七年级下册数学第一次月考试题及答案
最新七年级下学期数学第一次月考试卷(含答案)
七年级下学期数学第一次月考试卷满分:150分 考试用时:120分钟范围:第一章《二元一次方程组》~第二章《整式的乘法》班级 姓名 得分第Ⅰ卷一、选择题(本大题共10小题,共40.0分)1. 用加减法解方程组{2x −3y =53x +2y =−4时,下列变形正确的是( )A. {6x −9y =56x +4y =−4 B. {4x −6y =109x +6y =−12 C. {6x −3y =156x +2y =−12D. {2x −6y =103x +6y =−122. 下面运算结果为a 6的是( )A. a 3+a 3B. a 8÷a 2C. a 2⋅a 3D. (−a 2)33. 已知二元一次方程组{x −3y =4(1)y =2x −1(2),把(2)代入(1),整理,得( )A. x −2x +1=4B. x −2x −1=4C. x −6x −3=6D. x −6x +3=44. 现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是( )A. 50B. 60C. 70D. 805. 在下列的计算中,正确的是( )A. m 3+m 2=m 5B. m 5÷m 2=m 3C. (2m)3=6m 3D. (m +1)2=m 2+16. 下列整式的运算可以运用平方差公式计算的有( )①(2m +n)(n −2m);②(a 2−4b)(4b −a 2);③(x +y)(−x −y); ④(3a +b)(−3a +b)A. 1个B. 2个C. 3个D. 4个7. 学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( )A. 3种B. 4种C. 5种D. 6种8. 若代数式M ⋅(3x −y 2)=y 4−9x 2,那么代数式M 为( )A. −3x −y 2B. −3x +y 2C. 3x +y 2D. 3x −y 29. 方程(m −2016)x |m|−2015+(n +4)y |n|−3=2018是关于x 、y 的二元一次方程,则( )A. m =±2016;n =±4B. m =2016,n =4C. m =−2016,n =−4D. m =−2016,n =410. 若(x 2+px +q)(x −2)展开后不含x 的一次项,则p 与q 的关系是( )A. p =2qB. q =2pC. p +2q =0D. q +2p =0第Ⅱ卷二、填空题(本大题共8小题,共32.0分)11. 若关于x ,y 的二元一次方程组{x −y =4kx +y =2k的解也是二元一次方程2x −y =−7的解;则k 的值是______.12. (−0.5)2013×(−2)2014=______.13. 在等式y =kx +b 中,当x =3时,y =−2;当x =−1时,y =4,则k +b 的值为______.14. 若x +y =4,xy =3,则x 2+y 2= ______ .15. 已知二元一次方程2x +3y =18的解为正整数,则满足条件的解共有______对. 16. 计算:2(1+12)(1+122)(1+124)(1+128)+1214=______. 17. 如图,长方形ABCD 中放置9个形状、大小都相同的小长方形,相关数据如图中所示,则图中阴影部分的面积为__________(平方单位).18. 我们知道下面的结论,若a m =a n (a >0,且a ≠1),则m =n ,利用这个结论解决下列问题:设2m =3,2n =6,2p =12,现给出m 、n 、p 三者之间的三个关系式:①m +p =2n ,②m +n =2p −3,③m 2−mp =1,其中正确的是________.(填编号) 三、解答题(本大题共7小题,共78.0分)19. (10分)计算下列各式:(1)(3a −2)(4a −1);(2)3a(−a −4)+(3a −1)(a +3).20. (10分)已知,关于x ,y 的方程组{x −y =4a −3x +2y =−5a 的解为x 、y .(1)x =______,y =______(用含a 的代数式表示); (2)若x 、y 互为相反数,求a 的值;21. (10分)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人? (2)若学生都去参观历史博物馆,则能节省票款多少元?22.(10分)如图1,有A型、B型正方形卡片和C型长方形卡片各若干张.(1)用1张A型卡片,1张B型卡片,2张C型卡片拼成一个正方形,如图2,用两种方法计算这个正方形面积,可以得到一个等式,请你写出这个等式;(2)选取1张A型卡片,10张C型卡片,______张B型卡片,可以拼成一个正方形,这个正方形的边长用含a,b的代数式表示为______;(3)如图3,两个正方形边长分别为m、n,m+n=10,mn=19,求阴影部分的面积.23.(12分)先阅读后解答:根据几何图形的面积关系可以说明一些等式.例如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式:__________________________.(2)已知等式(x+1)(x+3)=x2+4x+3,请你画出一个相应的几何图形加以说明(仿照图①或图②画出图形即可).24.(12分)随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?25.(14分)某地葡萄丰收,准备将已经采摘下来的11400公斤葡萄运送杭州,现有甲、乙、丙三种车型共选择,每辆车运载能力和运费如表表示(假设每辆车均满载)(1)若全部葡萄都用甲、乙两种车型来运,需运费8700元,则需甲、乙两种车型各几辆?(2)为了节省运费,现打算用甲、乙、丙三种车型都参与运送,已知它们的总辆数为15辆,你能分别求出这三种车型的辆数吗?怎样安排运费最省?答案1.B2.B3.D4.B5.B6.B7.B8.A9.D10.B11.−112.−213.114.1015.216.417.1818.①②19.解:(1)(3a−2)(4a−1)=12a2−3a−8a+2=12a2−11a+2.(2)3a(−a−4)+(3a−1)(a+3)=−3a2−12a+3a2+9a−a−3 =−4a−3.20.解:(1)a−2−3a+1(2)由题意得,a−2+(−3a+1)=0,解得,a=−1.221.解:(1)设参观历史博物馆的有x 人,参观民俗展览馆的有y 人,依题意,得{x +y =15010x +20y =2000, 解得{x =100y =50.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人. (2)2000−150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.22.解:(1)方法1:大正方形的面积为(a +b)2, 方法2:图2中四部分的面积和为:a 2+2ab +b 2, 因此有(a +b)2=a 2+2ab +b 2,(2)由面积拼图可知a 2+10ab +25b 2=(a +5b)2, 故答案为:25,(a +5b), (3)由图形面积之间的关系可得,S 阴影=12m 2−12n(m −n)=1m 2−1mn +1n 2 =12[(m +n)2−3mn] =12(102−3×19) =432.23.解:(1)(2a +b)(a +2b)=2a 2+5ab +2b 2;(2)由题意,可画出几何图形如下:其中一条边可看做x +1,另一条边可看做x +3,四个区域面积的和即为计算结果.24.解:(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,依题意,得:{2x +3y =803x +2y =95解得:{x =25y =10,答:A 型汽车每辆的进价为25万元,B 型汽车每辆的进价为10万元; (2)设购进A 型汽车m 辆,购进B 型汽车n 辆, 依题意,得:25m +10n =200, 解得:m =8−25n , ∵m ,n 均为正整数,∴{m 1=6n 1=5,{m 2=4n 2=10,{m 3=2n 3=15,∴共3种购买方案:方案一:购进A 型车6辆,B 型车5辆; 方案二:购进A 型车4辆,B 型车10辆; 方案三:购进A 型车2辆,B 型车15辆;(3)方案一获得利润:8000×6+5000×5=73000(元); 方案二获得利润:8000×4+5000×10=82000(元); 方案三获得利润:8000×2+5000×15=91000(元). ∵73000<82000<91000,∴购进A 型车2辆,B 型车15辆获利最大,最大利润是91000元.25.解:(1)设需要甲车x 辆,乙车y 辆,根据题意可得{600x +800y =11400500x +600y =8700解得{x =3y =12;(2)设需要甲车x 辆,乙车y 辆,根据题意得 600x +800y +900(15−x −y)=11400, 整理得3x +y =21, ∵x ,y 都是正整数,x +y <15 x =4,5,6 ,方案一:甲车4辆,乙车9辆,丙车2辆,运费8800元 方案二:甲车5辆,乙车6辆,丙车4辆,运费8900元方案三:甲车6辆,乙车3辆,丙车6辆,运费9000元∵8800<8900<9000∴方案一运费最省,运费是8800元.。
人教版数学七年级下册第一次月考试卷含答案解析
七年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.的绝对值是()A.3B.﹣3C.D.﹣2.如图,将左图中的福娃“欢欢”通过平移可得到的图为()A.B.C.D.3.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∥3=∥4B.∥B=∥DCE C.∥1=∥2D.∥D+∥DAB=180°4.下列各数是4的平方根的是()A.±2B.2C.﹣2D.A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a2=b2D.同角的补角相等6.如图,直线a、b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个8.实数,π2,,,,其中无理数有()A.1个B.2个C.3个D.4个9.如图,直线AB、CD被直线EF所截,∥1=50°,下列说法错误的是()A.如果∥5=50°,那么AB∥CD B.如果∥4=130°,那么AB∥CDC.如果∥3=130°,那么AB∥CD D.如果∥2=50°,那么AB∥CD10.计算8的立方根与的平方根之和是()A.5B.11C.5或﹣1D.11或﹣7二、填空题(每小题3分,共30分)11.4是的算术平方根.12.的相反数是.13.已知,则.14.若x,y为实数,且+|y+2|=0,则xy的值为.15.如图,∥ACB=90°,CD∥AB,垂足为D,则CD<CA,理由是.16.对于任意不相等的两个数a,b,定义一种运算∥如下:a∥b=,如3∥2==,那么12∥4=.18.如图,直线AB.CD相交于点O,OE∥AB,O为垂足,如果∥EOD=38°,则∥AOC=度.19.如图,若AB∥CD,那么∥3=∥4,依据是.20.已知的整数部分是a,小数部分是b,则ab的值为.三、解答题(本大题共60分)21.计算:(1)+(2)|﹣|+2.22.求下列各式中x的值.(1)x2﹣4=0(2)27x3=﹣125.23.如一个数的两个平方根分别是a+3和2a﹣15,试求这个数.24.如图所示,已知∥1=72°,∥2=108°,∥3=69°,求∥4的度数.25.如图,已知∥BED=∥B+∥D,试说明AB与CD的关系.解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF∥AB∥CD.26.如图,EF∥AD,∥1=∥2.求证:DG∥AB.甘肃省定西市安定区公园路中学七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.的绝对值是()A.3B.﹣3C.D.﹣【考点】实数的性质.【分析】首先利用立方根的定义化简,然后利用绝对值的定义即可求解.【解答】解:=|﹣3|=3.故选A.2.如图,将左图中的福娃“欢欢”通过平移可得到的图为()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移即可得到答案.【解答】解:根据平移的定义可得左图中的福娃“欢欢”通过平移可得到的图为C,故选:C.3.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∥3=∥4B.∥B=∥DCE C.∥1=∥2D.∥D+∥DAB=180°【考点】平行线的判定.【分析】根据平行线的判定定理逐一判断,排除错误答案.【解答】解:∥∥3=∥4,∥AD∥BC,故A错误;∥∥B=∥DCE,∥AB∥CD;故B正确;∥∥1=∥2,∥AB∥CD,故C正确;∥∥D+∥DAB=180°,∥AB∥CD,故D正确;故选A.4.下列各数是4的平方根的是()A.±2B.2C.﹣2D.【考点】平方根.【分析】一个正数的平方根有两个,它们互为相反数,据此求出4的平方根是多少即可.【解答】解:∥±=±2,∥是4的平方根的是±2.故选:A.A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a2=b2D.同角的补角相等故选B.6.如图,直线a、b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°【考点】对顶角、邻补角.【分析】因∥1和∥2是邻补角,且∥1=40°,由邻补角的定义可得∥2=180°﹣∥1=180°﹣40°=140°.【解答】解:∥∥1+∥2=180°又∥1=40°∥∥2=140°.故选C.7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个【考点】平行公理及推论;相交线;垂线.【分析】根据平行公理,垂线的定义,相交线的性质对各小题分析判断即可得解.【解答】解:①同位角相等,错误,只有两直线平行,才有同位角相等;②应为:在同一平面内,过一点有且只有一条直线与已知直线垂直,故本小题错误;③应为:过直线外一点有且只有一条直线与已知直线平行,故本小题错误;④三条直线两两相交,总有一个交点或三个交点,故本小题错误;⑤若a∥b,b∥c,则a∥c,正确.综上所述,正确的只有⑤共1个.故选A.8.实数,π2,,,,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数,由此即可判定选择项.【解答】解:实数,π2,,,中,无理数有:π2,共2个.故选B.9.如图,直线AB、CD被直线EF所截,∥1=50°,下列说法错误的是()A.如果∥5=50°,那么AB∥CD B.如果∥4=130°,那么AB∥CDC.如果∥3=130°,那么AB∥CD D.如果∥2=50°,那么AB∥CD【考点】平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∥∥1=∥2=50°,∥若∥5=50°,则AB∥CD,故本选项正确;B、∥∥1=∥2=50°,∥若∥4=180°﹣50°=130°,则AB∥CD,故本选项正确;C、∥∥3=∥4=130°,∥若∥3=130°,则AB∥CD,故本选项正确;D、∥∥1=∥2=50°是确定的,∥若∥2=150°则不能判定AB∥CD,故本选项错误.故选D.10.计算8的立方根与的平方根之和是()A.5B.11C.5或﹣1D.11或﹣7【考点】实数的运算.【分析】利用平方根,立方根定义计算即可得到结果.【解答】解:根据题意得:8的立方根是2,=9,9的平方根是±3,则8的立方根与的平方根之和为5或﹣1,故选C二、填空题(每小题3分,共30分)11.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∥42=16,∥4是16的算术平方根.故答案为:16.12.的相反数是.【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:的相反数是﹣=.故答案为:.13.已知,则 1.01.【考点】算术平方根.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:∥,∥ 1.01;故答案为:1.01.14.若x,y为实数,且+|y+2|=0,则xy的值为﹣2.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质可求出x、y的值,进而可求出xy的值.【解答】解:由题意,得:x﹣1=0,y+2=0;即x=1,y=﹣2;因此xy=1×(﹣2)=﹣2,故答案为:﹣2.15.如图,∥ACB=90°,CD∥AB,垂足为D,则CD<CA,理由是垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答即可.【解答】解:∥CD∥AB,∥CD<CA(垂线段最短),故答案为:垂线段最短.16.对于任意不相等的两个数a,b,定义一种运算∥如下:a∥b=,如3∥2==,那么12∥4=4.【考点】实数的运算.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:12∥4===4,故答案为:4【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.18.如图,直线AB.CD相交于点O,OE∥AB,O为垂足,如果∥EOD=38°,则∥AOC=52度.【考点】垂线;对顶角、邻补角.【分析】根据垂线的定义,可得∥AOE=90°,根据角的和差,可得∥AOD的度数,根据邻补角的定义,可得答案.【解答】解:∥OE∥AB,∥∥AOE=90°,∥∥AOD=∥AOE+∥EOD=90°+38°=128°,∥∥AOC=180°﹣∥AOD=180°﹣128°=52°,故答案为:52.19.如图,若AB∥CD,那么∥3=∥4,依据是两直线平行,内错角相等.【考点】平行线的性质.【分析】根据题意利用平行线的性质定理进而得出答案.【解答】解:两直线平行,内错角相等,故答案为:两直线平行,内错角相等.20.已知的整数部分是a,小数部分是b,则ab的值为.【考点】估算无理数的大小.【分析】只需首先对估算出大小,从而求出其整数部分a,再进一步表示出其小数部分即可解决问题.【解答】解:∥<<,∥2<<3;所以a=2,b=﹣2;故ab=2×(﹣2)=2﹣4.故答案为:2﹣4.三、解答题(本大题共60分)21.计算:(1)+(2)|﹣|+2.【考点】实数的运算.【分析】(1)原式利用算术平方根、立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=+=1;(2)原式=﹣+2=+.22.求下列各式中x的值.(1)x2﹣4=0(2)27x3=﹣125.【考点】立方根;平方根.【分析】(1)先移项,系数化为1,再开平方法进行解答;(2)先系数化为1,再开立方法进行解答.【解答】解:(1)x2=4,x=±2 ;(2)x3=﹣,x=﹣.23.如一个数的两个平方根分别是a+3和2a﹣15,试求这个数.【考点】平方根.【分析】根据一个数的平方根互为相反数,可得这个数的平方根,再根据互为相反数的和等于0,可得平方根,再根据平方,可得这个数.【解答】解:∥一个数的两个平方根分别是3a+2和a+14,∥(a+3)+(2a﹣15)=0,a=4,a+3=4+37.7的平方是49.∥这个数是49.24.如图所示,已知∥1=72°,∥2=108°,∥3=69°,求∥4的度数.【考点】平行线的判定与性质.【分析】此题要首先根据∥1和∥2的特殊的位置关系以及数量关系证明c∥d,再根据平行线的性质求得∥4即可.【解答】解:∥∥1=72°,∥2=108°,∥∥1+∥2=72°+108°=180°;∥c∥d(同旁内角互补,两直线平行),∥∥4=∥3(两直线平行,内错角相等),∥∥3=69°,∥∥4=69°.25.如图,已知∥BED=∥B+∥D,试说明AB与CD的关系.解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF内错角相等,两直线平行∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF内错角相等,两直线平行∥AB∥CD平行公理的推论.【考点】平行线的判定与性质.【分析】根据平行线的判定与性质进行填空即可.【解答】解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF(内错角相等,两直线平行)∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF(内错角相等,两直线平行)∥AB∥CD(平行公理的推论).故答案为:内错角相等,两直线平行;内错角相等,两直线平行;平行公理的推论.26.如图,EF∥AD,∥1=∥2.求证:DG∥AB.【考点】平行线的判定与性质.【分析】根据平行线的性质得出∥2=∥3,求出∥1=∥3,根据平行线的判定得出即可.【解答】证明:∥EF∥AD,∥∥2=∥3,∥∥1=∥2,∥∥1=∥3,∥DG∥AB.第11页共11页。
最新】人教版七年级下册数学第一次月考试题及答案
最新】人教版七年级下册数学第一次月考试题及答案七年级第一次月考数学试题一、填空题(每小题2分,共20分)1.如图,若∠1=35°,则∠2=145°,∠3=35°。
2.如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,DC/BD=6.4,AD=3.6,AC=6,点A到BC 的距离是2.4,点A,B两点间的距离是8.4.3.把命题“平行于同一条直线的两条直线平行”,改写成“如果两条直线在同一条直线上,那么它们平行”的形式为。
4.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=80°,则∠BOD=50°。
5.如图,已知直线a∥b,∠4=40°,则∠2=140°。
6.如图,直线AB∥CD,EF交AB于点M,MN⊥EF于点M,MN交CD于点N,若∠BME=125°,则∠MND=55°。
7.如图,已知∠1=70°,∠2=110°,∠3=80°,则∠4=100°。
8.如图,AB∥CD,BC∥DE,则∠B与∠D的关系是对应角相等。
9.XXX将两把直尺按如图所示叠放,使其中一把直尺的一个顶点恰好落在另一把直尺的边上,则∠1+∠2=90°。
10.如图,DH∥EG∥BC,且DC∥EF,则图中与∠1相等的角有两个,分别是∠3和∠4.二、单项选择题(每小题3分,共18分)11.下列各图中,∠1和∠2是对顶角的是(B)。
12.如图,点A到直线CD的距离是指哪一条线段的长(D)。
13.下列四组图形中,有一组中的两个图形经过平移,其中一个能得到另一个,这组图形是(B)。
14.如图,下列条件中能判定AB∥CD的是(C)。
15.在如图所示的长方体中,和棱AB平行的梭有(C)。
16.在如图,已知∠1=∠2,∠3=∠4,求证:AC∥DF,BC∥EF.证明过程如下:1=∠2(已知)。
人教版七年级下册数学第一次月考试题附答案
【分析】根据线段、垂线段的公理、平行线的性质以及补角的性质判断即可.
