恒定磁场总结

合集下载

大学物理第7章恒定磁场(总结)

大学物理第7章恒定磁场(总结)

磁场对物质的影响实验
总结词
磁场对物质的影响实验是研究磁场对物质性 质和行为影响的实验,通过观察物质在磁场 中的变化,可以深入了解物质的磁学性质和 磁场的作用机制。
详细描述
在磁场对物质的影响实验中,常见的实验对 象包括铁磁性材料、抗磁性材料和顺磁性材 料等。通过观察这些材料在磁场中的磁化、 磁致伸缩等现象,可以研究磁场对物质内部 微观结构和宏观性质的影响。此外,还可以 通过测量物质的磁化曲线和磁滞回线等参数 ,进一步探究物质的磁学性质和磁畴结构。
毕奥-萨伐尔定律
02
描述了电流在空间中产生的磁场分布,即电流元在其周围空间
产生的磁场与电流元、距离有关。
磁场的高斯定理
03
表明磁场是无源场,即穿过任意闭合曲面的磁通量恒等于零。
磁场中的电流和磁动势
安培环路定律
描述了电流在磁场中所受的力与 电流、磁动势之间的关系,即磁 场中的电流所受的力与电流、磁 动势沿闭合回路的线积分成正比。
磁流体动力学
研究磁场对流体运动的影响,如磁场对流体流动的导向、加速和 减速作用。
磁力
磁场可以产生磁力,对物体进行吸引或排斥,可以用于物体的悬 浮、分离和搬运等。
磁电阻
某些材料的电阻会受到磁场的影响,这种现象称为磁电阻效应, 可以用于电子器件的设计。
磁场的工程应用
1 2
磁悬浮技术
利用磁场对物体的排斥力,实现物体的无接触悬 浮,广泛应用于高速交通、悬浮列车等领域。
磁动势
描述了产生磁场的电流的量,即 磁动势等于产生磁场的电流与线 圈匝数的乘积。
磁阻
描述了磁通通过不同材料的难易 程度,即磁阻等于材料磁导率与 材料厚度的乘积。
磁场中的力
安培力

恒定磁场

恒定磁场

三、恒定磁场电流或运动电荷在空间产生磁场。

不随时间变化的磁场称恒定磁场。

它是恒定电流周围空间中存在的一种特殊形态的物质。

磁场的基本特征是对置于其中的电流有力的作用。

永久磁铁的磁场也是恒定磁场。

1、磁通密度与毕奥-萨伐尔定律磁通密度是表示磁场的基本物理量之一,又称磁感应强度,符号为B。

电流元受到的安培力B l d I f d ⨯''=毕奥——萨伐尔定律⎰⨯=l r r l Id B 2004 πμ对于粗导线,可将导线划分为许多体积元dV 。

⎰⎰⎰⨯=Vr r dV J B 2004πμ2、磁通连续性定理磁场可以用磁力线描述。

若认为磁场是由电流产生的,按照毕奥-萨伐尔定律,磁力线都是闭合曲线。

磁场中的高斯定理 0d =⋅⎰⎰S S B式中,S 为任一闭合面,即穿出任一闭合面的磁通代数和为零。

应用高斯散度定理⎰⎰⎰⎰⎰⋅∇=⋅V S dV B S B d=⎰⎰⎰⋅∇VdV B 由于V 是任意的,故 0=B⋅∇式中⋅∇为散度算符。

这是磁场的基本性质之一,称为无散性。

磁场是无源场。

3、磁场中的媒质磁场对其中的磁媒质产生磁化作用,即在磁场的作用下磁媒质中出现分子电流。

总的磁场由自由电流与分子电流共同产生。

永磁铁本身有自发的磁化,因而不需要外界自由电流也能产生磁场。

磁媒质的磁化程度用磁化强度M来表征,它是单位体积内的磁偶极矩。

磁偶极矩:环形电流所围面积与该电流的乘机为磁偶极矩,其方向与电流环绕方向符合右螺旋关系。

nIS P m =磁场强度 MB H -=0μ 或)(0M H B +=μ 本构方程 由mH M χ =可得 H B μ=,该式称为磁媒质的成分方程或本构方程。

磁媒质的分类:r m μμχμμ00)1(=+=,顺磁质 1>r μ,抗磁质 1<r μ,铁磁质 1>>r μ。

4、安培环路定律 磁场强度H沿闭合回路的积分,等于穿过该回路所限定的面上的自由电流。

回路的方向与电流的正向按右螺旋规则选定。

大学物理恒定磁场总结

大学物理恒定磁场总结

大学物理恒定磁场总结引言:物理学是一门研究自然世界中各种现象的学科,而磁场作为物理学中的一个重要概念,扮演着至关重要的角色。

在大学物理学习过程中,学生们会接触到恒定磁场的相关内容。

本文将对恒定磁场进行总结,介绍其基本概念和性质,并对其应用进行一定的探讨。

一、恒定磁场的基本概念恒定磁场是指在空间中磁感应强度大小和方向都保持不变的磁场。

在磁场中,磁感应强度的方向标记着磁场线的方向,磁感应强度的大小代表着该点磁场线通过单位面积的数量。

磁场的起源主要是由带电粒子运动而产生的,如电流。

二、恒定磁场的性质1. 磁场线的性质:磁场线是一系列无穷多的曲线,其方向与该点磁感应强度的方向相同。

在磁场中,磁场线是闭合的,可以形成环状或者螺旋状的结构。

2. 磁场的强弱:磁场强弱的大小与其磁感应强度的大小有关。

磁感应强度越大,磁场越强。

3. 磁场的均匀性:在一个恒定磁场中,如果磁场的磁感应强度大小和方向在整个空间中保持不变,则称其为均匀磁场。

均匀磁场的一个特点是:同一磁场强度下,磁场线的间距是相等的。

三、恒定磁场的运动电荷粒子受力在恒定磁场中,运动电荷粒子受到的力为洛伦兹力。

洛伦兹力的方向垂直于运动电荷粒子的速度方向和磁感应强度的方向,大小为qvb,其中q为电荷大小,v为速度大小,b为磁感应强度大小。

根据洛伦兹力的方向和大小,可以分析出运动电荷粒子在恒定磁场中的运动轨迹。

四、恒定磁场的应用1. 安培力规律:安培力规律描述了电流元在外磁场中所受的力,通过该规律可以计算出电流元受力大小和方向,从而探讨电流在磁场中的作用。

2. 电流感应:当闭合电路中有变化的磁通量时,产生感应电动势从而产生电流。

根据法拉第电磁感应定律可以计算出感应电动势的大小。

五、恒定磁场的实际应用1. 磁共振成像:磁共振成像(MRI)是一种常用的医学影像技术,它利用了核磁共振现象,通过改变恒定磁场和加入额外磁场的方式来获得人体内部的影像。

2. 磁力传感器:磁力传感器利用恒定磁场中电流受力的原理,感测物体运动或距离,广泛应用于工业自动化、车辆导航等领域。

10恒定磁场 - 安培环路定律

10恒定磁场 - 安培环路定律
L
I1 I1
L
I2 I 3 I1
( ) 0 I1 I 2

1) B 是否与回路 L 外电流有关? 2)若 B d l 0 ,是否回路 L上各处 B 0? L 是否回路 L 内无电流穿过?
4.4 磁偶极子
1 定义: 磁偶极子是指所围成的
面积趋近于0时的载流回路, 用矢量磁偶极矩表示。
0 M A dV 4π V R 4π
J M M
0
M en S R dS
磁化电流模型
两种磁化电流密度与磁化强度的关系为 :
K M M en
4.5 磁媒质
总结以上分析可得:
① 媒质中磁偶极子产生的磁场,可以看做是由磁化电流
产生的磁场(见公式4-5-10和4-5-11)。 分布的磁化电流所产生的磁场等效地描述; ② 与自由电流一样,磁化电流也遵从毕奥--沙伐定律产 生恒定磁场;
图 磁偶极子受磁场力而转动
4.5 磁媒质
1 磁化的概念:
无外磁场作用时,介质对外不 显磁性, n mi 0
i 1
图3.2.14 介质的磁化
在外磁场作用下,磁偶极子 发生旋转, n
mi 0
i 1
4.5 磁媒质
2 磁化强度:
磁媒质中单位体积内磁偶极矩的矢量和定义为
磁化强度。
M lim
m
i 1
n
i
V 0
V
(A/m)
矢量磁位:
0 m eR A 2 dV 4 V R
磁偶极子模型
4.5 磁媒质
3 等效磁化电流密度:
磁化后,媒质中形成新的电流,称为磁化电流。形成磁化 电流的电子仍然被束缚在原子或分子周围,所以又称为束缚电

恒定磁场ppt

恒定磁场ppt

恒定磁场研究的前沿进展
01
恒定磁场作为一种独特的物理场,具有无辐射、无污染、易于调控等优势,在 基础科学、应用科学和工程技术等领域具有广泛的应用前景。
02
近年来,研究者们在恒定磁场相关的物理、材料、生物医学等领域取得了许多 前沿进展,如在磁性材料研究方面,发现了多种新型磁性材料,提高了磁性材 料的性能和稳定性。
光学性质
恒定磁场可以影响物质的光学性质,如折射率、吸收光谱等。
恒定磁场对物质化学性质的影响
电子结构
恒定磁场可以影响物质的电子结构,从而影响化学键的形成 和断裂。
反应速率
恒定磁场可以影响化学反应速率,从而影响化学反应的能量 转换和物质转化。
04
恒定磁场的应用实例
恒定磁场在医学领域的应用
核磁共振成像(MRI)
恒定磁场的基本特征
恒定磁场是一种非均匀场,其 强度和方向随空间位置的变化
而变化。
恒定磁场具有旋度,因此不会 产生电场。
恒定磁场与电场不同,其强度 不与电流密度成正比,而是与 电流密度和磁导率成正比。
恒定磁场的应用场景
ቤተ መጻሕፍቲ ባይዱ磁性材料制备
磁记录
利用恒定磁场可以控制磁性材料的磁性能参 数,如磁化强度、磁晶各向异性等,从而制 备高性能的磁性材料。
利用恒定磁场将人体中的氢原子磁化,通过检测这些原子核产生的信号,生 成人体内部的高分辨率图像。
磁分离技术
恒定磁场可用于分离血液中的肿瘤细胞、细菌等有害物质,提高疾病诊断和 治疗的准确性。
恒定磁场在材料科学领域的应用
磁性材料制造
恒定磁场可以用于制造高性能的磁性材料,如稀土永磁材料、铁氧体材料等。
磁记录
未来,恒定磁场的研究和应用将会有更多的创新和发 展,为人类的生产和生活带来更多的便利和效益。

