一次函数的图像和性质练习题(基础,有部分中等题)
一次函数的图象和性质专题练习题

专题19.2.2一次函数的图象和性质一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.在函数3y x =-的图象上的点是()A .(1,-3)B .(0,3)C .(-3,0)D .(1,-2)【答案】D【解析】A.1-3=-2≠-3,故本选项不在3y x =-的图象上,B.0-3=-3≠3,故本选项不在3y x =-的图象上,C.-3-3=-6≠0,故本选项不在3y x =-的图象上,D.1-3=-2,故本选项在3y x =-的图象上.故选:D .2.函数2y kx =-的图象经过点(3,1)p -,则k 的值为()A .3B .3-C .13D .13-【答案】C【解析】∵函数2y kx =-的图象经过点(3,1)p -,∴3k −2=-1,解得k =13.故选:C .3.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是一次函数y =﹣x ﹣1图象上的点,并且y 1<y 2<y 3,则下列各式中正确的是()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1【答案】D【解析】解:∵一次函数y=﹣x ﹣1中k=﹣1<0,∴y 随x 的增大而减小,又∵y 1<y 2<y 3,∴x 1>x 2>x 3.故选:D .4.在平面直角坐标系中,将直线1:41l y x =--平移后,得到直线2:47l y x =-+,则下列平移作法正确的是()A .将1l 向右平移8个单位B .将1l 向右平移2个单位C .将1l 向左平移2个单位D .将1l 向下平移8个单位【答案】B【解析】A :将直线1:41l y x =--向右平移8个单位得到直线()481y x =---,即直线431y x =-+.B :将直线1:41l y x =--向右平移2个单位得到直线()421y x =---,即直线2:47l y x =-+.C :将直线1:41l y x =--向左平移2个单位得到直线()421y x =-+-,即直线49y x =--.D :将直线1:41l y x =--向下平移8个单位得到直线418y x =---,即直线49y x =--.故选B .5.一次函数35y x =-+的图象经过()A .第一、三、四象限B .第二、三、四象限C .第一、二、三象限D .第一、二、四象限【答案】D【解析】解: 一次函数35y x =-+中,30k =-<,50b =>,∴此一次函数的图象经过一、二、象限.故选:D6.下图为正比例函数()0y kx k =≠的图像,则一次函数y x k =+的大致图像是()A .B .C .D .【答案】B 【解析】解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,∴k<0,∴一次函数y=x+k 的图象与y 轴交于负半轴且经过一、三象限.故选B.7.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是()A .k <3B .k <0C .k >3D .0<k <3【答案】D【解析】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限,∴ ॰䃰< ॰,解得:0<k <3,故选:D .8.如图,已知一次函数y kx b =+,y 随着x 的增大而增大,且0kb <,则在直角坐标系中它的图象大致是()A .B .C .D .【答案】A【解析】∵y 随x 的增大而增大,∴0k >.又∵0kb <,∴0b <,∴一次函数过第一、三、四象限,故选A .9.对于次函数21y x =-,下列结论错误的是()A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x=D .图象经过第一、二、三象限【答案】D【解析】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .10.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是()A .B .C .D .【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx+b 中,k <0,b <0,y 2=bx+k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k <0,k 的取值相矛盾,故本选项错误;故选:C .11.一次函数23y x =-的图像在y 轴的截距是()A .2B .-2C .3D .-3【答案】D【解析】∵23y x =-,即b=-3,∴图像与y 轴的截距为-3,故选:D.12.如果直线y=2x+m 与两坐标轴围成的三角形的面积是4,那么m 的值是()A .4-B .2C .2±D .4±【答案】D【解析】∵当x=0时,y=m ,当y=0时,x=2m -,∴直线y=2x+m 与x 轴和y 轴的交点坐标分别为(2m -,0)、(0,m ),∵直线y=2x+m 与两坐标轴围成的三角形的面积是4,∴12|2m -||m|=4,解得:m=±4,故选:D .13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为()A .35y x =B .910y x =C .34y x =D .y x=【答案】B【解析】解:设直线l 和八个正方形的最上面交点为A ,过A 作AB ⊥y 轴于B ,作AC ⊥x 轴于C ,∵正方形的边长为1,∴OB =3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴12OB•AB =5,∴AB =103,∴OC =103,由此可知直线l 经过(103,3),设直线l 解析式为y =kx ,则3=103k ,解得:k =910,∴直线l 解析式为y =910x ,故选:B .14.在平面直角坐标系中,点()11,1A -在直线y x b =+上,过点1A 作11A B x ⊥轴于点1B ,作等腰直角三角形112A B B (2B 与原点O 重合),再以12A B 为腰作等腰直角三角形212A A B ;以22A B 为腰作等腰直角三角形223A B B …;按照这样的规律进行下去,那么2019A 的坐标为()A .()2018201821,2-B .()2018201822,2-C .()2019201921,2-D .()2019201922,2-【答案】B【解析】解:如上图,∵点B 1、B 2、B 3、…、B n 在x 轴上,且A 1B 1=B 1B 2,A 2B 2=B 2B 3,A 3B 3=B 3B 4,∵A 1(−1,1),∴A 2(0,2),A 3(2,4),A 4(6,8),…,∴A n (2n−1−2,2n−1).∴A 2019的坐标为(22018−2,22018).故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.一次函数36y x =-+的图象与y 轴的交点坐标是________.【答案】(0,6)【解析】解:根据题意,令0x =,解得6y =,所以一次函数36y x =-+的图象与y 轴的交点坐标是(0,6).故答案为:(0,6).16.一次函数(3)2=-+y k x ,若y 随x 的增大而增大,则k 的取值范围是_________.【答案】3k >【解析】∵一次函数(3)2=-+y k x ,y 随x 的增大而增大,30k ∴->,3k ∴>.k .故答案为:317.已知A(2,1),B(2,4).(1)若直线l:y=x+b与AB有一个交点.则b的取值范围为_______________;(2)若直线l:y=kx与AB有一个交点.则k的取值范围为_______________.【答案】-1≤b≤2;0.5≤k≤2.【解析】解:(1)把A(2,1),代入直线l:y=x+b,得2+b=1,解得b=-1;把B(2,4)代入直线l:y=x+b,的2+b=4,解得b=2;所以:b的取值范围是:-1≤b≤2;(2)把A(2,1),代入直线l:y=kx,得2k=1,解得k=0.5;把B(2,4)代入直线l:y=kx,的2k=4,解得k=2;∴k的取值范围为:0.5≤k≤2.故答案为:-1≤b≤2;0.5≤k≤2.18.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.【答案】一【解析】首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.先完成下列填空,再在同一直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数2y x =过(0,)和(1,);(2)一次函数3y x =-+(0,)(,0).【答案】(1)0,2;(2)3,3,作图见解析【解析】解:(1)当x=0时,y=2x=0,∴正比例函数y=2x 过(0,0);当x=1时,y=2x=1,∴正比例函数y=2x 过(1,2).故答案为:0;2.(2)当x=0时,y=-x+3=3,∴一次函数y=-x+3过(0,3);当y=0时,有-x+3=0,解得:x=3,∴一次函数y=-x+3过(3,0).故答案为:3;3.20.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.【答案】(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x−2k+6的图象y 随x 的增大而减小,∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.21.如图,已知正比例函数y kx =(0)k ≠经过点(2,4)P .(1)求这个正比例函数的解析式;(2)该直线向上平移4个单位,求平移后所得直线的解析式.【答案】(1)2y x =;(2)24y x =+【解析】解:(1)把(2,4)P 代入y kx =,得42k =,∴2k =,∴这个正比例函数的解析式是2y x =.(2)设平移后所得直线的解析式是y =2x +b ,把(0,4)代入得:4=b ,∴y =2x +4.答:平移后所得直线的解析式是y =2x +4.22.已知一次函数的图象与正比例函数23y x =-的图象平行,且经过点()04,.(1)求一次函数的解析式;(2)若点()8M m -,和()5N n ,在一次函数的图象上,求m ,n 的值.【答案】(1)243y x =-+;(2)283m =;32n =-.【解析】设一次函数的解析式为y=kx+b ,∵一次函数的图象与正比例函数23y x =-的图象平行,∴k=23-,∵一次函数图象经过点(0,4),∴b=4,∴一次函数的解析式为y=23-x+4.(2)∵点()8M m -,和()5N n ,在一次函数的图象上,∴m=23-×(-8)+4=283,5=23-n+4,解得:m=283,n=32-.23.已知一次函数y =-x +3与x 轴,y 轴分别交于A ,B 两点.(1)求A ,B 两点的坐标.(2)在坐标系中画出一次函数y =-x +3的图象,并结合图象直接写出y <0时x 的取值范围.【答案】(1)()3,0A ,()0,3B (2)作图见解析,3x >【解析】(1)令0x =,则3y =,故()0,3B 令0y =,则03x =-+,故()3,0A .(2)如图所示,即为所求,根据图象可得y <0时,3x >.24.如图,直线AB 与x 轴相交于点(3,0)A ,与y 轴相交于点(0,4)B ,点C 是直线AB 上的一个动点.(1)求直线AB 的函数解析式;(2)若AOC ∆的面积是3,求点C 的坐标.【答案】(1)443y x =-+;(2)点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.【解析】解:(1)设直线AB 的解析式为y kx b =+.∵直线过点(3,0)A 和点(0,4)B ,∴30,4.k b b +=⎧⎨=⎩解得4,34.k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为443y x =-+.(2)∵(3,0)A ,∴3AO =,∵AOC ∆的面积是3,∴AOC ∆边OA 上的高为2,∴点C 的纵坐标为2或-2,∵点C 为直线AB 上的点,当4423x -+=时,解得32x =;当4423x -+=-时,解得92x =.∴当AOC ∆的面积是3时,点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.25.在平面直角坐标系中,一次函数122y x =-+的图象交x 轴、y 轴分别于A B 、两点,交直线y kx =于P 。
一次函数的图像与性质基础练习

一.选择题(共10小题)1.一次函数y1=ax+b与y2=bx+a在同一直角坐标系中的图象可能式()A.B.C.D.2.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是()A.B.C.D.3.若k>0,b>0,则函数y=kx+b的图象大致是()A.B.C.D.4.直线y1=mx+n2+1和y2=﹣mx﹣n的图象可能是()A.B.C.D.5.在同一直角坐标系中,一次函数y=kx+b与y=bx+k(b≠k)的图象可能是()A.B.C.D.6.将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系中,则下列图象中正确的是()A.B.C.D.7.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.8.直线l1:y=kx﹣b和l2:y=﹣2kx+b在同一直角坐标系中的图象可能是()A.B.C.D.9.若实数a、c满足a+c=0且a>c,则关于x的一次函数y=cx﹣a的图象可能是()A.B.C.D.10.若式子+(k﹣2)0有意义,则一次函数y=(k﹣2)x+2﹣k的图象可能是()A.B.C.D.二.解答题(共10小题)11.如图,已知直线y=kx+b经过点B(1,4),与x轴交于点A(5,0),与直线y=2x﹣4交于点C(3,m).(1)求直线AB的函数表达式及m的值;(2)根据函数图象,直接写出关于x的不等式组2<kx+b<4的解集:;(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x﹣4于点Q,若点C到线段PQ的距离为1,求点P的坐标和点Q的坐标.12.如图,在平面直角坐标系中,一次函数y1=﹣2x+10的图象与x轴交于点A,与一次函数y2=x+2的图象交于点B.(1)求点B的坐标;(2)结合图象,当y1>y2时,请直接写出x的取值范围;(3)C为x轴上点A右侧一个动点,过点C作y轴的平行线,与一次函数y1=﹣2x+10的图象交于点D,与一次函数y2=x+2的图象交于点E.当CE=3CD时,求DE的长.13.如图,直线l1:y=2x﹣4与x轴交于点A,与y轴交于点B,直线l2与x轴交于点D,与y轴交于点C,BC=6,OD=3OC.(1)求直线CD的解析式;(2)点Q为直线AB上一动点,若有S△QCD=2S△OCD,请求出Q点坐标;(3)点M为直线AB上一动点,点N为直线x轴上一动点,是否存在以点M,N,C为顶点且以MN为直角边的三角形是等腰直角三角形,若存在,请直接写出点M的坐标,并写出其中一个点M求解过程,若不存在,请说明理由.14.如图,在平面直角坐标系中,直线l经过点A(0,2)、B(﹣3,0).(1)求直线l所对应的函数表达式.(2)若点M(3,m)在直线l上,求m的值.(3)若y=﹣x+n过点B,交y轴于点C,求△ABC的面积.15.如图,已知点A(3,0),B(0,2).(1)求直线AB所对应的函数解析式;(2)若C为直线AB上一点,当△OBC的面积为6时,求点C的坐标.16.如图,直线经过点A(1,6)和点B(﹣3,﹣2).(1)求直线a的函数表达式;(2)求△ABO的面积.17.如图,在平面直角坐标系xOy中,点A在y轴的正半轴上,点B在x轴的正半轴上,OA=OB=10.(1)求直线AB的解析式;(2)若点P是直线AB上的一点,且P的横坐标为4,C(6,0),求△OPC的面积.18.如图,在直角坐标系中,直线AB过点A(0,3)和B(6,﹣3),且与x轴相交于点C.(1)求直线AB所对应的函数表达式;(2)求△OAC的面积.19.如图,过点A(4,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=2.(1)求点B的坐标;(2)若△ABC的面积为20,求直线l2的解析式.20.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△AOB的面积.。
专题12 一次函数的图像和性质(强化-基础)-解析版