【解答】解:A、两点之间,线段最短,是真命题;
B、两直线平行,同旁内角互补,原命题是假命题;
C、等角的补角相等,是真命题;
D、垂线段最短,是真命题;
故选:B.
【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.
6.(3分)下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
【分析】根据对顶角的定义作出判断即可.
【解答】解:根据对顶角的定义可知:只有选项C中的是对顶角,其它都不是.
故选:C.
【点评】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
12(3分).如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形An-1Bn-1Cn-1Dn-1沿An-1Bn-1的方向向右平移5个单位长度,得到长方形AnBnCnDn(n>2),若ABn的长度为2 026,则n的值为().
2022年七年级下册第一次月考
数 学试 题
满 分:120分时间:120分钟
亲爱的同学:沉着应试,认真书写,祝你取得满意成绩!
一.选择题(共12小题,满分36分,每小题3分)
1.(3分)49的算术平方根是( )
A.±7B.7C.± D.
华师版七年级下学期第一次月考数学试卷,初一数学下册测试题(含答案与解析)
D.20 道
8.(3 分)定义“*”运算为 a*b=ab+2a,若(3*x)+(x*3)=14,则 x=( )
A.﹣1
B.1
C.﹣2
D.2
二.填空题(每题 3 分,共 24 分)
9.(3 分)若代数式 m2n3x﹣5 与 n4x﹣3m2 的和为 m2n3x﹣5,则 x=
.
第 1页(共 11页)
10.(3 分)在方程 2x+4y=7,用含 x 的代数式表示 y,则可以表示为
就会迟到 5 分钟.问他家到学校的路程是多少 km?设他家到学校的路程是 xkm,则据题
意列出的方程是( )
A.
B.
C.
D.
7.(3 分)一份数学试卷,只有 25 个选择题,做对一题得 4 分,做错一题倒扣 1 分,某同
学做了全部试卷,得了 70 分,他一共做对了( )
A.17 道
B.18 道
C.19 道
∴某同学共做对了 25﹣6=19 道,
故选:C.
8.(3 分)定义“*”运算为 a*b=ab+2a,若(3*x)+(x*3)=14,则 x=( )
A.﹣1
B.1
C.﹣2
D.2
【解答】解:根据题意(3*x)+(x*3)=14,
可化为:(3x+6)+(3x+2x)=14,
解得 x=1.
故选:B.
二.填空题(每题 3 分,共 24 分)
19.(10 分)把 2005 个正整数 1,2,3,4,…,2005 按如图方式排列成一个表: (1)如图,用一正方形框在表中任意框住 4 个数,记左上角的一个数为 x,则另三个数 用含 x 的式子表示出来,从小到大依次是 x+1 , x+7 , x+8 ; (2)当(1)中被框住的 4 个数之和等于 416 时,x 的值为多少? (3)(1)中能否框住这样的 4 个数,它们的和等于 324?若能,则求出 x 的值;若不能, 则说明理由.
七年级数学(下册)第一次月考数学试卷(含答案) (2)
七年级(下)第一次月考数学试卷一、选择题(每题只有一个正确答案,每小题3分,共24分)1.(3分)计算(﹣2)0+1的结果()A.﹣1 B.0 C.1 D.22.(3分)下列各式,能用平方差公式计算的是()A.(a﹣1)(a+1)B.(a﹣3)(﹣a+3)C.(a+2b)(2a﹣b)D.(﹣a﹣3)2 3.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣64.(3分)若等式(x﹣4)2=x2﹣8x+m2成立,则m的值是()A.16 B.4 C.﹣4 D.4或﹣45.(3分)下列计算正确的是()A.x3•x﹣4=x﹣12B.(x3)3=x6C.2x2+x=x D.(3x)﹣2=6.(3分)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣27.(3分)若(x2﹣x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣88.(3分)根据如图所示的程序计算,若输入x的值为1,则输出y的值为()A.2 B.﹣2 C.4 D.﹣4二、填空题(每小题3分,共21分)9.(3分)计算0.1252015×(﹣8)2016=.10.(3分)一个多项式除以2x2y,其商为(4x3y2﹣6x3y+2x4y2),则此多项式为.11.(3分)若2x=3,4y=5,则2x+2y的值为.12.(3分)若﹣5a m+1•b2n﹣1•2ab2=﹣10a4b4,则m﹣n的值为.13.(3分)若x﹣y=2,xy=4,则x2+y2的值为.14.(3分)已知长方体的体积为3a3b5cm3,它的长为abcm,宽为ab2cm,则这个长方体的高为cm.15.(3分)已知x2﹣2x=2,则(x﹣1)(3x+1)﹣(x+1)2的值为.三、解答题(8个小题,共75分)16.(8分)计算(1)(2x+3y)2﹣(2x﹣3y)2;(2)(3m﹣4n)(3m+4n)(9m2+16n2).17.(8分)计算:(1)(x+1)(x2﹣x+1)+6x3+(﹣2x3);(2)(﹣5xy3)2•(﹣x2y)3÷(﹣9x3y2).18.(10分)求下列各式的值:(1)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b=﹣;(2)[(﹣3xy)2•x3﹣2x2•(3xy2)3•y]÷9x4y2,其中x=3,y=﹣1.19.(8分)红光中学新建了一栋科技楼,为了给该楼一间科技陈列室的顶棚装修,计划用宽为x m、长为30x m的塑料扣板,已知这件陈列室的长为5ax m、宽为3ax m,如果你是该校的采购人员,应该至少购买多少块这样的塑料扣板?当a=4时,求出具体的扣板数.20.(8分)已知(x+y)2=64,(x﹣y)2=16,求x2+y2的值.21.(10分)如图,一块半圆形钢板,从中挖去直径分别为x、y的两个半圆:(1)求剩下钢板的面积:(2)若当x=4,y=2时,剩下钢板的面积是多少?(π取3.14)22.(11分)(1)对于任意自然数n,代数式n(n+3)﹣(n﹣4)(n﹣5)的值都能被4整除吗?请说明理由.(2)小明在做一个多项式除以a的题时,由于粗心误以为乘以a,结果是8a4b﹣4a3+2a2,那么你能知道正确的结果是多少吗?23.(12分)仔细观察下列四个等式:22=1+12+2;32=2+22+3;42=3+32+4;52=4+42+5;…(1)请你写出第5个等式;(2)用含n的等式表示这5个等式的规律;(3)将这个规律公式认真整理后你会发现什么?参考答案与试题解析一、选择题(每题只有一个正确答案,每小题3分,共24分)1.(3分)(2016春•宝丰县月考)计算(﹣2)0+1的结果()A.﹣1 B.0 C.1 D.2【分析】根据非零的零次幂等于1,可得答案.【解答】解:原式=1+1=2,故选:D.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.2.(3分)(2016春•宝丰县月考)下列各式,能用平方差公式计算的是()A.(a﹣1)(a+1)B.(a﹣3)(﹣a+3)C.(a+2b)(2a﹣b)D.(﹣a﹣3)2【分析】根据平方差公式,即两数之和与两数之差的积等于两数的平方差,作出判断即可.【解答】解:A、(a﹣1)(a+1),正确;B、(a﹣3)(﹣a+3)=﹣(a﹣3)2,故错误;C、(a+2b)(2a﹣b)属于多项式乘以多项式,故错误;D、(﹣a﹣3)2属于完全平方公式,故错误;故选:A.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.(3分)(2013•西藏)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000065=6.5×10﹣6;故选:B.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)(2016春•宝丰县月考)若等式(x﹣4)2=x2﹣8x+m2成立,则m的值是()A.16 B.4 C.﹣4 D.4或﹣4【分析】直接利用公式把(x﹣4)2展开后可得m2=42=16,求解即可得到m的值.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵(x﹣4)2=x2﹣8x+16,∴m2=16,解得m=±4.故选D.【点评】本题考查了完全平方公式,根据公式的平方项得到方程是求解的关键.5.(3分)(2016春•宝丰县月考)下列计算正确的是()A.x3•x﹣4=x﹣12B.(x3)3=x6C.2x2+x=x D.(3x)﹣2=【分析】根据同底数幂的乘法底数不变指数相加,幂的乘方底数不变指数相乘,合并同类项系数相加字母及指数不变,负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、不是同类项不能合并,故C错误;D、负整数指数幂与正整数指数幂互为倒数,故D正确;故选:D.【点评】本题考查了负整数指数幂,熟记法则并根据法则计算是解题关键.6.(3分)(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2【分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.7.(3分)(2016春•苏州期中)若(x2﹣x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣8【分析】先根据已知式子,可找出所有含x的项,合并系数,令含x项的系数等于0,即可求m的值.【解答】解:(x2﹣x+m)(x﹣8)=x3﹣8x2﹣x2+8x+mx﹣8m=x3﹣9x2+(8+m)x﹣8m,∵不含x的一次项,∴8+m=0,解得:m=﹣8.故选:B.【点评】本题主要考查多项式乘以多项式的法则,注意不含某一项就是说含此项的系数等于0.8.(3分)(2010秋•宝应县校级期中)根据如图所示的程序计算,若输入x的值为1,则输出y的值为()A.2 B.﹣2 C.4 D.﹣4【分析】由题意输入x然后平方得x2,然后再乘以2,然后再减去4,若结果大于0,就输出y,否则就继续循环,从而求解.【解答】解:输入x的值为1,由程序平方得,12=1,然后再乘以2得,1×2=2,然后再减去4得,2﹣4=﹣2,∵﹣2<0,继续循环,再平方得,(﹣2)2=4,然后再乘以2得,4×2=8,然后再减去4得,8﹣4=4,∵4>0,∴输出y的值为4,故答案为4.【点评】此题是一道程序题,做题时要按照程序一步一步做,主要考查代数式求值,是一道常考的题型.二、填空题(每小题3分,共21分)9.(3分)(2016春•徐州期中)计算0.1252015×(﹣8)2016=8.【分析】根据指数相同的幂的乘法等于积的乘方,可得答案.【解答】解:原式=(﹣0.125×8)2015×(﹣8)=8.故答案为:8.【点评】本题考查了幂的乘方与积的乘方,利用积的乘方是解题关键.10.(3分)(2008秋•辽源期末)一个多项式除以2x2y,其商为(4x3y2﹣6x3y+2x4y2),则此多项式为8x5y3﹣12x5y2+4x6y3.【分析】根据被除式=商×除式列出算式,再利用单项式乘多项式,用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:依题意:所求多项式=(4x3y2﹣6x3y+2x4y2)×2x2y=8x5y3﹣12x5y2+4x6y3.【点评】本题考查了单项式除单项式,弄清被除式、除式、商三者之间的关系是求解的关键.11.(3分)(2016春•宝丰县月考)若2x=3,4y=5,则2x+2y的值为15.【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则将原式变形,进而得出答案.【解答】解:∵2x=3,4y=5,∴2x+2y=2x×(22)y=3×5=14.故答案为:15.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,熟练应用运算法则是解题关键.12.(3分)(2016春•宝丰县月考)若﹣5a m+1•b2n﹣1•2ab2=﹣10a4b4,则m﹣n的值为.【分析】直接利用单项式乘以单项式运算法则得出关于m,n的等式进而得出答案.【解答】解:∵﹣5a m+1•b2n﹣1•2ab2=﹣10a4b4,∴m+1+1=4,2n﹣1+2=4,解得:m=2,n=,则m﹣n=2﹣=.故答案为:.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.13.(3分)(2016春•盐都区月考)若x﹣y=2,xy=4,则x2+y2的值为12.【分析】把x﹣y=2两边平方,利用完全平方公式化简,将xy=4代入即可求出所求式子的值.【解答】解:把x﹣y=2两边平方得:(x﹣y)2=x2﹣2xy+y2=4,把xy=4代入得:x2+y2=12,故答案为:12【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.14.(3分)(2016春•宝丰县月考)已知长方体的体积为3a3b5cm3,它的长为abcm,宽为ab2cm,则这个长方体的高为2ab2cm.【分析】根据题意列出关系式,计算即可得到结果.【解答】解:根据题意得:3a3b5÷(ab•ab2)=2ab2(cm);故答案为:2ab2【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.15.(3分)(2016春•宝丰县月考)已知x2﹣2x=2,则(x﹣1)(3x+1)﹣(x+1)2的值为2.【分析】先利用多项式乘多项式的法则展开,然后合并同类项,再利用整体代入的思想解决问题即可.【解答】解:∵x2﹣2x=2,∴x2=2+2x,∴原式=3x2+x﹣3x﹣1﹣x2﹣2x﹣1=2x2﹣4x﹣2=2(2+2x)﹣4x﹣2=4+4x﹣4x﹣2=2.故答案为2.【点评】本题考查整式的混合运算﹣化简求值,利用整体代入的思想是解决问题的关键,计算时注意符号问题,括号前面是负号时去括号要变号,属于展开常考题型.三、解答题(8个小题,共75分)16.(8分)(2016春•宝丰县月考)计算(1)(2x+3y)2﹣(2x﹣3y)2;(2)(3m﹣4n)(3m+4n)(9m2+16n2).【分析】(1)原式利用完全平方公式化简,去括号合并即可得到结果;(2)原式利用平方差公式计算即可得到结果.【解答】解:(1)原式=4x2+12xy+9y2﹣4x2+12xy﹣9y2=24xy;(2)原式=(9m2﹣16n2)(9m2+16n2)=81m4﹣256n4.【点评】此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.17.(8分)(2016春•宝丰县月考)计算:(1)(x+1)(x2﹣x+1)+6x3+(﹣2x3);(2)(﹣5xy3)2•(﹣x2y)3÷(﹣9x3y2).【分析】(1)先由立方公式展开,再利用整式的加减,即可求解;(2)根据单项式的乘法和除法的计算法则计算.【解答】解:(1)(x+1)(x2﹣x+1)+6x3+(﹣2x3)=x3+1+6x3﹣2x3=5x3+1(2)(﹣5xy3)2×(﹣x2y)3÷(﹣9x3y2)=25x2y6×(﹣)x6y3÷(﹣9x3y2)=25x2y6×x6y3÷9x3y2=x8y9÷9x3y2=x5y7.【点评】此题是整数的混合运算,解本题的关键是记住整式运算的法则,(2)易出现符号错误.18.(10分)(2016春•宝丰县月考)求下列各式的值:(1)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b=﹣;(2)[(﹣3xy)2•x3﹣2x2•(3xy2)3•y]÷9x4y2,其中x=3,y=﹣1.【分析】(1)先算除法和乘法,再合并同类项,最后代入求出即可;(2)先算除法和乘法,再合并同类项,最后代入求出即可.【解答】解:(1)原式=a2﹣2ab﹣b2﹣a2+b2=﹣2ab,把a=,b=﹣代入﹣2ab=;(2)原式=(9x5y2﹣27x5y7)÷9x4y2=x﹣3xy5,把x=3,y=﹣1代入x﹣3xy5=3﹣3×3×(﹣1)5=12.【点评】本题考查了整式的混合运算和求值的应用,熟练掌握运算法则是解本题的关键.19.(8分)(2016春•宝丰县月考)红光中学新建了一栋科技楼,为了给该楼一间科技陈列室的顶棚装修,计划用宽为x m、长为30x m的塑料扣板,已知这件陈列室的长为5ax m、宽为3ax m,如果你是该校的采购人员,应该至少购买多少块这样的塑料扣板?当a=4时,求出具体的扣板数.【分析】根据题意列出关系式,计算即可得到结果,把a的值代入计算即可得到具体数.【解答】解:根据题意得:(5a x•3ax)÷(x•30x)=15a2x2÷30x2=a2,则应该至少购买a2块这样的塑料扣板,当a=4时,原式=8,即具体的扣板数为8张.【点评】此题考查了整式的除法,以及代数式求值,熟练掌握运算法则是解本题的关键.20.(8分)(2016春•宝丰县月考)已知(x+y)2=64,(x﹣y)2=16,求x2+y2的值.【分析】已知等式利用完全平方公式展开,相加即可求出原式的值.【解答】解:由题意得:x2+2xy+y2=64①,x2﹣2xy+y2=16②,①+②得:2(x2+y2)=80,则x2+y2=40.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.21.(10分)(2016春•宝丰县月考)如图,一块半圆形钢板,从中挖去直径分别为x、y的两个半圆:(1)求剩下钢板的面积:(2)若当x=4,y=2时,剩下钢板的面积是多少?(π取3.14)【分析】(1)利用圆的面积公式计算,图中的大圆半径是;(2)把x=4,y=2代入上式计算即可.【解答】解:如题中图,(1)S剩=.==(2)当x=4,y=2时,S剩=×3.14×2×4=6.28(面积单位).【点评】本题考查了完全平方公式,(1)中注意大圆的半径需从图上得出,注意这里都是半圆.22.(11分)(2016春•宝丰县月考)(1)对于任意自然数n,代数式n(n+3)﹣(n﹣4)(n ﹣5)的值都能被4整除吗?请说明理由.(2)小明在做一个多项式除以a的题时,由于粗心误以为乘以a,结果是8a4b﹣4a3+2a2,那么你能知道正确的结果是多少吗?【分析】(1)将原式展开化简可得4(3n﹣5),根据n是自然数可知原式能被4整除;(2)先根据误乘的结果用除法求出原多项式,再用该多项式除以a可得结果.【解答】解:(1)能,原式=n2+3n﹣(n2﹣5n﹣4n+20)=n2+3n﹣n2+5n+4n﹣20=12n﹣20=4(3n﹣5),因为n是自然数,所以3n﹣5是整数,因此原式能被4整除;(2)根据题意,原多项式为(8a4b﹣4a3+2a2)÷a=16a3b﹣8a2+4a.故正确结果为:(16a3b﹣8a2+4a)÷a=32a2b﹣16a+8.【点评】本题主要考查整式的运算能力,熟练掌握多项式与单项式相乘、除,多项式与多项式相乘的运算法则是关键也是基础.23.(12分)(2016春•宝丰县月考)仔细观察下列四个等式:22=1+12+2;32=2+22+3;42=3+32+4;52=4+42+5;…(1)请你写出第5个等式;(2)用含n的等式表示这5个等式的规律;(3)将这个规律公式认真整理后你会发现什么?【分析】(1)根据已知规律直接写出第5个等式即可;(2)分析已知等式:左边是(n+1)2,右边是n+n2+n+1,整理即可;(3)整理右边可知:为完全平方.【解答】解:(1)根据已知可以得出:第5个等式为:62=5+52+6;(2)分析已知等式:左边是(n+1)2,右边是n+n2+n+1;所以:(n+1)2=n+n2+n+1;(3)整理(2)得,(n+1)2=n+n2+n+1=n2+2n+1,可化为完全平方公式.【点评】此题主要考查数字的规律问题,认真观察题中已知,弄清已知数与序数n之间的关系是解题的关键.。