大学物理恒定磁场总结

大学物理恒定磁场总结

大学物理恒定磁场总结引言恒定磁场是大学物理中重要的概念之一,它广泛应用于电磁学、电动力学等领域。

本文将对恒定磁场的基本概念、性质以及应用进行总结,希望能够帮助读者更好地理解和掌握恒定磁场的知识。

恒定磁场的基本概念恒定磁场是指在空间中磁场强度大小和方向都不随时间变化的磁场。

磁场由磁场源产生,一般来说,磁体是最常见的磁场源。

恒定磁场的强度由磁感应强度或磁场强度来描述,用符号B表示。

恒定磁场的性质恒定磁场有许多特殊的性质,下面将对其中的若干性质进行讨论。

磁通量磁通量是描述恒定磁场穿过某个闭合曲面的总磁场量的物理量。

它由磁场强度和曲面的面积以及两者之间的夹角决定。

磁通量的单位是韦伯(Wb)。

高斯定律高斯定律是磁学的基本定律之一,它描述了恒定磁场中磁场线的性质。

根据高斯定律,恒定磁场的磁感应强度线是闭合的,不存在磁单极子。

洛伦兹力洛伦兹力是指带电粒子在恒定磁场中受到的力。

它是由粒子电荷、粒子速度和磁场强度之间的相互作用产生的。

洛伦兹力的方向垂直于磁场和粒子速度的平面,并且遵循右手定则。

磁场线磁场线是描述恒定磁场分布的曲线。

根据磁场线的性质,可以确定磁场强度的大小和方向。

磁场线的定义是:在任何点上,磁场强度的方向与通过该点的磁场线的切线方向相同。

恒定磁场的应用恒定磁场在生活中和科学研究中有许多重要的应用,下面将对其中的几个应用进行介绍。

电动机电动机是利用洛伦兹力的原理工作的设备。

它由一个电流线圈和一个恒定磁场构成。

当电流通过线圈时,产生的磁场与恒定磁场相互作用,从而产生力矩使电动机运转。

磁共振成像磁共振成像是一种医学成像技术,利用恒定磁场和射频脉冲来观察人体内部结构。

通过对人体各种组织的不同磁性质的分析,可以得出人体内部的详细结构信息。

磁存储技术磁存储技术是计算机存储中使用的关键技术之一。

它通过在磁性介质中记录信息,利用恒定磁场对信息进行存储和读取。

结论恒定磁场是大学物理中的重要概念,它有许多特性和应用。

本文对恒定磁场的基本概念、性质以及应用进行了总结,并且介绍了一些重要的应用领域。

《电磁波与电磁场》4-恒定磁场

《电磁波与电磁场》4-恒定磁场
若回路电流为I,面积S,定义磁偶极矩m=IS。通常,热运动使 磁偶极子的方向杂乱无章,宏观合成磁矩为零,对外不显磁性。
外加磁场时,磁场力使带电粒子的运动方向发生变化或产生 新的电流,使磁矩重新排列,宏观的合成磁矩不再为零,这 种现象称为磁化。
媒质磁化 B
B
B'
磁化结果出磁偶现极的子 合成磁矩产生二次磁场BS,这种二次 磁场影响外加磁场Ba,导致磁化状态发生改变,从而又使J’S
Chapter 4 恒定磁场
磁场是由运动电荷或电流产生的;当产生磁场 的电流恒定时,它所产生的磁场不随时间变化, 这种磁场称为恒定磁场。
4.1 磁感应强度 4.3 磁场的基本方程 4.5 电感 4.7 磁路
4.2 安培环路定律 4.4 磁场位函数 4.6 磁场能量
第4章 恒定磁场
1. 磁场是由运动电荷或电流产生的。 2. 运动电荷或载流导线在磁场中要受到磁场的作用力。 3. 检验磁场是否存在的一种方法是改变载流导线在磁
抗磁性。媒质正常情况下,原子中的合成磁矩为零。当外 加磁场时,电子进动产生的附加磁矩方向总是与外加磁场 的方向相反,导致媒质中合成磁场减弱。如银、铜、铋、 锌、铅及汞等属抗磁性媒质。 顺磁性。媒质在正常情况下,原子中的合成磁矩并不为零, 只是由于热运动结果,宏观的合成磁矩为零。在外加磁场的 作用下,磁偶极子的磁矩方向朝着外加磁场方向转动。使合 成磁场增强。如铝、锡、镁、钨、铂及钯等属顺磁性媒质。
但是,无论抗磁性或者顺磁性媒质,其磁化现象均很微弱,因此,可 以认为它们的相对磁导率基本上等于1。铁磁性媒质的磁化现象非常 显著,其磁导率可以达到很高的数值。值得注意的是,近年来研发的 新型高分子磁性材料,其相对磁导率可达到与介电常数同一数量级。
媒质 金 银 铜

第三章 恒定磁场(2)-new

第三章 恒定磁场(2)-new

µ → ∞ ,B为有限值
r H → 0 dϕ m = 0
µ0
r B2
r H线
µ1 → ∞
r B1
磁场中, 与做功无关。 3. 磁场中,磁位 ϕ m与做功无关。 磁场中,两点间的磁压: 磁场中,两点间的磁压:
的多值性( 与积分路径有关) 4. ϕ m 的多值性( ϕ m与积分路径有关)
U mAB = ∫
AmB
若积分路径环绕电流K次 若积分路径环绕电流 次,则

ArB
r r H ⋅ dl = ∫
多值性, 为了克服 ϕ m多值性,规定积 分路径不得穿过电流回路所界 定的面(磁屏障面)。 定的面(磁屏障面r )。
AmB
r r H ⋅ dl + KI
多值性
ϕ m就成为单值函数,两点之间的磁压与积 就成为单值函数,
− ∇ ⋅ ( µ∇ϕ m ) = 0
µ = 常数
− ∇ ϕ m ⋅ ∇ µ − µ∇ ⋅ ∇ ϕ m = 0
适用于无自由电流区域) ∇ ϕm = 0(适用于无自由电流区域)
2
2. 分界面上的衔接条件 推导方法与静电场类似, 推导方法与静电场类似,
H1t = H2t 由 B1n = B2n
B
A
r r ϕ mB H ⋅ dl = ∫ − dϕ m =ϕ mA − ϕ mB
ϕ mA
设B点为参考磁位 由安培环路定律, 由安培环路定律,得

AlB
r r H ⋅ dl = I ∫AlBmA r r r r H ⋅ dl + ∫ H ⋅ dl = I
BmA∫AlB Nhomakorabear r H ⋅ dl − ∫
AmB
r r H ⋅ dl = I

大学物理 第7章 恒定磁场(总结)

大学物理 第7章 恒定磁场(总结)
解: 两直导线对O点磁场无贡献
0 I1dl 0 I1l1 B1 r 2 4 r 2 4 0
l1
l1
I 2 dl 0 I 2l2 r 2 4 r 2 0 l2 I1 R2 s l2 I l I l BO 11 2 2 I 2 R1 l1 l1 s B1 B2 方向相反
l i
相对电容率
相对磁导率
r 1 e r r 0
E dl 0
l
E0 E
r 1
r 0
高斯定理
B r B0
环路定理
B dS 0
S
部 分 习 题
习题10-10: 半径为R=0.01m的无限长半圆 柱形金属薄片,自下而上地通有电流I=5A, 求轴线上任一点P处的磁感应强度。 解:可看成由许多与轴平行的无限 长直导线所组成。
3
1 4 M dM r Bdr BR 4 0
3
R
本章结束

M m BIl l cos BIl cos 方向与M1相反
2
M1 M m BIl cos 2mglsin
2
2 Sg B tg I
习题10-43: 一平面塑料圆盘,半径为 R,电荷面密度为 ,以转动,磁 场B垂直于转轴AA’,证明磁场作用 于圆盘的力矩的大小为: 1 M R 4 B 4
7、磁力矩: M m B
二、基本规律
1、毕奥-萨伐尔定律 2、安培定律
0 Idl er dB 2 4 r dF Idl B
3、磁场的高斯定理
B dS 0
S
4、安培环路定理

大学物理 恒定磁场

大学物理 恒定磁场
P型---- 正电空穴 N型---- 负电粒子
26
测载流子电性 — 半导体类型
8.5 载流导线在磁场中受力
一、一段载流导线上的力——安培力 I 2 1个电子 受力 f qv B 1 N个电子受力 d F Nq v B 电流元 I d l B
N n d V nS d l
不对 q 做功。

v
q
B
v

B
F qE qv B
15
二、带电粒子在均匀磁场中运动
1)运动方向与磁场方向平行
Fm qv B
Fm qvBsinθ
θ 0 F 0
q
v
B
带电粒子作匀速直线运动
16
二、带电粒子在均匀磁场中运动
3)运动方向沿任意方向
v // v cos v v sin
mv sin 半径: R qB 2R 周期:T v
v
q
+
v
v// h
B
匀速圆周运动与匀速直线运动的合成 运动轨迹为螺旋线
2 m qB
2 m 螺距: h Tv // v cos qB
18
(3)地磁场内 的范艾仑辐射带
22
23
四、霍耳效应
现象:导体中通电流 I ,磁 场B 垂直于I ,在既垂直于 I ,又垂直于B 的方向出现 电势差 U 霍耳电压UH
B

h
V
+ v - - -q- - -
F
I
b
原因: 载流子q,漂移速度 v
Fm qv B
25
霍耳系数
1 RH ne

大学物理恒定电流的磁场总结

大学物理恒定电流的磁场总结

B
0r
B
2
1、载流直导线的磁场
B
0I
4a
(cos
1
cos
2)
无限长
B 0I 2a
半无限长 B 0 I
4a
方向:右螺旋法则
I
Idl
l
a
r
1
P
2、载流圆线圈的磁场(在轴线上)B
0 IR 2
2(R 2 x2 )3/2
圆心处
B 0I
2R
方向:右螺旋法则
Idl
一段圆弧在圆心 处产生的磁场
B
qB
5、带电粒子 在电场、磁场中受力 F fe fm qE
qv
B
六、磁介质
1、磁介质分类:
抗磁质 r 1 顺磁质 r 1
铁磁质 r 1
B B0 r —— 相对磁导率
B B0 B
2、有磁介质的磁高斯定理
SB
dS
0
3、有磁介质时的安培环路定理
H L
dl
I0
定义磁场强度
H
B dl
L
μ0
I i (内)
i
电流与绕行方向成右手定则时,I > 0,否则 I < 0
五、磁场对载流导线和运动电荷的作用力
1、磁场对载流导线的作用力——安培力
微分形式:
dF
Idl
B
积分形式:
F dF Idl B
2、均匀磁场对平面载流线圈的力矩
M
pm
B
大小: 磁矩
M NSBI sin
运动电荷的磁场
B
0
4
q v r0 r2
4 107 N A2 0
三、磁通量和磁场的高斯定理