专题12 一次函数的图像和性质(强化-基础)一、单选题(共32分)1.(本题4分)(2021·全国九年级专题练习)如果一个正比例函数y =kx 的图象经过不同象限的两点(m ,1)、(2,n ),那么一定有( )A .m >0,n >0B .m <0,n <0C .m >0,n <0D .m <0,n >0 【答案】B【分析】利用正比例函数的性质可知正比例函数y =kx 的图象经过第一、三象限或第二、四象限,结合点(m ,1)和(2,n )在不同象限,即可得出点(m ,1)在第二象限、点(2,n )在第四象限,进而可得出m <0,n <0.【详解】解:正比例函数y =kx 的图象经过第一、三象限或第二、四象限.∵点(m ,1)和(2,n )在不同象限,∵点(m ,1)在第二象限,点(2,n )在第四象限,∵m <0,n <0.故选:B .【点睛】本题主要考查了正比例函数的性质,熟悉掌握正比例函数的图象特点是解题的关键. 2.(本题4分)(2021·西安市浐灞第一中学八年级期末)已知正比例函数y ax =的图象经过点()3,6-,则下列四个点中在这个函数图象上的是( )A .()1,3-B .()2,4-C .()4,7-D .()5,8-【答案】B【分析】将点(3,-6)代入正比例函数的解析式y=kx ,求得k 值,然后再判断点是否在函数图象上.【详解】解:∵正比例函数y=kx 经过点(3,-6),∵-6=3k ,解得k=-2;∵正比例函数的解析式是y=-2x;A、∵当x=1时,y=-2,∵点(1,-3)不在该函数图象上;故A不符合题意;B、∵当x=2时,y=-4,∵点(2,-4)在该函数图象上;故B符合题意;C、∵当x=4时,y=-8,∵点(4,-7)不在该函数图象上;故C不符合题意;D、∵当x=5时,y=-10,∵点(5,-8)不在该函数图象上;故D不符合题意.故选:B.【点睛】本题主要考查了正比例函数图象上的点的坐标特征.点在函数的图象上,则点的坐标满足函数的解析式.3.(本题4分)(2021·西安市铁一中学九年级三模)在平面直角坐标系中,已知点A(3,0),点B(0,4),正比例函数y=kx(k≠0)的图象恰好经过线段AB的中点.若点C(2,p)在该正比例函数的图象上,则p的值为()A.34B.32C.43D.83【答案】D【分析】由题意易得线段AB的中点坐标,然后代入正比例函数y=kx的解析式进行求解,进而问题可求解.【详解】解:∵点A(3,0),点B(0,4),∵线段AB的中点坐标为3,22⎛⎫ ⎪⎝⎭,把点3,22⎛⎫⎪⎝⎭代入正比例函数y=kx的解析式得:322k=,解得:43k=,∵正比例函数的解析式为43y x =,∵点C(2,p)在该正比例函数的图象上,∵48233 p=⨯=;故选D.【点睛】本题主要考查正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.4.(本题4分)(2021·西安市·陕西师大附中九年级二模)若点()1,2M 关于y 轴的对称点在一次函数()32y k x k =++的图象上,则k 的值为( )A .2-B .0C .1-D .37- 【答案】A【分析】依题意,点(1,2)M 关于y 轴的对称点为12()1,M -,然后将点1M 带入一次函数解析式即可;【详解】由题知,点关于y 轴的对称点坐标的规律---横坐标变为相反数,纵坐标不变,可得:对称点12()1,M -将点12()1,M -代入一次函数(32)y k x k =++,即为2(32)(1)k k =+⨯-+,可得:2k =-; 故选:A【点睛】本题主要考查点的对称、一次函数解析式的性质,难点在熟悉二者的衔接;5.(本题4分)(2021·江苏苏州市·九年级专题练习)对于一次函数(y kx b k =+,b 为常数),如表中给出几组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是( )A .1-B .2C .5D .7【答案】B【分析】经过观察4组自变量和相应的函数值(1,7)-,(0,5),(3,1)-符合解析式25y x =-+,(1,2)不符合,即可判定.【详解】解:(1,7)-,(0,5),(3,1)-符合解析式25y x =-+,当1x =时,312y =≠∴这个计算有误的函数值是2,故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.6.(本题4分)(2018·福建福州市·八年级期中)已知 2,()1P m m +是平面直角坐标系的点,则点P 的纵坐标随横坐标变化的函数解析式可以是 ( )A .21y x =-B .112y x =-C .112y x =+D .21y x =+ 【答案】C【分析】令2m=x ,m+1=y ,利用代入消元法,消去m ,即可得到答案.【详解】令2m=x ,m+1=y , ∵m=12x ,m=y -1, ∵12x= y -1,即:112y x =+, 点P 的纵坐标随横坐标变化的函数解析式可以是:112y x =+. 故选C .【点睛】本题主要考查一次函数图象上点的坐标特征,掌握代入消元法,是解题的关键. 7.(本题4分)(2020·浙江杭州市·八年级期末)一次函数y kx b =+中,若0kb <,且y 随着x 的增大而增大,则其图象可能是( )A .B .C .D .【答案】B【分析】由y 随着x 的增大而增大,利用一次函数的性质可得出k >0,结合kb <0可得出b <0,再利用一次函数图象与系数的关系即可得出一次函数y =kx +b 的图象经过第一、三、四象限.【详解】解:∵y 随着x 的增大而增大,∵k >0,又∵kb <0,∵b <0,∵一次函数y =kx +b 的图象经过第一、三、四象限.故选:B .【点睛】本题考查了一次函数的性质以及一次函数图象与系数的关系,牢记“k >0,b <0∵y =kx +b 的图象在一、三、四象限”是解题的关键.8.(本题4分)(2021·全国八年级课时练习)一次函数片1y ax b 与2y cx d =+的图象如图所示,下列说法:①ab <0;①函数y =ax +d 不经过第一象限;①函数y =cx +b 中,y 随x 的增大而增大;①3a +b =3c +d ,其中正确的个数有( )A .4个B .3个C .2个D .1个【答案】A仔细观察图象:∵a 的正负看函数y 1=ax +b 图象从左向右成何趋势,b 的正负看函数y 1=ax +b 图象与y 轴交点即可;∵观察函数图象可以直接得到答案;∵观察函数图象可以直接得到答案;∵根据两直线交点可以得到答案.【详解】由图象可得:a <0,b >0,c >0,d <0,∵ab <0,故∵正确;函数y =ax +d 的图象经过第二,三,四象限,即不经过第一象限,故∵正确;函数y =cx +b 中,y 随x 的增大而增大,故∵正确;∵一次函数y 1=ax +b 与y 2=cx +d 的图象的交点的横坐标为3,∵3a +b =3c +d ,故∵正确.综上所述,正确的结论有4个.故选:A .【点睛】本题主要考查了一次函数的图象与性质,利用数形结合是解题的关键.二、填空题(共30分)9.(本题5分)(2020·盐城市初级中学八年级月考)在2(1)1y k x k =-+-中,若y 是x 的正比例函数,则k 值为____________.【答案】-1【分析】根据正比例函数的定义得到k -1≠0且k 2−1=0即可求出k 值.∵函数y=(k-1)x+k2−1是正比例函数,∵k-1≠0且k2−1=0,解得k=-1;故填:-1.【点睛】此题考查正比例函数的定义,熟记定义是解题的关键,主要是定义的理解,比较容易.10.(本题5分)(2021·全国八年级)下列函数关系式:①y=kx+1;①y=2x;①y=x2+1;①y=22﹣x.其中是一次函数的有_____个.【答案】1【分析】根据一次函数的定义解答即可.【详解】解:∵当k=0时,y=kx+1不是一次函数;∵y=2x的右边不是整式,不是一次函数;∵y=x2+1的自变量的次数是2,不是一次函数;∵y=22﹣x是一次函数.故答案为:1.【点睛】本题考查了一次函数的定义,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数.11.(本题5分)(2021·江苏泰州市·九年级一模)直线y=﹣12x+2分别交x轴、y轴于A、B两点,点O为坐标原点,则S①AOB=_____.【答案】4【分析】求出OA、OB的值,根据三角形面积公式求出即可.【详解】解:把x=0代入y=﹣12x+2得:y=2,把y =0代入y =﹣12x +2得:x =4, 即OA =4,OB =2,AOB S =12OA ×OB =12×4×2=4, 故答案为:4.【点睛】本题考查了一次函数图象上点的坐标特征的应用,关键是求出OA 、OB 的值.12.(本题5分)(2021·江苏苏州市·九年级专题练习)在平面直角坐标系中,直线y =12x ﹣4与x 轴的交点坐标为_____.【答案】(8,0)【分析】令y =0求出x 的值,从而可得出直线与x 轴的交点坐标.【详解】解:令y =0,则12x ﹣4=0, 解得:x =8,∵直线12x ﹣4与x 轴的交点坐标是(8,0). 故答案为:(8,0).【点睛】本题主要考查一次函数与坐标轴的交点,准确的计算是解题的关键.13.(本题5分)(2021·天津九年级一模)将直线10y x =向上平移3个单位长度,平移后直线的解析式为_________.【答案】103y x =+【分析】根据上加下减的平移规律确定解析式即可【详解】将直线10y x =向上平移3个单位长度,平移后直线的解析式为y =10x +3,故答案为:y =10x +3.【点睛】本题考查了直线的平移规律,熟练掌握平移中上加下减是解题的关键.14.(本题5分)(2021·四川达州市·八年级期末)关于函数3y kx k k =++(为常数),给出下列结论:①此函数是一次函数;①无论k 取什么值,函数图象必经过点()1,3-;①若0k >时,函数图象经过第一、二、三象限;①若0k <时,函数图象与x 轴的交点始终在负半轴上.其中正确的是___________(填序号)【答案】∵∵【分析】∵根据一次函数的定义即可判断;∵将1x =-代入解析式即可判断;∵先确定30k +>即可判断;∵先确定3k +的正负再判断.【详解】解:∵当0k ≠时函数时一次函数,当0k =时,函数为常数函数;此说法错误; ∵当1x =-时,33y k k =-++=∴无论k 取什么值,函数图象必经过点()1,3-;此说法正确;∵若0k >时,30k +>∴函数图象经过第一、二、三象限;此说法正确;∵若0k <时,30k +>时函数图象与x 轴的交点在正半轴上;若0k <时,30k +<时函数图象与x 轴的交点始终在负半轴上,此说法错误; 故答案为:∵∵.【点睛】本题根据交点坐标确定解析式字母系数的取值及分类讨论思想的运用,一般地,先求出交点坐标,再把坐标满足的条件转化成相应的方程或不等式进而解决问题.三、解答题(共90分)15.(本题8分)(2021·全国八年级期末)如图,在平面直角坐标系xOy 中,已知(5,2),(1,6)A B -,直线AB 与直线:2l y x =+交于点C ,直线l 与x 轴交于点D .(1)求直线AB 的解析式:(2)求点C 的坐标;(3)求ACD △的面积.【答案】(1)y =-2x +8;(2)(2,4);(3)18【分析】(1)利用待定系数法求解即可;(2)联立y =-2x +8和y =x +2,求出x ,代入其中一个解析式求出y 值,即可得到点C ; (3)求出点D 和点E 坐标,利用∵ACD 的面积=∵CDE 的面积+∵ADE 的面积求出结果.【详解】解:(1)设直线AB 的解析式为:y =kx +b ,将A (5,-2),B (1,6)代入,得:256k b k b -=+⎧⎨=+⎩,解得:28k b =-⎧⎨=⎩, ∵直线AB 的解析式为:y =-2x +8;(2)∵直线AB 与直线y =x +2交于点C ,则令-2x +8=x +2,解得:x =2,代入y =x +2,得y =4,∵C (2,4);(3)∵直线l 与x 轴交于点D ,∵在y =x +2中,令y =0,则x =-2,∵D (-2,0),设E 为直线AB 与x 轴交点,在y =-2x +8中,令y =0,则x =4,∵E (4,0),∵∵ACD的面积=∵CDE的面积+∵ADE的面积=11646222⨯⨯+⨯⨯=18.【点睛】本题考查了待定系数法求直线的解析式,一次函数与坐标轴的交点问题,能正确求出函数解析式,从而得到相应点的坐标是解题的关键.16.(本题8分)(2020·甘州中学八年级月考)已知y﹣2与x成正比例,且x=2时,y=﹣6.求:(1)y与x的函数关系式;(2)当y=14时,x的值.【答案】(1)y=﹣4x+2;(2)x=﹣3.【分析】(1)设y﹣2=kx(k≠0),把x=2,y=﹣6代入即可求解;(2)把y=14代入函数关系式即可求解.【详解】解:(1)设y﹣2=kx(k≠0),则﹣6﹣2=2k,∵k=﹣4,∵y与x的函数关系式是:y=﹣4x+2;(2)当y=14时,14=﹣4x+2,解得x=﹣3.【点睛】此题主要考查正比例函数的解析式求解,解题的关键是熟知待定系数法的应用.17.(本题8分)(2020·上海八年级期中)已知正比例函数的图像经过点3)-,(1)求正比例函数解析式:(2)若,4)A a-在此正比例函数图像上,求a的值.【答案】(1)y=;(2)1a=【分析】(1)设正比例函数的解析式为y kx =,然后把点)3-代入求解即可;(2)由(1)及题意可直接进行求解. 【详解】解:(1)设正比例函数的解析式为y kx =,则有:3-=,解得:k =∵正比例函数的解析式为y =;(2)由(1)得:y =,把),4Aa -代入解析式得:4a -=,解得:1a =. 【点睛】本题主要考查正比例函数,熟练掌握正比例函数的解析式及性质是解题的关键.18.(本题8分)(2020·全国八年级课时练习)已知正比例函数(1)y m x =-的图象上有两点()11,,A x y ()22,B x y ,当12x x <时,有12y y >.(1)求m 的取值范围;(2)当m 取最大整数时,画出该函数图象.【答案】(1)m 的取值范围是1m <;(2)该正比例函数为y x =-,图象见解析.【分析】(1)根据正比例的性质可得出m -1<0,从而得出m 的取值范围; (2)由(1)得出m 的值,再代入得出解析式,画出图象即可. 【详解】 解:(1)正比例函数(1)y m x =-的图象上有两点()11,,A x y ()22,B x y ,当12x x <时,有12y y >.10,m ∴-< 1,m ∴<m ∴的取值范围是1m <.(2)1,m <m ∴取最大整数0,∴该正比例函数为y x =-,图象如图所示:【点睛】本题考查了正比例函数的图象和性质,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.19.(本题10分)(2020·辽宁锦州市·八年级期中)已知直线y kx b =+经过点()2,0A -,且平行于直线2y x =-(1)求该函数的关系式;(2)如果直线y kx b =+经过点()3,P m -,求m 的值; (3)求经过P 点的直线13y x n =+与直线y kx b =+和y 轴所围成的三角形的面积. 【答案】(1)24y x =--;(2)2m =;(3)212【分析】(1)根据直线y kx b =+平行于直线2y x =-可得k =-2,然后根据待定系数法算出b 即可; (2)将点P 代入表达式中计算m 即可; (3)分别计算出y kx b =+和13y x n =+与y 轴的交点坐标,然后直接计算所围成图形面积即可.【详解】解:∵y kx b =+与2y x =-平行, ∵2k =-, ∵2y x b =-+. ∵过点(2,0)A - ∵()022b =-⨯-+, ∵4b =-,∵该函数的关系式:24y x =--. (2)∵24y x =--经过点(3,)P m - ∵()234m =-⨯--, ∵2m =;(3)令直线24y x =--中0x =时,则4y =-, ∵直线24y x =--与y 轴的交点是(0,4)-. 令直线13y x n =+中2y =,3x =-,可得:12(3)3n =⨯-+, ∵3n =, ∵直线13y x n =+表达式为直线133y x =+∵直线13y x n =+与y 轴的交点坐标为(0,3), ∵所围成的三角形的面积1217322=⨯⨯=. 【点睛】本题主要考查一次函数求解析式和简单的几何问题,用待定系数法求解析式是解题的关键. 20.(本题10分)(2020·江苏苏州市·八年级月考)已知一次函数y =﹣2x ﹣2. (1)根据关系式画出函数的图象.(2)求出图象与x 轴、y 轴的交点A 、B 的坐标,(3)在坐标轴上有点C,使得AB=AC,写出C的坐标.【答案】(1)作图见解析;(2)A(−1,0),B(0,−2);(3)(0)或(−1 0)或(0,2).【分析】(1)根据函数解析式,可以画出相应的函数图象;(2)令x=0求出y的值,再令y=0求出x的值,即可得到点A和点B的坐标;(3)由AB=AC,分情况讨论点C在x轴,y轴的坐标,即可求得点C的坐标.【详解】解:(1)函数图象如图所示;(2)∵y=−2x−2,∵当x=0时,y=−2,当y=0时,x=−1,∵图象与x轴、y轴的交点A、B的坐标分别为(−1,0),(0,−2);(3)由(3)知,A、B的坐标分别为(−1,0),(0,−2),∵AB∵点C在坐标轴上,AB=AC,∵当C在x轴上时,点C的坐标为(0)或(−10),当点C 在y 轴上时,点C 的坐标为(0,2),综上所述,点C 的坐标为:(0)或(−10)或(0,2). 【点睛】本题考查一次函数的图象、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.21.(本题12分)(2020·扬州市邗江区实验学校八年级月考)若等腰三角形的周长是80cm ,(1)写出这个等腰三角形的腰长y (cm )与底边长x (cm )之间的函数关系式,并求出自变量的取值范围; (2)画出该函数的图象.【答案】(1)400.5y x =-,040x <<;(2)见解析图 【分析】(1)根据等腰三角形的周长=腰长×2+底长.据此可得出函数关系式;根据三角形的三边关系来自变量取值范围;(2)按照画函数图象的方法,注意自变量取值范围即可. 【详解】(1)∵280y x += ∵400.5y x =- ∵0,0x y >>,2y x >∵0x >,400.50x ->,80x x ->. 解得:040x <<;(2)如图所示,注意自变量的取值范围,【点睛】本题考查了一次函数的应用,掌握求自变量的取值范围时要注意三角形三边关系是解题的关键.22.(本题12分)(2021·成都高新新源学校八年级期中)如图,直线AB :2y x k =-过点M (k ,2),并且分别与x 轴,y 轴相交于点A 和点B .(1)求k 的值;(2)求点 A 和点B 的坐标;(3)将直线AB 向上平移3个单位得直线l ,若C 为直线l 上一点,且3AOCS =,求点C的坐标.【答案】(1)2;(2)(1,0),(0,2)A B -;(3)5,62⎛⎫ ⎪⎝⎭或7,62⎛⎫-- ⎪⎝⎭. 【分析】(1)将()2M k ,代入2y x k =-中即可解题; (2)将2k =代入直线AB 可得∵22y x =-,再分别令0x =,0y =,即可解得点A 和点B 的坐标;(3)先解得平移3个单位后的直线l :21y x =+,设C 点坐标为(1)2a a +,,根据三角形面积公式解得11|21|32a ⨯⨯+=,结合绝对值的性质解题即可. 【详解】解:(1)将()2M k ,代入2y x k =-中可得, 22k k -=, 2k =,故k 的值为 2;(2)将2k =代入直线AB 可得∵22y x =-, 令0x =,则2y =-, 令0y =,则1x =,(1,0),(0,2)A B ∴-;(3)由题意可得,平移3个单位后的直线l 为,223y x =-+,即:21y x =+,设C 点坐标为(1)2a a +,, 12ADC C S AO y =⨯⨯△,11|21|32a ∴⨯⨯+=, |21|6a +=, 216a +=±,解得∵5 2a =或72a =-,代入可得,点C 的坐标为5,62⎛⎫ ⎪⎝⎭或7,62⎛⎫-- ⎪⎝⎭. 【点睛】本题考查一次函数,设及一次函数与坐标轴的交点、平移、三角形面积公式、绝对值等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.(本题14分)(2021·全国八年级课时练习)已知,如图,一次函数的图象经过了点(64)P ,和(04)B -,,与x 轴交于点A . (1)求一次函数的解析式;(2)在y 轴上存在一点M ,且ABM 的面积为152,求点M 的坐标.【答案】(1)443y x =-;(2)()M 0,1或()09-, 【分析】(1)把P 点和B 点坐标代入y =kx +b 得到关于k 、b 的方程组,然后解方程组求出k 、b 即可得到一次函数解析式;(2)利用x 轴上点的坐标特征求出A 点坐标,根据三角形面积公式列等式求解即可. 【详解】(1)设一次函数的解析式为y kx b =+,把点()64P ,和()04B -,代入y kx b =+得644k b b +=⎧⎨=-⎩,解得434k b ⎧=⎪⎨⎪=-⎩,所以一次函数解析式为443y x =-; (2)当0y =时,4403x -=,解得3x =, 则A (3,0),在y 轴上存在一点M ,且ABM 的面积为152, 11522ABMA SBM x ∴=⋅=,即115322BM ⨯= 5BM ∴=,B (0,-4),()01,∴M 或()09-,.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数与坐标轴的交点、三角形的面积,熟练掌握待定系数法是解题的关键.。
一次函数的图像和性质练习题

