2020高考数学圆锥曲线最值问题大题精做理科
2020版高考数学一轮复习第8章平面解析几何第8节圆锥曲线的综合问题第2课时范围最值问题教学案含解析理
第2课时 范围、最值问题范围问题【例1】 (2018·贵阳监测)已知椭圆C :y a 2+x b 2=1(a >b >0)的离心率为63,且椭圆C上的点到一个焦点的距离的最小值为3- 2.(1)求椭圆C 的方程;(2)已知过点T (0,2)的直线l 与椭圆C 交于A ,B 两点,若在x 轴上存在一点E ,使∠AEB =90°,求直线l 的斜率k 的取值范围[解] (1)设椭圆的半焦距长为c , 则由题设有⎩⎪⎨⎪⎧ca =63,a -c =3-2,解得a =3,c =2,∴b 2=1, 故椭圆C 的方程为y 23+x 2=1.(2)由已知可得,以AB 为直径的圆与x 轴有公共点. 设A (x 1,y 1),B (x 2,y 2),AB 中点为M (x 0,y 0),将直线l :y =kx +2代入y 23+x 2=1,得(3+k 2)x 2+4kx +1=0,Δ=12k 2-12,x 1+x 2=-4k 3+k 2,x 1x 2=13+k2. ∴x 0=x 1+x 22=-2k 3+k 2,y 0=kx 0+2=63+k2,|AB |=1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=1+k212k 2-123+k 2=23k 4-13+k2, 由题意可得⎩⎪⎨⎪⎧Δ=12k 2-12>0,63+k 2≤12|AB |,解得k 4≥13,即k ≥413或k ≤-413.故直线l 的斜率k 的取值范围是(-∞,-413]∪[413,+∞). [规律方法] 求参数范围的四种方法1函数法:用其他变量表示该参数,建立函数关系,利用求函数值域的方法求解. 2不等式法:根据题意建立含参数的不等式,通过解不等式求参数范围. 3判别式法:建立关于某变量的一元二次方程,利用判别式Δ求参数的范围. 4数形结合法:研究该参数所表示的几何意义,利用数形结合思想求解.(2019·临沂摸底考试)已知点F 为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x 4+y2=1与椭圆E 有且仅有一个交点M .(1)求椭圆E 的方程;(2)设直线x 4+y2=1与y 轴交于P ,过点P 的直线l 与椭圆E 交于不同两点A ,B ,若λ|PM |2=|PA |·|PB |,求实数λ的取值范围.[解] (1)由题意得a =2c ,b =3c ,则椭圆E 为x 24c 2+y 23c2=1.由⎩⎪⎨⎪⎧x 24+y 23=c 2,x 4+y 2=1得x 2-2x +4-3c 2=0.∵直线x 4+y2=1与椭圆E 有且仅有一个交点M ,∴Δ=4-4(4-3c 2)=0⇒c 2=1, ∴椭圆E 的方程为x 24+y 23=1.(2)由(1)得M ⎝ ⎛⎭⎪⎫1,32, ∵直线x 4+y 2=1与y 轴交于P (0,2),∴|PM |2=54,当直线l 与x 轴垂直时,|PA |·|PB |=(2+3)(2-3)=1,∴由λ|PM |2=|PA |·|PB |⇒λ=45,当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +2,3x 2+4y 2-12=0⇒(3+4k 2)x 2+16kx +4=0,依题意得x 1x 2=43+4k 2,且Δ=48(4k 2-1)>0,∴k 2>14, ∴|PA |·|PB |=(1+k 2)x 1x 2=(1+k 2)·43+4k 2=1+13+4k 2=54λ, ∴λ=45⎝ ⎛⎭⎪⎫1+13+4k 2,∵k 2>14,∴45<λ<1,综上所述,λ的取值范围是⎣⎢⎡⎭⎪⎫45,1.最值问题►考法1 【例2】 在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________.22[双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+-12=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22.] ►考法2 建立函数关系利用基本不等式或二次函数求最值【例3】 已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程. [解] (1)设F (c,0),由条件知,2c =233,得c = 3.又ca =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1,得(1+4k2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0, 即k 2>34时,x 1,2=8k ±24k 2-34k 2+1. 从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1. 又点O 到直线PQ 的距离d =2k 2+1.所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1. 设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t. 因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. ►考法3 建立函数关系利用导数求最值问题【例4】 (2017·浙江高考)如图,已知抛物线x 2=y ,点A -12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值.[解] (1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32k 2+1. 