大学物理第8章恒定磁场总结及练习题

大学物理第8章恒定磁场总结及练习题

第8章 恒定磁场一、基本要求掌握磁感强度矢量的概念;理解毕奥-萨伐尔定律、磁场的高斯定理、安培环路定理,能计算一些简单问题的磁感强度;理解洛伦兹力公式,能分析点电荷在均匀磁场中的受力和运动;理解安培定律,能计算简单几何形状载流导体在均匀磁场中所受的力(或力矩).了解介质的磁化现象及其微观解释,了解各向同性介质中磁场强度和磁感强度的关系与区别.二、基本内容1.基本概念运动电荷(电流)产生磁场;描述磁场的基本物理量:磁感强度,磁通量;磁场对电流的安培力、磁场对运动电荷的洛伦兹力.2.毕奥-萨伐尔定律20d π4d re l I B r⨯=μ 它是求解磁场的基本规律,从该定律可以直接得到在直电流的延长线和反向延长线上各点的磁感应强度为零.从电流元的磁场出发,得到计算线电流产生磁场的方法:⎰⎰⨯==)(20)(d π4d L rL r e l I B Bμ 应用上式在教材中导出了一些电流产生磁场的计算公式,包括:一段直电流在空间任意一点的磁场,无限长载流直导线在空间任意一点的磁场,圆电流在圆心处的磁场,一段载流圆弧在圆心处的磁场,无限长螺线管内部和两端磁感强度.这些计算公式在求解问题时可以直接使用.3.磁场的叠加原理∑==+++=N i i B B B B B 1n 21该原理表明多个电流在空间某点产生的磁场,等于各电流单独存在时在该点处产生的磁场的矢量和.将磁场的计算公式和叠加原理结合使用,可以求解多个电流在空间某点产生的磁场.在计算中首先应该将复杂的电流分成计算公式已知的电流段,然后分段计算,最后求出矢量和.4.磁场中的高斯定理0d =⋅⎰SS B该定理表明:磁场是无源场,磁感线是无头无尾的闭合曲线.应用该定理求解均匀磁场中非闭合曲面的通量时,可以作平面,使平面和曲面形成闭合曲面,由于闭合曲面的通量为零,即曲面的通量等于平面通量的负值,从而达到以平代曲的目的.5.安培环路定理⎰∑==⋅LN i i I μl B 10d该定理表明:磁场是有旋场,磁场是非保守场.应用该定理时,首先应该注意穿过以L 为边界的任意曲面的电流的正负;其次应该知道环流为零,环路上各点的磁感强度不一定为零.在应用定理求解具有轴对称电流分布的磁场和均匀磁场的磁感应强度时,要根据电流的对称性和磁场的性质选择合适的环路L .6.安培定律B l I F⨯=d d该定律是计算磁场对电流的作用的基本定律.一段载流导线在磁场中受到的安培力为⎰⎰⨯==)()(d d L L B l I F F应用上式时,应该注意电流上各点的磁场是否均匀及磁场力的分布特点.如果电流上各点的磁场相等,并且是一段直电流,可以先求出导线所在处的磁场,然后用公式ϕsin IBL f =求出结果;如果电流上各点所受的磁场力的大小不同但方向相同,可以先在电流上取一小线段l d ,求出l d 段电流所受的磁力,然后通过标量积分得结果.7.洛伦兹力B q F⨯=v洛伦兹力方向始终与电荷运动方向垂直,对运动电荷不做功.质量为m ,电量为q 的粒子以速率v 垂直进入磁场B 时,粒子作匀速率圆周运动:运动半径:qB m R v =,运动周期:qBmT π2=.三、例题详解8-1、一半径cm 0.1=R 的无限长1/4圆柱形金属薄片,沿轴向通有电流A 0.10=I 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P 的磁感强度.解:取l d 段,其中电流为 πd 2πd 2π21d d θI R θIR R l I I ===在P 点θμθμμd d 222d d 2000RII R RIB π=π⋅π=π=选坐标如图 RI B 20x d sin d π-=θθμ,R I B 20yd cos d π-=θθμ R IR I B 202/π020x d sin π-=π-=⎰μθθμ RI R I B 202/π020y d cos π-=π-=⎰μθθμT 108.12)(4202/12y 2x -⨯=π=+=RI B B B μ方向1/tan xy ==B B α,︒=225α,α为B与x 轴正向的夹角.8-2、电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计,试用毕奥-萨伐尔定律求板外任意一点的磁感强度.解:如图,从上向下看,在垂直于j 的l d 长度内流过电流为I d ,I d 在P 点产生的磁场: r)I/(μB π2d d 0=,l j I d d = )2/(d d 0r l j B π=μ由对称性的分析可知0d //=⎰B θμθcos π2d cos d d 0rlj B B ==⊥∵22x l r +=;22/cos x l x +=θ ∴j xl l jxB B 022021d π2d μμ=+==⎰⎰+∞∞-⊥8-3、将通有电流A 0.5=I 的无限长导线折成如图形状,已知半圆环的半径为m 10.0=R .求圆心O 点的磁感强度.(H/m 10π470-⨯=μ)解:O 处总cd bc ab B B B B ++=,方向垂直指向纸里 而)sin (sin 4120ab ββμ-π=aIB∵02=β,π-=211β,R a =∴)4/(0ab R I B π=μ 又)4/(0bc R I B μ=因O 在cd 延长线上0cd =B ,所以 )4/()4/(00cd bc ab R I R I B B B B μμ+π=++=8-4、如图所示为两条穿过y 轴且垂直于x-y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1)推导出x 轴上P 点处的磁感强度)(x B的表达式.(2)求P 点在x 轴上何处时,该点的B 取得最大值.解:(1)利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为: 2/122001)(122x a Ir I B +⋅π=π=μμ 2导线在P 点产生的磁感强度的大小为: 2/122002)(122x a Ir IB +⋅π=π=μμ1B 、2B的方向如图所示.P 点总磁感强度θθcos cos 212x 1x x B B B B B +=+= 02y 1y y =+=B B B)()(220x a Ia x B +π=μ,i x a Ia x B )()(220+π=μ(2)当0d )(d =xx B ,0d )(d 22≤x x B 时,)(x B 最大.由此可得:0=x 处,)(x B 有最大值.8-5、已知空间各处的磁感强度B都沿x 轴正方向,而且磁场是均匀的,T 1=B .求下列三种情形中,穿过一面积为2m 2的平面的磁通量.(1)平面与yz 平面平行; (2)平面与xz 平面平行;(3)平面与y 轴平行,又与x 轴成︒45角.解:(1)平面法线与x 轴平行,有Wb 2±==⋅S Bm Φ(2)平面与xz 坐标面平行,则其法线与B垂直,有0==⋅S B m Φ(3)与x 轴夹角为︒45的平面,其法线与B的夹角为︒45或︒135故有Wb 41.145cos =︒==⋅BS S B m Φ或Wb 41.1135cos -=︒==⋅BS S Bm Φ8-6、一无限长圆柱形铜导体(磁导率0μ),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1m ,宽为2R ),位置如右图中阴影部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得: )(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1Φ为 π=π===⎰⎰⎰⋅4d 2d d 00201I r r R I S B S B R μμΦ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r r IB >π=μ因而,穿过导体外画斜线部分平面的磁通2Φ为2ln 2d 2d 0202π=π==⎰⎰⋅Ir rIS B RRμμΦ穿过整个矩形平面的磁通量2ln 240021π+π=+=IIμμΦΦΦ.8-7、如图所示,一个带有正电荷q 的粒子,以速度v平行于一均匀带电的长直导线运动,该导线的线电荷密度为λ,并载有传导电流I .试问粒子要以多大的速度运动,才能使其保持在一条与导线距离为r 的平行直线上?解:依据无限长带电和载流导线的电场和磁场知:r r E 0π2)(ελ=(方向沿径向向外) rIr B π2)(0μ=(方向垂直纸面向里)运动电荷受力F (大小)为:v rIq r q F π2π200μελ-=此力方向为沿径向(或向里,或向外)为使粒子继续沿着原方向平行导线运动,径向力应为零, 0π2π200=-=v rIq r q F μελ则有I 00μελ=v .8-8、如图所示,载有电流1I 和2I 的长直导线ab 和cd 相互平行,相距为r 3,今有载有电流3I 的导线r MN =,水平放置,且其两端MN 分别与1I 、2I 的距离都是r ,ab 、cd 和MN 共面,求导线MN 所受的磁力大小和方向.解:载流导线MN 上任一点处的磁感强度大小为: )2(π2)(π22010x r I x r I B --+=μμMN 上电流元x I d 3所受磁力:x x r I x r I I x B I F d ])2(π2)(π2[d d 201033--+==μμ)(2ln 2]2ln 2ln [22ln 2ln 2d 22d 2d ])2(2)(2[21302130213002300130020103I I II I Ir r I r r I I x x r I I x x r I I xx r I x r I I F r rr-π=-π=⎥⎦⎤⎢⎣⎡+π=⎥⎦⎤⎢⎣⎡-π-+π=-π-+π=⎰⎰⎰μμμμμμμ 若12I I >,则F 的方向向下,12I I <,则F的方向向上.8-9、半径为R 的半圆线圈ACD 通有电流2I ,置于电流为1I 的无限长直线电流的磁场中,直线电流1I 恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流1I 的磁力.解:长直导线在周围空间产生的磁场分布为)π2/(10r I B μ=取o-xy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin π210R I B =,方向垂直纸面向里,式中θ为场点至圆心的联线与y 轴的夹角.半圆线圈上段线l d 电流所受的力为:I 1I 2I 2I 1θθμd sin 2d d d 21022R R I I l B I B l I F π==⨯=θcos d d y F F =,根据对称性知:0d y y ==⎰F F θsin d d x F F =,2ππ2d 210210π0x x I I I I F F μμ===⎰∴半圆线圈受1I 的磁力的大小为: 2210I I F μ=,方向:垂直1I 向右.8-10、一平面线圈由半径为0.2m 的1/4圆弧和相互垂直的二直线组成,通以电流2A ,把它放在磁感强度为0.5T 的均匀磁场中,求:(1)线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力. (2)线圈平面与磁场成60°角时,线圈所受的磁力矩.解:(1)圆弧AC 所受的磁力:在均匀磁场中AC 通电圆弧所受的磁力与通有相同电流的AC 直线所受的磁力相等,故有N 283.02===RB I F F AC AC方向:与AC 直线垂直,与OC 夹角45°,如图.(2)磁力矩:线圈的磁矩为n n IS p2m 102-⨯π==本小问中设线圈平面与B 成60°角,则m p与B 成30°角,有力矩 m N 1057.130sin 2m m ⋅⨯=︒=⨯=-B p B p M方向:力矩M 将驱使线圈法线转向与B平行.8-11、一通有电流1I (方向如图)的长直导线,旁边有一个与它共面通有电流2I (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23(如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为 ])(π2π2[10102a x I xI aI F +-=μμ方向向右,从a x =到a x 2=磁场所作的功为 )3ln 2ln 2(π2d )11(π22102210-=+-=⎰I aI x a x x I aI W aaμμBI I 28-12、横截面为矩形的环形螺线管,圆环内外半径分别为1R 和2R ,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1)芯子中的B 值和芯子截面的磁通量. (2)在1R r <和2R r >处的B 值.解:(1)在环内作半径为r 的圆形回路,由安培环路定理得NI r B μ=π⋅2,)2/(r NI B π=μ在r 处取微小截面r b S d d =,通过此小截面的磁通量 r b rNIS B d 2d d π==μΦ穿过截面的磁通量 12ln2d 2d R R NIbr b rNIS B Sπ=π==⎰μμΦ (2)同样在环外(1R r <和2R r >)作圆形回路,由于0=∑i I02=π⋅r B ∴0=B四、习题精选8-1、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A )I aB π=02μ. (B )I a B 2π=02μ.(C )B =0. (D )I aB π=0μ.[ ]8-2、无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 (A )RIπ20μ. (B )RI40μ. (C )0.(D ))11(20π-R Iμ. (E ))11(40π+R I μ.[ ]8-3、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R =2r ,则两螺线管中的磁感强度大小R B 和r B 应满足:(A )r R 2B B =.(B )r R B B =. (C )r R 2B B =.(D )r R 4B B =.bIaP[ ]8-4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A )方向垂直环形分路所在平面且指向纸内. (B )方向垂直环形分路所在平面且指向纸外. (C )方向在环形分路所在平面,且指向b . (D )方向在环形分路所在平面内,且指向a . (E )为零.[ ]8-5、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为 (A )RI π40μ. (B )RI π20μ. (C )0. (D )RI 40μ.[ ]8-6、无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]8-7、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B的夹角为θ,则通过半球面S 的磁通量(取弯面向外为正)为(A )B r 2π. (B )B r 22π. (C )θsin π2B r -. (D )θcos π2B r -.[ ]8-9、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的I ∑不变,L 上各点的B不变.(B )回路L 内的I ∑不变,L 上各点的B改变.(C )回路L 内的I ∑改变,L 上各点的B不变.(D )回路L 内的I ∑改变,L 上各点的B改变. [ ]8-10、一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则(A )两粒子的电荷必然同号. (B )粒子的电荷可以同号也可以异号. (C )两粒子的动量大小必然不同. (D )两粒子的运动周期必然不同.[ ]8-11、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A )Oa . (B )Ob . (C )Oc . (D )Od .[ ]8-12、一运动电荷q ,质量为m ,进入均匀磁场中,(A )其动能改变,动量不变. (B )其动能和动量都改变. (C )其动能不变,动量改变. (D )其动能、动量都不变.[ ]8-13、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设A R ,B R 分别为A 电子与B 电子的轨道半径;A T ,B T 分别为它们各自的周期.则(A )2:B A =R R ,2:B A =T T . (B )2/1:B A =R R ,1:B A =T T . (C )1:B A =R R ,2/1:B A =T T .(D )2:B A =R R ,1:B A =T T .[ ]8-14、长直电流2I 与圆形电流1I 共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将(A )绕2I 旋转.(B )向左运动.(C )向右运动.(D )向上运动.(E )不动.[ ]8-15、在匀强磁场中,有两个平面线圈,其面积212A A =,通有电流212I I =,它们所受的最大磁力矩之比21/M M 等于(A )1. (B )2. (C )4. (D )1/4.[ ]8-16、两个同心圆线圈,大圆半径为R ,通有电流1I ;小圆半径为r ,通有电流2I ,方向如图.若R r <<(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A )Rr I I 22210πμ. (B )Rr I I 22210μ. (C )rR I I 22210πμ. (D )0.[ ]OI 18-17、如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A )ab 边转入纸内,cd 边转出纸外. (B )ab 边转出纸外,cd 边转入纸内. (C )ad 边转入纸内,bc 边转出纸外. (D )ad 边转出纸外,bc 边转入纸内.[ ]8-18、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的?(A )H仅与传导电流有关.(B )若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.(C )若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D )以闭合曲线L为边缘的任意曲面的H通量均相等. [ ] 8-19、磁介质有三种,用相对磁导率r μ表征它们各自的特性时: (A )顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ. (B )顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ. (C )顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ. (D )顺磁质0r <μ,抗磁质1r <μ,铁磁质0r >μ.[ ]8-20、顺磁物质的磁导率:(A )比真空磁导率略小. (B )比真空磁导率略大. (C )远小于真空磁导率. (D )远大于真空磁导率.[ ] 8-21、电流元l I d 在磁场中某处沿直角坐标系的x 轴方向放置时不受力,把电流元转到y 轴正方向时受到的力沿z 轴反方向,该处磁感强度B指向______________方向.8-22、半径为R 的细导线环中的电流为I ,那么离环上所有点的距离皆等于r 的一点处的磁感强度大小为=B ____________.(R r ≥)8-23、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此y xzO情形中,线框内的磁通量=Φ______________.8-24、一个密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2.当在螺线管中通入10A 的电流时,它的横截面上的磁通量为___________.(真空磁导率m/A T 10π470⋅⨯=-μ)8-25、已知三种载流导线的磁感线的方向如图,则相应的电流流向在 图(1)中为由________向________; 图(2)中为由________向________; 图(3)中为由________向________.8-26、两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅Ll Bd 等于:____________________________________(对环路a ). ____________________________________(对环路b ). ____________________________________(对环路c ).8-27、一长直螺线管是由直径mm 2.0=d 的漆包线密绕而成.当它通以A 5.0=I 的电流时,其内部的磁感强度=B ______________.(忽略绝缘层厚度)(270N/A 10π4-⨯=μ)8-28、有一长直金属圆筒,沿长度方向有横截面上均匀分布的稳恒电流I 流通.筒内空腔各处的磁感强度为________________,筒外空间中离轴线r 处的磁感强度为_____________.8-29、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是______________,运动轨迹半径之比是_______________.8-30、电子在磁感强度为B的均匀磁场中沿半径为R 的圆周运动,电子运动所形成的等效圆电流强度=I _____________;等效圆电流的磁矩=m p __________.已知电子电荷为e ,电子的质量为e m .8-31、有半导体通以电流I ,放在均匀磁场B 中,其上下表面积累电荷如图所示.试判断它们各是什么类型的半导体?ef图(1)图(2)图(3)是_______型,_______型8-32、电子以速率m/s 105=v 与磁力线成交角︒=30θ飞入匀强磁场中,磁场的磁感强度T 2.0=B ,那么作用在电子上的洛伦兹力=F _____________________.(基本电荷C 106.119-⨯=e )8-33、如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____________,方向__________.8-34、如图,半圆形线圈(半径为R )通有电流I .线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为__________,方向为____________.把线圈绕OO' 轴转过角度____________时,磁力矩恰为零.8-35、在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.8-36、有一流过电流A 10=I 的圆线圈,放在磁感强度等于0.015T 的匀强磁场中,处于平衡位置.线圈直径cm 12=d .使线圈以它的直径为轴转过角2/π=α时,外力所必需作的功=W _______,如果转角π2=α,必需作的功=W ________.8-37、如图所示,一根通电流I 的导线,被折成长度分别为a 、b ,夹角为120°的两段,并置于均匀磁场B 中,若导线的长度为b 的一段与B平行,则a ,b 两段载流导线所受的合磁力的大小为_____________.8-38、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为___________,方向__________.8-39、长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H =_____________,磁感强度的大小B =__________.8-40、一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相IBII d对磁导率为r μ的磁介质,则管内中部附近磁感强度B =______________,磁场强度H =_______________.8-41、如图所示,半径为R ,线电荷密度为0λ(00>λ)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω转动,求轴线上任一点的B的大小及其方向.8-42、在一半径cm 0.1=R 的无限长半圆筒形金属薄片中,沿长度方向有横截面上均匀分布的电流A 0.5=I 通过.试求圆柱轴线任一点的磁感强度.(270N/A 10π4-⨯=μ)8-43、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b 的任意点P 的磁感强度.8-44、如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.8-45、一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点的磁感强度B.y ORωO bxaPδIa aI xO2a8-46、半径为R的均匀环形导线在b、c两点处分别与两根互相垂直的载流导线相连接,已知环与二导线共面,如图所示.若直导线中的电流强度为I,求:环心O处磁感强度的大小和方向.8-47、已知真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O点处的磁感强度.8-48、如图两共轴线圈,半径分别为R1、R2,电流为I1、I2.电流的方向相反,求轴线上相距中点O 为x处的P点的磁感强度.8-49、已知载流圆线圈中心处的磁感强度为B0,此圆线圈的磁矩与一边长为a通过电流为I的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径.8-50、已知均匀磁场,其磁感强度B=2.0Wb m-2,方向沿x轴正向,如图所示.试求:(1)通过图中abOc面的磁通量;(2)通过图中bedO面的磁通量;(3)通过图中acde面的磁通量.8-51、一根很长的圆柱形铜导线均匀载有10A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率0=4×10-7T ·m/A ,铜的相对磁导率r ≈1)8-52、如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为.该筒以角速度绕其轴线匀速旋转.试求圆筒内部的磁感强度.8-53、在B=0.1T 的均匀磁场中,有一个速度大小为v=104m/s的电子沿垂直于B 的方向通过某点,求电子的轨道半径和旋转频率.(基本电荷e=1.60×1019C ,电子质量m e =9.11×1031kg )8-54、两长直平行导线,每单位长度的质量为m=0.01kg/m ,分别用l=0.04m 长的轻绳,悬挂于天花板上,如截面图所示.当导线通以等值反向的电流时,已知两悬线张开的角度为2=10°,求电流I .(tg5°=0.087,0=4×10-7N ⋅A -2)8-55、通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B 中,求整个导线所受的安培力(R 为已知).x y za b cOe d B30 cm30 cm 40 cm 50 cmSRωσI θ Iθ ⊗ ⊙l lR I I⊗⊗B8-56、如图所示线框,铜线横截面积S=2.0mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B的方向竖直向上.已知铜的密度=8.9×103kg/m 3,当铜线中的电流I=10A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角=15°.求磁感强度B的大小.8-57、已知半径之比为2∶1的两载流圆线圈各自在其中心处产生的磁感强度相等,求当两线圈平行放在均匀外场中时,两圆线圈所受力矩大小之比.8-1 单位时间里通过导体任一横截面的电量叫做 。