七年级数学下册第一次月考试卷(附答案)
七年级数学下册第一次月考试卷(附答案)一.单选题。
(共40分)1.计算a 2•a 3=( )A.a 8B.a 6C.a 5D.a 92.一个数是0.0 000 016,这个数用科学记数法表示的是( )A.1.6×10﹣6B.1.6×10﹣7C.1.6×107D.1.6×10﹣83.下列计算结果是a 6的是( )A.a 7-aB.a 2•a 3C.(a 4)2D.a 8÷a 24.下列是负数的( )A.|﹣5|B.(﹣1)2023C.﹣(﹣3)D.(﹣1)05.下列计算正确的是( )A.a 5+a 5=a 10B.(ab 4)4=ab 8C.(a 3)3=a 9D.a 6÷a 3=a 26.下列能用平方差公式计算的是( )A.(a -b )(a -b )B.(a -b )(﹣a -b )C.(a+b )(﹣a -b )D.(﹣a+b )(a -b )7.若多项式x 2+mx+4是完全平方式,则m 的值为( )A.2B.﹣2C.±2D.±48.(2x+a )(x -2)的结果中不含x 的一次项,则a 为( )A.2B.﹣2C.4D.﹣49.下列计算:①(﹣1)0=﹣1;②(﹣1)﹣1=﹣1;③2×2﹣2=12;④3a ﹣2=13a 2;⑤(﹣a 2)m =(﹣a m )2,正确有( ).A.5个B.4个C.3个D.2个10.利用图①所示的长为a ,宽为b 的长方形卡4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )A.(a-b)2+4ab=(a+b)2B.(a+b)(a-b)=a2-b2C.(a+b)2=a2+2ab+b2D.(a-b)2=a2-2ab+b2二.填空题。
(共24分)11.计算:2x•(﹣3x)= .12.若N是一个单项式,且N•(﹣2x2y)=﹣3ax2y2,则N等于.13.已知2m=3,2n=2,则22m+n等于.14.若a=2023,b=1,则代数式a2023•b2023的值是.202315.若x-y=3,xy=10,则x2+y2的值为.16.有两个正方形A,B,将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙,若图甲和图乙阴影部分的面积分别为1和12,则正方形A、B的面积之和为.三.解答题。
最新七年级下学期第一次月考数学试卷(含答案)
七年级下学期第一次月考数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第二章《相交线与平行线》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.计算6m6÷(−2m2)3的结果为()A. −mB. −1C. 34D. −342.如果(3x2y−2xy2)÷m=−3x+2y,则单项式m为()A. xyB. −xyC. xD. −y3.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角4.如图,如果∠AOB=∠COD=90∘,那么∠1=∠2,这是根据()A. 直角都相等B. 等角的余角相等C. 同角的余角相等D. 同角的补角相等5.计算下列各式①(a3)2÷a5=1;②(−x4)2÷x4=x4;③(x−3)0=1(x≠3);④(−a3b)5÷12a5b2=2a4b,正确的有()A. 4个B. 3个C. 2个D. 1个6.要使(x2+ax+1)⋅(−6x3)的展开式中不含x4项,则a应等于()A. 6B. −1C. 16D. 07.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧8.在平面中,如图,两条直线最多只有1个交点,三条直线最多有3个交点……若n条直线最多有55个交点,则n的值为()A. 9B. 10C. 11D. 129.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个长方形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A. (a+b)2=a2+2ab+b2B. (a−b)2=a2−2ab+b2C. (a+2b)(a−b)=a2+ab−2b2D. a2−b2=(a+b)(a−b)10.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离是().A. 2cmB. 4cmC. 5cmD. 不超过2cm二、填空题(本大题共5小题,共20.0分)11.若(2x3y2)⋅(−3x m y3)⋅(5x2y n)=−30x7y6,则m+n=.12.天平的左边挂重为(2m+3)(2m−3)+12m,右边挂重为(2m+3)2,请你猜一猜,天平倾斜.(填“会”或“不会”)13.已知:OA⊥OC,∠AOB:∠AOC=2:3.则∠BOC的度数为__.14.如下图,直线AB,CD相交于点O,∠AOC=70°,∠BOC=2∠EOB,则∠AOE的度数为________.15.如图,直线AB,CD相交于点O,OE平分∠BOD,且∠AOE=140°,则∠AOC的度数为________________.三、解答题(本大题共10小题,共100.0分)16.(8分)计算:(1)2x⋅(3x2−x−5);ab2−4a2b)⋅(−4ab).(2)(1217.(10分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=70°,∠COF=90°,求:(1)∠BOD的度数;(2)写出图中互余的角;(3)∠EOF的度数.18.(10分)如果两个角的差的绝对值等于60°,就称这两个角互为友好角,例如:∠1=100°,∠2=40°,|∠1−∠2|=60°,则∠1和∠2互为友好角(本题中所有角都指大于0°且小于180°的角),将两块直角三角板如图1摆放在直线EF上,其中∠AOB=∠COD=60°,保持三角板ODC不动,将三角板AOB绕O点以每秒2°的速度顺时针旋转,旋转时间为t秒.(1)如图2,当AO在直线CO左侧时,①与∠BOE互为友好角的是____,与∠BOC互为友好角的是____,②当t=____时,∠BOE与∠AOD互为友好角;(2)若在三角板AOB开始旋转的同时,另一块三角板COD也绕点O以每秒3°的速度逆时针旋转,当OC旋转至射线OE上时两三角板同时停止,当t为何值时,∠BOC 与∠DOF互为友好角(自行画图分析).19.(10分)【注重实践探究】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出图2所表示的数学等式:;写出图3所表示的数学等式:;(2)利用上述结论,解决下列问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.20.(10分)爱动脑筋的丽丽和娜娜在做数学小游戏,两个人各报一个整式,丽丽报的整式A作被除式,娜娜报的整式B作除式,要求商式必须为4xy(即A÷B=4xy).(1)若丽丽报的是x3y−6xy2,则娜娜应该报什么整式?(2)若娜娜也报x3y−6xy2,则丽丽应该报什么整式?21.(8分)一个棱长为103的正方体,在某种物体的作用下,其棱长以每秒扩大到原来的102倍的速度增长,求3秒后该正方体的棱长.22.(10分)已知x2−4x−1=0,求代数式(2x−3)2−(x+y)(x−y)−y2的值.23.(10分)如下图,直线AB,CD相交于点O.(1)若∠AOD比∠AOC大40°,求∠BOD的度数;(2)若∠AOD:∠AOC=3:2,求∠BOD的度数.24.(12分)在∠AOB和∠COD中,(1)如图1,已知∠AOB=∠COD=90°,当∠BOD=40°时,求∠AOC的度数;(2)如图2,已知∠AOB=82°,∠COD=110°,且∠AOC=2∠BOD时,请直接写出∠BOD的度数;(3)如图3,当∠AOB=α,∠COD=β,且∠AOC=n∠BOD(n>1)时,请直接用含有α,β,n的代数式表示∠BOD的值.25.(12分)如图,,平分,反向延长射线至.(1)和是否互补?说明理由;射线是的平分线吗?说明理由;反向延长射线至点,射线将分成了的两个角,求.答案1.D2.B3.B4.C5.C6.D7.D8.C9.D10.D11.312.会13.30°或150°14.125°15.80°16.解:(1)原式=6x3−2x2−10x(2)原式=−2a2b3+16a3b2.17.解:(1)∵∠AOC=70°∴∠BOD=∠AOC=70°;(2)∠AOC和∠BOF,∠BOD和∠BOF,∠EOF和∠EOD,∠BOE和∠EOF;(3)因为OE平分∠BOD,∠BOD=70°所以∠BOE=35°,因为∠COF=90°,且A、O、B三点在一条直线AB上,所以∠BOF=180°−70°−90°=20°,所以∠EOF=∠BOE+∠BOF=35°+20°=55°.18.解:(1)①∠AOE;∠BOD或∠AOC;②15s.(2)由题意可知:三角板旋转40秒停止,∠DOF=3t①当OB在OC左侧时,∠BOC=120°−5t|∠BOC−∠DOF|=60°,表示为|120°−5t−3t|=60°即|120°−8t|=60°去绝对值得120°−8t=60°(如图1)或8t−120°=60°(如图2)∴t=7.5或t=22.5②当OB在OC右侧时,∠BOC=5t−120°|∠BOC−∠DOF|=60°,表示为|5t−120°−3t|=60°即|2t−120°|=60°去绝对值得2t−120°=60°或120°−2t=60°(如图3)∴t=90(不符合题意,应舍去)或t=30综合①②,故当t为7.5s、22.5s、30s时,∠BOC与∠DOF互为友好角.19.解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(a−b−c)2=a2+b2+c2+2bc−2ab−2ac;(2)由(1)可得a2+b2+c2=(a+b+c)2−(2ab+2bc+2ac)=(a+b+c)2−2(ab+bc+ac)=112−2×38=45.20.解:(1)∵A=x3y−6xy2,∴B=(x3y−6xy2)÷4xy=14x2−32y,∴娜娜应该报的整式为14x2−32y;(2)A=(x3y−6xy2)×4xy=4x4y2−24x2y3;21.解:3秒后该正方体的棱长为109.22.解:(2x−3)2−(x+y)(x−y)−y2=4x2−12x+9−x2+y2−y2=3x2−12x+9.因为x2−4x−1=0,所以x2−4x=1.所以原式=3(x2−4x)+9=3+9=12.23.解:(1)设∠AOC=x,则∠AOD=x+40°,∴x+x+40°=180°,∴∠BOD=x=70°.(2)设∠AOD=3x,∠AOC=2x,∴3x+2x=180°,x=36°,∴∠BOD=∠AOC=72°.24.解:(1)如图1,∵∠AOB=∠COD=90°,∠BOD=40°,∴∠AOC=∠AOB+∠COD−∠BOD=90°+90°−40°=140°,答:∠AOC的度数为140°;(2)如图2,∵∠AOB=82°,∠COD=110°,∴∠AOC=∠AOB+∠COD−∠BOD=82°+110°−∠BOD,又∵∠AOC=2∠BOD,∴2∠BOD=82°+110°−∠BOD,∴∠BOD=82°+110°=64°,3答:∠BOD的度数为64°;(3)如图3,∵∠AOB=α,∠COD=β,∴∠AOC=∠AOB+∠COD−∠BOD=α+β−∠BOD,又∵∠AOC=n∠BOD,∴n∠BOD=α+β−∠BOD,∴∠BOD=α+β,n+1答:∠BOD=α+β.n+125.解:(1)互补.理由:因为∠AOD+∠BOC=360°−∠AOB−∠DOC=360°−90°−90°=180°,所以∠AOD和∠BOC互补.(2)OF是∠BOC的平分线.理由:因为OE平分∠AOD,所以∠AOE=∠DOE,因为∠COF=180°−∠DOC−∠DOE=90°−∠DOE,∠BOF=180°−∠AOB−∠AOE=90°−∠AOE,所以∠COF=∠BOF,即OF是∠BOC的平分线.(3)因为OG将∠COF分成了4:3的两个部分,所以∠COG:∠GOF=4:3或者∠COG:∠GOF=3:4.①当∠COG:∠GOF=4:3时,设∠COG=4x°,∠GOF=3x°,由(2)得:∠BOF=∠COF=7x°因为∠AOB+∠BOF+∠FOG=180,所以90+7x+3x=180,解方程得:x=9,所以∠AOD=180−∠BOC=180−14x=54.②当∠COG:∠GOF=3:4时,设∠COG=3x°,∠GOF=4x°,同理可列出方程:90+7x+4x=180,,解得:x=9011所以∠AOD=180−∠BOC=180−14x=720.11)°.综上所述,∠AOD的度数是54°或(72011。
七年级数学下册第一次月考试题及答案
七年级数学第一次月考试题一、选择题(每小题2分:共28分) 1. 计算32x x ⋅的结果是( )A .9xB .8xC .6xD .5x 2. 计算423(3)a b -的结果是( ) A.1269a b -B.7527a b - C.1269a bD.12627a b -3. 若01x <<:则2x :x1x这四个数中( ) A .1x最大:2x 最小B .x 最大:1x最小C .2x最小 D .x 最大:2x 最小4. 下列语句中:正确的是( )A 、无理数都是无限小数B 、无限小数都是无理数C 、带根号的数都是无理数D 、不带根号的数都是无理数 5. 立方根等于它本身的数有( )(A )-1:0:1 (B )0:1 (C )0 (D )1 6. 下列计算正确的是( ) A .(ab 2)2=ab 4 B .(3xy )3=9x 3y 3 C .(-2a 2)2=-4a 4 D .(-3a 2bc 2)2=9a 4b 2c 47. 计算20072007532135⎛⎫⎛⎫-⨯ ⎪⎪⎝⎭⎝⎭结果等于( ).A .1-B .1C .0D .2007 8. 在 1.414-::227:3π:3.142:2- 2.121121112…中:无理数的个数是( )A.1 B.2 C.3 D.4 9. 若实数m 满足0m m -=:则m 的取值范围是( ) A.0m ≥ B.0m > C.0m ≤ D.0m <10. 的平方根是[ ]A 0.4B 0.04C ±0.4D ±11. 若4:则估计m 的值所在的范围是 ( )<m <<m <<m <<m <512. 已知不等①、②、③的解集在数轴上的表示如图所示:则它们的公共部分的解集是( )A.13x -<≤ B.13x <≤ C.11x -<≤ D.无解13. 已知a <b :则下列不等式中不正确的是( ). A.4a <4b B.a +4<b +4 C.-4a <-4b D.a -4<b -414. 下列不等式:是一元一次不等式的是( ) A .2(1)42y y y -+<+B .2210x x --<C .111236+= D .2x y x +<+二、填空题(每小题2分:共20分)15. 若,0ac bc c ><:则a______b .16. 不等式2x -1<3的正整数解是_____________________.17. 5m -3是非负数:用不等式表示为___________________.18. 925的平方根为 :算术平方根为 .19. 若264x =:则x 的立方根为 .20. 用大小完全相同的100块正方形方砖铺一间面积为25米2的卧室地面:则每块方砖的边长为 .的平方根是 .22. 如果3415x -<:那么3154x <+:其根据是 :如果33a b ->-ππ:则a b <:其根据是 . 23. 若2(1)160x --=:则x = .24.化简:11--= .三、计算题25. (12分)求下列各式的值。