因为|PA |=1+k 2⎝ ⎛⎭⎪⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-k -1k +12k 2+1,所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减,因此当k =12时,|PA |·|PQ |取得最大值2716.[规律方法] 圆锥曲线中最值问题的解决方法1代数法:从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值.2几何法:从圆锥曲线几何性质的角度考虑,根据圆锥曲线几何意义求最值.(2019·邢台模拟)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx+12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).[解] (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b.由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①将AB 的中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m2,②由①②得m <-63或m >63. 故m 的取值范围是⎝ ⎛⎭⎪⎫-∞,-63∪⎝ ⎛⎭⎪⎫63,+∞. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则t 2∈⎝ ⎛⎭⎪⎫032.则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立,此时满足t 2∈⎝ ⎛⎭⎪⎫0,32.故△AOB 面积的最大值为22.(2018·全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.[解] (1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k x -1,y 2=4x得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,x 0+12=y 0-x 0+122+16.解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144自我感悟:______________________________________________________ ________________________________________________________________ ________________________________________________________________。
2020高考数学复习--专题03 最值问题(精讲篇)-用思维导图突破圆锥曲线压轴题
专题03 最值问题最值(含范围)问题是解析几何中常见的 问题之一,其基本解题方法是把所求量表示成某个变量的函数,利用二次函数或函数单调性 求最值或范围,也可以利用基本不等式,有时 也会利用几何量的有界性确定范围. 最值问题不仅解答题中分量较大,而且客 观题中也时常出现.求最值的思维导图如右 最大最小为最值 单调二次不等式 几何有界也有用 具体问题再审视思路点拨解1 显然两条直线的斜率都存在且不为0,抛物线2:4C y x =的焦点(1,0)F .设1:(1)l y k x =-,由2(1)4y k x y x =-⎧⎨=⎩,,消元y 得2222(24)0k x k x k -++=,所以22224424A B k AB x x p k k +=++=+=+, 同理,244DE k =+,2214()816AB DE k k +=++≥,当且仅当1k =±时取等号.选(A ). 解2 设直线1l 的倾斜角为α,则2l 的倾斜角为2+πα,因为22sin p AB =α,22sin ()2pDE =+πα, 所以2244sin sin ()2AB DE +=++παα 例1 已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为(A )16 (B )14 (C )12 (D )10 用参数表示该量求 某 量 最 值 化简、换元转化为可以利用函数单调性、二次函数、基本不等式、导数、几何图形有界等方法求最值2222444sin cos sin cos =+=αααα21616sin 2=≥α,当且仅当4=πα或34=πα时取等号.选(A ).注1 过抛物线22y px =的焦点弦长22||sin p AB θ=. 注2 也可以设1:1l x ty =+,则214x ty y x =+⎧⎨=⎩,,消取x 得2440y ty --=,所以2()444A B A B AB x x p t y y t =++=++=+,同理,244DE t=+, 2214()816AB DE t t+=++≥,当且仅当1t =±时取等号.思路点拨当,焦点在轴上,要使C 上存在点M 满足,则,得.当,焦点在轴上,要使C 上存在点M 满足,则,得. 故m 的取值范围为(0,1][9,)+∞U .要求两个绝对值之和的最小值,就要去掉绝对值,需要分类讨论.怎么确定分类标准?03m <<x 120AMB ∠=otan 60a b ≥=o ≥01m <≤3m >y 120AMB ∠=otan 60ab≥=o ≥9m ≥就是令绝对值内部的式子为0.比如,若令220x y +-=,则直线220x y +-=与圆相交,把圆分成两部分.解1 原问题可以转化为如下的非线性规划问题:可行域为单位圆(含内部)的任意一点,直线22y x =-将可行域分成两个部分,不妨将左下方的区域(大弓形区域)记作Ⅰ,将右上方的区域(小弓形区域)记作Ⅰ.