恒定电流和磁场知识点总结

恒定电流和磁场知识点总结

磁场一、磁场:1、磁场的基本性质:磁场对放入其中的磁极、电流有磁场力的作用;2、磁铁、电流都能能产生磁场;3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向;1、磁感线是人们为了描述磁场而人为假设的线;2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;3、磁感线是封闭曲线;三、安培定则:1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极);五、磁感应强度:磁感应强度是描述磁场强弱的物理量。

1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。

B=F/IL2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)3、磁感应强度的国际单位:特斯拉T,1T=1N/A·m六、安培力:磁场对电流的作用力;1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。

2、定义式F=BIL(适用于匀强电场、导线很短时)3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。

七、磁铁和电流都可产生磁场;八、磁场对电流有力的作用;九、电流和电流之间亦有力的作用:(1)同向电流产生引力;(2)异向电流产生斥力;十、分子电流假说:所有磁场都是由电流产生的;十一、磁性材料:能够被强烈磁化的物质叫磁性材料:(1)软磁材料:磁化后容易去磁的材料;例:软铁;硅钢;应用:制造电磁铁、变压器、(2)硬磁材料:磁化后不容易去磁的材料;例:碳钢、钨钢、制造:永久磁铁;十二、磁场对运动电荷的作用力,叫做洛伦兹力1、洛仑兹力的方向由左手定则判断:伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向;(1)洛仑兹力F一定和B、V决定的平面垂直。

《电磁场与电磁波》恒定磁场

《电磁场与电磁波》恒定磁场

分界面磁化电流: Km (M1 M2 ) en
Im
M dl
l
安培环路定理
1.真空中的安培环路定理
l B dl 0 I
真空磁场中,磁感应强度沿任意回路的 环路积分等于真空的磁导率乘以穿过该 回路所限定面的电流的代数和;
2.一般形式的安培环路定理
l B dl 0 ( I Im )
H dl H dl I
PaQ
PbQ
c
I
闭合回路PaQcP:
Q
H dl 2I PaQcP
H dl H dl 2I
PaQ
PcQ
规定:积分路径不穿过电流回路所限定的面。
2.标量磁位的边值问题 微分方程
B 0
H 0
H m
m 0
m m 0 均匀媒质:=0
2m 0 标量磁位的微分方程
Sd
(1)常磁链系统:
Wm
1 2
H BdV
V
V
B2 dV
20
B2Sd
2d
20 20S
f
Wm g
k const
2 20 S
吸力:F 2 f
3.虚位移法举例
例:分析电磁铁吸力,气隙截面积S,长d
1. 恒定磁场基本方程 恒定磁场的性质可由下面一组基本方程描述:
磁通连续性定理 SB dS 0 安培环路定理 l H dl I
各向同性线性媒质的构成方程
B 0 H J
B H
恒定磁场的性质:有旋无散。
2.分界面的衔接条件
B 的衔接条件
2
B2n B2
S h
1 B1
B1n
SB dS 0
B1nS B2nS 0 B1n B2n

大学恒定磁场知识点总结

大学恒定磁场知识点总结

大学恒定磁场知识点总结引言磁场是物质世界中一种重要的物理现象,广泛存在于我们周围,相较于电场,磁场的研究和应用在很多领域都有着重要作用。

在大学物理教育中,学生需要学习关于恒定磁场的知识,包括磁场的产生、磁感应强度、洛伦兹力等。

本文将对大学恒定磁场的相关知识进行总结和阐述,涵盖的内容将包括磁场的概念、磁场的产生、磁场中的运动粒子、磁场中的能量、电磁感应、磁场对物质的影响等多个方面。

一、磁场的概念磁场是指物质中由磁性物质或电流所产生的一种力场,它是由磁性物质或电流产生的,并能够对周围物质产生作用。

磁场又分为静磁场和动态磁场,静磁场对应着恒定磁场,而动态磁场对应着变化的磁场。

二、磁场的产生1. 电流产生的磁场安培环路定律:通过电流产生的磁场对应安培环路定律,它指出沿闭合回路的线积分等于这个回路所围绕的电流之代数和的某个常数。

这一定律为电流产生的磁场提供了数学表述。

2. 磁性物质产生的磁场微观角度来看,磁性物质是由具有自旋磁矩的元素构成的,这些自旋磁矩的相互作用会形成磁性物质的磁场。

从宏观角度来看,磁性物质会在外加磁场的作用下,发生磁化,在周围形成磁场。

3. 磁单极子在自然界中,我们还没有观察到有磁单极子的存在,即磁荷,所有磁场都要由磁偶极子或电流所产生,这与电场不同,因为我们已经知道电场是由正负电荷所产生。

三、磁场中的运动粒子粒子在磁场中会受到洛伦兹力的作用,洛伦兹力可以将粒子偏转。

根据洛伦兹力的方向,可以确定正电荷、负电荷和正电流、负电流在磁场中的运动轨迹。

粒子在磁场中的运动轨迹受到洛伦兹力的影响,电荷为q,在磁感应强度为B的磁场中运动,其受力为F=qvBsinθ,其中v为粒子的速度,θ为速度与磁感应强度B的夹角。

磁场中运动的粒子所受洛伦兹力与其速度方向垂直,因此它的运动轨迹是圆周形的,这一特点在实际物理实验和应用中都有着重要的意义。

四、磁场中的能量1. 磁场能磁场能是指磁场中由于各种物体的相互作用而具有的能量,它来源于磁性物质的存在和磁场的作用。

恒定磁场

恒定磁场

x r sin
Idl
x dl 2 d sin
r l o 1
积分变为:
x I sin d 2 Idlsin 2 2 0 sin 0 B dB 1 4π L 1 4 π r2 x2 2 sin 0 I 0 I sin d cos1 cos 2
1 0 , 2 0,
B =0
a
直线电流的磁感应线
磁感应线是以直线电流为轴的一层层同心圆环。
I
I
B
2.通电圆线圈的磁场
已知:电流为I,半径 R
Idl
求:圆电流的垂直轴线上P点的 B
R
I
解:将圆环分割为无限多个电流元, 电流元在轴线上产生的磁感应强度 dB 为:
o
Idl
dB dB r dBx x P dBx ' x dB ' dB'
I
I
第三节 恒定磁场的高斯定理 一.磁感应线
为形象的描绘磁场分布而引入的一组有方向的 空间曲线。 规定: •方向:磁感应线上各点的切线方向就是该点磁感应 强度的方向。 •大小:通过磁场中某点垂直于磁感应强度的单位 面积的磁感应线条数等于该点磁感应强度的大小。 磁感应线的疏密可以反映磁感应强度的大小。 磁感应线稀疏处B较小,磁感应线密集处B较大。