一次函数的图像和性质练习题一、填空题1.正比例函数一定经过 点,经过,一次函数(0)y kx k =≠(1), 经过点,点. (0)y kx b k =+≠(0), (0) ,2.直线与轴的交点坐标是 ,与y 轴的交点26y x =-+x 坐标是。
与坐标轴围成的三角形的面积是。
3.若一次函数的图象过原点,则的值为 .(44)y mx m =--m4.如果函数的图象经过点,则它经过轴上的点的坐标为 y x b =-(01)P ,x .5.一次函数的图象经过点( ,5)和(2,)3+-=x y 6.已知一次函数y=x+m 和y=-x+n 的图像都经过点A(-2,0), 且与y 轴分别2321交于B,C 两点,求△ABC 的面积。
7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)随的增大而减小.请你写出一个满足上述条件的函数 y x 8.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 .9.若直线y=2x+6与直线y=mx+5平行,则m=____________.10.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 .11.将直线y= -- 2x 向上平移3个单位得到的直线解析式是 ,将直线y= -- 2x 向下移3个单得到的直线解析式是 .将直线y= -- 2x+3向下移2个单得到的直线解析式是 .12.一次函数的图象经过一、三、四象限,则的取值范围是 (2)4y k x k =-+-k .13.已知点A(-4, a),B(-2,b)都在一次函数y=x+k(k 为常数)的图像上,则a21与b 的大小关系是a____b(填”<””=”或”>”)14.直线经过一、二、三象限,则 0, 0,经过二、三、四象y kx b =+k b 限,则有 0, 0,经过一、二、四象限,则有 0, 0.k b k b 15.如果直线与轴交点的纵坐标为,那么这条直线一定不经过第 3y x b =+y 2-------------象限.16、直线与轴的交点坐标是_______,与轴的交点坐标是_______.152y x =-17、直线可以由直线沿轴_______而得到;直线可以23y x =-2y x =32y x =-+由直线轴_______而得到.3y x =-18、已知一次函数.()()634y m x n =++-(1)当m______时,y 随x 的增大而减小;(2)当m______,n______时,函数图象与y 轴的交点在x 轴的下方;(3)当m______,n______时,函数图象过原点.二、选择题1.已知函数,要使函数值随自变量的增大而减小,则的取(3)2y m x =+-y x m 值范围是( )A.B.C.D.3m -≥3m >-3m -≤3m <-2.一次函数中,的值随的减小而减小,则的取值范围是( (1)5y m x =++y x m )A.B.C.D.1m >-1m <-1m =-1m <3.已知直线,经过点和点,若,且,y kx b =+11()A x y ,22()B x y ,0k <12x x <则与的大小关系是( )1y 2y A.B.C.D.不能确定12y y >12y y <12y y =4. 若直线经过第二、三、四象限,则的取值范围是( )23y mx m =--m A.B.C.D.32m <32m -<<32m >0m >5.一次函数的图象不经过( )31y x =-A.第一象限B.第二象限 C.第三象限D.第四象限6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(m 9.两个一次函数与,它们在同一直角坐标系中的图象可能1y ax b =+2y bx a =+D.C.B .A .是( )10、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=x -8 B 、y=-x+3 C 、y=2x+5D 、y=7x -63211、在一次函数中,的值随值的增大而减小,则的取值范围是( ()15y m x =++)A 、B 、C 、D 、1m <-1m >-1m =-1m <12、若一次函数的图象经过一、二、三象限,则应满足的条件是:( b kx y +=b k ,)A.B.C.D.0,0>>b k 0,0<>b k 0,0><b k 0,0<<b k 13、将直线y=2x 向上平移两个单位,所得的直线是 ( )A 、y=2x+2B 、y=2x -2C 、y=2(x -2)D 、y=2(x+2)14.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )15.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )三、解答题1、在同一个直角坐标系中,画出函数与的图象,并判断点21y x =-34y x =-+A (1,1)、B (-2,10)是否在所画的图象上?在哪一个图象上?2.已知一次函数y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.3、已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0),求此函数的解析式4、求函数与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成323-=x y 的三角形的面积.5、根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).6、某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y (升)与行驶的路程x(km)成一次函数关系,其图象如图。
一次函数的图像性质练习题