人教版数学七年级下册第一次月考试卷及答案
人教版数学七年级下册第一次月考试题一、选择题(每小题3分,共30分)1.同一平面内如果两条直线不重合,那么他们( ) A .平行B .相交C .相交或垂直D .平行或相交2.两条直线被第三条直线所截,若∠1与∠2 是同旁内角,且∠1=70º,则 ( ) A. ∠2=70º B. ∠2=110ºC. ∠2=70º或∠2=110ºD.∠2的度数不能确定 3.如图AB ∥CD ,则∠1=( ) A .75° B .80° C .85° D .95°4.如图,△ABC 经过怎样的平移得到△DEF ( )A .把△ABC 向左平移4个单位,再向下平移2个单位B .把△ABC 向右平移4个单位,再向下平移2个单位 C .把△ABC 向右平移4个单位,再向上平移2个单位D .把△ABC 向左平移4个单位,再向上平移2个单位5.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是( ) A .1B .2C .3D .46. 2)7.0(-的平方根是( )A. -0.7B. ±0.7C. 0.7D. 0.49 7.若3a -=387,则a 的值是( ) A.87 B. 87- C. 87± D. 512343- 8.如图,数轴上点P 表示的数可能是( )A.10 B 5 C 3 D 2 9.下列等式正确的是( )12341-PA.43169±= B.311971=- C.393-=- D.31)31(2=- 10.有下列说法:(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示. 其中正确说法的个数是( ) A. 1 B. 2 C. 3 D. 4 二、填空题(每小题3分,共24分)11.如果一个角的补角是150°,那么这个角的余角是 度.12.小明从点A 沿北偏东60°的方向到B 处,又从B 沿南偏西25°的方向到C 处,则小明两次行进路线的夹角为 .13.把“同角的余角相等”写成“如果…,那么…”的形式为 .14.把一张长方形纸条按图中那样折叠后,若得到∠AOB′=70°,则∠OGC= . 15. 9的平方根是_______16. 若1.1001.102= 1.0201=_______ . 17. 25-的相反数是_______ 18. 比较大小:35 6 ; 三、解答题(共66分)19.(8分)如图:已知∠B=∠BGD ,∠DGF=∠F ,求证:∠B+∠F=180°. 请你认真完成下面的填空. 证明:∵∠B=∠BGD ( 已知 ) ∴AB ∥CD ( ) ∵∠DGF=∠F ;( 已知 ) ∴CD ∥EF ( ) ∵AB ∥EF ( ) ∴∠B+∠F=180°( ).20.(8分)已知:如图,AC 平分∠DAB ,∠1=∠2 求证:AB ∥CD21. 计算(每小题5分,共10分)(1) 2243+ (2)32-+223-22. 求下列各式中的x .(每小题5分,共10分)(1) 2491690x -= (2) 3(0.7)0.027x -=-23.(10分)如图,直线AB ,CD ,EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD=28°,求∠BOE ,∠AOG 的度数.24.(10分)一个正数x 的两个平方根是2a-3与5-a ,求x 的值.25. (10分)完成下面的证明:已知,如图,AB ∥CD ∥GH ,EG 平分∠BEF ,FG 平分∠EFD求证:∠EGF=90°参考答案一、(30分)1-5,DDCCD 6-10,BBBDB 二、(24分)11题60 12题35度 13题如果两个角是同一个角的余角,那么它们相等。
重庆地区专用七年级(下)第一次月考数学试卷(含答案)
七年级(下)第一次月考数学试卷题号 一二三四总分得分一、选择题(本大题共 12 小题,共 48.0 分)1.在方程 3x-y=2 ,,x 2(), -2x-3=0 中一元一次方程的个数为A. 1个B. 2个C. 3 个D.4个2.nn)假如单项式 2x 2y2+2 与 -3y 2-x 2是同类项那么 n 等于(A. 0B.C. 1D. 23. 以下各对数中,知足方程组的是()A. B.C.D.4.假如 2x-7y=8,那么用含 y 的代数式表示x 正确的选项是()A. B.C.D.5.A 种饮料比B 种饮料单价少 1 元,小峰买了 2 瓶 A 种饮料和 3 瓶 B 种饮料,一共花了 13 元,假如设 B 种饮料单价为 x 元 / 瓶,那么下边所列方程正确的选项是()A.B.C.D.6.用白铁皮做罐头盒。
每张铁皮可制盒身 16 个,或制盒底 48 个,一个盒身与两个盒底配成一套罐头盒。
现有 15 张白铁皮, 用制盒身和盒底, 能够恰巧配多少套? ()A. 144 套B. 9套C.6套D.15套7. 某牧场,放养的鸵鸟和奶牛一共 70 只,已知鸵鸟和奶牛的腿数之和为196 条,则鸵鸟的头数比奶牛多()A.20只B. 14只C. 15只D.13只8. 察看以下算式的规律21=2, 22=4, 23=8,24=16, 25=32 , 26=64 , 2 7=128, 28 =256,依据上述的规律,你以为2204 的末位数字应当为()A. 2B. 4C. 6D. 89.二元一次方程 3x+2y=15 在自然数范围内的解的个数是()A. 1个B. 2 个C.3个D. 4 个10. 若方程组的解 x 和 y 互为相反数,则 k 的值为()A. 2B.C. 3D.11. 对于 x , y 的方程组的解是二元一次方程3x+2y=14 的一个解,那么 m的值是( )A. 1B.C. 2D.12. 第二十届电视剧飞天奖今年有a 部作品参赛, 比昨年增添了 40%还多 2 部.设昨年参赛的作品有 b 部,则 b 是( )A.B.C. D.二、填空题(本大题共6 小题,共 24.0 分)14.已知( 2x-4)2+|x+2y-8|=0,则( x-y)2004=______.15.以下图, 8 个同样的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是______.16. 某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完整池水需要 9h,当同时开放甲、乙两管时需要______h 水池水量达全池的.17.2mn是对于 x、y 的二元一次方程,则mn=______ .已知 3x -2y =118. 当 m=______时,方程组的解是正整数.三、计算题(本大题共 1 小题,共 8.0 分)19.解以下方程组:(1)(2)四、解答题(本大题共7 小题,共70.0 分)20.解以下方程:(1) 4x+3=2 ( x-1) +1(2)-=21.已知方程组与方程组的解同样,求a+b 的值.22. 已知方程组,因为甲看错了方程①中的 a 获得方程的解为,乙看错了方程②中的 b 获得方程组的解为,求 a+b 的值是多少?23.某天,一蔬菜经营户用 60 元钱从蔬菜批发市场批了西红柿和豆角共 40kg 到菜市场去卖,西红柿和豆角这日的批发价与零售价以下表所示:品名西红柿豆角批发价(单位:元 /kg)零售价(单位:元 /kg)问:他当日卖完这些西红柿和豆角能赚多少钱?A 、B两地相距20km,甲从A地向B地行进,同时乙从B地向A地行进,2h后二24.人在途中相遇,相遇后,甲返回 A 地,乙仍旧向 A 地行进,甲回到 A 地时,乙离 A 地还有 2km,求甲、乙二人的速度.25.某牛奶加工厂现有鲜奶9t,若在市场上直接销售鲜奶,每吨可获收益500 元,制成酸奶销售,每吨可获收益 1 200 元,制成奶片销售,每吨可赢利 2 000 元.该厂的生产能力是:如制成酸奶,每日可加工3t,制成奶片,每日可加工1t,受人员限制,两种加工方式不行同时进行,受气温限制,这批牛奶需在 4 天内所有销售或加工完毕,为此,该厂设计了两种方案:方案一:尽可能多的制成奶片,其他鲜奶直接销售;方案二:一部分制成奶片,其他制成酸奶销售,并恰巧 4 天达成.26.为奖赏在演讲竞赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔录本中选择.假如买 4 个笔录本和 2 支钢笔,则需86 元;假如买 3 个笔录本和 1 支钢笔,则需57 元.( 1)求购置每个笔录本和钢笔分别为多少元?( 2)售货员提示,买钢笔有优惠,详细方法是:假如买钢笔超出10 支,那么高出部分能够享受 8 折优惠,若买 x( x>0)支钢笔需要花 y 元,请你求出 y 与 x 的函数关系式;( 3)在( 2)的条件下,小明决定买同一种奖品,数目超出10 个,请帮小明判断买哪一种奖品省钱.答案和分析1.【答案】A【分析】解:① 3x-y=2 含有两个未知数,故不是一元一次方程;② 是分式方程;③ 切合一元一次方程的形式;④是一元二次方程.只有x=正确.应选:A.只含有一个未知数(元),而且未知数的指数是 1(次)的方程叫做一元一次方程,它的一般形式是 ax+b=0(a,b 是常数且 a≠0).本题主要考察了一元一次方程的一般形式,只含有一个未知数,未知数的指数是 1,一次项系数不是 0,这是这种题目考察的要点.2.【答案】A【分析】解:∵单项式 2x 2y2n+2与 -3y2-nx2是同类项,∴2n+2=2-n,解得 n=0,应选 A .两个单项式是同类项,依据同类项的定义,列方程 2n+2=2-n,解方程即可求得 n 的值.本题是对同类项定义的考察,同类项的定义是所含有的字母同样,而且同样字母的指数也同样的项叫同类项,因此只需判断所含有的字母能否同样,同样字母的指数能否同样即可.3.【答案】B【分析】解:,①+② ×2 得:7x=7,即x=1,将 x=1 代入②得:y=1,则方程组的解为.,应选:B.将各项中 x 与 y 的值代入方程组查验即可获得结果.本题考察了二元一次方程组的解,方程组的解即为能使方程组中双方程建立4.【答案】C【分析】解:移项,得2x=8+7y,系数化为 1,得x=.应选:C.第一移项,把含有 x 的项移到方程的左边,其他的项移到方程的右边,再进一步化系数为 1 即可.本题主要考察解方程的一些基本步骤:移项、系数化为 1.5.【答案】A【分析】解:设 B 种饮料单价为 x 元 /瓶,则 A 种饮料单价为(x-1)元,依据小峰买了 2瓶 A 种饮料和 3 瓶 B 种饮料,一共花了 13 元,可得方程为:2(x-1)+3x=13.应选:A.要列方程,第一要依据题意找出题中存在的等量关系,由题意可获得:买 A 饮料的钱+买 B 饮料的钱 =总印数 13元,明确了等量关系再列方程就不那么难了.列方程题的要点是找出题中存在的等量关系,此题的等量关系为买 A 中饮料的钱+买 B 中饮料的钱=一共花的钱 13 元.6.【答案】A【分析】解:设用制盒身的铁皮为 x 张,用制盒底的铁皮为 y 张,依据题意得:,解得:,∴16x=16 ×9=144.应选:A.设用制盒身的铁皮为 x 张,用制盒底的铁皮为 y 张,依据铁皮共 15 张且制作的盒底的数目为盒身数目的 2 倍,即可得出对于 x,y 的二元一次方程组,解之即可得出 x 的值,再将其代入 16x 中即可求出 结论 .本题考察了二元一次方程 组的应用,找准等量关系,正确列出二元一次方程组是解题的要点.7.【答案】 B【分析】解:设奶牛的头数为 x ,则鸵鸟的头数为 70-x ,故:4x+2(70-x )=196, 解得 x=28, 故 70-2x=14,应选:B .设出奶牛的 头数,表示出鸵鸟的头数,依据鸵鸟和奶牛的腿数之和 为 196 条,列出方程.本题考察了列一元一次方程的 应用,难度不大,在解方程的 时候简单出 错,要注意仔细解答.8.【答案】 C【分析】解:2n的个位数字是 2,4,8,6 四个一循 环,因此 204÷4=51,则 2204 的末位数字与 24 的同样是 6.应选:C .经过察看发现:2n的个位数字是 2,4,8,6 四个一循 环,因此依据 204÷4=1,得出 2204 的个位数字与 24 的个位数字同样,是 6,由此得出答案即可.本题考察学生剖析数据,总结、概括数据规律的能力,要修业生有必定的解题技巧.解题要点是知道个位数字 为 2,4,8,6 按序循环.9.【答案】 C【分析】解:二元一次方程 3x+2y=15 在自然数范 围内的解是:,即二元一次方程 3x+2y=15 在自然数范 围内的解的个数是 3 个.应选:C .依据二元一次方程3x+2y=15,可知在自然数范围内的解有哪几组,从而能够解答本题.本题考察二元一次方程的解,解题的要点是明确什么是自然数,能够依据题意找到二元一次方程3x+2y=15 在自然数范围内的解有哪几组.10.【答案】A【分析】解:依据题意增添方程 x+y=0 则 x=-y ,将此代入 4x+3y=1 得 y=-1,x=1 ,将 x,y 的值代入第二个方程得: 2kx+ (k-1)y=3,则 2k-(k-1)=3,解得k=2.应选:A.依据 x 和 y 互为相反数增添一个方程 x+y=0,由此三个方程分别求出 x,y,k的值.本题主要考察了二元一次方程组解的定义.第一理解题意获得第三个方程x+y=0 ,而后将此三个方程联立成方程组求解出 x,y,z 的值.11.【答案】C【分析】解:解方程组,得,把 x=3m,y=-m 代入 3x+2y=14 得:9m-2m=14,∴m=2.应选:C.先解方程组,求得用 m 表示的 x,y 式子,再代入 3x+2y=14,求得 m 的值.先用含 k 的代数式表示 x,y,即解对于 x,y 的方程组,再代入 3x+2y=14 中可得.12.【答案】C【分析】第8页,共 15页∴b=.应选:C.依据等量关系为:昨年作品数×(1+40%)+2=今年作品数,把有关数值代入,整理求得昨年作品数即可.本题主要考察了列代数式,获得昨年作品数与今年作品数的等量关系是解决本题的要点.13.【答案】-1【分析】解:把代入方程组中,得;解,得 m=-1,n=0.故 m+n=-1.第一依据方程组解的定义,将已知的方程组的解代入方程组中,可获得对于m、n 的二元一次方程组,即可得 m 和 n 的值,从而求出代数式的值.主要考察了方程组解的定义,假如是方程组的解,那么它们必知足方程组中的每一个方程.14.【答案】1【分析】解:由题意,得:,解得2004 2004;则(x-y ) =(2-3) =1.先依据非负数的性质列出方程组,求出 x、y 的值,而后将它们的值代入(x-y )2004中求解即可.本题考察了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.215.【答案】300cm【分析】解:设一个小长方形的长为 xcm,宽为 ycm,则可列方程组,解得.2答:每块小长方形地砖的面积是 300cm 2.故答案为:300cm 2.由题意可知本 题存在两个等量关系,即小 长方形的长+小长方形的宽 =40cm ,小长方形的长+小长方形宽的 3 倍=小长方形长的 2 倍,依据这两个等量关系可列出方程 组,从而求出小正方形的 长与宽,最后求得小正方形的面 积.考察了二元一次方程 组的应用,解答本题要点是弄清题意,看懂图示,找出适合的等量关系,列出方程 组.并弄清小长方形的长与宽的关系.16.【答案】 6【分析】解:设水池容积为 1,同时开放甲、乙两管时需要 xh 水池水量达全池的 ,依题意得:( - )x= ,解得 x=6,∴同时开放甲、乙两管时需要 6h 水池水量达全池的 .设 水池容 积为 则 时 注 满时 设 时 1, 甲每小 水池的 ,乙每小 放完水池的 , 同 开放甲、乙两管时需要 xh 水池水量达全池的,用(甲进水速度 -乙出水速度)x= ,列方程求解.本题考察了列方程解 应用题的能力,依据题意确立进、出水的速度,时间,剩余水量之 间的等量关系. 17.【答案】【分析】解:∵3x2m-2y n=1 是对于 x 、y 的二元一次方程,∴2m=1,n=1, ∴,∴mn=0.5 ×,故答案为:.依据二元一次方程的定 义得出 2m=1,n=1,求出 m ,再代入求出 mn 即可.本题考察了二元一次方程的定 义,能熟记二元一次方程的定 义的内容是解此题的要点.18.【答案】-4【分析】解:在中,∵x+4y=8,∴x=8-4y>0,∴y<2,∴y=1,x=4,此时 m=-4.故答案为:-4.本题可运用加减消元法,将 x、y 的值用 m 来取代,而后依据 y>0 得出 m 的范围,再依据 y 为整数可得出 m 的值.本题考察的是二元一次方程组和不等式的综合问题,经过把 x ,y 的值用 m 代,再依据 y 的取值判断 m 的值.19.【答案】解:(1)方程组整理得:,① ×3-② ×2 得: 5x=-20 ,即 x=-4 ,把 x=-4 代入①得: y=12 ,则方程组的解为;( 2)方程组整理得:,① ×7-②得: 48y=288 ,即 y=6,把 y=6 代入①得: x=18,则方程组的解为.【分析】(1)方程组整理后,利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【答案】解:(1)4x+3=2(x-1)+1,4x+3=2 x-2+1 ,4x-2x=-2+1-3 ,2x=-4 ,x=-2;( 2)去分母得:2( x-1) -( x+2 )=3( 4-x),去括号得: 2x-2- x-2=12-3 x,移项得: 2x-x+3x=12+2+2 ,4x=14 ,.【分析】(1)去括号,移项,归并同类项,系数化成 1 即可;(2)去分母,去括号,移项,归并同类项,系数化成 1 即可.本题考察认识一元一次方程,能正确依据等式的性质进行变形是解此题的关键.21. 