二.毕奥-萨伐尔定律的应用
解题步骤
1.选取合适的电流元——根据已知电流的分布与待求场点的位
置; 2.选取合适的坐标系——要根据电流的分布与磁场分布的特点 来选取坐标系,其目的是要使数学运算简单; 3.写出电流元产生的磁感应强度——根据毕奥-萨伐尔定律;
4.计算磁感应强度的分布——叠加原理;

大学物理第8章恒定磁场总结及练习题

大学物理第8章恒定磁场总结及练习题

大学物理第8章恒定磁场总结及练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第8章 恒定磁场一、基本要求掌握磁感强度矢量的概念;理解毕奥-萨伐尔定律、磁场的高斯定理、安培环路定理,能计算一些简单问题的磁感强度;理解洛伦兹力公式,能分析点电荷在均匀磁场中的受力和运动;理解安培定律,能计算简单几何形状载流导体在均匀磁场中所受的力(或力矩).了解介质的磁化现象及其微观解释,了解各向同性介质中磁场强度和磁感强度的关系与区别. 二、基本内容1.基本概念运动电荷(电流)产生磁场;描述磁场的基本物理量:磁感强度,磁通量;磁场对电流的安培力、磁场对运动电荷的洛伦兹力.2.毕奥-萨伐尔定律20d π4d re l I B r⨯=μ 它是求解磁场的基本规律,从该定律可以直接得到在直电流的延长线和反向延长线上各点的磁感应强度为零.从电流元的磁场出发,得到计算线电流产生磁场的方法:⎰⎰⨯==)(20)(d π4d L rL r e l I B Bμ 应用上式在教材中导出了一些电流产生磁场的计算公式,包括:一段直电流在空间任意一点的磁场,无限长载流直导线在空间任意一点的磁场,圆电流在圆心处的磁场,一段载流圆弧在圆心处的磁场,无限长螺线管内部和两端磁感强度.这些计算公式在求解问题时可以直接使用.3.磁场的叠加原理∑==+++=N i i B B B B B 1n 21该原理表明多个电流在空间某点产生的磁场,等于各电流单独存在时在该点处产生的磁场的矢量和.将磁场的计算公式和叠加原理结合使用,可以求解多个电流在空间某点产生的磁场.在计算中首先应该将复杂的电流分成计算公式已知的电流段,然后分段计算,最后求出矢量和.4.磁场中的高斯定理0d =⋅⎰SS B该定理表明:磁场是无源场,磁感线是无头无尾的闭合曲线.应用该定理求解均匀磁场中非闭合曲面的通量时,可以作平面,使平面和曲面形成闭合曲面,由于闭合曲面的通量为零,即曲面的通量等于平面通量的负值,从而达到以平代曲的目的.5.安培环路定理⎰∑==⋅LN i i I μl B 10d该定理表明:磁场是有旋场,磁场是非保守场.应用该定理时,首先应该注意穿过以L 为边界的任意曲面的电流的正负;其次应该知道环流为零,环路上各点的磁感强度不一定为零.在应用定理求解具有轴对称电流分布的磁场和均匀磁场的磁感应强度时,要根据电流的对称性和磁场的性质选择合适的环路L .6.安培定律B l I F⨯=d d该定律是计算磁场对电流的作用的基本定律.一段载流导线在磁场中受到的安培力为⎰⎰⨯==)()(d d L L B l I F F应用上式时,应该注意电流上各点的磁场是否均匀及磁场力的分布特点.如果电流上各点的磁场相等,并且是一段直电流,可以先求出导线所在处的磁场,然后用公式ϕsin IBL f =求出结果;如果电流上各点所受的磁场力的大小不同但方向相同,可以先在电流上取一小线段l d ,求出l d 段电流所受的磁力,然后通过标量积分得结果.7.洛伦兹力B q F ⨯=v洛伦兹力方向始终与电荷运动方向垂直,对运动电荷不做功.质量为m ,电量为q 的粒子以速率v 垂直进入磁场B时,粒子作匀速率圆周运动:运动半径:qBm R v=,运动周期:qBmT π2=. 三、例题详解8-1、一半径cm 0.1=R 的无限长1/4圆柱形金属薄片,沿轴向通有电流A 0.10=I 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P的磁感强度.解:取l d 段,其中电流为πd 2πd 2π21d d θI R θIR R l I I ===在P 点θμθμμd d 222d d 2000RII R RIB π=π⋅π=π=选坐标如图RI B 20x d sin d π-=θθμ,R I B 20yd cos d π-=θθμ R IR IB 202/π020x d sin π-=π-=⎰μθθμ RIRI B 202/π020y d cos π-=π-=⎰μθθμ T 108.12)(4202/12y 2x -⨯=π=+=RIB B B μ方向1/tan x y ==B B α,︒=225α,α为B与x 轴正向的夹角.8-2、电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计,试用毕奥-萨伐尔定律求板外任意一点的磁感强度.解:如图,从上向下看,在垂直于j 的l d 长度内流过电流为I d ,I d 在P 点产生的磁场:r)I/(μB π2d d 0=,l j I d d = )2/(d d 0r l j B π=μ由对称性的分析可知0d //=⎰Bθμθcos π2d cos d d 0rlj B B ==⊥∵22x l r +=;22/cos x l x +=θ ∴j x l l jxB B 022021d π2d μμ=+==⎰⎰+∞∞-⊥8-3、将通有电流A 0.5=I 的无限长导线折成如图形状,已知半圆环的半径为m 10.0=R .求圆心O 点的磁感强度.(H/m 10π470-⨯=μ)解:O 处总cd bc ab B B B B ++=,方向垂直指向纸里 而)sin (sin 4120ab ββμ-π=aIB∵02=β,π-=211β,R a = ∴)4/(0ab R I B π=μ 又)4/(0bc R I B μ=因O 在cd 延长线上0cd =B ,所以)4/()4/(00cd bc ab R I R I B B B B μμ+π=++=8-4、如图所示为两条穿过y 轴且垂直于x-y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1)推导出x 轴上P 点处的磁感强度)(x B的表达式. (2)求P 点在x 轴上何处时,该点的B 取得最大值.解:(1)利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为:2/122001)(122x a IrIB +⋅π=π=μμ2导线在P 点产生的磁感强度的大小为:2/122002)(122x a Ir IB +⋅π=π=μμ1B 、2B的方向如图所示.P 点总磁感强度θθcos cos 212x 1x x B B B B B +=+= 02y 1y y =+=B B B)()(220x a Ia x B +π=μ,i x a Ia x B )()(220+π=μ(2)当0d )(d =xx B ,0d )(d 22≤x x B 时,)(x B 最大.由此可得:0=x 处,)(x B 有最大值.8-5、已知空间各处的磁感强度B都沿x 轴正方向,而且磁场是均匀的,T 1=B .求下列三种情形中,穿过一面积为2m 2的平面的磁通量.(1)平面与yz 平面平行; (2)平面与xz 平面平行;(3)平面与y 轴平行,又与x 轴成︒45角.解:(1)平面法线与x 轴平行,有Wb 2±==⋅S Bm Φ(2)平面与xz 坐标面平行,则其法线与B垂直,有0==⋅S B m Φ(3)与x 轴夹角为︒45的平面,其法线与B的夹角为︒45或︒135故有Wb 41.145cos =︒==⋅BS S Bm Φ或Wb 41.1135cos -=︒==⋅BS S Bm Φ8-6、一无限长圆柱形铜导体(磁导率0μ),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1m ,宽为2R ),位置如右图中阴影部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得:)(220R r rR IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1Φ为π=π===⎰⎰⎰⋅4d 2d d 00201Ir r RIS B S B RμμΦ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通2Φ为2ln 2d 2d 0202π=π==⎰⎰⋅Ir rIS B RRμμΦ穿过整个矩形平面的磁通量2ln 240021π+π=+=IIμμΦΦΦ.8-7、如图所示,一个带有正电荷q 的粒子,以速度v平行于一均匀带电的长直导线运动,该导线的线电荷密度为λ,并载有传导电流I .试问粒子要以多大的速度运动,才能使其保持在一条与导线距离为r 的平行直线上?解:依据无限长带电和载流导线的电场和磁场知:r r E 0π2)(ελ=(方向沿径向向外) rIr B π2)(0μ=(方向垂直纸面向里)运动电荷受力F (大小)为:v rIq r q F π2π200μελ-=此力方向为沿径向(或向里,或向外)为使粒子继续沿着原方向平行导线运动,径向力应为零,0π2π200=-=v rIq r q F μελ则有I 00μελ=v .8-8、如图所示,载有电流1I 和2I 的长直导线ab 和cd 相互平行,相距为r 3,今有载有电流3I 的导线r MN =,水平放置,且其两端MN 分别与1I 、2I 的距离都是r ,ab 、cd 和MN 共面,求导线MN 所受的磁力大小和方向.解:载流导线MN 上任一点处的磁感强度大小为:)2(π2)(π22010x r I x r I B --+=μμMN 上电流元x I d 3所受磁力:x x r I x r I I x B I F d ])2(π2)(π2[d d 201033--+==μμI 1I 2)(2ln 2]2ln 2ln [22ln 2ln 2d 22d 2d ])2(2)(2[21302130213002300130020103I I II I Ir r I r r I I x x r I I x x r I I xx r I x r I I F r rr-π=-π=⎥⎦⎤⎢⎣⎡+π=⎥⎦⎤⎢⎣⎡-π-+π=-π-+π=⎰⎰⎰μμμμμμμ 若12I I >,则F 的方向向下,12I I <,则F的方向向上.8-9、半径为R 的半圆线圈ACD 通有电流2I ,置于电流为1I 的无限长直线电流的磁场中,直线电流1I 恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流1I 的磁力.解:长直导线在周围空间产生的磁场分布为)π2/(10r I B μ=取o-xy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin π210R I B =,方向垂直纸面向里,式中θ为场点至圆心的联线与y 轴的夹角.半圆线圈上段线l d 电流所受的力为:θθμd sin 2d d d 21022R R I I l B I B l I F π==⨯=θcos d d y F F =,根据对称性知:0d y y ==⎰F F θsin d d x F F =,2ππ2d 210210π0x x I I I I F F μμ===⎰∴半圆线圈受1I 的磁力的大小为:2210I I F μ=,方向:垂直1I 向右.8-10、一平面线圈由半径为0.2m 的1/4圆弧和相互垂直的二直线组成,通以电流2A ,把它放在磁感强度为0.5T 的均匀磁场中,求:(1)线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力.(2)线圈平面与磁场成60°角时,线圈所受的磁力矩.2I 1B解:(1)圆弧AC 所受的磁力:在均匀磁场中AC 通电圆弧所受的磁力与通有相同电流的AC 直线所受的磁力相等,故有N 283.02===RB I F F AC AC方向:与AC 直线垂直,与OC 夹角45°,如图.(2)磁力矩:线圈的磁矩为n n IS p2m 102-⨯π==本小问中设线圈平面与B 成60°角,则m p与B 成30°角,有力矩m N 1057.130sin 2m m ⋅⨯=︒=⨯=-B p B p M方向:力矩M 将驱使线圈法线转向与B平行.8-11、一通有电流1I (方向如图)的长直导线,旁边有一个与它共面通有电流2I (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23(如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为])(π2π2[10102a x I xI aI F +-=μμ方向向右,从a x =到a x 2=磁场所作的功为)3ln 2ln 2(π2d )11(π22102210-=+-=⎰I aI x a x x I aI W aaμμ8-12、横截面为矩形的环形螺线管,圆环内外半径分别为1R 和2R ,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1)芯子中的B 值和芯子截面的磁通量. (2)在1R r <和2R r >处的B 值.解:(1)在环内作半径为r 的圆形回路,由安培环路定理得NI r B μ=π⋅2,)2/(r NI B π=μ在r 处取微小截面r b S d d =,通过此小截面的磁通量r b rNIS B d 2d d π==μΦ穿过截面的磁通量12ln2d 2d R R NIbr b rNIS B Sπ=π==⎰μμΦ (2)同样在环外(1R r <和2R r >)作圆形回路,由于0=∑i II I 2b02=π⋅r B∴0=B四、习题精选8-1、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A )I aB π=02μ. (B )I a B 2π=02μ.(C )B =0. (D )I aB π=0μ.[ ]8-2、无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A )RIπ20μ. (B )RI40μ. (C )0.(D ))11(20π-R Iμ. (E ))11(40π+R I μ.[ ]8-3、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R =2r ,则两螺线管中的磁感强度大小R B 和r B 应满足:(A )r R 2B B =.