一次函数的图像性质练习题一.选择题(共37小题)1.如图,一次函数y=kx+b(k>0)的图象过点(﹣1,0),则不等式k(x﹣1)+b>0的解集是()A.x>﹣2 B.x>﹣1 C.x>0D.x>12.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k<0 B.b=﹣1 C.y随x的增大而减小D.当x>2时,kx+b<0 3.两个一次函数y=ax+b和y=bx+a,它们在同一个直角坐标系的图象可能是()A.B.C.D.4.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.5.已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y=kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()A.B.C.D.6.在平面直角坐标系中,一次函数y=x+1的图象是()A.B.C.D.7.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A.x≤1B.x≥1C.x<1D.x>18.一次函数y=(m﹣2)x+m+3的图象如图所示,则m的取值范围是()A.m>2B.m<2C.2<m<3D.﹣3<m<2 9.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣410.一次函数y=2x﹣1的图象大致是()A.B.C.D.11.一次函数y=2x﹣1图象经过象限()A.一、二、三B.一、二、四C.二、三、四D.一、三、四12.在①y=﹣8x:②y=﹣:③y=+1;④y=﹣5x2+1:⑤y=0.5x﹣3中,一次函数有()A.1个B.2个C.3个D.4个13.如图,直线y=kx+b(k≠0)经过点A(﹣3,2)则关于x的不等式kx+b<2解集为()A.x>﹣3B.x<﹣3C.x>2D.x<214.如图,直线y=ax+1与y=﹣x+4交于点E,点A,B,C,D分别是两条直线与坐标轴的交点.则结论:①a>0;②点B的坐标是(0,1);③S△BDE=3;④当x>2时,ax+1<﹣x+4中,正确的是()A.①②③B.①②④C.①③④D.②③④15.如图,若一次函数y=kx+b的图象与两坐标轴分别交于A,B两点,点B的坐标为(4,0),则不等式kx+b<0的解集为()A.x>2B.x<2C.x<4D.x>416.如图,已知一次函数y=k1x+b1与一次函数y=k2x+b2的图象相交于点(2,1),则不等式k1x+b1<k2x+b2的解集是()A.x>3B.x>2C.x<2D.x<017.已知一次函数y=kx+b的图象如图,则当0≤y<3时,x的取值范围是()A.x<0B.0≤x<2C.0<x≤2D.x>218.一次函数y=kx+k﹣1的图象不可能是下面的()A.B.C.D.19.如图,若直线l1:y=﹣x+b与直线l2:y=kx+4交于点P(﹣1,3),则关于x的不等式kx+4>﹣x+b的解集是()A.x>﹣1B.x<﹣1C.x>3D.x<320.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a<0;③当x<3时,y1<y2中,正确的个数是()A.3B.2C.1D.021.如图,直线y=kx+b与y轴交于点(0,3),直线在x轴上的截距是a,当k≥1时,a 的取值范围是()A.a<0B.a>﹣2C.﹣3≤a<0D.a≥﹣322.若式子+(k﹣2)0有意义,则一次函数y=(k﹣2)x+2﹣k的图象可能是()A.B.C.D.23.如图四条直线,可能是一次函数y=kx﹣k(k≠0)的图象的是()A.B.C.D.24.如图,函数y=kx+4(k≠0)的图象经过点A(2,0),与函数y=mx的图象交于点B (a,2),则不等式kx+4>mx的解集为()A.x>1B.x<1C.x>2D.x<225.在同一平面直角坐标系中,函数y=kx与y=x+3﹣k的图象不可能是()A.B.C.D.26.如图所示,直线l1:y=k1x与l2:y=k2x+b直线在同一平面直角坐标系中的图象,则关于x的不等式k1x>k2x+b的解集为()A.x>﹣1B.x<﹣1C.x<﹣2D.无法确定27.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式ax+4>2x的解集是()A.x>B.x<C.x>3D.x<328.下列图象中,可能是一次函数y=πx﹣7图象的是()A.B.C.D.29.已知函数y=ax+a的图象经过点P(1,2),则该函数的图象可能是()A.B.C.D.30.如图,直线y=kx﹣b与横轴、纵轴的交点分别是(﹣2,0),(0,1),则关于x的不等式kx﹣b≥0的解集为()A.x≥﹣B.x≤﹣2 C.x≥1 D.x≤131.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,直线l1:y=k1x+b交x轴于点(﹣3,0),则关于x的不等式k2x<k1x+b<0的解集为()A.﹣3<x<﹣1B.﹣2<x<﹣1C.﹣3<x<1D.﹣1<x<232.如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2),则﹣x+m>﹣2x+3的解集为()A.B.C.x<﹣2D.x>﹣233.一次函数y=ax+b与正比例函数y=abx(a、b为常数且ab≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.34.如图,直线y=kx+b与x轴交于点(﹣4,0),与y轴交于点(0,3),当y>0时,则x 的取值范围是()A.x<﹣4B.x>﹣4C.﹣4<x<3D.x>335.如图,直线y=kx+b与坐标轴的两交点分别为A(2,0)和B(0,﹣3),则不等式kx+b+3>0的解集为()A.x>0B.x<0C.x>2D.x<236.如图,直线l1:y=2x+1与直线l2:y=mx+n相交于点P(1,b),则关于x,y的方程组的解为()A.B.C.D.37.如图,一次函数y=kx+b的图象与x轴的交点坐标为(﹣2,0),则下列说法:①y随x 的增大而减小;②k>0,b<0;③关于x,y的二元一次方程kx﹣y+b=0必有一个解为x =﹣2,y=0;④当x>﹣2时,y>0.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共2小题)38.已知a,b,c满足===k,则一次函数y=kx﹣k必过第象限.39.已知函数y=k1x+b与函数y=k2x的图象交点如图所示,则方程组的解是.三.解答题(共1小题)40.如图,一次函数y1=x+1的图象与正比例函数y2=kx(k为常数,且k≠0)的图象都过A(m,2).(1)求点A的坐标及正比例函数的表达式;(2)若一次函数y1=x+1的图象与y轴交于点B,求△ABO的面积;(3)利用函数图象直接写出当y1>y2时,x的取值范围.一次函数的图像性质练习题参考答案与试题解析一.选择题(共37小题)1.如图,一次函数y=kx+b(k>0)的图象过点(﹣1,0),则不等式k(x﹣1)+b>0的解集是()A.x>﹣2B.x>﹣1C.x>0D.x>1【解答】解:把(﹣1,0)代入y=kx+b得﹣k+b=0,解b=k,则k(x﹣1)+b>0化为k(x﹣1)+k>0,而k>0,所以x﹣1+1>0,解得x>0.故选:C.方法二:一次函数y=kx+b(k>0)的图象向右平移1个单位得y=k(x﹣1)+b,∵一次函数y=kx+b(k>0)的图象过点(﹣1,0),∴一次函数y=k(x﹣1)+b(k>0)的图象过点(0,0),由图象可知,当x>0时,k(x﹣1)+b>0,∴不等式k(x﹣1)+b>0的解集是x>0,故选:C.2.两个一次函数y=ax+b和y=bx+a,它们在同一个直角坐标系的图象可能是()A.B.C.D.【解答】解:当a>0,b>0时,一次函数y=ax+b和y=bx+a的图象都经过第一、二、三象限,当a>0,b<0时,一次函数y=ax+b的图象经过第一、三、四象限,函数y=bx+a的图象经过第一、二、四象限,当a<0,b>0时,一次函数y=ax+b的图象经过第一、二、四象限,函数y=bx+a的图象经过第一、三、四象限,当a<0,b<0时,一次函数y=ax+b和y=bx+a的图象都经过第二、三、四象限,由上可得,两个一次函数y=ax+b和y=bx+a,它们在同一个直角坐标系的图象可能是B 中的图象,故选:B.3.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.【解答】解:∵m<﹣2,∴m+1<0,1﹣m>0,所以一次函数y=(m+1)x+1﹣m的图象经过一,二,四象限,故选:D.4.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k<0B.b=﹣1C.y随x的增大而减小D.当x>2时,kx+b<0【解答】解:如图所示:A、图象经过第一、三、四象限,则k>0,故此选项错误;B、图象与y轴交于点(0,﹣1),故b=﹣1,正确;C、k>0,y随x的增大而增大,故此选项错误;D、当x>2时,kx+b>0,故此选项错误;故选:B.5.已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y=kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()A.B.C.D.【解答】解:把点(2,3)代入y=kx(k≠0)得2k=3,解得,∴正比例函数解析式为,设正比例函数平移后函数解析式为,把点(1,﹣1)代入得,∴,∴平移后函数解析式为,故函数图象大致为:.故选:D.6.在平面直角坐标系中,一次函数y=x+1的图象是()A.B.C.D.【解答】解:一次函数y=x+1中,令x=0,则y=1;令y=0,则x=﹣1,∴一次函数y=x+1的图象经过点(0,1)和(﹣1,0),∴一次函数y=x+1的图象经过一、二、三象限,故选:C.7.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A.x≤1B.x≥1C.x<1D.x>1【解答】解:由题意,将P(1,1)代入y=kx+b(k<0),可得k+b=1,即k﹣1=﹣b,整理kx+b≥x得,(k﹣1)x+b≥0,∴﹣bx+b≥0,由图象可知b>0,∴x﹣1≤0,∴x≤1,故选:A.8.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣4【解答】解:∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),∴,解得∴直线为y=﹣+1,当y=2时,2=﹣+1,解得x=﹣2,由图象可知:不等式kx+b≤2的解集是x≥﹣2,故选:C.9.一次函数y=2x﹣1的图象大致是()A.B.C.D.【解答】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.10.一次函数y=(m﹣2)x+m+3的图象如图所示,则m的取值范围是()A.m>2B.m<2C.2<m<3D.﹣3<m<2【解答】解:∵直线y=(m﹣2)x+m+3经过一、二、四象限,∴,解得﹣3<m<2,故选:D.11.一次函数y=2x﹣1图象经过象限()A.一、二、三B.一、二、四C.二、三、四D.一、三、四【解答】解:∵一次函数y=2x﹣1,k=2>0,b=﹣1<0,∴该函数图象经过一、三、四象限,故选:D.12.在①y=﹣8x:②y=﹣:③y=+1;④y=﹣5x2+1:⑤y=0.5x﹣3中,一次函数有()A.1个B.2个C.3个D.4个【解答】解:在①y=﹣8x:②y=﹣:③y=+1;④y=﹣5x2+1:⑤y=0.5x﹣3中,一次函数有①y=﹣8x;⑤y=0.5x﹣3.故选:B.13.如图,直线y=kx+b(k≠0)经过点A(﹣3,2)则关于x的不等式kx+b<2解集为()A.x>﹣3B.x<﹣3C.x>2D.x<2【解答】解:由图中可以看出,当x>﹣3时,kx+b<2,故选:A.14.如图,直线y=ax+1与y=﹣x+4交于点E,点A,B,C,D分别是两条直线与坐标轴的交点.则结论:①a>0;②点B的坐标是(0,1);③S△BDE=3;④当x>2时,ax+1<﹣x+4中,正确的是()A.①②③B.①②④C.①③④D.②③④【解答】解:由函数y=ax+1的图象可知,y随x的增大而增大,∴a>0,故①正确;在直线y=ax+1中,令x=0,则y=1,∴直线y=ax+1与y轴的交点B为(0,1),故②正确;由函数y=﹣x+4可知,D的坐标为(0,4),∴BD=3,∵E的横坐标为2,∴S△BDE=×3×2=3,故③正确;由图象可知,当x>2时,函数y=ax+1在函数y=﹣x+4的上方,∴ax+1>﹣x+4,故④错误,故选:A.15.如图,若一次函数y=kx+b的图象与两坐标轴分别交于A,B两点,点B的坐标为(4,0),则不等式kx+b<0的解集为()A.x>2B.x<2C.x<4D.x>4【解答】解:由图可知:当x>4时,y<0,即kx+b<0;因此kx+b<0的解集为:x>4.故选:D.16.如图,已知一次函数y=k1x+b1与一次函数y=k2x+b2的图象相交于点(2,1),则不等式k1x+b1<k2x+b2的解集是()A.x>3B.x>2C.x<2D.x<0【解答】解:一次函数y1=k1x+b1与一次函数y2=k2x+b2的图象相交于点(2,1),所以不等式k1x+b1<k2x+b2的解集是x<2.故选:C.17.一次函数y=kx+k﹣1的图象不可能是下面的()A.B.C.D.【解答】解:∵y=kx+k﹣1=k(x+1)﹣1,∴一次函数的图象一定过点(﹣1,﹣1),A.直线经过一、二,四象限,不经过第三象限,故不可能经过点(﹣1,﹣1),故A符合题意;B、C、D直线都经过第三象限,可能经过点(﹣1,﹣1),故可能经过点(﹣1,﹣1),故B、C、D不符合题意,故选:A.18.已知一次函数y=kx+b的图象如图,则当0≤y<3时,x的取值范围是()A.x<0B.0≤x<2C.0<x≤2D.x>2【解答】解:由图象以及数据可知,当0≤y<3时,即直线在x轴上方,y轴的右侧,并且当y=0时,x=2,所以x的取值范围是0<x≤2.故选:C.19.如图,若直线l1:y=﹣x+b与直线l2:y=kx+4交于点P(﹣1,3),则关于x的不等式kx+4>﹣x+b的解集是()A.x>﹣1B.x<﹣1C.x>3D.x<3【解答】解:由图形可知,当x>﹣1时,kx+4>﹣x+b,所以,不等式的解集是x>﹣1.故选:A.20.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a<0;③当x<3时,y1<y2中,正确的个数是()A.3B.2C.1D.0【解答】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0.故①结论正确;∵y2=x+a的图象与y轴交于负半轴,∴a<0.故②结论正确;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故③结论错误.故选:B.21.如图,直线y=kx+b与y轴交于点(0,3),直线在x轴上的截距是a,当k≥1时,a 的取值范围是()A.a<0B.a>﹣2C.﹣3≤a<0D.a≥﹣3【解答】解:把点(0,3)(a,0)代入y=kx+b,得b=3.则k=﹣,∵k≥1,∴﹣≥1,∴﹣3≤a<0,故选:C.22.若式子+(k﹣2)0有意义,则一次函数y=(k﹣2)x+2﹣k的图象可能是()A.B.C.D.【解答】解:∵式子+(k﹣2)0有意义,∴,解得k>2,∴k﹣2>0,2﹣k<0,∴一次函数y=(k﹣2)x+2﹣k的图象经过第一、三、四象限,故选:B.23.如图四条直线,可能是一次函数y=kx﹣k(k≠0)的图象的是()A.B.C.D.【解答】解:当k>0时,一次函数y=kx﹣k(k≠0)的图象经过第一、三、四象限,故选项A不符合题意,选项D符合题意;当k<0时,一次函数y=kx﹣k(k≠0)的图象经过第一、二、四象限,故选项B、C不符合题意;故选:D.24.如图,函数y=kx+4(k≠0)的图象经过点A(2,0),与函数y=mx的图象交于点B (a,2),则不等式kx+4>mx的解集为()A.x>1B.x<1C.x>2D.x<2【解答】解:把点A(2,0)代入y=kx+4,得0=2k+4,解得k=﹣2,∴y=﹣2x+4,把点B(a,2)代入y=﹣2x+4,得2=﹣2a+4,解得a=1,则B点坐标为(1,2),所以当x<1时,直线y=mx都在直线y=kx+4的下方,∴不等式kx+4>mx的解集为x<1.故选:B.25.在同一平面直角坐标系中,函数y=kx与y=x+3﹣k的图象不可能是()A.B.C.D.【解答】解:当k>3时,函数y=kx的图象经过第一、三象限且过原点,y=x+3﹣k的图象经过第一、三、四象限,当0<k<3时,函数y=kx的图象经过第一、三象限且过原点,y=x+3﹣k的图象经过第一、二、三象限;当k<0时,函数y=kx的图象经过第二、四象限且过原点,y=x+3﹣k的图象经过第一、二、三象限,由上可得,选项C不可能;故选:C.26.如图所示,直线l1:y=k1x与l2:y=k2x+b直线在同一平面直角坐标系中的图象,则关于x的不等式k1x>k2x+b的解集为()A.x>﹣1B.x<﹣1C.x<﹣2D.无法确定【解答】解:两条直线的交点坐标为(﹣1,3),且当x<﹣1时,直线l2在直线l1的下方,故不等式k1x>k2x+b的解集为x<﹣1.故选:B.27.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式ax+4>2x的解集是()A.x>B.x<C.x>3D.x<3【解答】解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),∴不等式ax+4>2x的解集为x<.故选:B.28.下列图象中,可能是一次函数y=πx﹣7图象的是()A.B.C.D.【解答】解:∵一次函数y=πx﹣7,k=π>0,b=﹣7<0,∴该函数的图象经过第一、三、四象限,故选:D.29.已知函数y=ax+a的图象经过点P(1,2),则该函数的图象可能是()A.B.C.D.【解答】解:∵函数y=ax+a的图象经过点P(1,2),∴2=a+a,∴a=1,∴一次函数的解析式为y=x+1.∵k=1>0,b=1>0,∴一次函数的图象经过第一、二、三象限.故选:A.30.如图,直线y=kx﹣b与横轴、纵轴的交点分别是(﹣2,0),(0,1),则关于x的不等式kx﹣b≥0的解集为()A.x≥﹣2B.x≤﹣2C.x≥1D.x≤1【解答】∵要求kx﹣b≥0的解集,∴从图象上可以看出等y≥0时,x≥﹣2,故选:A.31.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,直线l1:y=k1x+b交x轴于点(﹣3,0),则关于x的不等式k2x<k1x+b<0的解集为()A.﹣3<x<﹣1B.﹣2<x<﹣1C.﹣3<x<1D.﹣1<x<2【解答】解:由图象可知,直线l1和直线l2的交点为(﹣1,﹣2),直线l1中y随x的增大而减小,∵y=k1x+b交x轴于点(﹣3,0),关于x的不等式k2x<k1x+b的解集为x<﹣1,∴关于x的不等式k2x<k1x+b<0的解集是﹣3<x<﹣1,故选:A.32.如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2),则﹣x+m>﹣2x+3的解集为()A.B.C.x<﹣2D.x>﹣2【解答】解:把P(n,﹣2)代入y=﹣2x+3得﹣2n+3=﹣2,解得n=,∴P,由图象可知不等式﹣x+m>﹣2x+3的解集为x>.故选:B.33.一次函数y=ax+b与正比例函数y=abx(a、b为常数且ab≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【解答】解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=abx经过一、三象限,若a>0,b<0,则y=ax+b经过一、三、四象限,y=abx经过二、四象限,若a<0,b>0,则y=ax+b经过一、二、四象限,y=abx经过二、四象限,若a<0,b<0,则y=ax+b经过二、三、四象限,y=abx经过一、三象限,故选:C.34.如图,直线y=kx+b与x轴交于点(﹣4,0),与y轴交于点(0,3),当y>0时,则x 的取值范围是()A.x<﹣4B.x>﹣4C.﹣4<x<3D.x>3【解答】解:观察函数图象,可知:y随x的增大而增大.∵直线y=kx+b与x轴交于点(﹣4,0),∴当y>0时,x>﹣4.故选:B.35.如图,直线y=kx+b与坐标轴的两交点分别为A(2,0)和B(0,﹣3),则不等式kx+b+3>0的解集为()A.x>0B.x<0C.x>2D.x<2【解答】解:由kx+b+3>0得kx+b>﹣3,直线y=kx+b与y轴的交点为B(0,﹣3),即当x=0时,y=﹣3,由图象可看出,不等式kx+b+3>0的解集是x>0.故选:A.36.如图,直线l1:y=2x+1与直线l2:y=mx+n相交于点P(1,b),则关于x,y的方程组的解为()A.B.C.D.【解答】解:∵直线y=2x+1经过点P(1,b),∴b=2+1,解得b=3,∴P(1,3),∴关于x,y的方程组的解为,故选:C.37.如图,一次函数y=kx+b的图象与x轴的交点坐标为(﹣2,0),则下列说法:①y随x的增大而减小;②k>0,b<0;③关于x,y的二元一次方程kx﹣y+b=0必有一个解为x =﹣2,y=0;④当x>﹣2时,y>0.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵图象过第一、二、三象限,∴k>0,b>0,y随x的增大而增大,故①②错误;又∵图象与x轴交于(﹣2,0),∴kx+b=0的解为x=﹣2,③正确;当x>﹣2时,图象在x轴上方,y>0,故④正确.综上可得③④正确,共2个,故选:B.二.填空题(共2小题)38.已知a,b,c满足===k,则一次函数y=kx﹣k必过第一、四象限.【解答】解:当a+b+c=0时,a=﹣(c+b),∴k==﹣1,此时函数y=﹣x+1的图象过第一、二、四象限;由===k,可得=k,当a+b+c≠0时,k=,此时函数y=x﹣的图象过第一、三、四象限;综上所述,函数y=kx﹣k的图象必过第一、四象限,故答案为:一、四.39.已知函数y=k1x+b与函数y=k2x的图象交点如图所示,则方程组的解是.【解答】解:∵函数y=k1x+b1与函数y=k2x+b2的交点坐标是(﹣1,3),∴方程组的解为.故答案为.三.解答题(共1小题)40.如图,一次函数y1=x+1的图象与正比例函数y2=kx(k为常数,且k≠0)的图象都过A(m,2).(1)求点A的坐标及正比例函数的表达式;(2)若一次函数y1=x+1的图象与y轴交于点B,求△ABO的面积;(3)利用函数图象直接写出当y1>y2时,x的取值范围.【解答】解:(1)将点A的坐标代入y1=x+1,得m+1=2,解得m=1,故点A的坐标为(1,2),将点A的坐标代入y2=k x,得k=2,则正比例函数的表达式为y=2x;(2)令x=0,则y1=1.∴B(0,1).∴OB=1.∴S△ABO==;(3)结合函数图象可得,当y1>y2时,x<1.。
一次函数的图像和性质练习题(基础-有部分中等题)