与方程组的解同样,【答案】解:∵方程组∴方程组的解与方程组的解也同样.解方程组得:,把代入方程组,得,因为 2a+2b=-4 ,因此 a+b=-2.【分析】依据两个方程组的解同样,可重组一个只含 x、y 的方程组,求出它们的解,再把解代入含 a、b 的方程,得方程组并求出 a、b 的值.本题考察了二元一次方程组的解法,解决本题的要点是重组方程组求出 x、y 的值.22. ,【答案】解:∵甲看错了方程①中的 a 获得方程的解为∴把解代入②,得 -52+b=-2 ,解得 b=50 ;∵乙看错了方程②中的 b 获得方程组的解为,∴把解代入①,得 5a+20=15 ,解得 a=-1 .∴a+b=50-1=49 .【分析】别看错了组中的一个方程获得不一样的解,把解分别代入他们没有看甲、乙分错的方程,得新的方程组,求出 a、b.本题考察了方程组的解喜悦义和一元一次方程的解法,理解题意得新方程组是解决本题的要点.23.【答案】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有,解得,40×() =52 (元),答:他当日卖完这些西红柿和豆角能赚52 元.【分析】经过理解题意可知本题的两个等量关系,西红柿的重量 +豆角的重量 =40,1.2 ×西红柿的重量 +1.5 ×豆角的重量 =60,依据这两个等量关系可列出方程组.本题主要考察了二元一次方程组的应用,要点是正确理解题意,找出题目中的等量关系,栽设出未知数,列出方程组.24.【答案】解:如图,设甲的速度为x 千米 /小时,乙的速度为y 千米 /小时,由题意得,,解得:,答:甲的速度为 5.5 千米 /小时,乙的速度为 4.5 千米 /小时.【分析】设甲的速度为 x 千米 /小时,乙的速度为 y 千米 / 小时,依据甲乙二人相向而行2 小时相遇(甲乙两人走的行程之和是 AB 的全程),依据题意还可知相遇后,甲 2 小时走的行程 -乙 2 小时走的行程 =2km,据此列方程组求解.本题考察了二元一次方程组的应用,解答本题的要点是读懂题意,设出未知数,找出等量关系,列方程组求解.25.【答案】解:方案一:4×2000+5×500=10500(元)方案二:设xt 制成奶片, yt 制成酸奶,则,因此,收益为 1.5 ××1200=12000 > 10500,因此选择方案二赢利最多.【分析】方案一是尽可能多的制奶片,也就是四天都制奶片,每日加工一吨,可加工 4 吨,剩下的 5 吨鲜奶直接销售;方案二制奶片,也制酸奶.那么包括两个等量关系:制奶片的吨数 +制酸奶的吨数 =9,制奶片的吨数÷1+制酸奶的吨数÷3=4.学生在看到题目字多时候,第一感觉是惧怕,我必定不会做.因此,要有耐心与仔细找到关键话,理解清它的意思,找到打破点,等量关系.比如本题中方案一,方案二的含义.26.【答案】解:(1)设每个笔录本 x 元,每支钢笔 y 元.( 1 分)(2 分)解得答:每个笔录本14 元,每支钢笔15 元.( 5 分)且是整数(2)且是整数(3)当 14x< 12x+30 时, x<15;当 14x=12x+30 时, x=15;当 14x> 12x+30 时, x>15.( 8 分)综上,当买超出 10 件但少于 15 件商品时,买笔录本省钱;当买 15 件奖品时,买笔录本和钢笔同样;当买奖品超出15 件时,买钢笔省钱.(10 分)【分析】(1)分别设每个笔录本 x 元,每支钢笔 y 元列出方程组可得.(2)依题意可列出不等式.(3)分三种状况列出不等式求解.解题要点是要读懂题目的意思,找准要点的描绘语,理清适合的等量关系,列出方程组和不等式,再求解.第14 页,共 15页。
人教版2024年七年级下册第一次月考数学模拟卷 含详解
人教版2024年七年级下册第一次月考数学模拟卷(范围:第5-7章满分120分)一.选择题(共10小题,满分30分,每小题3分)1.下列四个图形中,不能通过其中一个四边形平移得到的是( )A.B.C.D.2.下列各数中是无理数的是( )A.﹣1B.0C.D.3.143.点P(3,m2+1)位于( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等5.下列说法不正确的是( )A.±0.3是0.09的平方根,即B.=﹣C.的平方根是±9D.存在立方根和平方根相等的数6.如图,一辆汽车经过两次拐弯后,行驶方向与原来平行,若第一次是向左拐30°,则第二次拐弯的角度是( )A.右拐30°B.左拐30°C.左拐150°D.右拐150°7.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.48B.96C.84D.428.在平面直角坐标系中,点A(x,y),B(4,3),AB=4,且AB∥y轴,则A点的坐标为( )A.(4,7)B.(4,﹣1)C.(0,3),或(8,3)D.(4,7),或(4,﹣1)9.如图,AF∥CD,BC平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的个数为( )A.1个B.2个C.3个D.4个10.如图的象棋盘中,“卒”从A点到B点,规定只能向右和向上走,每次走一格,则不同的路径共有( )A.14条B.15条C.20条D.35条二.填空题(共6小题,满分24分,每小题4分)11.比较大小: 2(填“>”、“<”或“=”号).12.把命题“对顶角相等”改写成“如果…,那么…”形式为如果 ,那么 .13.第四象限内的点P(x,y)满足|x|=7,y2=9.则点P的坐标是 .14.一个实数的平方根为3x+3与x﹣1,则这个实数是 .15.已知AO⊥BO,DO⊥CO,∠AOD=4∠BOC,则∠AOD的度数为 .16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为 .三.解答题(共8小题,满分66分)17.(6分)解答下列问题:(1)计算:;(2)求出式子中x的值:(x﹣1)2﹣25=0.18.(6分)已知4x﹣37的立方根是3,求2x+4的平方根.19.(6分)如图,已知AB∥CD,∠A=140°,∠C=130°,求∠E的度数.20.(8分)请把下面证明过程补充完整.如图,已知AD⊥BC于点D,点E在BA的延长线上,EG⊥BC于点G,交AC于点F,∠E=∠1.求证:AD平分∠BAC.证明:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC= °( ).∴AD∥EG( ).∴∠1=∠2( ),∠E=∠3( ).∵∠E=∠1(已知),∴∠2=∠ ( ).∴AD平分∠BAC( ).21.(8分)(1)已知a是的整数部分,b是的小数部分,求(﹣a)3+(b+3)2的值;(2)实数a在数轴上对应的位置如图,化简:.22.(10分)如图,△ABC的顶点A(﹣1,4),B(﹣4,﹣1),C(1,1).若△ABC向右平移4个单位长度,再向下平移3个单位长度得到△A′B′C′,且点C的对应点坐标是C′.(1)画出△A′B′C′,并直接写出点C′的坐标;(2)若△ABC内有一点P(a,b)经过以上平移后的对应点为P′,直接写出点P′的坐标;(3)求△ABC的面积.23.(10分)如图1,已知AD∥BC,∠B=∠D=120°.(1)求证:AB∥CD;(2)若点E,F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图2,求∠FAC的度数;(3)若点E在直线CD上,且满足∠EAC=∠BAC,求∠ACD:∠AED的值.(请自己画出正确图形,并解答)24.(12分)如图,在平面直角坐标系中,点A(a,0),点B(b,c),点C(0,c),其中a是算术平方根等于本身的正数,且,AB与y轴交于点E.(1)求点E的坐标;(2)如图2,点P为线段BC延长线上一点,连接OP,OM平分∠KOP,OM⊥ON,当点P运动时,∠OPC与∠MOC是否有确定的数量关系?写出你的结论并说明理由;(3)如图3,点G是线段AB上一点,点F是射线BS上一点,射线FH平分∠GFS,射线GT平分∠AGF,GQ∥FH,求的值.人教版2024年七年级下册第一次月考数学模拟卷参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A.能通过其中一个四边形平移得到,不合题意;B.能通过其中一个四边形平移得到,不合题意;C.能通过其中一个四边形平移得到,不合题意;D.不能通过其中一个四边形平移得到,符合题意.故选:D.2.【解答】解:A、﹣1是有理数,不符合题意;B、0是有理数,不符合题意;C、是无理数,符合题意;D、3.14是有理数,不符合题意.故选:C.3.【解答】解:∵m2+1≥1,∴点P(3,m2+1)位于第一象限.故选:A.4.【解答】解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.5.【解答】解:A、±0.3是0.09的平方根,即,该说法正确,故选项不符合题意;B、=﹣,该说法正确,故选项不符合题意;C、,9的平方根是±3,所以的平方根是±3,该说法不正确,故选项符合题意;D、0的立方根和平方根都是它本身,所有存在立方根和平方根相等的数,该说法正确,故选项不符合题意,故选:C.6.【解答】解:如图,延长AB到C,∵BD∥AE,∴∠CBD=∠BAE=30°,∴第二次拐弯的角度是右拐30°,故选:A.7.【解答】解:由平移的性质知,BE=6,DE=AB=10,S△ABC=S△DEF,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S△DEF﹣S△EOC=S△ABC﹣S△EOC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故选:A.8.【解答】解:∵AB∥y轴,∴A、B两点的横坐标相同,又∵AB=4,∴A点纵坐标为:3+4=7或3﹣4=﹣1,∴A点的坐标为:(4,7)或(4,﹣1).故选:D.9.【解答】解:①∵BC⊥BD,∴∠DBE+∠CBE=90°,∠ABC+∠DBF=90°,又∵BD平分∠EBF,∴∠DBE=∠DBF,∴∠ABC=∠CBE,即BC平分∠ABE,正确;②由AB∥CE,BC平分∠ABE、∠ACE易证∠ACB=∠CBE,∴AC∥BE正确;③∵BC⊥AD,∴∠BCD+∠D=90°正确;④无法证明∠DBF=60°,故错误.故选:C.10.【解答】解:如图所示,利用“标数法”可得:共35条路径,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:∵>,∴>2,故答案为:>.12.【解答】答案:两个角是对顶角;这两个角相等.解:“对顶角相等”改写成“如果……,那么……”的形式是“如果两个角是对顶角,那么这两个角相等”.故答案为:两个角是对顶角;这两个角相等.13.【解答】解:∵第四象限内的点P(x,y),∴x>0,y<0,∵|x|=7,y2=9,∴x=7,y=﹣3.故点P的坐标是:(7,﹣3).故答案为:(7,﹣3).14.【解答】解:根据题意得:①这个实数为正数时:3x+3+x﹣1=0,∴x=﹣,∴(x﹣1)2=,②这个实数为0时:3x+3=x﹣1,∴x=﹣2,∵x﹣1=﹣3≠0,∴这个实数不为0.故答案为:.15.【解答】解:由AO⊥BO,DO⊥CO,得∠AOB=∠COD=90°.由余角的性质,得∠AOC=∠BOD,由角的和差,得∠AOC+∠BOC+∠BOD=∠AOD,即2∠AOC+∠BOC=4∠BOC,解得∠AOC=∠BOC.由于角的定义,得∠AOC+∠BOC=90°,即∠BOC+∠BOC=90°,解得∠BOC=36°,∠AOD=4∠BOC=4×36°=144°,故答案为:144°.16.【解答】解:观察可得到第n列有(1+2+3+4+…+n)个点,当n=13时,有91个点.所以排到横坐标为13的点是第91个点横坐标为13的点最后一个是(13,0)∴(13,0)是第91个点∴可数得第100个点是(14,8);故答案为:(14,8).三.解答题(共8小题,满分66分)17.【解答】解:(1)=3+(﹣1)﹣3=﹣1;(2)(x﹣1)2﹣25=0,(x﹣1)2=25,x﹣1=±5,x=6或x=﹣4.18.【解答】解:由题意得:4x﹣37=33,4x﹣37=27,4x=64,解得x=16,∴2x+4=36,∴2x+4的平方根是±6.19.【解答】解:过点E作EF∥AB,如图:则EF∥AB∥CD,∴∠A+∠AEF=180°,∠C+∠CEF=180°∴∠AEF=180°﹣∠A=40°,∠CEF=180°﹣∠C=50°,∴∠AEC=∠AEF+∠CEF=90°.20.【解答】解;∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°(垂直的定义).∴AD(同位角相等,两直线平行).∴∠1=∠2(两直线平行,内错角相等),∠E=∠3(两直线平行,同位角相等).∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD平分∠BAC(角平分线的定义).故答案为:90;垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同位角相等;3;等量代换;角平分线的定义.21.【解答】解:(1)∵,∴的整数部分为3,的小数部分为,∴,∴;(2)由实数a在数轴上对应的位置可知,a<π,∴==.22.【解答】解:(1)如图,△A′B′C′即为所求,点C′的坐标(5,﹣2);(2)点P′的坐标(a+4,b﹣3);(3)△ABC的面积=5×5﹣3×52×52×3=.23.【解答】(1)证明:∵AD∥BC,∴∠A+∠B=180°,又∵∠B=∠D=120°,∴∠D+∠A=∠180°,∴AB∥CD.(2)解:∵AD∥BC,∠B=∠D=∠120°,∴∠DAB=60°,∵AC平分∠BAE,AF平分∠DAE,∴,,∴∠FAC=∠EAC+∠EAF==30°.(3)解:当点E在线段CD上时,如图,由(1)可得,AB∥CD,∴∠ACD=∠BAC,∠AED=∠BAE,∵∠EAC=,∴∠ACD:∠AED=2:3;当点E在线段DC的延长线上时,如图,由(1)可得,AB∥CD,∴∠ACD=∠BAC,∠AED=∠BAE,又∵,∴∠ACD:∠AED=2:1,综上,∠ACD:∠AED=2:1或∠ACD:∠AED=2:3.24.【解答】解:(1)∵a是算术平方根等于本身的正数,∴a=1,∵,∴b+2=0,c﹣3=0,∴b=﹣2,c=3,∴A(1,0),B(﹣2,3),C(0,3),连接OB,作BF⊥x轴于点F,∴BF=3,OA=1,BC=2,S△OAB=S△AOE+S△BOE,∴∴∴OE=1,∴E(0,1);(2)∵OM平分∠KOP,∴∠KOM=∠POM=α,∵OM=ON,∴∠MON=90°,∴∠PON=90°﹣α=∠AON,∵BC∥OA,∴∠OPC=∠POA=180°﹣2α,∠MOC=∠KOC﹣∠KOM=90°﹣α,∴∠OPC=2∠COM;(3)∵射线FH平分∠GFS,射线GT平分∠AGF,∴∠SFH=∠GFH=α,∠AGT=∠FGT=β,∵GQ∥FH,∴∠GFH+∠QGF=180°,∴∠QGF=180°﹣α,∴∠TGQ=∠QGF﹣∠FGT=180°﹣α﹣β,∵BC∥OA,∴∠ABC=∠KAB,由“U型”可得:∠KAB+∠AGF+∠SFG=360°,∴∠KAB=360°﹣2α﹣2β,即∠ABC=360°﹣2α﹣2β,∴.。
人教版七年级下册第一次月考数学试卷(含答案)