因为单位圆221x y +≤及其内部在直线630x y --=下方,所以630x y -->,所以(,)|22||63|f x y x y x y =+-+--42,22,834,22.x y y x x y y x +-≥-⎧=⎨--<-⎩直线22y x =-与单位圆221x y +=交点10E ,(),3455F (,).设1242,834z x y z x y =+-=--,分别作直线13,24y x y x ==-并平移,则1242,834z x y z x y =+-=--都在点3455F (,)取得最小值3.所以2263x y x y +-+--的最小值是3.解2 (,)|22||63|f x y x y x y =+-+--|(22)(63)||348|x y x y x y ≥+----=+-,(当220x y +-≤时取等号).设cos ,sin x r y r θθ==,其中01,02r θπ≤≤≤≤. 则 |348||3cos 4sin 8|x y r r θθ+-=+-|5sin()8|85853r r θϕ=+-≥-≥-=.其中ϕ由34sin ,cos 55ϕϕ==确定,等号当且仅当1,sin +=1r θϕ=(),即3455x ,y ==.另外,当220x y +->时,2263x y x y +-+--3>. 所以2263x y x y +-+--的最小值是3.思路点拨在平面直角坐标系中画出可行域如图,22x y +例4 已知实数,x y 满足240,220,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩则22x y +的取值范围为____.是 .的几何意义为可行域内的点到原点距离的平方.过原点O 作直线220x y +-=的垂线,垂足为A ,可以看出图中A 点距离原点最近,此时距离为原点O 到直线220x y +-=的距离,d ==()22min45x y +=, 图中B 点距离原点最远,B 点为240x y -+=与330x y --=交点,则()2,3B ,则()22max13xy+=.所以,22x y +的取值范围为4[,13].5思路点拨第(2)题的关键是选择适当的参数表示||||PA PQ ⋅,可以用直线AP 的斜率为k 为参数,需要求出Q 的坐标,再分别求出||||PA PQ 、的表达式,计算量较大.也可以设2(,)P t t ,以t 为参数,从向量的角度得到||||||||cos AP PQ AP PB BPQ ⋅=⋅∠u u u r u u u r u u u r u u u r PA PQ =-⋅u u u r u u u r+PA PB BQ PA PB =-⋅-⋅u u u r u u u r u u u r u u u r u u u r ()=.转化为t 函数,再求最大值. 满分解答(1)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-.(2)解1设直线AP 的斜率为k ,则直线AP 的方程为y =kx +12k +14,BQ 的方程为y =13924x k k -++. 联立直线AP 与BQ 的方程1102493042kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩,,解得点222234981(,)2244k k k k Q k k +-++++.因为1||)1)2PA x k =+=+,2||)Q PQ x x =-=所以3||||(1)(1)PA PQ k k ⋅=--+.令3()(1)(1)f k k k =--+,因为2()(42)(1)f k k k '=--+,所以()f k 在区间1(1,)2-上单调递增,1(,1)2上单调递减,因此当12k =时,||||PA PQ ⋅取得最大值2716. 解2 用向量法,令2(,)P t t ,所以||||||||cos AP PQ AP PB BPQ ⋅=⋅∠u u u r u u u r u u u r u u u r PA PQ PA PB =-⋅=-⋅u u u r u u u r u u u r u u u r221319()()()()2244t t t t =+-+--4233216t t t =-+++222127(1)(1)216t t =----+2716≤. 当且仅当1t =时等号成立.第(2)题可设SOM θ∠=,则2SOT θ∠=,则23sin 23AB MC OM OC AB θ==+. 223OC AB=+⋅,只要求sin θ的最小值,即只要求OC AB的最小值.(2) 设SOM θ∠=,则2SOT θ∠=,且223sin 2233AB MC OC OM OC AB ABθ===++⋅.设1122(,),(,)A x y B x y,联立方程22112x y y k x ⎧+=⎪⎪⎨⎪=-⎪⎩,得2211(42)10k x x +--=,由题意知0∆>,且1121222111,212(21)x x x x k k +==-++,故12212AB x k =-=+.联立方程221124x y y x k ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此OC ==.注211k OCAB +=22= 令21112,1(0,1)t k t t =+>∈,,则211=2t k -,代入上式整理得OC AB =. 当且仅当112t=,即2t =时OC AB的最小值23,此时1k =.思路点拨第(1)题直接计算可得。
2020版数学高中考前理科 第三篇热点2圆锥曲线的最值与范围问题
(1)利用 圆 锥 曲 线 的 几 何 性 质 或 判 别 式 构造 不 等 关 系,从 而 确 定 参 数 的 取 值
阅卷人 运算过程较长,数据整理复杂,所以 提醒 求解时要目标明确,步骤清晰
范围. (2)利用已知参数的范围,求新参数的范 围,解这类 问 题 的 核 心 是 建 立 两 个 参 数
所 以 △PQG 的 面 积 S = 12|PQ ‖ PG|=
范围求解.