一次函数的图像和性质练习题1.正比例函数(0)y kx k =≠一定经过 点,经过(1), ,一次函数(0)y kx b k =+≠经过(0), 点,(0) ,点。
2.直线26y x =-+与x 轴的交点坐标是 ,与y 轴的交点坐标是 。
与坐标轴围成的三角形的面积是 。
3.若一次函数(44)y mx m =--的图象过原点,则m 的值为 。
4.如果函数y x b =-的图象经过点(01)P ,,则它经过x 轴上的点的坐标为 。
5.一次函数3+-=x y 的图象经过点( ,5)和(2, )。
6.已知一次函数y=23x+m 和y=-21x+n 的图像都经过点A(-2,0), 且与y 轴分别交于B,C 两点,求△ABC 的面积。
7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)y 随x 的增大而减小.请你写出一个满足上述条件的函数 。
8.已知函数(3)2y m x =+-,要使函数值y 随自变量x 的增大而减小,则m 的取值范围是( ) A.3m -≥B.3m >-C.3m -≤D.3m <-9.一次函数(1)5y m x =++中,y 的值随x 的减小而减小,则m 的取值范围是( ) A.1m >-B.1m <-C.1m =-D.1m <10.已知点A(-4, a),B(-2,b)都在一次函数y=21x+k(k 为常数)的图像上,则a 与b 的大小关系是a____b(填”<””=”或”>”)11.已知直线y kx b =+,经过点11()A x y ,和点22()B x y ,,若0k <,且12x x <,则1y 与2y 的大小关系是( ) A.12y y >B.12y y <C.12y y =D.不能确定12.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 。
13.若直线y=2x+6与直线y=mx+5平行,则m=____________。
中考数学真题专题[一次函数的图像与性质]
![中考数学真题专题[一次函数的图像与性质]](https://img.taocdn.com/s3/m/2bc8863f866fb84ae45c8de0.png)
表达式为
A. B. C. D.
【答案】A
14.(2010 山东东营)一次函数的图象不经过( )
(A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限
【答案】B
15.(2010
湖北孝感)若直线的交点在第四象限,则整数m的值
为
()
A.—3,—2,—1,0 B.—2,—1,0,1
C.—1,0,1,2 D.0,1,2,3
一、选择题 1.(2010山东烟台)如图,直线y1=k1x+a与y2=k3x+b的交点坐标为
(1,2),则使y1∠ y2的x的取值范围为 A、x>1 B、x>2 C、x<1 Dx<2
【答案】C 2.(2010 浙江省温州)直线y=x+3与y轴的交点坐标是(▲) A.(0,3) B.(0,1) C.(3,O) D.(1,0) 【答案】A 3.(2010山东聊城)如图,过点Q(0,3.5)的一次函数与正比例函
∴△ABP的面积为或. 4.(2010湖北随州)某同学从家里出发,骑自行车上学时,速度v(米/
秒)与时间t(秒)的关系如图a,A(10,5),B(130,5), C(135,0). (1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;
(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动 过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度 ×时间); (3)如图b,直线x=t(0≤t≤135),与图a的图象相交于P、Q,用 字母S表示图中阴影部分面积,试求S与t的函数关系式; (4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路 程与此时S的数量关系.
【答案】B
18.(2010 贵州贵阳)一次函数的图象如图2所示,当<0时, x的取值范围是 (A)x<0 (B)x>0 (C)<2 (D)x>2
八年级数学下册《一次函数的图像和性质》练习题及答案

2019年八年级数学下册《一次函数的图像和性质》练习题及答案大家在遇到各种类型的题型时,能否沉着应对,关键在于平时多做练习,下文是由查字典大学网为大家推荐的一次函数的图像和性质练习题及答案,一定要认真对待哦!第1题. 对于任何实数x,点M(x,x-3)一定不在第几象限? 答案:点M(x,x-3)在直线y=x-3上,而直线y=x-3不过第二象限,所以,对于任何实数x,点M(x,x-3)一定不在第二象限.第2题. 一次函数,如果,则x的取值范围是( )A. ?B. ?C. ?D.答案:B.第3题. 已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b0;④kA.1?B.2?C.3?D.4答案:B第4题. 如图所示,函数y=mx+m的图像中可能是( )答案:D第5题. 当自变量x增大时,下列函数值反而减小的是( ) A.?y=???????????????? B.y=2xC.y=???????????????D.y=-2+5x答案:C第6题. 正比例函数的图像如图,则这个函数的解析式为(? )A.y=x?B.y=-2xC.y=-x?D.答案:C第7题. 直线y=(2-5k)x+3k-2不过第一象限,则k需满足?????? ,写出一个满足上述条件的一个函数的解析式?????? .答案:,第8题. 直线y=4x-2与x轴的交点是?????? ,与y轴的交点是?????? .答案:第9题. 直线y=(2-5k)x+3k-2若经过原点,则k=?????? ;若直线与x轴交于点(-1,0),则k=?????? ,答案:第10题. 一次函数的图像经过的象限是____,它与x轴的交点坐标是____,与y轴的交点坐标是____,y随x的增大而____.答案:一、二、四象限,(2,0),(0,4),减小第11题. (1)已知关于x的一次函数y=(2k-3)x+k-1的图像与y轴交点在x轴的上方,且y随x的增大而减小,求k的取值范围;(2)已知函数y=(4m-3)x是正比例函数,且y随x的增大而增大,求m的取值范围.答案:(1)依题意,有,解得 ;(2)依题意,得,即时,y随x的增大而增大.第12题. 已知一次函数,当0≤x≤3时,函数y的最大值是(? ).A.0???B.3???C.-3???D.无法确定答案:B点拔:画图得的图象是一条线段,又,故y随x 的增大而减小,∴当x=0时,y的最大值等于3第13题. 下列图像中,不可能是关于x的一次函数y=mx-(m-3)的图像的是( )答案:C第14题. 在同一坐标内,函数关系式为y=kx+b(k、b为常数且k≠0)的直线有无数条,在这些直线中,不论怎样抽取,至少要抽几条直线,才能保证其中的两条直线经过完全相同的象限( )A.4?B.5?C.6?D.7答案:D第15题. 如图,直线l是一次函数y=kx+b的图像,看图填空:(1)?b=______,k=______;(2)?x=-20时,y=_______;(3)?当y=-20时,x=_______.答案:第16题. 若一次函数y=kx+b交于y轴的负半轴,且y的值随x的增大而减小,则k_____0,b______0.(填">"、"="、或"0,b>0?B.k>0,b0?D.k答案:B第22题. 一次函数y=-3x-4与x轴交于( ),与y轴交于( ),y随x的增大而___________.答案:,,减少第23题. 如果正比例函数 =3 和一次函数 =2 +k的图象的交点在第三象限,那么k的取值范围是???????????? .答案:k")答案:。
一次函数图像练习题及答案

一次函数图像练习题及答案一次函数图像练习题及答案一次函数是数学中的基础概念之一,也是我们在实际生活中经常遇到的数学模型。
它的图像呈现一条直线,具有简洁明了的特点。
在学习一次函数的过程中,练习题是必不可少的一环。
下面,我将给出一些常见的一次函数练习题及其答案,希望能够帮助大家更好地理解和掌握一次函数的概念和性质。
1. 练习题一:已知一次函数y = 2x + 3,求当x取值为-1、0、1、2时,对应的y的值。
解答:当x = -1时,y = 2*(-1) + 3 = 1;当x = 0时,y = 2*0 + 3 = 3;当x = 1时,y = 2*1 + 3 = 5;当x = 2时,y = 2*2 + 3 = 7。
2. 练习题二:已知一次函数y = -0.5x + 2,求当y取值为0、1、2、3时,对应的x的值。
解答:当y = 0时,-0.5x + 2 = 0,解得x = 4;当y = 1时,-0.5x + 2 = 1,解得x = 2;当y = 2时,-0.5x + 2 = 2,解得x = 0;当y = 3时,-0.5x + 2 = 3,解得x = -2。
3. 练习题三:已知一次函数y = 3x - 1,求该函数的图像与x轴和y轴的交点坐标。
解答:当y = 0时,3x - 1 = 0,解得x = 1/3;当x = 0时,y = 3*0 - 1 = -1。
因此,该函数与x轴的交点坐标为(1/3, 0),与y轴的交点坐标为(0, -1)。
通过以上练习题的解答,我们可以发现一次函数的图像具有一些特点。
首先,一次函数的图像是一条直线,斜率决定了直线的倾斜方向和程度。
当斜率为正数时,直线向上倾斜;当斜率为负数时,直线向下倾斜;当斜率为零时,直线水平。
其次,直线与x轴的交点坐标即为函数的解,与y轴的交点坐标则表示了函数在原点的截距。
除了以上的基础练习题,我们还可以进一步拓展一次函数的应用。
例如,我们可以通过一次函数模型来描述某商品的价格与销量之间的关系。
一次函数的图像和性质练习题

一次函数的图像和性质练习题1.一次函数y=kx+b(k≠0)经过正比例函数y=kx(k≠0)一定经过点(0,0),经过点(1,k+b),经过点(-b/k,0)。
2.直线y=-2x+6与x轴的交点坐标是(3,0),与y轴的交点坐标是(0,6)。
与坐标轴围成的三角形的面积是9.3.若一次函数y=mx-(4m-4)的图象过原点,则m的值为1.4.如果函数y=x-b的图象经过点P(0,1),则它经过x轴上的点的坐标为(0,b+1)。
5.一次函数y=-x+3的图象经过点(-2,5)和(2,1)。
6.已知一次函数y=(1/2)x+2的图象与x轴、y轴分别交于点A(4,0)、B(0,2),求△XXX的面积。
答案为4.7.满足条件的函数为y=-x。
8.函数y=2x与y=2x+6的图象平行且不重合。
9.若直线y=2x+6与直线y=mx+5平行,则m=2.10.函数y=ax+b与y=3x+2平行,则a=3,b为任意实数。
11.将直线y=-2x向上平移3个单位得到的直线解析式是y=-2x+3,将直线y=-2x向下移3个单位得到的直线解析式是y=-2x-3,将直线y=-2x+3向下移2个单位得到的直线解析式是y=-2x+1.12.一次函数y=(k-2)x+4-k的图象经过一、三、四象限,则k的取值范围是k≤2或k≥4.13.已知点A(-4.a),B(-2,b)都在一次函数y=3x+1的图象上,且a<b,则系是a<7/2.14.直线y=kx+b经过一、二、三象限,则k>0,b>0;经过二、三、四象限,则k0.15.如果直线y=3x+b与y轴交点的纵坐标为-2,那么这条直线一定不经过第三象限。
16.直线y=(1/2)x-5与x轴的交点坐标是(10,0),与y轴的交点坐标是(0,-5/2)。
17.直线y=2x-3可以由直线y=2x沿y轴上移3个单位而得到;直线y=-3x+2可以由直线y=-3x沿y轴下移2个单位而得到。
第2讲一次函数的图像及性质(练习)原卷版

第2讲 一次函数的图像及性质(练习)夯实基础一、单选题1.直线y =2x ﹣1在y 轴上的截距是( )A .1B .﹣1C .2D .﹣22.一次函数图像如图所示,当2y >时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <3.一次函数51y x =-的图像经过的象限是( )A .一、二、三B .一、三、四C .二、三、四D .一、二、四 4.一次函数()32y k x =-+的图像不经过第四象限,那么k 的取值范围是( )A .3k >B .3k <C .3k ≥D .3k ≤5.在同一真角坐标平面中表示两个一次函数y 1=kx +b ,y 2=−bx +k ,正确的图像为( )A .B .C .D .6.点A (﹣1,y 1)、点B (1,y 2)在直线y =﹣3x 上,则( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法比较y 1、y 2大小7.已知点A (﹣1,y 1),点B (2,y 2)在函数y =﹣3x +2的图象上,那么y 1与y 2的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定 8.一次函数y=kx=k(k=0)的图象大致是( )A .B .C .D .二、填空题9.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.10.如果将直线12y x =沿y 轴向下平移2个单位,那么平移后所得直线的表达式是______. 11.一次函数4y x =--的截距是_________.12.如果一次函数()21y k x =+-中,y 随x 的增大而减小,那么k 的取值范围是___________.13.一次函数5y x b =-+的图象不经过第一象限,则b 的取值范围是_________. 14.一次函数y kx b =+的图像经过点(3,0)与(0,3),那么关于x 的不等式0kx b +>的解集是________.三、解答题15.已知:一次函数y kx b =+的图像经过点(1,3)A 且与直线32y x =-+平行. (1)求这个一次函数的解析式;(2)求在这个一次函数的图像上且位于x 轴上方的所有点的横坐标的取值范围.能力提升一、单选题1.如果点()11,P x y 和点()22,Q x y 是直线()0y kx k =≠上两点,当12x x <时,12y y <,那么直线()0y kx k =≠和函数()0k y k x=≠在同一直角坐标系内的大致图像可能是( ) A . B .C .D .2.若一次函数y =kx +b 的图象经过第一、二、四象限,则一次函数y =bx +k 的图象大致是( )A .B .C .D . 3.已知点()1,A m -和点()1,B n 在函数13y x k =+的图像上,则下列结论中正确的() A .m n > B .m n <C .0k >D .k 0< 4.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t (小时)之间的函数关系的图象是( )A .B .C .D .5.一次函数1y x =--不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,直线y kx b =+交坐标轴于A (a ,0),B (0,b )两点.则不等式0kx b +<的解集为( )A .x b >B .x a >C .x b <D .x a <7.若正比例函数的图象经过点(1-,2),则这个图象必经过点( ).A .(1,2)B .(1-,2-)C .(2,1-)D .(1,2-)二、填空题8.若直线y =kx+b 平行直线y =5x+3,且过点(2,﹣1),则b =_____.9.如图,一次函数y =f (x )的图象经过点(2,0),如果y >0,那么对应的x 的取值范围是_____.10.如果在一次函数y =(k +y 随自变量x 的增大而增大,那么k 的范围为_____.11.如图,已知一次函数y kx b =+的图像经过点A (5,0)与B (0,-4),那么关于x 的不等式+kx b ﹤0的解集是_______.12.将直线32y x =+沿y 轴向下平移4个单位,那么平移后直线的表达式是_______ 13.如图,直角三角形的斜边AB 在y 轴的正半轴上,点A 与原点重合,点B 的坐标是()0,4,且30BAC ∠=︒,若将ABC 绕着点O 旋转后30°,点B 和C 点分别落在点E 和点F 处,那么直线EF 的解析式是__________.14.直线123y x =-与两根坐标轴围成的三角形的面积是_______________________. 15.在平面直角坐标系中,已知点(52,4)A m m --在第二象限,且m 为整数,则过点A 的正比例函数的解析式为___________.三、解答题16.若y+1与2x 成正比例,且当3x =-时,y=1.求y 与x 的函数解析式.17.小明和爷爷元旦登山,小明走较陡峭的山路,爷爷走较平缓的步道,相约在山顶会合.已知步道的路程比山路多700米,小明比爷爷晚出发半个小时,小明的平均速度为每分钟50米.图中的折线反映了爷爷行走的路程y (米)与时间x (分钟)之间的函数关系.(1)爷爷行走的总路程是_____米,他在途中休息了_____分钟,爷爷休息后行走的速度是每分钟_____米;(2)当0≤x≤25时,y与x的函数关系式是___;(3)两人谁先到达终点?这时另一个人离山顶还有多少米?18.在平面直角坐标系xOy中,点A(0,3),点B(m,0),以AB为腰作等腰Rt ABC,如图所示.(1)若ABC S 的值为5平方单位,求m 的值;(2)记BC 交y 轴于点D ,CE ⊥y 轴于点E ,当y 轴平分∠BAC 时,求AD CE 的值 (3)连接OC ,当OC +AC 最小时,求点C 的坐标.19.如图,在平面直角坐标系中,直线y=2x与反比例函数y=kx在第一象限内的图像交于点A(m,2),将直线y=2x向下平移后与反比例函数y=kx在第一象限内的图像交于点P,且=POA的面积为2.(1)求k的值;(2)求平移后的直线的函数解析式.20.如图,已知直线:l y x =x 轴于点A ,y 轴于点B ,将AOB ∆沿直线l 翻折,点O 的对应点C 恰好落在双曲线()0k y k x=>上.(1)求k 的值;(2)将ABC ∆绕AC 的中点旋转180︒得到PCA ∆,请判断点P 是否在双曲线k y x=上,并说明理由.。
一次函数的图像和性质练习题