人教版数学七年级下册第一次月考试卷考试时间:100分钟;总分:120分一.选择题(共10小题,每小题3分,满分30分)1.所有和数轴上的点组成一一对应的数组成()A .整数B .有理数C .无理数D .实数2.下列图形中,可以由其中一个图形通过平移得到的是()A .B .C .D .3.如图,从直线EF 外一点P 向EF 引四条线段P A ,PB ,PC ,PD ,其中最短的一条是()A .P AB .PBC .PCD .PD4.下列各式中,正确的是()A .√25=±5B .√(-6)2=-6C .√-273=-3D .-√9=35.如图中,∠1的同位角是()A .∠2B .∠3C .∠4D .∠56.在实数0,-√3,√2,﹣2中,最小的是()A .﹣2B .-√3C .√2D .07.已知,如图,直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,∠BOD =35°.则∠COE 的度数为()A .35°B .55°C .65°D .70°(7题)(8题)(9题)8.将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A .50°B .110°C .130°D .150°9.如图,圆的直径为1个单位长度,该圆上的点A 与数轴上表示﹣1的点重合,将圆沿数轴滚动1周,点A 到达点A ′的位置,则点A ′表示的数是()A .π﹣1B .﹣π﹣1C .﹣π﹣1或π﹣1D .﹣π﹣1或π﹢110.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.10二.填空题(共5小题,每小题3分,满分15分)11.(3分)√9的算术平方根等于.12.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=.13.(3分)把无理数√17,√11,√5,-√3表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是.(12题)(13题)(15题)14.(3分)定义新运算:对于任意有理数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5,则(﹣3)⊕4的值为.15.(3分)如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是.三.解答题(共8小题,满分75分)16.(8分).计算(1)2√3-|√3-√5|;(2)-√36+√214+√273.17.(8分)求下列各式中的x的值:(1)(3x+2)2=16;(2)12(2x﹣1)3=﹣4.18.(8分)在下面的括号内,填上推理的根据,如图,AF⊥AC,CD⊥AC,点B,E分别在AC,DF上,且BE∥CD.求证:∠F=∠BED.证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°().∴∠A+∠C=180°,∴AF∥CD().又∵BE∥CD.∴AF∥BE().∴∠F=∠BED().19.(10分)如图所示,数轴的正半轴上有A、B、C三点,表示1和√2的对应点分别为A、B,点B到点A 的距离与点C到点O的距离相等,设点C所表示的数为x.(1)请你写出数x的值;(2)求(x-√2)2的立方根.20.(9分)如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.21.(10分)如图,AB ∥DG ,∠1+∠2=180°,(1)求证:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=150°,求∠B 的度数.22.(10分)已知√1-2??3与√3??-23(y ≠0)互为相反数,求2??+1的值.23.(12分)如图,AB ∥CD ,P 为定点,E ,F 分别是AB ,CD 上的动点.(1)如图1,求证:∠P =∠BEP+∠PFD ;(2)如图2,若M 为CD 上一点,∠FMN =∠BEP ,且MN 交PF 于点N ,请判断∠EPF 与∠PNM 的关系,并证明你的结论;(3)如图3,移动E 、F 使得∠EPF =90°,作∠PEG =∠BEP ,则∠AEG 与∠PFD 有什么数量关系,并说明理由.西平县第一初级中学七年级下册第一次月考参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)所有和数轴上的点组成一一对应的数组成()A .整数B .有理数C .无理数D .实数【解答】解:所有和数轴上的点组成一一对应的数组成实数,故选:D .2.下列图形中,可以由其中一个图形通过平移得到的是()A .B .C .D .【解答】解:∵只有B 的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:B .3.(3分)如图,从直线EF 外一点P 向EF 引四条线段PA ,PB ,PC ,PD ,其中最短的一条是()A .P AB .PBC .PCD .PD【解答】解:从直线EF 外一点P 向EF 引四条线段PA ,PB ,PC ,PD ,其中最短的一条是PB ,故选:B .4.(3分)下列各式中,正确的是()A .√25=±5B .√(-6)2=-6C .√-273=-3D .-√9=3【解答】解:A 、√25=5,故此选项错误;B 、√(-6)2=6,故此选项错误;C 、√-273=-3,正确;D 、-√9=-3,故此选项错误;故选:C .5.(3分)如图中,∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【解答】解:由同位角的定义可知,∠1的同位角是∠4.故选:C.6.(3分)在实数0,-√3,√2,﹣2中,最小的是()A.﹣2B.-√3C.√2D.0【解答】解:因为0,√2分别是0和正数,它们大于﹣2和-√3,又因为2>√3,所以﹣2<-√3所以最小的数是﹣2故选:A.7.(3分)已知,如图,直线AB,CD相交于点O,OE⊥AB于点O,∠BOD=35°.则∠COE的度数为()A.35°B.55°C.65°D.70°【解答】解:∵OE⊥AB于点O(已知),∴∠AOE=90°(垂直定义).∵直线AB,CD相交于点O,∠BOD=35°(已知),∴∠AOC=35°(对顶角相等).∴∠COE=∠AOE﹣∠AOC=90°﹣35°=55°.故选:B.8.(3分)将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A.50°B.110°C.130°D.150°【解答】解:∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选:C.9.(3分)如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示﹣1的点重合,将圆沿数轴滚动1周,点A到达点A′的位置,则点A′表示的数是()A.π﹣1B.﹣π﹣1C.﹣π﹣1或π﹣1D.﹣π﹣1或π﹢1【解答】解:∵圆的直径为1个单位长度,∴此圆的周长=π,∴当圆向左滚动时点A′表示的数是﹣π﹣1;当圆向右滚动时点A′表示的数是π﹣1.故选:C.10.(3分)如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.10【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)√9的算术平方根等于√3.【解答】解:√9的算术平方根=√3,故答案为:√312.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=90°.【解答】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∠ABD,∴∠1=12∵DE是∠BDC的平分线,∠CDB,∴∠2=12∴∠1+∠2=90°,故答案为:90°.13.(3分)把无理数√17,√11,√5,-√3表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是√11.【解答】解:∵墨迹覆盖的数在3~4,即√9~√16,∴符合条件的数是√11.故答案为:√11.14.(3分)定义新运算:对于任意有理数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5,则(﹣3)⊕4的值为22.【解答】解:根据题中的新定义得:(﹣3)⊕4=﹣3×(﹣3﹣4)+1=﹣3×(﹣7)+1=21+1=22.故答案为:22.15.(3分)如图(1)是长方形纸条,∠DEF=20°,将纸条沿EF折叠成如图(2),则图(2)中的∠CFG 的度数是140°.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,由折叠可得:∠EFC=180°﹣20°=160°,∴∠CFG=160°﹣20°=140°,故答案为:140°.三.解答题(共8小题,满分73分)16.(8分).计算(1)2√3-|√3-√5|;(2)-√36+√214+√273.【解答】解:(1)原式=2√3-√5+√3=3√3-√5;(2)原式=﹣6+32+3=-32.17.(8分)求下列各式中的x的值:(1)(3x+2)2=16;(2)12(2x﹣1)3=﹣4.【解答】解:(1)3x+2=4或3x+2=﹣4,解得x=23或x=﹣2;(2)(2x﹣1)3=﹣8,2x﹣1=﹣2,x=-12.18.(8分)在下面的括号内,填上推理的根据,如图,AF⊥AC,CD⊥AC,点B,E分别在AC,DF上,且BE∥CD.求证:∠F=∠BED.证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°(垂线的定义).∴∠A+∠C=180°,∴AF∥CD(同旁内角互补,两直线平行).又∵BE∥CD.∴AF∥BE(平行于同一条直线的两直线平行).∴∠F=∠BED(两直线平行,同位角相等).【解答】证明:∵AF⊥AC,CD⊥AC,∴∠A=90°,∠C=90°(垂线的定义).∴∠A+∠C=180°,∴AF∥CD(同旁内角互补,两直线平行).又∵BE∥CD.∴AF∥BE(平行于同一条直线的两直线平行).∴∠F=∠BED(两直线平行,同位角相等).故答案为:垂线的定义;同旁内角互补,两直线平行;平行于同一条直线的两直线平行;两直线平行,同位角相等.19.(10分)如图所示,数轴的正半轴上有A、B、C三点,表示1和√2的对应点分别为A、B,点B到点A 的距离与点C到点O的距离相等,设点C所表示的数为x.(1)请你写出数x的值;(2)求(x-√2)2的立方根.【解答】解:(1)∵点A、B分别表示1,√2,∴AB=√2-1,即x=√2-1;(2)∵x=√2-1,∴原式=(??-√2)2=(√2-1-√2)2=1,∴1的立方根为1.20.(9分)如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.【解答】证明:设∠1、∠2、∠3分别为x°、2x°、3x°,∵AB∥CD,∴由同旁内角互补,得2x°+3x°=180°,解得x=36°;∴∠1=36°,∠2=72°,∵∠EBG=180°,∴∠EBA=180°﹣(∠1+∠2)=72°;∴∠2=∠EBA,∴BA平分∠EBF.21.(10分)如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.【解答】证明:(1)∵AB ∥DG ,∴∠BAD =∠1,∵∠1+∠2=180°,∴∠2+∠BAD =180°,∴AD ∥EF ;(2)∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG 是∠ADC 的平分线,∴∠GDC =∠1=30°,∵AB ∥DG ,∴∠B =∠GDC =30°.22.(10分)已知√1-2??3与√3??-23(y ≠0)互为相反数,求2??+1的值.【解答】解:∵√1-2??3与√3??-23(y ≠0)互为相反数,∴1﹣2x+3y ﹣2=0,解得2x =3y ﹣1,则2??+1=3??-1+1??=3,即2??+1??的值是3.23.(12分)如图,AB ∥CD ,P 为定点,E ,F 分别是AB ,CD 上的动点.(1)如图1,求证:∠P =∠BEP+∠PFD ;(2)如图2,若M 为CD 上一点,∠FMN =∠BEP ,且MN 交PF 于点N ,请判断∠EPF 与∠PNM 的关系,并证明你的结论;(3)如图3,移动E 、F 使得∠EPF =90°,作∠PEG =∠BEP ,则∠AEG 与∠PFD 有什么数量关系,并说明理由.【解答】解:(1)如图1,过点P作PG∥AB,则∠1=∠BEP.又∵AB∥CD,∴PG∥CD,∴∠2=∠PFD,∴∠EPF=∠1+∠2=∠BEP+∠PFD,即∠EPF=∠BEP+∠PFD;(2)∠EPF=∠PNM.理由如下:由(1)知,∠EPF=∠BEP+∠PFD.如图2,∵∠FMN=∠BEP,∴∠EPF=∠FMN+∠PFD.又∵∠PNM=∠FMN+∠PFD.∴∠EPF=∠PNM;(3)∠AEG=2∠PFD.理由如下:如图3,∵由(1)知∠1+∠2=90°.∴∠1=90°﹣∠2.又∵∠1=∠3,∴∠4=180°﹣2∠1=180°﹣2(90°﹣∠2)=2∠2,即∠AEG=2∠PFD.。
新人教版七年级数学下册第一次月考试题及答案
七年级下学期月考数学试题考试时间:120分钟试卷满分:150分第Ⅰ卷(本卷满分100分)一、选择题:(共10小题,每小题3分,共30分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1.在同一平面内,两条直线的位置关系是A.平行.B.相交.C.平行或相交.D.平行、相交或垂直2.点P(-1,3)在A.第一象限.B.第二象限.C.第三象限.D.第四象限.3.下列各图中,∠1与∠2是对顶角的是4.如图,将左图中的福娃“欢欢”通过平移可得到图为A.B.C.D.5.下列方程是二元一次方程的是A.2xy=.B.6x y z++=.C.235yx+=.D.230x y-=.6.若0xy=,则点P(x,y)一定在A.x轴上.B.y轴上.C.坐标轴上.D.原点.7.二元一次方程21-=x y有无数多组解,下列四组值中不是..该方程的解的是A.12xy=⎧⎪⎨=-⎪⎩.B.11xy=-⎧⎨=-⎩.C.1xy=⎧⎨=⎩.D.11xy=⎧⎨=⎩.8.甲原有x元钱,乙原有y元钱,若乙给甲10元,则甲所有的钱为乙的3倍;若甲给乙10元,则甲所有的钱为乙的2倍多10元.依题意可得A.103(10)102(10+10x yx y+=-⎧⎨-=+⎩).B.10310210x yx y+=⎧⎨-=+⎩.12B.12A.12C.1 2D.C .3(10)2(10)x y x y =-⎧⎨=+⎩.D .103(10)102(10)10x y x y -=+⎧⎨+=-+⎩.9.如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是A .∠3=∠4.B .∠B =∠DCE .C .∠1=∠2.D .∠D+∠DAB =180°.10.下列命题中,是真命题的是 A .同位角相等. B .邻补角一定互补. C .相等的角是对顶角.D .有且只有一条直线与已知直线垂直.二、填空题(共10小题,每小题3分,共30分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置. 11.剧院里5排2号可以用(5,2)表示,则7排4号用 表示.12.如图,已知两直线相交,∠1=30°,则∠2=__ _. 13.如果⎩⎨⎧-==13y x ,是方程38x ay -=的一个解,那么a =_______.14.把方程3x +y –1=0改写成含x 的式子表示y 的形式得 .15.一个长方形的三个顶点坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标是____________.16.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”的题设是 ,结论是 .17.如图,AB CD ∥,BC DE ∥,则∠B 与∠D 的关系是_____________.18.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于 . 19.如图,EG ∥BC ,CD 交EG 于点F ,那么图中与∠1相等的角共有______个.20.已知x 、y 满足方程组21232x y x y +=⎧⎨-=⎩,则3x +6y +12 +4x -6y +23的值为 .EC第9题图三、解答题(共40分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤. 21.(每小题4分,共8分)解方程组:(1)⎩⎨⎧y =2x -3,3x +2y =8; (222.(本题满分8分)如图,∠AOB 内一点P :(1)过点P 画PC ∥OB 交OA 于点C ,画PD ∥OA 交OB 于点D ; (2)写出两个图中与∠O 互补的角; (3)写出两个图中与∠O 相等的角.23.(本题8分)完成下面推理过程:如图,已知∠1 =∠2,∠B =∠C ,可推得AB ∥CD .理由如下: ∵∠1 =∠2(已知),且∠1 =∠CGD (______________ _________), ∴∠2 =∠CGD (等量代换).∴CE ∥BF (___________________ ________). ∴∠ =∠C (__________________________). 又∵∠B =∠C (已知),∴∠ =∠B (等量代换).∴AB ∥CD (________________________________).24.(本题8分)如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.25.(本题8分)列方程(组)解应用题:一种口服液有大、小盒两种包装,3大盒、4小盒共装108瓶,2大盒、3小盒共装76瓶.大盒与小盒每盒各装多少瓶?第Ⅱ卷(本卷满分50分)四、解答题(共5题,共50分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤. 26.(每小题5分,共10分)解方程组:(1)33(1)022(3)2(1)10x y x y -⎧--=⎪⎨⎪---=⎩ (2)04239328a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩27.(本题8分)如图,在三角形ABC 中,点D 、F 在边BC 上,点E 在边AB 上,点G 在边AC 上,AD ∥EF ,∠1+∠FEA =180°.求证:∠CDG =∠B .28.(本题10分)29.(本题10分)江汉区某中学组织七年级同学参加校外活动,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车刚好坐满.已知45座和60座客车的租金分别为220元/辆和300元/辆.(1)设原计划租45座客车x 辆,七年级共有学生y 人,则y = (用含x 的式子表示);若租用60座客车,则y = (用含x 的式子表示);(2)七年级共有学生多少人?(3)若同时租用两种型号的客车或只租一种型号的客车,每辆客车恰好坐满并且每个同学都有座位,共有哪几种租车方案?哪种方案更省钱?30.(本题12分)E第27题七年级数学试卷参考答案第Ⅰ卷(本卷满分100分)一、1. C2. B3. B4.C5. D6. C7. D8.A9. A10. B二、11. (7,4) 12. 30°13. -1 14.y=1-3x15.(3,2)16.两直线都平行于第三条直线,这两直线互相平行17.互补18.(3,3)19.2 20.4三、21.(1)21xy=⎧⎨=⎩(2)1212xy=⎧⎨=⎩(每小题过程2分,结果2分)22.(1)如图…………………………………………2分(2)∠PDO,∠PCO等,正确即可;……………………………5分(3)∠PDB,∠PCA等,正确即可.