圈反接时,等效电感H 01.0221'=-+=M L L L 谐振角频率rad/s 10236.2102001.01362⨯=⨯⨯=-ω j8.94(0.4A j22.36)10(j )j (2V A 4.05j )j (2222221211+=⨯Ω+=-+==⨯Ω=-+=I M I L R U I M I L R U &&&&&&ωωωω此时两线圈电压的有效值分别为V 21=U ,V 8.995.84222=+=U 答案略答案图示电路,V )cos(22S t u ω=,角频率rad/s 100=ω,Ω=1R ,F 1021-=C ,F 105.022-⨯=C 。
求:(1)L 为何值时电流I 为最大?max =I 并求此时电压1u 。
(2)L 为何值时电流I 为最小?min =I 并求此时电压1u 。
解:S 20U =∠︒&,电路的相量模型如图所示,其中S eqU I Z =(1分)(1)当L 与1C 发生串联谐振时,并联部分相当于短路,此时I 取最大值。
2110.01H L C ω==,m 2A S ax U I R == (1分)设20I︒=∠&,则21211j 2011j j j I C I I L C C ωωωω===∠︒++&&&111290j U I C ω==∠-︒&&190)V u t ω∴=-︒ (2分)(2)当并联部分发生谐振时,I 取最小值,此时min 0I =211j 01j j eq Y C L C ωωω=+=+12211C C LC ω+=- 解得0.03H L = (1分)此时 112111j 1201180V11j j SC U U LC L C ωωωω︒==⋅∠=∠︒-+&&1180)V u t ω=+︒ (2分)答案略 答案解:(1)消去互感后,得图(b )所示等效电路。
1Su +-1U SU I1II &当等效电感M 和电容C 发生串联谐振时,即μF 1110/1/162=⨯==M C ω, ab 端相当于短路,端电压为零,则电流I 也为零。
所以电流I 的最小值为0min =I (2)先分析ab 端的等效导纳,由图(b)得C M M L R Y ωωω/j j 1)(j 12ab-+-+= ])()(/11[j )(222222222M L R M L M C M L R R -+---+-+=ωωωωω由于电容C 变化时,ab Y 的实部不变,所以,当并联部分发生谐振时,ab Y 最小,电压ab S ab /Y I U =为最大,因此电流I 也为最大。
令0)()(/1122222=-+---M L R M L M C ωωωω 得μF 2.0F 102342)(622222=⨯⨯+=-+-=-M L L R M L C ω 由分流公式求得:︒-∠=--=-++--=4522j 24j )(j )/1(j )/1(j 2S S S I I I M L R C M C M I &&&&ωωωωω 故当μF 2.0=C 时,mA 14.142S max ==I I 答案图示电路,V )cos(210t u ω=,角频率rad/s 100=ω,Ω=10R ,H 3.01=L ,H 2.02=L ,H 1.0=M 。
求:(1)当开关断开时,C 为何值时电压U &与电流I &同相位并求此时电压1u 。
(2)当开关短接时,C 为何值时电压U &与电流I &同相位+---解:开关断开时,应用串联消互感等效,此时eq 12(2)L L L M =+-,由串联谐振特点,当C 与eq L 发生串联谐振时,电压U &与电流I &同相位,此时 (2分)100==解得43.310C F -=⨯ (2分) 1110010102090U I R U j L I j M I ωω︒∠===∠︒=⋅-⋅=∠︒&&&&&解得190)u t ω=+︒ (2分) 开关闭合时,应用并联消互感等效,此时2eq12()()M L M L L M M L M -'=-++-,由串联谐振特点,当C 与eq L '发生串联谐振时,电压U &与电流I &同相位,此时 由谐振产生条件eq1j 0j L C ωω'+= (2分) 4410F C -=⨯ (2分)答案略 答案解:端口等效阻抗]1)(j[)()(j j j 1)j (222222CL R LR L R R L L R R L C Z ωωωωωωωωω-+++=+⨯+= (1) 令 []0ZIm =;解得谐振角频率 220LLC R R -=ω将0ω代回式(1),得RC L Z =)j (0ω 答案略答案解:由分压公式求得:LLCR R RCRR L CRRC R C R L C R C R U U H ωωωωωωωωωωj )j 1j (j 1)j 1j j (j 1j )j (2iO +-=+++=+++==&&若输出电压u o 中正弦分量占滤波前的5%,则相当于%5)()()j (222=+-=L LCR R RH ωωω 代入数值解得F183.0μ≈C答案解:当1L 、C 对基波发生并联谐振时,滤波器能够阻止电流的基波通至负载,由此得:CL ωω11= (1) 解得mH 254.0)2(11221≈==Cf C L πω 当1L 、C 与2L 组成的电路对九次谐波发生串联谐振时,九次谐波可以顺利 地通至负载,由此得到:0j9)9j /(1j9121=++L L C ωωω (2) 将式(1)代入式(2)解得H 17.3181112μω≈-=CL L L。