一次函数的图像和性质练习题一次函数(linear function)是数学中的基础函数之一,也被称为线性函数。
它的图像是一条直线,具有特殊的性质和规律。
本文将为您提供一些关于一次函数的图像与性质的练习题,通过解答这些题目,您将更深入地理解一次函数的图像和性质。
1. 练习题一已知一次函数f(x)的图像经过点A(2, 3)和点B(4, 7),求f(x)的解析式及函数图像。
解析:由题意可知,函数f(x)过点A(2, 3)和点B(4, 7)。
我们可以利用两点间的斜率公式求解析式。
首先,计算斜率k:k = (7 - 3)/(4 - 2) = 2然后,我们可以使用点斜式求得解析式:f(x) - 3 = 2(x - 2)f(x) = 2x - 1因此,一次函数f(x)的解析式为f(x) = 2x - 1。
其函数图像为一条斜率为2的直线,经过点A(2, 3)和点B(4, 7)。
2. 练习题二已知一次函数g(x)的图像经过点C(1, 2),且g(3) = 4,求g(x)的解析式及函数图像。
解析:根据题意,函数g(x)过点C(1, 2),且g(3) = 4。
我们可以利用点斜式和函数的性质求解析式。
首先,由点斜式可得:g(x) - 2 = k(x - 1)然后,我们利用g(3) = 4,代入得到的解析式中:4 - 2 = k(3 - 1)2 = 2kk = 1因此,一次函数g(x)的解析式为g(x) = x + 1。
其函数图像为一条斜率为1的直线,经过点C(1, 2)。
3. 练习题三已知一次函数h(x)的图像经过点D(0, 1),且在x轴上的截距为5,求h(x)的解析式及函数图像。
解析:根据题意,函数h(x)过点D(0, 1),且在x轴上的截距为5。
我们可以利用截距式求解析式。
由截距式可得:h(x) = kx + b其中,b表示函数在y轴上的截距,即h(x)在x=0时对应的值,b = 1。
将截距b和点D(0, 1)代入解析式中,可求得斜率k:1 = k * 0 + 1k = 0因此,一次函数h(x)的解析式为h(x) = x + 1。
2021年中考真题分类19.2一次函数的图象和性质精选试题含解析答案

2021年中考真题分类19.2一次函数一.选择题(共14小题)1.(2021•赤峰)点P(a,b)在函数y=4x+3的图象上,则代数式8a﹣2b+1的值等于()A.5B.﹣5C.7D.﹣6 2.(2021•营口)已知一次函数y=kx﹣k过点(﹣1,4),则下列结论正确的是()A.y随x增大而增大B.k=2C.直线过点(1,0)D.与坐标轴围成的三角形面积为23.(2021•呼和浩特)在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在第一象限作正方形ABCD,则对角线BD所在直线的解析式为()A.y=−17x+4B.y=−14x+4C.y=−12x+4D.y=44.(2021•贺州)直线y=ax+b(a≠0)过点A(0,1),B(2,0),则关于x的方程ax+b =0的解为()A.x=0B.x=1C.x=2D.x=3 5.(2021•柳州)若一次函数y=kx+b的图象如图所示,则下列说法正确的是()A.k>0B.b=2C.y随x的增大而增大D.x=3时,y=06.(2021•福建)如图,一次函数y=kx+b(k>0)的图象过点(﹣1,0),则不等式k(x﹣1)+b>0的解集是()A .x >﹣2B .x >﹣1C .x >0D .x >17.(2021•陕西)在平面直角坐标系中,若将一次函数y =2x +m ﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m 的值为( ) A .﹣5B .5C .﹣6D .68.(2021•长沙)下列函数图象中,表示直线y =2x +1的是( )A .B .C .D .9.(2021•苏州)已知点A (√2,m ),B (32,n )在一次函数y =2x +1的图象上,则m 与n 的大小关系是( ) A .m >nB .m =nC .m <nD .无法确定10.(2021•白银)将直线y =5x 向下平移2个单位长度,所得直线的表达式为( ) A .y =5x ﹣2B .y =5x +2C .y =5(x +2)D .y =5(x ﹣2)11.(2021•扬州)如图,一次函数y =x +√2的图象与x 轴、y 轴分别交于点A ,B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为( )A .√6+√2B .3√2C .2+√3D .√3+√212.(2021•乐山)如图,已知直线l 1:y =﹣2x +4与坐标轴分别交于A 、B 两点,那么过原点O 且将△AOB 的面积平分的直线l 2的解析式为( )A .y =12xB .y =xC .y =32xD .y =2x13.(2021•嘉兴)已知点P (a ,b )在直线y =﹣3x ﹣4上,且2a ﹣5b ≤0,则下列不等式一定成立的是( ) A .a b≤52B .a b≥52C .b a≥25D .b a≤2514.(2021•广西)函数y =2x +1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限二.填空题(共11小题)15.(2021•毕节市)将直线y =﹣3x 向下平移2个单位长度,平移后直线的解析式为 .16.(2021•桂林)如图,与图中直线y =﹣x +1关于x 轴对称的直线的函数表达式是 .17.(2021•毕节市)如图,在平面直角坐标系中,点N 1(1,1)在直线l :y =x 上,过点N 1作N 1M 1⊥l ,交x 轴于点M 1;过点M 1作M 1N 2⊥x 轴,交直线于N 2;过点N 2作N 2M 2⊥l ,交x 轴于点M 2;过点M 2作M 2N 3⊥x 轴,交直线l 于点N 3;…,按此作法进行下去,则点M 2021的坐标为 .18.(2021•黄石)将直线y=﹣x+1向左平移m(m>0)个单位后,经过点(1,﹣3),则m 的值为.19.(2021•贺州)如图,一次函数y=x+4与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB上的点,且∠OPC=45°,PC=PO,则点P的坐标为.20.(2021•上海)已知函数y=kx经过二、四象限,且函数不经过(﹣1,1),请写出一个符合条件的函数解析式.21.(2021•天津)将直线y=﹣6x向下平移2个单位长度,平移后直线的解析式为.22.(2021•眉山)一次函数y=(2a+3)x+2的值随x值的增大而减少,则常数a的取值范围是.23.(2021•泰安)如图,点B1在直线l:y=12x上,点B1的横坐标为2,过点B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形A n B n B n+1∁n的边长为(结果用含正整数n的代数式表示).24.(2021•成都)在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第象限.25.(2021•自贡)当自变量﹣1≤x≤3时,函数y=|x﹣k|(k为常数)的最小值为k+3,则满足条件的k的值为.三.解答题(共3小题)26.(2021•北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=1 2x的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.27.(2021•重庆)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数y=4−x2x2+1的性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;x…﹣5﹣4﹣3﹣2﹣1012345…y=4−x2x2+1…−2126−1217−1203240…(2)请根据这个函数的图象,写出该函数的―条性质;(3)已知函数y=−32x+3的图象如图所示.根据函数图象,直接写出不等式−32x+3>4−x2x2+1的解集.(近似值保留一位小数,误差不超过0.2)28.(2021•自贡)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数y=−8xx2+4的图象,并探究其性质.列表如下:x…﹣4﹣3﹣2﹣101234…y (8)52413a850b﹣2−2413−85…(1)直接写出表中a、b的值,并在平面直角坐标系中画出该函数的图象;(2)观察函数y=−8xx2+4的图象,判断下列关于该函数性质的命题:①当﹣2≤x≤2时,函数图象关于直线y=x对称;②x=2时,函数有最小值,最小值为﹣2;③﹣1<x<1时,函数y的值随x的增大而减小.其中正确的是.(请写出所有正确命题的番号)(3)结合图象,请直接写出不等式8xx2+4>x的解集.2021年中考真题分类19.2一次函数参考答案与试题解析一.选择题(共14小题)1.(2021•赤峰)点P (a ,b )在函数y =4x +3的图象上,则代数式8a ﹣2b +1的值等于( ) A .5B .﹣5C .7D .﹣6解:∵点P (a ,b )在一次函数y =4x +3的图象上, ∴b =4a +3,∴8a ﹣2b +1=8a ﹣2(4a +3)+1=﹣5, 即代数式8a ﹣2b +1的值等于﹣5. 故选:B .2.(2021•营口)已知一次函数y =kx ﹣k 过点(﹣1,4),则下列结论正确的是( ) A .y 随x 增大而增大B .k =2C .直线过点(1,0)D .与坐标轴围成的三角形面积为2解:把点(﹣1,4)代入一次函数y =kx ﹣k ,得, 4=﹣k ﹣k , 解得k =﹣2, ∴y =﹣2x +2,A 、k =﹣2<0,y 随x 增大而减小,选项A 不符合题意;B 、k =﹣2,选项B 不符合题意;C 、当y =0时,﹣2x +2=0,解得:x =1,∴一次函数y =﹣2x +2的图象与x 轴的交点为(1,0),选项C 符合题意;D 、当x =0时,y =﹣2×0+2=2,与坐标轴围成的三角形面积为12×1×2=1,选项D不符合题意. 故选:C .3.(2021•呼和浩特)在平面直角坐标系中,点A (3,0),B (0,4).以AB 为一边在第一象限作正方形ABCD ,则对角线BD 所在直线的解析式为( ) A .y =−17x +4B .y =−14x +4C .y =−12x +4D .y =4解:过D 点作DH ⊥x 轴于H ,如图, ∵点A (3,0),B (0,4). ∴OA =3,OB =4, ∵四边形ABCD 为正方形, ∴AB =AD ,∠BAD =90°,∵∠OBA +∠OAB =90°,∠ABO +∠DAH =90°, ∴∠ABO =∠DAH , 在△ABO 和△DAH 中, {∠AOB =∠DHA ∠ABO =∠DAH AB =DA, ∴△ABO ≌△DAH (AAS ), ∴AH =OB =4,DH =OA =3, ∴D (7,3),设直线BD 的解析式为y =kx +b ,把D (7,3),B (0,4)代入得{7k +b =3b =4,解得{k =−17b =4, ∴直线BD 的解析式为y =−17x +4. 故选:A .4.(2021•贺州)直线y =ax +b (a ≠0)过点A (0,1),B (2,0),则关于x 的方程ax +b =0的解为( ) A .x =0B .x =1C .x =2D .x =3解:方程ax +b =0的解,即为函数y =ax +b 图象与x 轴交点的横坐标, ∵直线y =ax +b 过B (2,0),∴方程ax+b=0的解是x=2,故选:C.5.(2021•柳州)若一次函数y=kx+b的图象如图所示,则下列说法正确的是()A.k>0B.b=2C.y随x的增大而增大D.x=3时,y=0解:观察一次函数图象发现,图象过第一、二、四象限,∴k<0,A错误;∴函数值y随x的增大而减小,C错误;∵图象与y轴的交点为(0,2)∴b=2,B正确;∵图象与x轴的交点为(4,0)∴x=4时,y=0,D错误.故选:B.6.(2021•福建)如图,一次函数y=kx+b(k>0)的图象过点(﹣1,0),则不等式k(x﹣1)+b>0的解集是()A.x>﹣2B.x>﹣1C.x>0D.x>1解:把(﹣1,0)代入y=kx+b得﹣k+b=0,解b=k,则k(x﹣1)+b>0化为k(x﹣1)+k>0,而k>0,所以x﹣1+1>0,解得x>0.故选:C.方法二:一次函数y=kx+b(k>0)的图象向右平移1个单位得y=k(x﹣1)+b,∵一次函数y=kx+b(k>0)的图象过点(﹣1,0),∴一次函数y=k(x﹣1)+b(k>0)的图象过点(0,0),,由图象可知,当x>0时,k(x﹣1)+b>0,∴不等式k(x﹣1)+b>0的解集是x>0,故选:C.7.(2021•陕西)在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为()A.﹣5B.5C.﹣6D.6解:将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到y=2(x+3)+m﹣1,把(0,0)代入,得到:0=6+m﹣1,解得m=﹣5.故选:A.8.(2021•长沙)下列函数图象中,表示直线y=2x+1的是()A.B.C.D.解:∵k=2>0,b=1>0,∴直线经过一、二、三象限.故选:B.9.(2021•苏州)已知点A (√2,m ),B (32,n )在一次函数y =2x +1的图象上,则m 与n的大小关系是( ) A .m >nB .m =nC .m <nD .无法确定解:∵点A (√2,m ),B (32,n )在一次函数y =2x +1的图象上, ∴m =2√2+1,n =2×32+1=3+1=4, ∵2√2+1<4, ∴m <n , 故选:C .10.(2021•白银)将直线y =5x 向下平移2个单位长度,所得直线的表达式为( ) A .y =5x ﹣2B .y =5x +2C .y =5(x +2)D .y =5(x ﹣2)解:将直线y =5x 向下平移2个单位长度,所得的函数解析式为y =5x ﹣2. 故选:A .11.(2021•扬州)如图,一次函数y =x +√2的图象与x 轴、y 轴分别交于点A ,B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为( )A .√6+√2B .3√2C .2+√3D .√3+√2解:∵一次函数y =x +√2的图像与x 轴、y 轴分别交于点A 、B , 令x =0,则y =√2,令y =0,则x =−√2, 则A (−√2,0),B (0,√2),则△OAB 为等腰直角三角形,∠ABO =45°, ∴AB =√(√2)2+(√2)2=2, 过点C 作CD ⊥AB ,垂足为D ,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC=√AD2+CD2=√2x,∵旋转,∴∠ABC=30°,∴BC=2CD=2x,∴BD=√BC2−CD2=√3x,又BD=AB+AD=2+x,∴2+x=√3x,解得:x=√3+1,∴AC=√2x=√2(√3+1)=√6+√2,故选:A.12.(2021•乐山)如图,已知直线l1:y=﹣2x+4与坐标轴分别交于A、B两点,那么过原点O且将△AOB的面积平分的直线l2的解析式为()A.y=12x B.y=x C.y=32x D.y=2x解:如图,当y=0,﹣2x+4=0,解得x=2,则A(2,0);当x=0,y=﹣2x+4=4,则B(0,4),∴AB的中点坐标为(1,2),∵直线l2把△AOB面积平分∴直线l 2过AB 的中点, 设直线l 2的解析式为y =kx , 把(1,2)代入得2=k ,解得k =2, ∴l 2的解析式为y =2x , 故选:D .13.(2021•嘉兴)已知点P (a ,b )在直线y =﹣3x ﹣4上,且2a ﹣5b ≤0,则下列不等式一定成立的是( ) A .a b≤52B .a b≥52C .b a≥25D .b a≤25解:∵点P (a ,b )在直线y =﹣3x ﹣4上, ∴﹣3a ﹣4=b , 又2a ﹣5b ≤0,∴2a ﹣5(﹣3a ﹣4)≤0, 解得a ≤−2017<0,当a =−2017时,得b =−817, ∴b ≥−817, ∵2a ﹣5b ≤0, ∴2a ≤5b , ∴ba≤25.故选:D .14.(2021•广西)函数y =2x +1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限解:∵k =2>0,图象过一三象限,b =1>0,图象过第二象限, ∴直线y =2x +1经过一、二、三象限,不经过第四象限.故选:D.二.填空题(共11小题)15.(2021•毕节市)将直线y=﹣3x向下平移2个单位长度,平移后直线的解析式为y =﹣3x﹣2.解:由题意得:平移后的解析式为:y=﹣3x﹣2.故答案为:y=﹣3x﹣2.16.(2021•桂林)如图,与图中直线y=﹣x+1关于x轴对称的直线的函数表达式是y=x ﹣1.解:∵关于x轴对称的点横坐标不变纵坐标互为相反数,∴直线y=﹣x+1关于x轴对称的直线的函数表达式是﹣y=﹣x+1,即y=x﹣1.故答案为y=x﹣1.17.(2021•毕节市)如图,在平面直角坐标系中,点N1(1,1)在直线l:y=x上,过点N1作N1M1⊥l,交x轴于点M1;过点M1作M1N2⊥x轴,交直线于N2;过点N2作N2M2⊥l,交x轴于点M2;过点M2作M2N3⊥x轴,交直线l于点N3;…,按此作法进行下去,则点M2021的坐标为(22021,0).解:如图1,过N1作N1E⊥x轴于E,过N1作N1F⊥y轴于F,∵N1(1,1),∴N1E=N1F=1,∴∠N1OM1=45°,∴∠N1OM=∠N1M1O=45°,∴△N1OM1是等腰直角三角形,∴N1E=OE=EM1=1,∴OM1=2,∴M1(2,0),同理,△M2ON2是等腰直角三角形,∴OM2=2OM1=4,∴M2(4,0),同理,OM3=2OM2=22OM1=23,∴M3(23,0),∴OM4=2OM3=24,∴M4(24,0),依次类推,故M2021(22021,0),故答案为:(22021,0).18.(2021•黄石)将直线y=﹣x+1向左平移m(m>0)个单位后,经过点(1,﹣3),则m 的值为3.解:将直线y=﹣x+1向左平移m(m>0)个单位后所得直线为:y=﹣(x+m)+1.将点(1,﹣3)代入,得﹣3=﹣1+1﹣m.解得m=3.故答案是:3.19.(2021•贺州)如图,一次函数y=x+4与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB上的点,且∠OPC=45°,PC=PO,则点P的坐标为(﹣2√2,4﹣2√2).解:∵一次函数y =x +4与坐标轴交于A 、B 两点, y =x +4中,令x =0,则y =4;令y =0,则x =﹣4, ∴AO =BO =4,∴△AOB 是等腰直角三角形, ∴∠ABO =45°,过P 作PD ⊥OC 于D ,则△BDP 是等腰直角三角形, ∵∠PBC =∠CPO =∠OAP =45°, ∴∠PCB +∠BPC =135°=∠OP A +∠BPC , ∴∠PCB =∠OP A , 在△PCB 和△OP A 中, {∠PBC =∠OAP ∠PCB =∠OPA OP =PC, ∴△PCB ≌△OP A (AAS ), ∴AO =BP =4,∴Rt △BDP 中,BD =PD =√2=2√2, ∴OD =OB ﹣BD =4﹣2√2, ∵PD =BD =2√2, ∴P (﹣2√2,4﹣2√2), 故答案为(﹣2√2,4﹣2√2).20.(2021•上海)已知函数y=kx经过二、四象限,且函数不经过(﹣1,1),请写出一个符合条件的函数解析式y=﹣2x.解:∵函数y=kx经过二、四象限,∴k<0.若函数y=kx经过(﹣1,1),则1=﹣k,即k=﹣1,故函数y=kx经过二、四象限,且函数不经过(﹣1,1)时,k<0且k≠﹣1,∴函数解析式为y=﹣2x,故答案为y=﹣2x.21.(2021•天津)将直线y=﹣6x向下平移2个单位长度,平移后直线的解析式为y=﹣6x﹣2.解:将直线y=﹣6x向下平移2个单位长度,平移后直线的解析式为y=﹣6x﹣2,故答案为:y=﹣6x﹣2.22.(2021•眉山)一次函数y=(2a+3)x+2的值随x值的增大而减少,则常数a的取值范围是a<−32.解:∵一次函数y=(2a+3)x+2的值随x值的增大而减少,∴2a+3<0,解得a<−3 2.故答案为:a<−3 2.23.(2021•泰安)如图,点B1在直线l:y=12x上,点B1的横坐标为2,过点B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形A nB n B n+1∁n的边长为√52×(32)n﹣1(结果用含正整数n的代数式表示).解:设直线y =12x 与x 轴夹角为α,过B 1作B 1H ⊥x 轴于H ,如图:∵点B 1的横坐标为2,点B 1在直线l :y =12x 上,令x =2得y =1, ∴OH =2,B 1H =1,OB 1=√OH 2+B 1H 2=√5, ∴tan α=B 1H OH =12, Rt △A 1B 1O 中,A 1B 1=OB 1•tan α=√52,即第1个正方形边长是√52,∴OB 2=OB 1+B 1B 2=√5+√52=√52×3, Rt △A 2B 2O 中,A 2B 2=OB 2•tan α=√52×3×12=√52×32,即第2个正方形边长是√52×32, ∴OB 3=OB 2+B 2B 3=√52×3+√52×32=√52×92, Rt △A 3B 3O 中,A 3B 3=OB 3•tan α=√52×92×12=√52×94,即第3个正方形边长是√52×94=√52×(32)2, ∴OB 4=OB 3+B 3B 4=√52×92+√52×94=√52×274,Rt △A 4B 4O 中,A 4B 4=OB 4•tan α==√52×274×12=√52×278,即第4个正方形边长是√52×278=√52×(32)3, ......观察规律可知:第n 个正方形边长是√52×(32)n ﹣1, 故答案为:√52×(32)n ﹣1. 24.(2021•成都)在正比例函数y =kx 中,y 的值随着x 值的增大而增大,则点P (3,k )在第 一 象限.解:∵在正比例函数y =kx 中,y 的值随着x 值的增大而增大, ∴k >0,∴点P (3,k )在第一象限. 故答案为:一.25.(2021•自贡)当自变量﹣1≤x ≤3时,函数y =|x ﹣k |(k 为常数)的最小值为k +3,则满足条件的k 的值为 ﹣2 .解:当x ≥k 时,函数y =|x ﹣k |=x ﹣k ,此时y 随x 的增大而增大, 而﹣1≤x ≤3时,函数的最小值为k +3, ∴x =﹣1时取得最小值,即有﹣1﹣k =k +3, 解得k =﹣2,(此时﹣1≤x ≤3,x ≥k 成立),当x <k 时,函数y =|x ﹣k |=﹣x +k ,此时y 随x 的增大而减小, 而﹣1≤x ≤3时,函数的最小值为k +3, ∴x =3时取得最小值,即有﹣3+k =k +3, 此时无解, 故答案为:﹣2. 三.解答题(共3小题)26.(2021•北京)在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象由函数y =12x 的图象向下平移1个单位长度得到. (1)求这个一次函数的解析式;(2)当x >﹣2时,对于x 的每一个值,函数y =mx (m ≠0)的值大于一次函数y =kx +b 的值,直接写出m 的取值范围.解:(1)函数y =12x 的图象向下平移1个单位长度得到y =12x ﹣1,∵一次函数y =kx +b (k ≠0)的图象由函数y =12x 的图象向下平移1个单位长度得到, ∴这个一次函数的表达式为y =12x ﹣1.(2)把x =﹣2代入y =12x ﹣1,求得y =﹣2,∴函数y =mx (m ≠0)与一次函数y =12x ﹣1的交点为(﹣2,﹣2), 把点(﹣2,﹣2)代入y =mx ,求得m =1,∵当x >﹣2时,对于x 的每一个值,函数y =mx (m ≠0)的值大于一次函数y =12x ﹣1的值, ∴12≤m ≤1.27.(2021•重庆)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数y =4−x 2x 2+1的性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;x … ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 01 2 34 5 …y =4−x 2x 2+1… −2126−1217−120 32432−12−1217 −2126… (2)请根据这个函数的图象,写出该函数的―条性质;(3)已知函数y =−32x +3的图象如图所示.根据函数图象,直接写出不等式−32x +3>4−x 2x 2+1的解集.(近似值保留一位小数,误差不超过0.2)解:(1)把下表补充完整如下:x…﹣5﹣4﹣3﹣2﹣1012345…y=4−x2x2+1…−2126−1217−120324320−12−12172126…函数y=4−x2x2+1的图象如图所示:(2)①该函数图象是轴对称图形,对称轴是y轴;②该函数在自变量的取值范围内,有最大值,当x=0时,函数取得最大值4;③当x<0时,y随x的增大而增大:当x>0时,y随x的增大而减(以上三条性质写出一条即可);(3)由图象可知,不等式−32x+3>4−x2x2+1的解集为x<﹣0.3或1<x<2.28.(2021•自贡)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数y=−8xx2+4的图象,并探究其性质.列表如下:x…﹣4﹣3﹣2﹣101234…y (8)52413a850b﹣2−2413−85…(1)直接写出表中a、b的值,并在平面直角坐标系中画出该函数的图象;(2)观察函数y=−8xx2+4的图象,判断下列关于该函数性质的命题:①当﹣2≤x≤2时,函数图象关于直线y=x对称;②x=2时,函数有最小值,最小值为﹣2;③﹣1<x<1时,函数y的值随x的增大而减小.其中正确的是②③.(请写出所有正确命题的番号)(3)结合图象,请直接写出不等式8xx2+4>x的解集x<﹣2或0<x<2.解:(1)把x=﹣2代入y=−8xx2+4得,y=−−164+4=2,把x=1代入y=−8xx2+4得,y=−81+4=−85,∴a=2,b=−8 5,函数y=−8xx2+4的图象如图所示:(2)观察函数y=−8xx2+4的图象,①当﹣2≤x≤2时,函数图象原点对称;错误;②x=2时,函数有最小值,最小值为﹣2;正确;③﹣1<x<1时,函数y的值随x的增大而减小,正确.故答案为②③;(3)由图象可知,函数y=−8xx2+4与直线y=﹣x的交点为(﹣2,2)、(0,0)、(2,﹣2)∴不等式8xx2+4>x的解集为x<﹣2或0<x<2.。
(完整版)一次函数的图像和性质练习题