……………………………8分23.对顶角相等……………………………2分同位角相等,两直线平行……………………………4分BFD两直线平行,同位角相等……………………………6分BFD内错角相等,两直线平行……………………………8分24.∵EF∥AD,(已知)∴∠ACB+∠DAC=180°.(两直线平行,同旁内角互补) …………2分∵∠DAC=120°,(已知)∴∠ACB=60°.……………………………3分又∵∠ACF=20°,∴∠FCB=∠ACB-∠ACF=40°.……………………………4分∵CE平分∠BCF,∴∠BCE=20°.(角的平分线定义)……5分∵EF ∥AD ,AD ∥BC (已知),∴EF ∥BC .(平行于同一条直线的两条直线互相平行)………………6分 ∴∠FEC =∠ECB .(两直线平行,同旁内角互补)∴∠FEC=20°. ……………………………8分 25.解:设大盒和小盒每盒分别装x 瓶和y 瓶,依题意得……………1分 341082376x y x y +=⎧⎨+=⎩……………………………4分解之,得2012x y =⎧⎨=⎩ ……………………………7分答:大盒和小盒每盒分别装20瓶和16瓶.……………………8分第Ⅱ卷(本卷满分50分)26.(1)92x y =⎧⎨=⎩ ; (2)325a b c =⎧⎪=-⎨⎪=-⎩(过程3分,结果2分) 27.证明:∵AD ∥EF ,(已知)∴∠2=∠3.(两直线平行,同位角相等)……………………………2分 ∵∠1+∠FEA=180°,∠2+∠FEA=180°,……………………………3分 ∴∠1=∠2.(同角的补角相等)……………………………4分 ∴∠1=∠3.(等量代换)∴DG ∥AB .(内错角相等,两直线平行)……6分∴∠CDG=∠B .(两直线平行,同位角相等)……………………………8分 28.解:(1)画图略, ……………………………2分A 1(3,4)、C 1(4,2).……………………………4分(2)(0,1)或(―6,3)或(―4,―1).……………………………7分 (3)连接AA 1、CC 1; ∵1117272AC A S ∆=⨯⨯= 117272AC C S ∆=⨯⨯= ∴四边形ACC 1 A 1的面积为:7+7=14.也可用长方形的面积减去4个直角三角形的面积:11472622121422⨯-⨯⨯⨯-⨯⨯⨯=.答:四边形ACC 1 A 1的面积为14.……………………………10分29.(1)4515x +; 60(1)x -; ……………………………2分解:(2)由方程组451560(1)y x y x =+⎧⎨=-⎩ ……………………………4分解得5240x y =⎧⎨=⎩ ……………………………5分答:七年级共有学生240人.……………………………6分 (3)设租用45座客车m 辆,60座客车n 辆,依题意得 4560240m n += 即3416m n +=其非负整数解有两组为:04m n =⎧⎨=⎩和41m n =⎧⎨=⎩故有两种租车方案:只租用60座客车4辆或同时租用45座客车4辆和60座客车1辆. ……………………………8分 当0,4m n ==时,租车费用为:30041200⨯=(元); 当4,1m n ==时,租车费用为:220430011180⨯+⨯=(元); ∵11801200<,∴同时租用45座客车4辆和60座客车1辆更省钱.………………10分30.解:(1)∵221(24)0a b a b ++++-=,又∵2210,(24)0a b a b ++≥+-≥,∴2210(24)0a b a b ++=+-=且 . ∴ 210240a b a b ++=⎧⎨+-=⎩ ∴ 23a b =-⎧⎨=⎩即2,3a b =-=. ……………………………3分(2)①过点C 做CT ⊥x 轴,CS ⊥y 轴,垂足分别为T 、S .∵A (﹣2,0),B (3,0),∴AB =5,因为C (﹣1,2),∴CT =2,CS =1,△ABC 的面积=12 AB ·CT =5,要使△COM 的面积=12 △ABC 的面积,即△COM 的面积=52 ,所以12 OM ·CS =52,∴OM =5.所以M 的坐标为(0,5).……………6分 ②存在.点M 的坐标为5(,0)2-或5(,0)2或(0,5)-.………………9分(3)OPD DOE∠∠的值不变,理由如下:∵CD ⊥y 轴,AB ⊥y 轴 ∴∠CDO=∠DOB=90°∴AB ∥AD ∴∠OPD=∠POB∵OF ⊥OE ∴∠POF+∠POE=90°,∠BOF+∠AOE=90° ∵OE 平分∠AOP ∴∠POE=∠AOE ∴∠POF=∠BOF∴∠OPD=∠POB=2∠BOF∵∠DOE+∠DOF=∠BOF+∠DOF=90° ∴∠DOE=∠BOF ∴∠OPD =2∠BOF=2∠DOE ∴2OPDDOE∠=∠.……………………………12分。
七年级数学下册第一次月考试卷(含答案解析)
七年级数学下册第一次月考试卷(含答案解析)班级:________ 姓名:________ 成绩:________一.单选题(共10小题,共30分)1. 在下面各数中,−√5,-3π,12,3.1415,√643,0.1616616661…,√9,√8无理数个数为( ) A.4个 B.3个 C.2个D.1个2. 如图,将三角板的直角顶点放在直尺的一边上.若∠1=65∘,则∠2的度数为( )A.15∘B.35∘C.25∘D.40∘3.下列各式中正确的是( ) A.√36=±6B.√(−3)2=−3C.√8=4D.(√−83)3=−84. 如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A.∠A+∠2=180∘B.∠A=∠3C.∠1=∠4D.∠1=∠A5.下列语句中,真命题有( )①经过直线外一点,有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线平行;③有理数与数轴上的点是一一对应的;④对顶角相等;⑤平方根等于它本身的数是0,1A.2个B.3个C.4个D.5个6.如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在C,D的位置上,EC交AD于点G,已知∠EFG=58∘,则∠BEG等于( )A.58∘B.116∘C.64∘D.74∘7.直线a上有一点A,直线b上有一点B,且a∥b.点P在直线a,b之间,若PA=3,PB=4,则直线a、b之间的距离()A.等于7B.小于7C.不小于7D.不大于78.如图,两个完全一样的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.24B.40C.42D.489.一个自然数的算术平方根是a,则下一个自然数的算术平方根是( )A.√a2+1B.√a+1C.a+1D.√a+110.如图,AB∥CD,∠BED=130∘,BF平分∠ABE,DF平分∠CDE,则∠BFD=()A.135∘B.120∘C.115∘D.110∘二.填空题(共5小题,共15分)11.比较大小:√7+1_______3(填“>”、“<”或“=”).12.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72∘,则∠2=_______度.13. 珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC =120∘,∠BCD=80∘,则∠CDE =_______度.14. ∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=60∘,则∠2= _______ . 15. 如图,将面积为3的正方形放在数轴上,以表示实数1的点为圆心,正方形的边长为半径,作圆交数轴于点A 、B ,则点A 表示的数为______.三.解答题(共8小题,共55分)16. (1)计算:√9−√1253+|1−√5|+√214 (5分)(2)解方程:(2x-1)2=25 (5分)17. 如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于O ,且∠DOF=75∘,求∠BOD 的度数.(6分)18.已知2a+1的平方根是±3,5a+2b-2的算术平方根是4,求3a-4b的平方根.(7分)19.如图,已知AB∥CD,∠A=∠D,求证:∠CGE=∠BHF.(7分)20.已知实数a、b、c在数轴上的位置如下,化简|a|+|b|+|a+b|−√(c−a)2−2√c2(7分)21.根据下表回答问题:(8分)(1) 272.25的平方根是________ (2分)(2) √259.21=_______,√27889=_______,√2.6244=_______ (3分)(3) 设√270的整数部分为a,求﹣4a的立方根.(3分)22.直线AB∥CD,点P在两平行线之间,点E、F分别在AB、CD上,连接PE,PF.尝试探究并解答:(10分)(1) 若图1中∠1=36∘,∠2=63∘,则∠3=_________;(2分)(2) 探究图1中∠1,∠2与∠3之间的数量关系,并说明理由;(3分)(3) ①如图2所示,∠1与∠3的平分线交于点P1,若∠2=α,试求∠EP1F的度数(用含α的代数式表示);(3分)②如图3所示,在图2的基础上,若∠BEP1与∠DFP1的平分线交于点P2,∠BEP2与∠DFP2的平分线交于点P3…∠BEPn-1与∠DFPn-1的平分线交于点Pn,且∠2=α,直接写出∠EPnF的度数(用含α的代数式表示).(3分)参考答案与解析一.单选题(共10小题)第1题:【正确答案】 A【答案解析】是无理数,-3π是无理数,是分数,是有理数,3.1415是有理数,=4是有理数,0.1616616661…是无理数,是有理数,是无理数.故选:A.第2题:【正确答案】 C【答案解析】∵直尺的两边互相平行,∠1=65°,∴∠3=65°,∴∠2=90°-65°=25°.故选:C.第3题:【正确答案】 D【答案解析】A、,故原题计算错误;B、,故原题计算错误;C、,故原题计算错误;D、,故原题计算正确;故选:D.第4题:【正确答案】 D【答案解析】解:A、∵∠A+∠2=180°,∴AB∥DF,故本选项错误;B、∵∠A=∠3,∴AB∥DF,故本选项错误;C、∵∠1=∠4,∴AB∥DF,故本选项错误;D、∵∠1=∠A,∴AC∥DE,故本选项正确.故选:D.第5题:【正确答案】 A【答案解析】①经过直线外一点,有且只有一条直线与已知直线平行是真命题;②垂直于同一条直线的两条直线平行是假命题;③有理数与数轴上的点是一一对应的是假命题;④对顶角相等是真命题;⑤平方根等于它本身的数是0,1是假命题,故选:A.第6题:【正确答案】 C【答案解析】∵AD∥BC,∴∠AFE=∠FEC=58°.而EF是折痕,∴∠FEG=∠FEC.∴∠BEG=180°-2∠FEC=180°-2×58°=64°.故选:C.第7题:【正确答案】 D【答案解析】如图,当点A、B、P共线,且AB⊥a时,直线a、b之间的最短,所以直线a、b 之间的距离≤PA+PB=3+4=7.即直线a、b之间的距离不大于7.故选:D.第8题:【正确答案】 D【答案解析】∵△ABC沿着点B到C的方向平移到△DEF的位置,平移距离为6,∴S△ABC=S△DEF,BE=6,DE=AB=10,∴OE=DE﹣DO=6,∵S阴影部分+S△OEC=S梯形ABEO+S△OEC,=S梯形ABEO=×(6+10)×6=48.∴S阴影部分故选:D.第9题:【正确答案】 A【答案解析】∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故选:A.第10题:【正确答案】 C【答案解析】如图,过点E作EM∥AB,过点F作FN∥AB,∵AB ∥CD ,∴EM ∥AB ∥CD ∥FN ,∴∠ABE+∠BEM =180°,∠CDE+∠DEM =180°, ∴∠ABE+∠BED+∠CDE =360°,∵∠BED =130°,∴∠ABE+∠CDE =230°, ∵BF 平分∠ABE ,DF 平分∠CDE , ∴∠ABF =∠ABE ,∠CDF =∠CDE ,∴∠ABF+∠CDF = (∠ABE+∠CDE)=115°,∵∠DFN =∠CDF ,∠BFN =∠ABF ,∴∠BFD =∠BFN+∠DFN =∠ABF+∠CDF =115°. 故选:C .二.填空题(共5小题) 第11题:【正确答案】 > 无 【答案解析】∵2<<3,∴3<+1<4, 即+1>3,故答案为:>. 第12题:【正确答案】 54 无【答案解析】∵AB ∥CD ,∴∠BEF=180°﹣∠1=180°﹣72°=108°,∠2=∠BEG , 又∵EG 平分∠BEF ,∴∠BEG=12∠BEF=12×108°=54°, 故∠2=∠BEG=54°. 故答案为:54.第13题:【正确答案】 20 无【答案解析】过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为:20.第14题:【正确答案】 60°或120°无【答案解析】如图:当α=∠2时,∠2=∠1=60°,当β=∠2时,∠β=180°-60°=120°,故答案为:60°或120°.第15题:【正确答案】1−√3无【答案解析】∵正方形的面积为3,∴圆的半径为,∴点A表示的数为.故答案为:.三.解答题(共8小题)第16题:【正确答案】解:原式=3﹣5+﹣1+.【答案解析】见答案。
人教版七年级下册数学第一次月考试题附答案
人教版七年级下册数学第一次月考试卷一、单选题1.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D .22的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间 3.下列说法错误的是( )A .5是25的算术平方根B 2是64的立方根C .()34-的立方根是4-D .()24-的平方根是4±4.下列说法正确的是( )A .有且只有一条直线与已知直线平行B .垂直于同一条直线的两条直线互相平行C .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D .在平面内过一点有且只有一条直线与已知直线垂直5.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 2 6.如图,直线AB BE 、被AC 所截,下列说法,正确的有( )①1∠与2∠是同旁内角;②1∠与ACE ∠是内错角;③∠ABC 与4∠是同位角;④1∠与3∠是内错角.A .①③④B .③④C .①②④D .①②③④7.如图,下列条件中,能判断直线a ∥b 的有( )个.①∠1=∠4; ②∠3=∠5; ③∠2+∠5=180°; ④∠2+∠4=180°A .1B .2C .3D .48.如图,数轴上的点A B C D 、、、分别表示数-1,1,2,3,则表示2P 应在( )A .线段CD 上B .线段OB 上C .线段BC 上D .线段AO 上 9.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则50!48!的值为( ) A .5048 B .49! C .2450 D .2! 10.如图,若AB ∥CD ,则α、β、γ之间的关系为( )A .α+β+γ=360°B .α﹣β+γ=180°C .α+β﹣γ=180°D .α+β+γ=180°二、填空题11.25的平方根与8的立方根的和是________.12.如图,现给出下列条件:①1B ∠∠=,②25∠∠=,③34∠∠=,④1D ∠∠=,⑤B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)13.把命题“直角三角形的两个锐角互余”改写成“如果……那么……”的形式:_______.14.如图所示,AB ∥CD ,∠1=115°,∠3=140°,则∠2=__________.15.如图,CB ∥OA ,∠B =∠A =100°,E 、F 在CB 上,且满足∠FOC =∠AOC ,OE 平分∠BOF ,若平行移动AC ,当∠OCA 的度数为_____时,可以使∠OEB =∠OCA .三、解答题16.计算:(1)|1|3|+- (2)17.求下列各式中x 的值.(1)25x 2-64=0;(2)343(x +3)3+27=0.18.如图,方格纸中每个小正方形的边长都为1,在方格纸中将三角形ABC 经过一次平移后得到三角形A'B' C′,图中标出了点C 的对应点C'.(1)请画出平移后的三角形A'B'C′;(2)连接AA′,CC′,则这两条线段之间的关系是 ;(3)三角形A'B'C'的面积为 .19.完成下面推理过程.如图:在四边形ABCD 中,106,74A ABC αα∠=︒-∠=︒+,BD DC ⊥于点D ,EF DC ⊥于点F ,求证:12∠=∠证明:106,74A ABC αα∠=︒-∠=︒+(已知)180A ABC ∴∠+∠=︒∴AD// ( )1∴∠= ( )BD DC ⊥, EF DC ⊥ (已知)90BDF EFC ∴∠=∠=︒ ( )∴BD// ( )2∴∠ = ( )∴ 12∠=∠ ( )20.先阅读第()1题的解法,再解答第()2题:()1已知a ,b是有理数,并且满足等式52b a =,求a ,b 的值.解:因为52b a =所以()52b a =-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y是有理数,并且满足等式2x 2y 17-=-x y +的值.21.已知:如图,∠A+∠D=180°,∠1=3∠2,∠2=24°,点P 是BC 上的一点.(1)请写出图中∠1的一对同位角,一对内错角,一对同旁内角;(2)求∠EFC 与∠E 的度数;(3)若∠BFP=46°,请判断CE 与PF 是否平行?22.