(B )r R B B =. (C )r R 2B B =.(D )r R 4B B =.[ ]8-4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A )方向垂直环形分路所在平面且指向纸内. (B )方向垂直环形分路所在平面且指向纸外. (C )方向在环形分路所在平面,且指向b .IaP(D )方向在环形分路所在平面内,且指向a . (E )为零. [ ]8-5、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为(A )RI π40μ. (B )RI π20μ. (C )0. (D )RI 40μ.[ ]8-6、无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是[ ]8-7、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B的夹角为θ,则通过半球面S 的磁通量(取弯面向外为正)为(A )B r 2π. (B )B r 22π. (C )θsin π2B r -. (D )θcos π2B r -.[ ]8-9、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的I ∑不变,L 上各点的B不变.(B )回路L 内的I ∑不变,L 上各点的B改变.(C )回路L 内的I ∑改变,L 上各点的B不变.(D )回路L 内的I ∑改变,L 上各点的B改变.[ ]8-10、一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则(A )两粒子的电荷必然同号. (B )粒子的电荷可以同号也可以异号. (C )两粒子的动量大小必然不同. (D )两粒子的运动周期必然不同.[ ]8-11、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A )Oa . (B )Ob . (C )Oc . (D )Od .[ ]8-12、一运动电荷q ,质量为m ,进入均匀磁场中,(A )其动能改变,动量不变. (B )其动能和动量都改变. (C )其动能不变,动量改变. (D )其动能、动量都不变.[ ]8-13、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设A R ,B R 分别为A 电子与B 电子的轨道半径;A T ,B T 分别为它们各自的周期.则(A )2:B A =R R ,2:B A =T T . (B )2/1:B A =R R ,1:B A =T T . (C )1:B A =R R ,2/1:B A =T T .(D )2:B A =R R ,1:B A =T T .[ ]O8-14、长直电流2I 与圆形电流1I 共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将(A )绕2I 旋转.(B )向左运动.(C )向右运动.(D )向上运动.(E )不动.[ ]8-15、在匀强磁场中,有两个平面线圈,其面积212A A =,通有电流212I I =,它们所受的最大磁力矩之比21/M M 等于(A )1. (B )2. (C )4. (D )1/4.[ ]8-16、两个同心圆线圈,大圆半径为R ,通有电流1I ;小圆半径为r ,通有电流2I ,方向如图.若R r <<(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A )RrI I 22210πμ. (B )RrI I 22210μ. (C )rRI I 22210πμ. (D )0.[ ]8-17、如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A )ab 边转入纸内,cd 边转出纸外. (B )ab 边转出纸外,cd 边转入纸内. (C )ad 边转入纸内,bc 边转出纸外. (D )ad 边转出纸外,bc 边转入纸内.[ ]8-18、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的?(A )H仅与传导电流有关.(B )若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.I 1(C )若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D )以闭合曲线L为边缘的任意曲面的H通量均相等.[ ]8-19、磁介质有三种,用相对磁导率r μ表征它们各自的特性时: (A )顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ. (B )顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ. (C )顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ. (D )顺磁质0r <μ,抗磁质1r <μ,铁磁质0r >μ.[ ]8-20、顺磁物质的磁导率:(A )比真空磁导率略小. (B )比真空磁导率略大. (C )远小于真空磁导率. (D )远大于真空磁导率.[ ]8-21、电流元l Id 在磁场中某处沿直角坐标系的x 轴方向放置时不受力,把电流元转到y 轴正方向时受到的力沿z 轴反方向,该处磁感强度B指向______________方向.8-22、半径为R 的细导线环中的电流为I ,那么离环上所有点的距离皆等于r 的一点处的磁感强度大小为=B ____________.(R r ≥)8-23、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量=Φ______________.y xzO8-24、一个密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2.当在螺线管中通入10A 的电流时,它的横截面上的磁通量为___________.(真空磁导率m/A T 10π470⋅⨯=-μ)8-25、已知三种载流导线的磁感线的方向如图,则相应的电流流向在图(1)中为由________向________; 图(2)中为由________向________; 图(3)中为由________向________.8-26、两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅Ll Bd 等于:____________________________________(对环路a ). ____________________________________(对环路b ). ____________________________________(对环路c ).8-27、一长直螺线管是由直径mm 2.0=d 的漆包线密绕而成.当它通以A 5.0=I 的电流时,其内部的磁感强度=B ______________.(忽略绝缘层厚度)(270N/A 10π4-⨯=μ)8-28、有一长直金属圆筒,沿长度方向有横截面上均匀分布的稳恒电流I 流通.筒内空腔各处的磁感强度为________________,筒外空间中离轴线r 处的磁感强度为_____________.ef图(1)图(2)图(3)8-29、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是______________,运动轨迹半径之比是_______________.8-30、电子在磁感强度为B的均匀磁场中沿半径为R 的圆周运动,电子运动所形成的等效圆电流强度=I _____________;等效圆电流的磁矩=m p __________.已知电子电荷为e ,电子的质量为e m .8-31、有半导体通以电流I ,放在均匀磁场B 中,其上下表面积累电荷如图所示.试判断它们各是什么类型的半导体?是_______型,_______型8-32、电子以速率m/s 105=v 与磁力线成交角︒=30θ飞入匀强磁场中,磁场的磁感强度T 2.0=B ,那么作用在电子上的洛伦兹力=F _____________________.(基本电荷C 106.119-⨯=e )8-33、如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____________,方向__________.8-34、如图,半圆形线圈(半径为R )通有电流I .线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为__________,方向为____________.把线圈绕OO' 轴转过角度____________时,磁力矩恰为IB零.8-35、在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.8-36、有一流过电流A 10=I 的圆线圈,放在磁感强度等于0.015T 的匀强磁场中,处于平衡位置.线圈直径cm 12=d .使线圈以它的直径为轴转过角2/π=α时,外力所必需作的功=W _______,如果转角π2=α,必需作的功=W ________.8-37、如图所示,一根通电流I 的导线,被折成长度分别为a 、b ,夹角为120°的两段,并置于均匀磁场B 中,若导线的长度为b 的一段与B平行,则a ,b 两段载流导线所受的合磁力的大小为_____________.8-38、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为___________,方向__________.8-39、长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H =_____________,磁感强度的大小B =__________.8-40、一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为r μ的磁介质,则管内中部附近磁感强度B =______________,磁场强度H =_______________.II d8-41、如图所示,半径为R ,线电荷密度为0λ(00>λ)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω转动,求轴线上任一点的B的大小及其方向.8-42、在一半径cm 0.1=R 的无限长半圆筒形金属薄片中,沿长度方向有横截面上均匀分布的电流A 0.5=I 通过.试求圆柱轴线任一点的磁感强度.(270N/A 10π4-⨯=μ)8-43、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b 的任意点P 的磁感强度.8-44、如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.8-45、一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点的磁感强度B.y ORωO bxaPδI a aI xO2a8-46、半径为R 的均匀环形导线在b 、c 两点处分别与两根互相垂直的载流导线相连接,已知环与二导线共面,如图所示.若直导线中的电流强度为I ,求:环心O 处磁感强度的大小和方向.8-47、已知真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.8-48、如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度.8-49、已知载流圆线圈中心处的磁感强度为B 0,此圆线圈的磁矩与一边长为a 通过电流为I 的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径.8-50、已知均匀磁场,其磁感强度B=2.0Wb ⋅m -2,方向沿x 轴正向,如图所示.试求:(1)通过图中abOc 面的磁通量; (2)通过图中bedO 面的磁通量; (3)通过图中acde 面的磁通量.8-51、一根很长的圆柱形铜导线均匀载有10A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率0=4×10-7T ·m/A ,铜的相对磁导率r ≈1)8-52、如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为.该筒以角速度绕其轴线匀速旋转.试求圆筒内部的磁感强度.x y za b cOe d B30 cm30 cm 40 cm 50 cmSRωσ8-53、在B=0.1T 的均匀磁场中,有一个速度大小为v=104m/s 的电子沿垂直于B 的方向通过某点,求电子的轨道半径和旋转频率.(基本电荷e=1.60×1019C ,电子质量m e =9.11×1031kg )8-54、两长直平行导线,每单位长度的质量为m=0.01kg/m ,分别用l=0.04m 长的轻绳,悬挂于天花板上,如截面图所示.当导线通以等值反向的电流时,已知两悬线张开的角度为2=10°,求电流I .(tg5°=0.087,0=4×10-7N ⋅A -2)8-55、通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B 中,求整个导线所受的安培力(R 为已知).8-56、如图所示线框,铜线横截面积S=2.0mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B 的方向竖直向上.已知铜的密度=8.9×103kg/m 3,当铜线中的电流I=10AI θ Iθ ⊗ ⊙l lR I⊗⊗BOBADCO 'ααB时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角=15°.求磁感强度B 的大小.8-57、已知半径之比为2∶1的两载流圆线圈各自在其中心处产生的磁感强度相等,求当两线圈平行放在均匀外场中时,两圆线圈所受力矩大小之比.8-1 单位时间里通过导体任一横截面的电量叫做 。