一次函数的图像和性质练习题一、填空题1.正比例函数(0)y kx k =≠一定经过 点,经过(1), ,一次函数(0)y kx b k =+≠经过(0),点,(0) ,点. 2.直线26y x =-+与x 轴的交点坐标是 ,与y 轴的交点坐标是 。
与坐标轴围成的三角形的面积是 。
3.若一次函数(44)y mx m =--的图象过原点,则m 的值为 .4.如果函数y x b =-的图象经过点(01)P ,,则它经过x 轴上的点的坐标为 . 5.一次函数3+-=x y 的图象经过点( ,5)和(2, )6.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)y 随x 的增大而减小.请你写出一个满足上述条件的函数 7.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 . 8. 若直线y=2x+6与直线y=mx+5平行,则m=____________.9.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 . 10.将直线y= -2x 向上平移3个单位得到的直线解析式是 ,将直线y= -2x 向下移3个单得到的直线解析式是 .将直线y= -2x+3向下移2个单得到的直线解析式是 .11.直线y kx b =+经过一、二、三象限,则k 0,b 0,经过二、三、四象限,则有k 0,b 0,经过一、二、四象限,则有k 0,b 0.12.一次函数(2)4y k x k =-+-的图象经过一、三、四象限,则k 的取值范围是 . 13.如果直线3y x b =+与y 轴交点的纵坐标为2-,那么这条直线一定不经过第 象限. 14. 已知点A(-4, a),B(-2,b)都在一次函数y=21x+k(k 为常数)的图像上,则a 与b 的大小关系是a____b(填”<””=”或”>”) 15.一次函数y=kx+b 的图象如图所示,看图填空:(1)当x=0时,y=____________;当x=____________时,y=0. (2)k=__________,b=____________.(3)当x=5时,y=__________;当y=30时,x=___________. 二、选择题1.已知函数(3)2y m x =+-,要使函数值y 随自变量x 的增大而减小,则m 的取值范围是( )A.3m -≥B.3m >-C.3m -≤D.3m <-2.已知直线y kx b =+,经过点11()A x y ,和点22()B x y ,,若0k <,且12x x <,则1y 与2y 的大小关系是( ) A.12y y >B.12y y <C.12y y =D.不能确定3.若直线23y mx m =--经过第二、三、四象限,则m 的取值范围是( )A.32m <B.302m -<<C.32m >D.0m >4.一次函数31y x =-的图象不经过( )A.第一象限B.第二象限 C.第三象限D.第四象限5. 如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 6. 若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.下列图象中不可能是一次函数(3)y mx m =--的图象的是( )8.两个一次函数1y ax b =+与2y bx a =+,它们在同一直角坐标系中的图象可能是( )三、解答题1.已知一次函数y=(3-k)x-2k+18, (1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方; (4) k 为何值时,它的图像平行于直线y=-x; (5) k 为何值时,y 随x 的增大而减小.2. 设一次函数)0(≠+=k b kx y ,当2=x 时,3-=y ,当1-=x 时,4=y 。
成都市东湖中学一次函数的图像和性质练习题1

成都市东湖中学一次函数的图像和性质练习题1.已知一次函数y=(3-k)x-2k+18,(1) k为何值时,它的图像经过原点; (2) k为何值时,它的图像经过点(0,-2);(3) k为何值时,它的图像与y轴的交点在x轴的上方; (4) k为何值时,它的图像平行于直线y=-x;(5) k为何值时,y随x的增大而减小.(6)若函数y随x的增大而减小,并且函数的图象经过二、三、四象限,求k的取值范围.2.求直线26=-+与x轴的交点坐标,与y轴的交点坐标。
与坐标轴围成的三角形的面积。
y x3.求出一条与直线y=2x-3平行,且经过点(2,7)的直线4.一次函数y=3x+b的图象与两坐标轴围成的三角形面积是24,求b5.已知一次函数y=23x+m 和y=-21x+n 的图像都经过点A(-2,0), 且与y 轴分别交于B,C 两点,求△ABC 的面积。
6.已知一次函数的图象,交x 轴于A (-6,0),交正比例函数的图象于点B ,且点B •在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位,求正比例函数和一次函数的解析式.7.判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.8.判断三点A (3,5),B (0,-1),C (1,3)是否在同一条直线上.9. 如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.10.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B 的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,求直线BC的解析式.11.如图,A 点的坐标为(﹣4,0),直线y n =+与坐标轴交于点B ,C ,连接AC ,如果∠ACD=90°,求n 的值12.在平面直角坐标系xOy 中,直线()y kx 4k 0=+≠与y 轴交于点A.如图,直线y 2x 1=-+与直线()y kx 4k 0=+≠交于点B ,与y 轴交于点C ,点B 横坐标为1-.② 求点B 的坐标及k 的值;②求直线y 2x 1=-+与直线y kx 4=+与y 轴所围成的△ABC 的面积;。
专题01数形结合之一次函数图像与性质(原卷版)-2021-2022学年八年级数学下册专题训练