( ( ) ) (1+8k2k(12)+(2k2+)k2)=1+82k1k1++kk 2.
搏分技巧
1.圆锥曲线中的最值问题的三种解决方法 (1)代 数 法,从 代 数 的 角 度 考 虑,通 过 建
设t=k+k1 ,则 由k>0 得t≥2,当 且 仅 当k=1
考场技法
1.圆锥曲线中的最值问题分类 (1)涉及距离、面积的最值以及与之相关
的一些问题.
真题研磨·提升审题力
(2)求直 线 或 圆 锥 曲 线 中 几 何 元 素 的 最 值以及这些元素存在最值时求解与之有
(2019·全国卷Ⅱ)已知点A(-2,0),B(2,0),
动点 M(x,y)① 满足直线AM 与BM 的斜率之积
交点. 3.求解这种问题时应注意挖掘题目中的隐
含条件,寻找量与量之间的转化关系.
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
2020年高考数学真题汇编10 圆锥曲线 理( 解析版)
2020高考真题分类汇编:圆锥曲线一、选择题1.【2020高考真题浙江理8】如图,F 1,F 2分别是双曲线C :22221x y a b-=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是A.33 B 。
6223【答案】B【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组⎪⎪⎩⎪⎪⎨⎧=-+=0,b y a x b x cb y 得点Q ),(a c bc a c ac --,联立方程组⎪⎪⎩⎪⎪⎨⎧=++=0,b y a x b x cb y 得点P ),(ac bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222bca xbc b c y --=-,令0=y ,得)1(22b a c x +=,所以c ba c 3)1(22=+,所以2222222a cb a -==,即2223c a =,所以26=e 。
故选B2.【2020高考真题新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为( )()A 2 ()B 22()C 4 ()D 8【答案】C【解析】设等轴双曲线方程为)0(22>=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得4121622=-=-=y x m ,所以双曲线方程为422=-y x ,即14422=-y x ,所以2,42==a a ,所以实轴长42=a ,选C. 3.【2020高考真题新课标理4】设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30o 的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 45【答案】C【解析】因为12PF F ∆是底角为30o 的等腰三角形,则有PF F F 212=,,因为2130=∠F PF ,所以0260=∠D PF ,0230=∠DPF ,所以21222121F F PF D F ==,即c c c a =⨯=-22123,所以c a 223=,即43=a c ,所以椭圆的离心率为43=e ,选C.4.【2020高考真题四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
(高中段)大题考法第二课时题点突破圆锥曲线中的最值、范围、证明问题
题型二 范围问题 [典例] (2018·浙江高考)如图,已知点 P 是 y 轴左侧(不 含 y 轴)一点,抛物线 C:y2=4x 上存在不同的两点 A,B 满 足 PA,PB 的中点均在 C 上. (1)设 AB 中点为 M,证明:PM 垂直于 y 轴; (2)若 P 是半椭圆 x2+y42=1(x<0)上的动点,求△PAB 面 积的取值范围.
所以△PAB 面积的取值范围是6 2,15围问题的 5 种常用解法
(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值 范围.
(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个 参数之间的等量关系.
(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围. (5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域, 从而确定参数的取值范围.