大学物理第8章恒定磁场总结及练习题

大学物理第8章恒定磁场总结及练习题

第8章 恒定磁场一、基本要求掌握磁感强度矢量的概念;理解毕奥-萨伐尔定律、磁场的高斯定理、安培环路定理,能计算一些简单问题的磁感强度;理解洛伦兹力公式,能分析点电荷在均匀磁场中的受力和运动;理解安培定律,能计算简单几何形状载流导体在均匀磁场中所受的力(或力矩).了解介质的磁化现象及其微观解释,了解各向同性介质中磁场强度和磁感强度的关系与区别.二、基本内容1.基本概念运动电荷(电流)产生磁场;描述磁场的基本物理量:磁感强度,磁通量;磁场对电流的安培力、磁场对运动电荷的洛伦兹力.2.毕奥-萨伐尔定律20d π4d re l I B r⨯=μ ,它是求解磁场的基本规律,从该定律可以直接得到在直电流的延长线和反向延长线上各点的磁感应强度为零.从电流元的磁场出发,得到计算线电流产生磁场的方法:⎰⎰⨯==)(20)(d π4d L rL r e l I B Bμ 应用上式在教材中导出了一些电流产生磁场的计算公式,包括:一段直电流在空间任意一点的磁场,无限长载流直导线在空间任意一点的磁场,圆电流在圆心处的磁场,一段载流圆弧在圆心处的磁场,无限长螺线管内部和两端磁感强度.这些计算公式在求解问题时可以直接使用.3.磁场的叠加原理∑==+++=N i i B B B B B 1n 21该原理表明多个电流在空间某点产生的磁场,等于各电流单独存在时在该点处产生的磁场的矢量和.将磁场的计算公式和叠加原理结合使用,可以求解多个电流在空间某点产生的磁场.在计算中首先应该将复杂的电流分成计算公式已知的电流段,然后分段计算,最后求出矢量和.4.磁场中的高斯定理0d =⋅⎰SS B.该定理表明:磁场是无源场,磁感线是无头无尾的闭合曲线.应用该定理求解均匀磁场中非闭合曲面的通量时,可以作平面,使平面和曲面形成闭合曲面,由于闭合曲面的通量为零,即曲面的通量等于平面通量的负值,从而达到以平代曲的目的.5.安培环路定理⎰∑==⋅LN i i I μl B 10d该定理表明:磁场是有旋场,磁场是非保守场.应用该定理时,首先应该注意穿过以L 为边界的任意曲面的电流的正负;其次应该知道环流为零,环路上各点的磁感强度不一定为零.在应用定理求解具有轴对称电流分布的磁场和均匀磁场的磁感应强度时,要根据电流的对称性和磁场的性质选择合适的环路L .6.安培定律B l I F⨯=d d该定律是计算磁场对电流的作用的基本定律.一段载流导线在磁场中受到的安培力为⎰⎰⨯==)()(d d L L B l I F F]应用上式时,应该注意电流上各点的磁场是否均匀及磁场力的分布特点.如果电流上各点的磁场相等,并且是一段直电流,可以先求出导线所在处的磁场,然后用公式ϕsin IBL f =求出结果;如果电流上各点所受的磁场力的大小不同但方向相同,可以先在电流上取一小线段l d ,求出l d 段电流所受的磁力,然后通过标量积分得结果.7.洛伦兹力B q F⨯=v洛伦兹力方向始终与电荷运动方向垂直,对运动电荷不做功.质量为m ,电量为q 的粒子以速率v 垂直进入磁场B 时,粒子作匀速率圆周运动:运动半径:qB m R v =,运动周期:qBmT π2=.三、例题详解8-1、一半径cm 0.1=R 的无限长1/4圆柱形金属薄片,沿轴向通有电流A 0.10=I 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P 的磁感强度.解:取l d 段,其中电流为 πd 2πd 2π21d d θI R θIR R l I I ===在P 点θμθμμd d 222d d 2000RII R R I B π=π⋅π=π=选坐标如图RI B 20x d sin d π-=θθμ,R I B 20y d cos d π-=θθμ RIR I B 202/π020x d sin π-=π-=⎰μθθμ R I R I B 202/π020y d cos π-=π-=⎰μθθμ【T 108.12)(4202/12y 2x -⨯=π=+=RIB B B μ/方向1/tan x y ==B B α,︒=225α,α为B与x 轴正向的夹角.8-2、电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计,试用毕奥-萨伐尔定律求板外任意一点的磁感强度.解:如图,从上向下看,在垂直于j 的l d 长度内流过电流为I d ,I d 在P 点产生的磁场: r)I/(μB π2d d 0=,l j I d d =)2/(d d 0r l j B π=μ`由对称性的分析可知0d //=⎰B θμθcos π2d cos d d 0rlj B B ==⊥∵22x l r +=;22/cos x l x +=θ ∴j xl l jxB B 022021d π2d μμ=+==⎰⎰+∞∞-⊥8-3、将通有电流A 0.5=I 的无限长导线折成如图形状,已知半圆环的半径为m 10.0=R .求圆心O 点的磁感强度.(H/m 10π470-⨯=μ)解:O 处总cd bc ab B B B B ++=,方向垂直指向纸里 而)sin (sin 4120ab ββμ-π=aIB∵02=β,π-=211β,R a =∴)4/(0ab R I B π=μ 又)4/(0bc R I B μ=因O 在cd 延长线上0cd =B ,所以 )4/()4/(00cd bc ab R I R I B B B B μμ+π=++=8-4、如图所示为两条穿过y 轴且垂直于x-y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1)推导出x 轴上P 点处的磁感强度)(x B的表达式.(2)求P 点在x 轴上何处时,该点的B 取得最大值.解:(1)利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为: 2/122001)(122x a Ir I B +⋅π=π=μμ 2导线在P 点产生的磁感强度的大小为:):2/122002)(122x a IrIB +⋅π=π=μμ …1B 、2B的方向如图所示.P 点总磁感强度θθcos cos 212x 1x x B B B B B +=+= 02y 1y y =+=B B B)()(220x a Ia x B +π=μ,i x a Ia x B )()(220+π=μ (2)当0d )(d =xx B ,0d )(d 22≤x x B 时,)(x B 最大.由此可得:0=x 处,)(x B 有最大值.8-5、已知空间各处的磁感强度B都沿x 轴正方向,而且磁场是均匀的,T 1=B .求下列三种情形中,穿过一面积为2m 2的平面的磁通量.(1)平面与yz 平面平行;~(2)平面与xz 平面平行;(3)平面与y 轴平行,又与x 轴成︒45角.解:(1)平面法线与x 轴平行,有Wb 2±==⋅S Bm Φ(2)平面与xz 坐标面平行,则其法线与B垂直,有0==⋅S B m Φ(3)与x 轴夹角为︒45的平面,其法线与B的夹角为︒45或︒135故有Wb 41.145cos =︒==⋅BS S B m Φ或Wb 41.1135cos -=︒==⋅BS S Bm Φ8-6、一无限长圆柱形铜导体(磁导率0μ),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1m ,宽为2R ),位置如右图中阴影部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得: )(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1Φ为 π=π===⎰⎰⎰⋅4d 2d d 00201I r r R I S B S B R μμΦ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通2Φ为%2ln 2d 2d 0202π=π==⎰⎰⋅Ir rIS B RRμμΦ穿过整个矩形平面的磁通量2ln 240021π+π=+=IIμμΦΦΦ.·8-7、如图所示,一个带有正电荷q 的粒子,以速度v平行于一均匀带电的长直导线运动,该导线的线电荷密度为λ,并载有传导电流I .试问粒子要以多大的速度运动,才能使其保持在一条与导线距离为r 的平行直线上解:依据无限长带电和载流导线的电场和磁场知: r r E 0π2)(ελ=(方向沿径向向外) rIr B π2)(0μ=(方向垂直纸面向里)运动电荷受力F (大小)为:v rIq r q F π2π200μελ-=此力方向为沿径向(或向里,或向外)为使粒子继续沿着原方向平行导线运动,径向力应为零, 0π2π200=-=v rIq r q F μελ则有I 00μελ=v .8-8、如图所示,载有电流1I 和2I 的长直导线ab 和cd 相互平行,相距为r 3,今有载有电流3I 的导线r MN =,水平放置,且其两端MN 分别与1I 、2I 的距离都是r ,ab 、cd 和MN 共面,求导线MN 所受的磁力大小和方向.解:载流导线MN 上任一点处的磁感强度大小为:【)2(π2)(π22010x r I x r I B --+=μμMN 上电流元x I d 3所受磁力:x x r I x r I I x B I F d ])2(π2)(π2[d d 201033--+==μμ )(2ln 2]2ln 2ln [22ln 2ln 2d 22d 2d ])2(2)(2[21302130213002300130020103I I II I Ir r I r r I I x x r I I x x r I I xx r I x r I I F r rr-π=-π=⎥⎦⎤⎢⎣⎡+π=⎥⎦⎤⎢⎣⎡-π-+π=-π-+π=⎰⎰⎰μμμμμμμ 若12I I >,则F 的方向向下,12I I <,则F的方向向上.8-9、半径为R 的半圆线圈ACD 通有电流2I ,置于电流为1I 的无限长直线电流的磁场中,直线电流1I 恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流1I 的磁力.…I 1I 22I 1解:长直导线在周围空间产生的磁场分布为)π2/(10r I B μ=取o-xy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin π210R I B =,方向垂直纸面向里,…式中θ为场点至圆心的联线与y 轴的夹角.半圆线圈上段线l d 电流所受的力为:θθμd sin 2d d d 21022R R I I l B I B l I F π==⨯=θcos d d y F F =,根据对称性知:0d y y ==⎰F F θsin d d x F F =,2ππ2d 210210π0x x I I I I F F μμ===⎰∴半圆线圈受1I 的磁力的大小为: 2210I I F μ=,方向:垂直1I 向右.8-10、一平面线圈由半径为0.2m 的1/4圆弧和相互垂直的二直线组成,通以电流2A ,把它放在磁感强度为0.5T 的均匀磁场中,求:(1)线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力. (2)线圈平面与磁场成60°角时,线圈所受的磁力矩.解:(1)圆弧AC 所受的磁力:在均匀磁场中AC 通电圆弧所受的磁力与通有相同电流的AC 直线所受的磁力相等,故有N 283.02===RB I F F AC AC方向:与AC 直线垂直,与OC 夹角45°,如图.(2)磁力矩:线圈的磁矩为n n IS p2m 102-⨯π==—本小问中设线圈平面与B 成60°角,则m p与B 成30°角,有力矩 m N 1057.130sin 2m m ⋅⨯=︒=⨯=-B p B p M方向:力矩M 将驱使线圈法线转向与B平行.8-11、一通有电流1I (方向如图)的长直导线,旁边有一个与它共面通有电流2I (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23(如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为 ])(π2π2[10102a x I xI aI F +-=μμ~方向向右,从a x =到a x 2=磁场所作的功为;BI I 2)3ln 2ln 2(π2d )11(π22102210-=+-=⎰I aI x a x x I aI W aaμμ8-12、横截面为矩形的环形螺线管,圆环内外半径分别为1R 和2R ,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1)芯子中的B 值和芯子截面的磁通量. (2)在1R r <和2R r >处的B 值.解:(1)在环内作半径为r 的圆形回路,由安培环路定理得|NI r B μ=π⋅2,)2/(r NI B π=μ在r 处取微小截面r b S d d =,通过此小截面的磁通量 r b rNIS B d 2d d π==μΦ穿过截面的磁通量 12ln2d 2d R R NIbr b rNIS B Sπ=π==⎰μμΦ (2)同样在环外(1R r <和2R r >)作圆形回路,由于0=∑i I02=π⋅r B ∴0=B!四、习题精选8-1、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A )I aB π=02μ. (B )I a B 2π=02μ.(C )B =0. (D )I aB π=0μ.[ ]{8-2、无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 (A )RIπ20μ. (B )RI40μ. (C )0.(D ))11(20π-R Iμ. (E ))11(40π+R I μ.[ ]8-3、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管bIaP单位长度上的匝数相等.设R =2r ,则两螺线管中的磁感强度大小R B 和r B 应满足:(A )r R 2B B =.(B )r R B B =. (C )r R 2B B =.(D )r R 4B B =.}[ ]8-4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A )方向垂直环形分路所在平面且指向纸内. (B )方向垂直环形分路所在平面且指向纸外. (C )方向在环形分路所在平面,且指向b . (D )方向在环形分路所在平面内,且指向a . (E )为零.、[ ]8-5、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为 (A )RI π40μ. (B )RI π20μ. (C )0. (D )RI 40μ.[ ]8-6、无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]8-7、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B的夹角为θ,则通过半球面S 的磁通量(取弯面向外为正)为(A )B r 2π. (B )B r 22π.@(C )θsin π2B r -. (D )θcos π2B r -.[ ]8-9、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的I ∑不变,L 上各点的B不变.(B )回路L 内的I ∑不变,L 上各点的B改变.(C )回路L 内的I ∑改变,L 上各点的B不变.(D )回路L 内的I ∑改变,L 上各点的B改变. [ ]8-10、一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则(A )两粒子的电荷必然同号. (B )粒子的电荷可以同号也可以异号. (C )两粒子的动量大小必然不同. (D )两粒子的运动周期必然不同.[ ]!8-11、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A )Oa . (B )Ob . (C )Oc . (D )Od .[ ]8-12、一运动电荷q ,质量为m ,进入均匀磁场中,(A )其动能改变,动量不变. (B )其动能和动量都改变. (C )其动能不变,动量改变. (D )其动能、动量都不变.[ ]8-13、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设A R ,B R 分别为A 电子与B 电子的轨道半径;A T ,B T 分别为它们各自的周期.则 |(A )2:B A =R R ,2:B A =T T . (B )2/1:B A =R R ,1:B A =T T .(C )1:B A =R R ,2/1:B A =T T .(D )2:B A =R R ,1:B A =T T .[ ]8-14、长直电流2I 与圆形电流1I 共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将(A )绕2I 旋转.(B )向左运动.(C )向右运动.(D )向上运动.(E )不动.[ ]8-15、在匀强磁场中,有两个平面线圈,其面积212A A =,通有电流212I I =,它们所受的最大磁力矩之比21/M M 等于~OI 1>(A )1. (B )2. (C )4. (D )1/4.[ ]8-16、两个同心圆线圈,大圆半径为R ,通有电流1I ;小圆半径为r ,通有电流2I ,方向如图.若R r <<(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A )Rr I I 22210πμ. (B )Rr I I 22210μ. (C )rR I I 22210πμ. (D )0.[ ]8-17、如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A )ab 边转入纸内,cd 边转出纸外. (B )ab 边转出纸外,cd 边转入纸内. (C )ad 边转入纸内,bc 边转出纸外. (D )ad 边转出纸外,bc 边转入纸内.[ ]8-18、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的(A )H仅与传导电流有关.)(B )若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.(C )若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D )以闭合曲线L为边缘的任意曲面的H通量均相等. [ ]8-19、磁介质有三种,用相对磁导率r μ表征它们各自的特性时: (A )顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ. (B )顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ. (C )顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ.`(D )顺磁质0r <μ,抗磁质1r <μ,铁磁质0r >μ.[ ]8-20、顺磁物质的磁导率:(A )比真空磁导率略小. (B )比真空磁导率略大. (C )远小于真空磁导率. (D )远大于真空磁导率.[ ]8-21、电流元l I d 在磁场中某处沿直角坐标系的x 轴方向放置时不受力,把电流元转到y 轴正方向时受到的力沿z 轴反方向,该处磁感强度B指向______________方向.8-22、半径为R 的细导线环中的电流为I ,那么离环上所有点的距离皆等于r 的一点处的磁感强度大小为=B ____________.(R r ≥)8-23、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量=Φ______________.8-24、一个密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2.当在螺线管中通入10A 的电流时,它的横截面上的磁通量为___________.(真空磁导率m/A T 10π470⋅⨯=-μ),8-25、已知三种载流导线的磁感线的方向如图,则相应的电流流向在 图(1)中为由________向________; 图(2)中为由________向________; 图(3)中为由________向________.8-26、两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅Ll Bd 等于:____________________________________(对环路a ).…____________________________________(对环路b ). ____________________________________(对环路c ).8-27、一长直螺线管是由直径mm 2.0=d 的漆包线密绕而成.当它通以A 5.0=I 的电流时,其内部的磁感强度=B ______________.(忽略绝缘层厚度)(270N/A 10π4-⨯=μ)8-28、有一长直金属圆筒,沿长度方向有横截面上均匀分布的稳恒电流I 流通.筒内空腔各处的磁感强度为________________,筒外空间中离轴线r 处的磁感强度为_____________.<ef图(1)图(2)图(3)y xzO8-29、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是______________,运动轨迹半径之比是_______________.~8-30、电子在磁感强度为B的均匀磁场中沿半径为R 的圆周运动,电子运动所形成的等效圆电流强度=I _____________;等效圆电流的磁矩=m p __________.已知电子电荷为e ,电子的质量为e m .8-31、有半导体通以电流I ,放在均匀磁场B 中,其上下表面积累电荷如图所示.试判断它们各是什么类型的半导体是_______型,_______型8-32、电子以速率m/s 105=v 与磁力线成交角︒=30θ飞入匀强磁场中,磁场的磁感强度T 2.0=B ,那么作用在电子上的洛伦兹力=F _____________________.(基本电荷C 106.119-⨯=e )?8-33、如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____________,方向__________.8-34、如图,半圆形线圈(半径为R )通有电流I .线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为__________,方向为____________.把线圈绕OO' 轴转过角度____________时,磁力矩恰为零.8-35、在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.8-36、有一流过电流A 10=I 的圆线圈,放在磁感强度等于0.015T 的匀强磁场中,处于平衡位置.线圈直径cm 12=d .使线圈以它的直径为轴转过角2/π=α时,外力所必需作的功=W _______,如果转角π2=α,必需作的功=W ________.!IB8-37、如图所示,一根通电流I 的导线,被折成长度分别为a 、b ,夹角为120°的两段,并置于均匀磁场B 中,若导线的长度为b 的一段与B平行,则a ,b 两段载流导线所受的合磁力的大小为_____________.8-38、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为___________,方向__________.8-39、长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H =_____________,磁感强度的大小B =__________.!8-40、一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为r μ的磁介质,则管内中部附近磁感强度B =______________,磁场强度H =_______________.8-41、如图所示,半径为R ,线电荷密度为0λ(00>λ)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω转动,求轴线上任一点的B的大小及其方向.;8-42、在一半径cm 0.1=R 的无限长半圆筒形金属薄片中,沿长度方向有横截面上均匀分布的电流A 0.5=I 通过.试求圆柱轴线任一点的磁感强度.(270N/A 10π4-⨯=μ)8-43、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b 的任意点P 的磁感强度.、a bI120°BO IaI dy ORωO bxaPδ8-44、如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.】8-45、一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点的磁感强度B.'8-46、半径为R 的均匀环形导线在b 、c 两点处分别与两根互相垂直的载流导线相连接,已知环与二导线共面,如图所示.若直导线中的电流强度为I ,求:环心O 处磁感强度的大小和方向.\8-47、已知真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.)8-48、如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度.?8-49、已知载流圆线圈中心处的磁感强度为B 0,此圆线圈的磁矩与一边长为a 通过电流为I 的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径.8-50、已知均匀磁场,其磁感强度B=2.0Wb ⋅m -2,方向沿x 轴正向,如图所示.试求:(1)通过图中abOc 面的磁通量; (2)通过图中bedO 面的磁通量;·(3)通过图中acde 面的磁通量.8-51、一根很长的圆柱形铜导线均匀载有10A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.!(真空的磁导率=4×10-7T ·m/A ,铜的相对磁导率r≈1)8-52、如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为.该筒以角速度绕其轴线匀速旋转.试求圆筒内部的磁感强度.:8-53、在B=0.1T 的均匀磁场中,有一个速度大小为v=104m/s 的电子沿垂直于B的方向通过某点,求电子的轨道半径和旋转频率.(基本电荷e=1.60×1019C ,电子质量m e =9.11×1031kg )*x y za b cOe d B30 cm30 cm 40 cm 50 cmSRωσ8-54、两长直平行导线,每单位长度的质量为m=0.01kg/m ,分别用l=0.04m 长的轻绳,悬挂于天花板上,如截面图所示.当导线通以等值反向的电流时,已知两悬线张开的角度为2=10°,求电流I .(tg5°=0.087,0=4×10-7N ⋅A -2)-8-55、通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B 中,求整个导线所受的安培力(R 为已知).?8-56、如图所示线框,铜线横截面积S=2.0mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B 的方向竖直向上.已知铜的密度=8.9×103kg/m 3,当铜线中的电流I=10A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角=15°.求磁感强度B 的大小.~8-57、已知半径之比为2∶1的两载流圆线圈各自在其中心处产生的磁感强度相等,求当两线圈平行放在均匀外场中时,两圆线圈所受力矩大小之比.8-1 单位时间里通过导体任一横截面的电量叫做 。