如图,∠AGF=∠ABC,∠1+∠2=180°,(1)求证;BF∥DE(2)如果DE垂直于AC,∠2=150°,求∠AFG的度数.23.已知,点E、F分别在直线AB,CD上,点P在AB、CD之间,连结EP、FP,如图1,过FP上的点G作GH//EP,交CD于点H,且∠1=∠2.(1)求证:AB//CD;(2)如图2,将射线FC沿FP折叠,交PE于点J,若JK平分∠EJF,且JK//AB,则∠BEP 与∠EPF之间有何数量关系,并证明你的结论;(3)如图3,将射线FC沿FP折叠,将射线EA沿EP折叠,折叠后的两射线交于点M,当EM⊥FM时,求∠EPF的度数.参考答案1.D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.2.C【分析】【详解】<<,∵479∴23<.∴425<.故选:C.【点睛】考查了估算无理数的大小,解题是掌握估算无理数大小的方法.3.B【分析】将选项中的各个要求的问题都计算出来,然后进行对照,即可得到哪个选项是错误,从而可以解答本题.【详解】解:5=4=4=-,4=±,∴选项B 错误.故选:B .【点睛】考查了立方根、平方根、算术平方根,解题关键是明确它们各自的计算方法.4.D【分析】利用平行公理以及其推论和垂线的定义、点到直线的距离的定义分别分析求出即可.【详解】解:A 、过直线外一点,有且只有一条直线与已知直线平行,故此选项错误;B 、在同一平面内,垂直于同一条直线的两条直线互相平行,故此选项错误;C 、从直线外一点到这条直线的垂线段长,叫做这点到这条直线的距离,故此选项错误;D 、在平面内过一点有且只有一条直线与已知直线垂直,故此选项正确.故选:D .【点睛】此考查了平行公理以及其推论和垂线的定义、点到直线的距离的定义,正确把握相关定义是解题关键.5.B【详解】解:由图可知:矩形ABCD 中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).故选B .6.D【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①1∠与2∠是同旁内角,说法正确;②1∠是内错角,说法正确;∠与ACE③∠ABC与4∠是同位角,说法正确;④1∠是内错角说法正确,∠与3故选:D.【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.7.C【分析】根据平行线的判定方法,对各选项分析判断后利用排除法求解.【详解】解:①∵∠1=∠4,∴a∥b(内错角相等,两直线平行);②∵∠3=∠5,∴a∥b(同位角相等,两直线平行),③∵∠2+∠5=180°,∴a∥b(同旁内角互补,两直线平行);④∠2和∠4不是同旁内角,所以∠2+∠4=180°不能判定直线a∥b.∴能判断直线a∥b的有①②③,共3个.故选C.【点睛】本题考查了平行线的判定,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行,解题时要认准各角的位置关系.8.D【分析】根据5在平方数4与92的取值范围即可确定P点的位置.∵23∴-2>-3,0>-1即-1<0∴点P在线段AO上故选:D【点睛】此题主要考查了无理数的估算,解题关键是正确估算2 9.C【分析】根据50!=50×49×…×4×3×2×1,…,48!=48×47×…×4×3×2×1,…,求出50!48!的值为多少即可.【详解】解:50!48!=5049432148474321⨯⨯⋯⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯=50×49=2450,故选:C.【点睛】此题主要考查了有理数的乘法的运算方法,以及阶乘的含义和求法,要熟练掌握.10.C【分析】过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.【详解】解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.故选:C.本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.11.7或-3【分析】根据平方根和立方根的定义求解即可.【详解】25的平方根是5±,8,25的平方根与8的立方根的和是5+2=7,或-5+2=-3.故答案为7或-3【点睛】此题考查了平方根和立方根的定义,熟练掌握这两个定义是解答问题的关键.12.①②⑤【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠1=∠D,∴AD∥BC,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB∥CD,故本小题正确.故答案为①②⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.13.如果一个三角形是直角三角形,那么它的两个锐角互余.【分析】首先找出原命题中的条件及结论,然后写成“如果…,那么…”的形式即可.【详解】解:故答案为:如果一个三角形是直角三角形,那么它的两个锐角互余.【点睛】此题主要考查学生对命题的理解及运用能力.14.75°【分析】根据两直线平行,同旁内角互补求出∠4的度数,再根据三角形的一个外角等于和它不相邻的两个内角的和即可求出∠2的度数.【详解】如图,∵AB∥CD,∠3=140°,∴∠4=180°-140°=40°,∵∠1=115°,∴∠2=∠1-∠4=115°-40°=75°.故答案为75°.【点睛】本题主要利用两直线平行,同旁内角互补的性质和三角形的一个外角等于和它不相邻的两个内角的和求解.15.60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.16.(1)4(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式-;(2)原式=-(-2)+5+2=2+5+2=9.17.(1)85x=±(2)247x=-【解析】试题分析:(1)根据平方根,即可解答;(2)根据立方根,即可解答.试题解析:(1)根据题意,得x=解得:85 x=±.(2)根据题意,得3x+=33,7x+=-解得:24.7 x=-18.(1)见解析;(2)平行且相等;(3)10.【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′,从而得到三角形A'B'C’;(2)利用平移的性质求解;(3)利用三角形面积公式求解.【详解】(1)如图所示:三角形A′B′C′即为所求;(2)由平移的性质可知AA′与CC′平行且相等,故答案为平行且相等;(3)三角形A′B′C′的面积=12×5×4=10, 故答案为10.【点睛】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.19.答案见解析【分析】首先根据同旁内角互补,两直线平行得出AD ∥BC ,从而根据两直线平行,内错角相等得出∠1=∠DBC ,根据垂直与同一条直线的两直线平行得出BD ∥EF ,从而得出∠2=∠DBC ,从而根据等量代换得出答案.【详解】 解: 106,74A ABC αα∠=︒-∠=︒+(已知)180A ABC ∴∠+∠=︒∴AD// BC ( 同旁内角互补,两直线平行 )1∴∠= DBC ∠ ( 两直线平行,内错角相等 )BD DC ⊥, EF DC ⊥ (已知)90BDF EFC ∴∠=∠=︒ ( 垂直的定义 )∴BD// EF ( 同位角相等,两直线平行)2∴∠ = DBC ∠ ( 两直线平行,同位角相等 )∴ 12∠=∠( 等量代换 )20.x y 9+=或x y 1+=-.【分析】利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可.【详解】因为2x 2y 17-=-所以()2x 2y 17-=-所以2x 2y 17y 4-=⎧=⎨⎩, 解得{x 5y 4==或{x 5y 4=-=,所以x y 9+=或x y 1+=-.【点睛】本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.21.(1)见解析;(2)∠EFC=108°;(3)不平行,理由见解析.【分析】(1)根据同位角、内错角以及同旁内角的定义,即可得出结论;(2)由∠A+∠D=180°可得出AB ∥CD ,根据平行线的性质可得出∠1=∠DFE ,再结合∠1=3∠2、∠2=24°通过角的计算即可得出∠EFC 与∠E 的度数;(3)由(2)中∠E 的度数结合∠BFP=46°,即可得出∠E≠∠BFP ,从而得出CE 与PF 不平行. 【详解】(1)同位角:∠1与∠DFE ;内错角:∠1与∠BFC ;同旁内角:∠1与∠DFB . (2)∵∠A+∠D=180°,∴AB ∥CD ,∴∠1=∠DFE .∵∠1=3∠2,∠2=24°,∴∠1=∠DFE=72°.∵∠DFE=∠E+∠2,∴∠E=48°.∵∠DFE=180°-∠EFC,∴∠EFC=108°.(3)不平行.∵∠E=48°,∠BFP=46°,∴∠E≠∠BFP,∴CE与PF不平行.【点睛】考查了平行线的判定与性质、同位角、内错角以及同旁内角;能够找出一个角的同位角、内错角以及同旁内角、得出AB∥CD和熟悉各平行线的判定定理是关键解题的关键. 22.(1)证明见解析;(2)∠AFG=60°.【分析】(1)根据平行线的判定定理,由∠AGF=∠ABC,可判断GF∥BC,由平行线的性质可得∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°,即可判断出BF∥DE;(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=150°得出∠1=30°,从而得出结论.【详解】(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG=90°﹣30°=60°.【点睛】本题考查了平行线的判定与性质.解题的关键是熟练掌握平行线的判定与性质.23.(1)证明见解析;(2)∠BEP+23∠EPF=180º.证明见解析;(3)∠EPF=135º【分析】(1)延长FP交AB于点Q,根据平行线性质可得∠2=∠3,再由∠1=∠2可得∠1=∠3,即可证明结论;(2)过点P作PM//CD,即可证得JK//AB//CD//PM,根据平行线的性质解答即可;(3)作PG//AB,MH//AB,则PG//MH∥AB//CD,根据平行线的性质进行分析解答即可.【详解】(1)延长EP交CD于点Q∵GH//PE,∴∠2=∠3.又∵∠1=∠2,∴∠1=∠3.∴AB//CD.(2)过点P作PM//CD,又AB//CD,∴PM//AB.∴∠FPM=∠1,∠EPM=∠2,∴∠FPE=∠FPM+∠EPM=∠1+∠2.又∵JK//AB//CD,同理可证:∠FJE=∠CFJ+∠2.又∵∠FJK=∠CFJ=2∠1=∠3=∠2,∵∠BEP+∠3=180º,∴∠BEP+2∠1=180º,∴∠BEP+2(∠EPF-∠2)=180º,∴∠BEP+2∠EPF-2∠2=180º,∴∠BEP+2∠EPF-2(180º-∠BEP)=180º.即:21803BEP EPF∠+∠=︒(3)作PG//AB,MH//AB,则PG//MH//AB//CD.∵FM⊥EM,∴∠EMF=90º易证:∠1+∠2=∠EMF=90º,∠EPF=∠3+∠4,又∵∠3=∠PFM,∠4=∠PEM,∴∠1=180º-2∠3,∠2=180º-2∠4.∴180º-2∠3+180º-2∠4=90º,∴2∠3+2∠4=270º.∴∠3+∠4=135º,∴∠EPF=135º点睛:本题考查平行线的判定和性质,关键是构建平行线,利用平行线的性质进行解答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年七年下第一次月考数学试题
一、填空题(每小题2分,共20分)1.如图,若∠1=35°,则∠2= ,∠3= . 2.如图,AC ⊥BC ,C 为垂足,CD ⊥AB ,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC=6,点A 到BC 的距离是,A ,B 两点间的距离是. 3.把命题“平行于同一条直线的两条直线平行”,改写成“如果……,那么……”
的形式为.
4.如图,直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC=80°,则∠BOD= .
5.如图,已知直线a ∥b ,∠4=40°,则∠2= .
6.如图,直线AB ∥CD ,EF 交AB 于点M ,MN ⊥EF 于点M,MN 交CD 于点N ,若∠BME=125°,则∠MND= .
7.如图,已知∠1=70°,∠2=110°,∠3=80°,则∠4= .
8.如图,AB ∥CD ,BC ∥DE ,则∠B 与∠D 的关系是.
9.小强将两把直尺按如图所示叠放,使其中一把直尺的一个顶点恰好落在另一把直尺的边上,则∠1+∠2 = 度.
10如图,DH ∥EG ∥BC ,且DC ∥EF ,则图中与∠1相等的角有个.
二、单项选择题(每小题3分,共18分)
11.下列各图中,∠1和∠2是对顶角的是()
12.如图,点A 到直线CD 的距离是指哪一条线段的长()
A.线段AC
B.线段CD
C.线段AB
D.线段BD 13.下列四组图形中,有一组中的两个图形经过平移,其中一个能得到另一个,这组图形是()14.如图,下列条件中能判定AB ∥CD 的是()A. ∠1=∠2 B. ∠2=∠4 C. ∠1=∠3 D. ∠B+∠BCD=180°15.在如图所示的长方体中,和棱AB 平行的梭有()A.3条 B.4条 C.5条 D.6条16.在如图,已知∠1=∠2,∠3=∠4,求证:AC ∥DF ,BC ∥EF.证明过程如下:
∵∠1=∠2(已知),
∴AC ∥DF (A.同位角相等,两直线平行),
∴∠3=∠5(B.内错角相等,两直线平行).
又∵∠3=∠4(已知)
∴∠5=∠4(C.等量代换),
∴BC ∥EF (D.内错角相等,两直线平行).
上述过程中判定依据错误的是()
三、解答题(每小题5分,共20分)
17.如图,离河岸不远处有一个村庄,村民到岸边取水,怎样走最近?这什么?如果要到码头乘船,怎样走最近?为什么?
18.如图,直线a ,b ,c ,相交于点O ,∠1=∠2,∠3:∠1=8:1,求∠4的度数. 19.如图,已知AB ∥CD ,∠1=50°,BD 平分∠ADC ,求∠A 的度数. 20.一个角的补角是这个角的余角的3倍,求这个角的度数. 四、解答题(每小题6分,共12)
21.如图,已知直线a ,b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据. 4321D C B A D 1C 1B 1
A 1D C B
A 521F E D C
B A 43河流村庄码头
1题图a
(1)∵a ∥b ,∴∠1=∠3();(2)∵∠1=∠3,∴a ∥b ();
(3)∵a ∥b ,∴∠1=∠2();(4)∵a ∥b ,∴∠1+∠4=180°();(5)∵∠1=∠2,∴a ∥b ();(6)∵∠1+∠4=180°,∴a ∥b ().
22.如图,已知∠AOB=152°,∠AOC=∠BOD=90°,求∠COD 的度数.
五、解答题(每小题7分,共14分)
23.如图所示,BE 是∠ABC 的平分线,∠1=∠2,试说明DE ∥BC.
24.如图,C 点在B 处的北偏东85°方向,A 点在C 处的北偏西45°方向,求∠BCA 的度数.
六、解答题(每小题8分,共16分)
25.已知:如图AB ∥CD ,BE ∥CF.试说明:∠1=∠4.
26.如图,原来是重叠的两个直角三角形,将其中一个三角形沿BC 方向平移BE 的距离,就得到此图形,求阴影部分面积(单位:厘米).
七、解答题(每小题10分,共20分)
27.如图,EF ∥AD ,∠1=∠2,∠BAC=80°.求∠AGD 的度数.
28.如图,已知AB ∥CD ,猜想图1、图2、图3中∠B ,∠BED ,∠D 之间分别有什么关系?请分别用等式表示出它们的关系,并证明. h
参考答案1.145°,35°;2.6,10;3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行;
4.40°;
5.140°;
6.35°;
7.100°;
8. ∠B+∠D=180°;
9.90°;10.5个;11.A ;12.C ;13.D ;14.D ;15.A ;16.B ;
17.如图所示:村民取水
AB 最近,理由:垂线段最短;到码头AC 最近,理由:两点之间,线段最短;18. ∠4=36°;
19.80°
20.45°
21.(1)两直线平行,同位角相等;(2)同位角相等,两直线平行;(3)两直线平行,内错角相等;
(4)两直线平行,
同旁内角互补;(5)内错角相等,两直线平行;(6)同旁内角互补,两直线平行;22.28°
23. ∵BE 是∠ABC 的平分线,∴∠1=∠EBC
∵∠1=∠2
∴∠2=∠EBC
∴DE ∥BC
24.50°;
25. ∵AB ∥CD
∴∠ABC=∠BCD
∵BE ∥CF
∴∠2=∠3
∴∠ABC-∠2=∠BCD-∠3
∴∠1=∠4.
26. ∵AB=DE=8,DH=3
∴HL=5
∴阴影部分的面积是(
5+8)×5÷2=32.527. ∵EF ∥AD c 4
321E D C B
A E D C
B A a b
C
B A
∴∠1=∠2
∵∠1=∠2,∠1=∠3
∴∠2=∠3
∴DG∥AB
∴∠DCA+∠BAC=180°
∴∠AGD=180°-80°=100°
28.图1:∠B+∠D=∠BED,图2:∠B-∠D=∠BED,∠D=∠B+∠DEB。