(2)设直线 MN 的方程为 y=kx+12(k<0),M(x1,y1),N(x2,y2).
联立y=kx+12, y2=x,
消去 x 可得 ky2-y+12=0,
则y1+y2=1k, y1y2=21k.
易知 P(1,1),A(x1,x1),Bx1,xy21, 则 S1=12(y1-x1)(1-x1),S2=12x1-xy21x1,
因此SS21=y1-x1x-1xy121-x1x1=y1-y21y-12yy1122-y21y21,
因为y1y+1y2y2=2,则 y2=2y1y-1 1,
yy122=
y12 y1
=y1(2y1-1),
2y1-1
由此可得SS21=1-y12y21=y112-1 1,
因为 y1∈0,12,
2020年高考数学圆锥曲线中的最值问题(共16张PPT)
x
y
t cos 1 t sin
代入
2x2
y2
2
0
得
(1 cos2 )t2 2sin t 1 0
设
P, Q
对应的参数为 t1, t2
,则 t1
t2
2 cos 1 cos2
, t1t2
1
1 cos2
所以| PQ || t1 t2 |
(t1
t2 )2
4t1t2
1
22 cos2
因为
PQ
的最大值为__________.
解析:题目中点 P 是一动点,点 B 是椭圆的右焦点,因此在椭圆上的一个动点和焦点的 连线经常需要考虑这个点和另外一个焦点,即把动点放到焦点三角形中考虑,因
为 PF PB 2a 10,所以 PB 10 PF, PA PB PA PF 10 ,接下来需 要求 PA PF 10 的最大值。 因为如果 P, A, F 能构成三角形, PA PF AF ,因此当取得最大值时 P, A, F 三点共线, PA PF 10 AF 10 15
例 3:已知 P(x, y) 是抛物线上的点,则 (x 3)2 ( y 2)2 x 的最大值是________.
解析: (x 3)2 ( y 2)2 x (x 3)2 ( y 2)2 (x 1)2 y2 1 题目转化为点 P(x, y) 到点 A(3, 2) 的距离减去到点 M (1, 0) 的距离加 1 因此当 A, M , P 三点共线时取得最大值,最大值为| AM | 1,剩余步骤省
4x
2b
0
令 0,则b 2
则直线 y 2x 2 与 y 2x 2 之间的距离即为高的最大值,因此可以求出面积 的最大值。
例 7:点 P 在抛物线 y2 x 上,点 Q 在圆 (x 1)2 ( y 4)2 1,则| PQ |的最小值为 2
【2020届】高考数学圆锥曲线专题复习:圆锥曲线中的最值和范围问题(高二)
圆锥曲线中最值和范围问题班级________姓名___________学号_________【问题呈现】1.椭圆14922=+y x 上一动点M 满足:21MF F ∠为钝角,则M 点横坐标的取值范围_______. 2.已知点3(,0)2A ,P 是抛物线24y x =上一动点,则PA 的最小值为___________. 3.椭圆1422=+y x 上一动点P ,则P 到直线04:=-+y x l 的距离最小值为:________.4.已知双曲线22221,(0,0)x y a b a b-=>>的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为__________.5.斜率为1的直线l 与椭圆2214x y +=交于A ,B 两不同点,则线段AB 中点M 的轨迹方程为_______. 【方法小结】求解范围问题的一般方法:(1)结合定义,利用图形找出几何量的有界性; (2)构造一个二次方程,利用判别式∆≥0;(3)函数法是探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围,值得注意的是函数自变量取值范围的考察不能被忽视.(4)利用代数基本不等式.代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;(5)结合参数方程,利用三角函数的有界性.直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式.因此,它们的应用价值在于: ① 通过参数θ简明地表示曲线上点的坐标;② 利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题. 【典题剖析】例1已知圆⊙8)1(:22=++y x C ,)0,1(-C 动圆与⊙C 相切且过定点)0,1(B ; (1)求动圆圆心的轨迹E 方程; (2)过点),0(t D ,11<<-t 倾斜角为 45的直线l 与轨迹E 交于N M ,两点,求N M C B ,,,四点围成的四边形面积的最大值。
(完整版)2020年高考理科数学《圆锥曲线》题型归纳与训练,推荐文档
2y0
2y0
令 x=0,得 yM=-x0-2,从而|BM|=1-yM=1+x0-2.
y0-1 直线 PB 的方程为 y= x0 x+1.
x0
x0
令 y=0,得 xN=-y0-1,从而|AN|=2-xN=2+y0-1.