第5章 恒定磁场.

第5章 恒定磁场.

A 0
返回
A 0J
使用矢量恒等式 A 2 A A 2A 0J
上式是磁矢位满足的微分方程,称为磁矢位的泊松方程。对无 源区(J=0),磁矢位满足矢量拉普拉斯方程,即
2A 0
2 A ex2 Ax ey2 Ay ez2 Az
当r≤a时, 电流I在导体内均匀分布,且流向+z方向。由安培环路
定律得
Ir
H e 2a2
(r a)
考虑这一区域的磁导率为μ0,可得
B

e
0Ir 2a 2
M 0
(r ≤ a) (r ≤ a)
当a<r≤b时,与积分回路交链的电流为I,该区磁导率为μ,可得
H

e
1
2r
B

e
I 2r
Im ) 0
(J
S
Jm ) dS
B dl
C
0I
0
M
C
dl
C

B
0

M
dl

I

H B M
0
其中H称为磁场强度,单位是A/m(安培/米)。于是有
CH dl I
与上式相应的微分形式是
H J
5.4.5 磁导率
M与H间的关系为
A 0 JS dS
4 S R 同理,线电流产生的磁矢位为
A 0 Idl
4 l R
磁通的计算也可以通过磁矢位表示:
SB dS S ( A) dS CA dl
例 求长度为l 的载流直导线的磁矢位。 直导线磁矢位
解:
Az

0I 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B dl μ 0 Ii
L 内
≠0,故磁场是非保守场,
是涡旋场,所以磁场中无对应于静电场中 “电势”的概念。
(3) 利用某些典型载流导线的磁场表达式出发,应 用磁场叠加原理,计算一些载流导体面或一些 电流组合体的磁感应强度B。 载流直导 线的磁场
B
0 I
4a
(cos 1 cos 2 )

(2)与静电场的高斯定理类似,
B dl μ 0 Ii
L

仅给出B的环流与环路所围曲面中穿过的电流的 关系,并未给出B与环路所围电流的关系。在理 解安培环路定理时要明确:B dl ,即B的 L 环流仅与闭合路径所包围的电流有关,但B是闭 合路径内外电流共同激发的 (3)
半径
周期
T

• 一般情况
v // v cos
v v sin
mv mv sin 带电粒子作 R 螺旋运动 qB qB h v //T 2mv cos qB
电磁感应小结
一、法拉第电磁感应定律 感应电动势的大小与通过

dΦ dt
导体回路的磁通量的变化
任意形状载流导线在外磁场中受到的安培力 由右手螺旋法则确定
任意形状的导线受力,等效于连接导线两端载 流直导线在均匀磁场中所受的力
F IBl sin

洛仑兹力
f m qv B
(1) f 总是与 v , B 垂直,即垂直于 v , B 决定的平面。
对洛仑兹力的理解:
率成正比
负号表示感应电流的效果总是反抗引起感应电流的原因 —— 楞次定律
二、 感应电动势
动生电动势
(其起源为洛仑力)
若磁场不变,而导体回
路运动(切割磁场线)
若导体回路静止,磁场随
感生电动势
(其起源为感生电场)
时间变化—感生电动势
三、 感应电动势的求解 (1)用法拉第电磁感应定律求解 法拉第电磁感应定律给出产生电动势的总的规律,因此 无论是何种原因在回路中引起的感应电动势,均可由法 拉第电磁感应定律求解。
a.需选定一个闭合回路。若无闭合回路,可增加部 分假象导体构成回路,由 求得 d i dt 的感应
m
电动势是闭合回路(或假象回路)的总电动势 b. Φ B dS 先计算磁通量,在求电动势 (2)用 i


EK dl


(v B) dl
(2)由于洛仑兹力始终与带电粒子的运动方向垂直, 所以洛仑兹力对带电粒子不做功,即洛仑兹力之改变 运动电荷的速度方向,而不改变其速度大小。 (3)安培力是大量带电粒子洛伦兹力的叠加安培力是 洛仑兹力的宏观表现,洛仑兹力是安培力的微观本 质。

带电粒子在磁场中的 运动
R mv qB 2R v 2m qB
方向
B
dFmax Idl
dF Idl B
三者满足右手螺旋
2.磁感应强度B的计算有以下方法
(1)根据比—萨定律求解。 (2)利用安培环路定理 关于安培定理

dB
0 Idl r0 r
2
4
B dl μ 0 Ii
L

安培环路定理给出磁感应强度B环流与此积分路径 所围曲面中穿过的电流代数和之间的关系。对安培 环路定理的理解,应注意以下几个方面: (1)电流的正负:与积分回路绕行方向L成右手螺旋 关系的电流取正值,反之则取负值。
B “无限长”载流直导 2a 线 载流圆线 0 I B 圈圆心处 2R
0 I
“无限长”载 流螺线管
B 0 nI
二.磁场对电流的作 用
安培定律 dF Idl B
大小: dF IdlB sin
由右手螺旋法则确定 方向: B 是外磁场
F dF Idl B
求解动生电动势

建立适当坐标,在导体上选取线元
d i ( v B ) d l

d l

先写出
,在积分,即
i


(v B) d l


L
(3)感生电动势方向的判断
a.法拉第电磁感应定律中的负号。
b.应用楞次定律
c.对动生电动势还可以用右手定则。 要注意的是电动势的方向,在电源内 部是由低电势指向高电势。 (4)感生电场与变化磁场之间的关系
1 2
B
2

1 2
H
2
恒定磁场小结
一类是关于磁感应强度B的计算 两类问题 另一类是磁场对电流的作用 一.关于磁场,要搞清楚磁感应强度B的物理意义; 正确理解它所遵守的规律;灵活运用这些规律, 在已知电流分布的情况下,求解磁场B的分布。

1.磁感应强度的定义:磁感应强度是描述磁场性质的 基本物理量,它是从电流元(或运动电荷)在磁场中 受力角度描述磁场性质的。 大小
L
EV dl
S t
B
dS
感生电场是无源有旋场
场源 感生电
静电荷 变化的磁场 静电场为保守场
场与静 电场的 比较
环流 感生电场为非保守场 通量 静电场为有源场 感生电场为无源场
四、磁场能量
1 2
1 2
Wm
LI
2
Wm
BHV
磁场的能量密度
wm
1 2
BH
相关文档
最新文档