编者小k 君小注:本专辑专为2022年初中沪教版数学第二学期研发,供中等及以上学生使用。
思路设计:重在培优训练,分选择、填空、解答三种类型题,知识难度层层递进,由中等到压轴,基础差的学生选做每种类型题的前4题;基础中等的学生必做前4题、选做58题;尖子生全部题型必做,冲刺压轴题。
专题01 数形结合之一次函数图像与性质(原卷版)错误率:___________易错题号:___________一、单选题1.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2.在平面直角坐标系中,将直线1:32=--l y x 沿坐标轴方向平移后,得到直线2l 与1l 关于坐标原点中心对称,则下列平移作法正确的是( )A .将1l 向右平移4个单位长度B .将1l 向左平移6个单位长度C .将1l 向上平移6个单位长度D .将1l 向上平移4个单位长度3.已知点()12,y -,()20,y ,()34,y 是直线5y x b =-+上的三个点,则1y ,2y ,3y 的大小关系是( ). A .123y y y >> B .123y y y << C .132y y y >> D .132y y y <<4.已知一次函数y kx b =+(k ,b 是常数,0k ≠)若||||k b <,则它的图象可能是( )A .B .C .D .5.在平面直角坐标系xOy 中,直线y=2x+2和直线y=2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( )A .y=x+2B .2y =+C .y=4x12D .3y =-6.(2021·上海普陀·二模)如图,在平面直角坐标系中,△ABC 的顶点A 、B 均在y 轴上,点C 在x 轴上,将△ABC 绕着顶点B 旋转后,点C 的对应点C ′落在y 轴上,点A 的对应点A ′落在反比例函数y =6x在第一象限的图象上.如果点B 、C 的坐标分别是(0,﹣4)、(﹣2,0),那么点A ′的坐标是( )A .(3,2)B .(32,4)C .(2,3)D .(4,32) 7.(2021·上海青浦·八年级期末)如果一次函数y kx b =+的图像经过第一、三、四象限,那么k 、b 应满足的条件是( )A .0k >,且0b >;B .0k >,且0b <;C .0k <,且0b >;D .0k <,且0b <.8.(2021·上海普陀·八年级期中)一次函数y =(k +3)x +1中,y 随x 的增大而减小,则k 的取值范围是( ) A .k >0 B .k <0 C .k <﹣3 D .k >﹣39.(2021·上海同济大学附属存志学校八年级期中)已知反比例函数y =3x,下列结论正确的是( ) A .y 随x 的增大而减小B .图像的两支分别在第二、四象限C .图像与y =3x 的图像有两个交点D .A (﹣1,3)在函数的图像上10.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰Rt△ABC ,使△BAC=90°,设点B 的横坐标为x ,设点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .二、填空题11.(2021·上海·八年级期中)如图,直角三角形的斜边AB 在y 轴的正半轴上,点A 与原点重合,点B 的坐标是()0,4,且30BAC ∠=︒,若将ABC 绕着点O 旋转后30°,点B 和C 点分别落在点E 和点F 处,那么直线EF 的解析式是__________.12.一次函数y kx b =+的图像与y 轴交点的纵坐标为-3,且当1x =时,y =-1,则该一次函数的解析式是__________.13.如果一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,那么常数m 的取值范围为____. 14.(2021·上海浦东新·七年级期末)正比例函数的图象和反比例函数的图象相交于A ,B 两点,点A 在第二象限,点A 的横坐标为﹣1,作AD△x 轴,垂足为D ,O 为坐标原点,S △AOD =1.若x 轴上有点C ,且S △ABC =4,则C 点坐标为_____.15.(2021·上海闵行·八年级期末)如图,点M 的坐标为(3,2),点P 从原点O 出发,以每秒1个单位的速度沿y 轴向上移动,同时过点P 的直线关于直线l 也随之上下平移,且直线l 与直线y x =-平行,如果点M 关于直线l 的对称点落在坐标轴上,如果点P 的移动时间为t 秒,那么t 的值为_____.16.(2021·上海市民办华育中学八年级期中)一次函数334y x =-+的图像分别于x 轴,y 轴交于A 、B ,将线段AB 绕点A 顺时针旋转90度得到线段AC ,则B 、C 两点的直线解析式为__________17.(2021·上海闵行·八年级期中)一次函数()0y kx b b =+≠图象与坐标轴围成的三角形称为该一次函数的坐标三角形.已知一次函数y x m =+的坐标三角形的面积为3,则该一次函数的解析式为___________. 18.(2021·上海同济大学附属存志学校八年级期中)如图,正比例函数y =kx 与反比例函数y =m x的图象交于A 、C 两点,AB △x 轴于点B ,CD △x 轴于点D ,若S 四边形ABCD =6,则m 的值是 ___.19.(2021·上海杨浦·八年级期中)在平面直角坐标系中,点A (﹣4,1)为直线y =kx (k ≠0)和双曲线y =m x(m ≠0)的一个交点,点B (﹣5,0),如果在直线y =kx 上有一点P ,使得S △ABP =2S △ABO ,那么点P 的坐标是 ___.20.将正比例函数y =kx (k 是常数,k ≠0)的图象,沿着y 轴的一个方向平移|k |个单位后与x 轴、y 轴围成一个三角形,我们称这个三角形为正比例函数y =kx 的坐标轴三角形,如果一个正比例函数的图象经过第一、三象限,且它的坐标轴三角形的面积为5,那么这个正比例函数的解析式是__.三、解答题21.(2021·上海长宁·二模)某商店销售一种商品.经过市场调查发现:该产品的销售单价需定在50元到110元之间较为合理,每月销售量y (万件)与销售单价x (元/件)存在如图所示的一次函数关系.根据图象提供的信息,解答下列问题:(1)求这种商品的每月销售量y (万件)关于销售单价x (元/件)(50≤x ≤110)的函数解析式;(2)已知六月份、八月份这种商品的销售单价分别为95元/件和84元/件,且每月销售量的增长率是相同的,求这个增长率.22.(2021·上海静安·八年级期末)如图,在直角坐标平面中,点A(2,m)和点B(6,2)同在一个反比例函数的图像上.(1)求直线AB的表达式;(2)求△AOB的面积及点A到OB的距离AH.23.(2021·上海黄浦·八年级期末)已知:如图,平面直角坐标系中有一个等腰梯形ABCD,且//,AD BC AB CD=,点A在y轴正半轴上,点B C、在x轴上(点B在点C的左侧),点D在第一象限,3,11AD BC==,梯形的高为2.双曲线myx=经过点D,直线y kx b=+经过A B、两点.(1)求双曲线myx=和直线y kx b=+的解析式;(2)点M在双曲线上,点N在y轴上,如果四边形A B M N、、、是平行四边形,请直接写出点N的坐标.24.(2021·上海市第四中学八年级月考)如图,已知一次函数=y x轴、y轴分别相交于A、B两点,点C、D分别在线段OA、AB上,CD CA=.(1)求A 、B 两点的坐标;(2)如果CDO 面积是ABO 面积的14,求点C 的坐标. 25.(2021·上海松江·八年级期中)已知正比例函数2y x =的图像上有一点()22,4B m m +-,且点B 在第一象限.(1)求点B 的坐标;(2)过点B 作BC x ⊥轴,点P 为此函数图像上异于点B 的点,若12BPC OBC S S =,求此时点P 的坐标. 26.(2021·上海市金山初级中学八年级期中)已知如图,在平面直角坐标系中,点A (3,7)在正比例函数图像上.(1)求正比例函数的解析式.(2)点B (1,0)和点C 都在x 轴上,当△ABC 的面积是17.5时,求点C 的坐标.(3)在(2)的条件下,将点A 左右平移m 个单位,得到点D ,使得△AOC 的面积是△ACD 的面积的两倍,写出点D 的坐标.(直接写出答案,不用解题过程)27.(2017·上海·八年级期末)如图,在平面直角坐标系xOy 中,直线+4y x 交y 轴于点A ,交x 轴于点B ,以线段AB 为边作菱形ABCD (点C 、D 在第一象限),且点D 的纵坐标为9.(1)求点A 、点B 的坐标;(2)求直线DC 的解析式;(3)除点C 外,在平面直角坐标系xOy 中是否还存在点P ,使点A 、B 、D 、P 组成的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.28.(2018·上海普陀·八年级期中)如图,已知一次函数24y x =+的图像与x 轴、y 轴分别交于点A 、B ,且BC△AO ,梯形AOBC 的面积为10.(1)求点A 、B 、C 的坐标;(2)求直线AC 的表达式.29.(2018·上海崇明·八年级期中)已知:如图,在直角坐标平面中,点A 在x 轴的负半轴上,直线y kx =经过点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =于点C ,如果60MAO ∠=︒.(1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标.30.(2021·上海徐汇·八年级期末)已知,如图,在平面直角坐标系中,一次函数24y x =--与x 轴交于点C ,与y 轴交于点B ,点A 为y 轴正半轴上的一点,将△ABC 绕着顶点B 旋转后,点C 的对应点C ’落在y轴上,点A 的对应点A ’恰好落在反比例函数(0)k y k x=≠ 的图像上. (1)求BOC ∆的面积;(2)如果k 的值为6 (即反比例函数为6y x=),求点'A 的坐标; (3)如果四边形ACBA '是梯形,求k 的值.。
一次函数的图像和性质

T 一次函数的概念
T 一次函数的图像和性质
教学内容
T 巩固练习
一次函数的概念
一般地,解析式形如 y=kx+b(k,b 是常数,且 k 0 )的函数叫做一次函数。
一次函数的定义域是一切实数。当 b=0 时,y=kx( k 0 )是正比例函数。一般地,我们把函数 y=c (c 为常数)叫做常值函数。Y=-1, y , f ( x)
b ,0)两点的一条直线, k
3.一次函数的图像的两个特征 (1)对于直线 y=kx+b(k≠0),当 x=0 时,y=b 即直线与 y 轴的交点为 A(0,b),因此 b 叫直线在 y 轴上的截距.(截距有正负) (2)直线 y=kx+b(k≠0)与两直角标系中两坐标轴的交点分别为 A(0,b)和 B(-
3.一次函数 y (m 1) x 5 中, y 的值随 x 的减小而减小,则 m 的取值范围是( A. m 1 B. m 1 C. m 1
D. m 1 1 4.已知点 A(-4, a),B(-2,b)都在一次函数 y= x+k(k 为常数)的图像上,则 a 与 b 的大小关系是 2 a____b(填”<””=”或”>”) 5.已知直线 y kx b ,经过点 A( x1,y1 ) 和点 B( x2,y2 ) ,若 k 0 ,且 x1 x2 ,则 y1 与 y2 的大
②与 y 轴平行的直线方程形如 x=b(b 是常数) ,b>0 时,直线在 y 轴右方,b=0 时,直线与 y 轴重合;b<0 时,直线在 y 轴左方,(如图 13-20).
三、两条直线的关系
1.与坐标轴不平行的两条直线 l1:y1=k1x+b1,l2:y2=k2x+b, 若 l1 与 l2 相交,则 k1≠k2, 其交点是联立这两条直线的方程,求得的公共解; 若 l1 与 l2 平行,则 k1= k2.
(完整版)一次函数图像与性质练习题

一 .讲课目的与考点剖析:函数一、一次函数图像与系数的关系1.函数 y kx b ( k 、 b 为常数,且 k ≠0)的图象是一条直线:当 b >0时,直线 y kx b 是由直线 y kx 向上平移 b 个单位长度获得的;当 b <0时,直线 y kx b 是由直线 y kx 向下平移| b |个单位长度获得的.2.一次函数 y kx b ( k 、 b 为常数,且 k ≠0)的图象与性质:正比率函数的图象是经过原点( 0,0)和点( 1,k)的一条直线;一次函数 y kx b(k0)图象和性质以下:3.k 、 b 对一次函数 y kx b 的图象和性质的影响:k 决定直线y kx b 从左向右的趋向,b决定它与y轴交点的地点,k、b一同决定直线y kx b 经过的象限.4. 两条直线l 11 1 和 l2 2 2的地点关系可由其系数确立:: y k xb : y k xb ( 1) k 1 k 2l 与 l 订交; ( 2) k 1 k 2 ,且 b 1 b 2l 与 l 平行;1212一次函数 y 2x 3 的图象不经过象限。
【 K 、B 与图像的关系】【例 1】 1.若 bk <0,则直线 y=kx+b 必定经过( )A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限【变式 1】.假如一次函数 y=kx +b 的图象经过一、二、三象限,那么 k 、 b 应知足的条件是( )A .k >0,且 b >0B .k < 0,且 b <0C .k >0,且 b <0D .k < 0,且 b >02、若直线 ykx b ( k ≠0)不经过第一象限,则 k 、 b 的取值范围是( )A.k >0, b <0B. k >0, b ≤0C. k < 0, b <0D. k <0, b ≤ 03. (梅州)已知直线y=kx+b ,若 k+b=- ,kb= ,那么该直线不经过 第象限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的图像和性质练习题
1.正比例函数(0)y kx k =≠一定经过 点,经过(1), ,一次函数(0)y kx b k =+≠经过(0), 点,(0) ,点。
2.直线26y x =-+与x 轴的交点坐标是 ,与y 轴的交点坐标是 。
与坐标轴围成的三角形的面积是 。
3.若一次函数(44)y mx m =--的图象过原点,则m 的值为 。
4.如果函数y x b =-的图象经过点(01)P ,,则它经过x 轴上的点的坐标为 。
5.一次函数3+-=x y 的图象经过点( ,5)和(2, )。
6.已知一次函数y=
23x+m 和y=-2
1
x+n 的图像都经过点A(-2,0), 且与y 轴分别交于B,C 两点,求△ABC 的面积。
7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)y 随x 的增大而减小.请你写出一个满足上述条件的函数 。
8.已知函数(3)2y m x =+-,要使函数值y 随自变量x 的增大而减小,则m 的取值范围是( ) A.3m -≥
B.3m >-
C.3m -≤
D.3m <-
9.一次函数(1)5y m x =++中,y 的值随x 的减小而减小,则m 的取值范围是( ) A.1m >-
B.1m <-
C.1m =-
D.1m <
10.已知点A(-4, a),B(-2,b)都在一次函数y=2
1
x+k(k 为常数)的图像上,则a 与b 的大小关系是a____b(填”<””=”或”>”)
11.已知直线y kx b =+,经过点11()A x y ,和点22()B x y ,,若0k <,且12x x <,则1y 与2y 的大小关系是( ) A.12y y >
B.12y y <
C.12y y =
D.不能确定
12.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 。
13.若直线y=2x+6与直线y=mx+5平行,则m=____________。
14.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 。
15.将直线y= -- 2x 向上平移3个单位得到的直线解析式是 ,将直线y= -- 2x 向下移3个单得到的直线解析式是 .将直线y= -- 2x+3向下移2个单得到的直线解析式是 。
16.直线y kx b =+经过一、二、三象限,则k 0,b 0,经过二、三、四象限,则有k 0,b 0,经过一、二、四象限,则有k 0,b 0。
17. 若直线23y mx m =--经过第二、三、四象限,则m 的取值范围是__________
18.一次函数31y x =-的图象不经过( ) A.第一象限
B.第二象限 C.第三象限
D.第四象限
19.一次函数(2)4y k x k =-+-的图象经过一、三、四象限,则k 的取值范围是 。
20.如果直线3y x b =+与y 轴交点的纵坐标为2-,那么这条直线一定不经过第 象限。
21.如果点P(a,b)关于x 轴的对称点p ,
在第三象限,那么直线y=ax+b 的图像不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
22.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 23.下列图象中不可能是一次函数(3)y mx m =--的图象的是( )
24.两个一次函数1y ax b =+与2y bx a =+,它们在同一直角坐标系中的图象可能是( )
25.已知一次函数y=(3-k)x-2k+18, (1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);
(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方; (4) k 为何值时,它的图像平行于直线y=-x; (5) k 为何值时,y 随x 的增大而减小.
D.
C.
B .
A .
12
x
1
x
2
D.
C.
B . A .。