1 所以四边形 ABNM 的面积 S=2|AN|·|BM|
1 =2
( )2y0 x20+4y20+4x0y0-4x0-8y0+4 2x0y0-2x0-4y0+4
2020 年高考理科数学《圆锥曲线》题型归纳与训练 【题型归纳】
题型一 求曲线的方程
例 1 已知 F1(2, 0) , F2 (2, 0) ,点 P 满足| PF1 | | PF2 | 2 ,记点 P 的轨迹为 E .求轨迹 E 的方程. 【答案】 x2 y2 1
3
【解析】由| PF1 | | PF2 | 2 4 | F1F2 | 可知:点 P 的轨迹 E 是以 F1, F2 为焦点的双曲 线的右支,
x2 y2 例 2 已知椭圆 C:a2+b2=1 过 A(2,0),B(0,1)两点. (1)求椭圆 C 的方程及离心率;
1
(2)设 P 为第三象限内一点且在椭圆 C 上,直线 PA 与 y 轴交于点 M,直线 PB 与 x 轴交于点 N,求证:四边形 ABNM 的面积为定值.
x2
3
【答案】(1) 4 +y2=1,e= 2 (2)2.
1+
=2.
x0-2 = 2x0y0-x0-2y0+2 = x0y0-x0-2y0+2
2
从而四边形 ABNM 的面积为定值.
【易错点】(1).想不到设出 P(x0,y0)后,利用点斜式写出直线 PA,PB 的方 程.不会由直线 PA,PB 的方程求解|BM|,|AN|;
【高考复习】2020年高考数学(理数)圆锥曲线中的最值范围证明问题 大题(含答案解析)
【高考复习】2020年高考数学(理数) 圆锥曲线中的最值范围证明问题 大题1.已知椭圆x 2a 2+y2b 2=1(a>b>0)的左,右焦点分别为F 1,F 2,且|F 1F 2|=6,直线y=kx 与椭圆交于A ,B 两点.(1)若△AF 1F 2的周长为16,求椭圆的标准方程;(2)若k=24,且A ,B ,F 1,F 2四点共圆,求椭圆离心率e 的值;(3)在(2)的条件下,设P(x 0,y 0)为椭圆上一点,且直线PA 的斜率k 1∈(-2,-1),试求直线PB 的斜率k 2的取值范围.2.已知椭圆C 1:x 2a 2+y 2b 2=1(a>b≥1)的离心率为22,其右焦点到直线2ax +by -2=0的距离为23.(1)求椭圆C 1的方程;(2)过点P ⎝⎛⎭⎪⎫0,-13的直线l 交椭圆C 1于A ,B 两点.证明:以AB 为直径的圆恒过定点.3.设椭圆C :x 2a 2+y 2b 2=1(a>b>0),定义椭圆C 的“相关圆”方程为x 2+y 2=a 2b 2a 2+b2.若抛物线y 2=4x的焦点与椭圆C 的一个焦点重合,且椭圆C 短轴的一个端点和其两个焦点构成直角三角形. (1)求椭圆C 的方程和“相关圆”E 的方程;(2)过“相关圆”E 上任意一点P 作“相关圆”E 的切线l 与椭圆C 交于A ,B 两点,O 为坐标原点.证明:∠AOB 为定值.4.已知椭圆Ω:x 2a 2+y 2b 2=1(a>b>0且a ,b 2均为整数)过点⎝⎛⎭⎪⎫2,62,且右顶点到直线l :x=4的距离为2.(1)求椭圆Ω的方程;(2)过椭圆的右焦点F 作两条互相垂直的直线l 1,l 2,l 1与椭圆Ω交于点A ,B ,l 2与椭圆Ω交于点C ,D.求四边形ACBD 面积的最小值.5.已知斜率为k 的直线l 与椭圆C :x 24+y23=1交于A ,B 两点,线段AB 的中点为M(1,m)(m>0).(1)证明:k<-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP ―→+FA ―→+FB ―→=0.证明:|FA ―→|,|FP ―→|,|FB ―→|成等差数列,并求该数列的公差.6.已知圆C :x 2+y 2+2x -2y +1=0和抛物线E :y 2=2px(p>0),圆心C 到抛物线焦点F 的距离为17. (1)求抛物线E 的方程;(2)不过原点O 的动直线l 交抛物线于A ,B 两点,且满足OA ⊥OB ,设点M 为圆C 上一动点,求当动点M 到直线l 的距离最大时的直线l 的方程.7.已知椭圆x 2a 2+y2b 2=1(a>b>0)的左、右焦点分别为F 1和F 2,由M(-a ,b),N(a ,b),F 2和F 1这4个点构成了一个高为3,面积为33的等腰梯形. (1)求椭圆的方程;(2)过点F 1的直线和椭圆交于A ,B 两点,求△F 2AB 面积的最大值.8.已知椭圆C 的两个焦点为F 1(-1,0),F 2(1,0),且经过E ⎝ ⎛⎭⎪⎫3,32. (1)求椭圆C 的方程;(2)过点F 1的直线l 与椭圆C 交于A ,B 两点(点A 位于x 轴上方),若AF 1―→=λF 1B ―→,且2≤λ<3,求直线l 的斜率k 的取值范围.9.已知椭圆的离心率为,且点P(2,1)为椭圆上一点.(1)求椭圆的标准方程;(2)若直线的斜率为,直线与椭圆C 交于A,B 两点,求△PAB 的面积的最大值.10.平面直角坐标系xOy 中,椭圆C :12222=+by a x (a>b>0)的离心率是23,抛物线E :x 2=2y 的焦点F 是C 的一个顶点.(1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D.直线OD 与过P 且垂直于x 轴的直线交于点M. ①求证:点M 在定直线上;②直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求21S S 的最大值及取得最大值时点P 的坐标.答案解析1.解:(1)由题意得c=3,根据2a +2c=16,得a=5.结合a 2=b 2+c 2,解得a 2=25,b 2=16.所以椭圆的方程为x 225+y216=1.(2)由⎩⎪⎨⎪⎧x 2a 2+y2b2=1,y =24x ,得⎝⎛⎭⎪⎫b 2+18a 2x 2-a 2b 2=0.设A(x 1,y 1),B(x 2,y 2).所以x 1+x 2=0,x 1x 2=-a 2b2b 2+18a2,由AB ,F 1F 2互相平分且共圆,易知,AF 2⊥BF 2,因为F 2A ―→=(x 1-3,y 1),F 2B ―→=(x 2-3,y 2),所以F 2A ―→·F 2B ―→=(x 1-3)(x 2-3)+y 1y 2=⎝ ⎛⎭⎪⎫1+18x 1x 2+9=0.即x 1x 2=-8,所以有-a 2b 2b 2+18a2=-8,结合b 2+9=a 2,解得a 2=12,所以离心率e=32. (3)由(2)的结论知,椭圆方程为x 212+y23=1,由题可知A(x 1,y 1),B(-x 1,-y 1),k 1=y 0-y 1x 0-x 1,k 2=y 0+y 1x 0+x 1,所以k 1k 2=y 20-y 21x 20-x 21,又y 20-y 21x 20-x 21=3⎝ ⎛⎭⎪⎫1-x 2012-3⎝ ⎛⎭⎪⎫1-x 2112x 20-x 21=-14,即k 2=-14k 1,由-2<k 1<-1可知,18<k 2<14. 即直线PB 的斜率k 2∈⎝ ⎛⎭⎪⎫18,14. 2.解:(1)由题意,e=c a =22,e 2=a 2-b 2a 2=12,a 2=2b 2.所以a=2b ,c=b.又|2ac -2|4a 2+b2=23,a>b≥1,所以b=1,a 2=2, 故椭圆C 1的方程为x 22+y 2=1.(2)证明:当AB ⊥x 轴时,以AB 为直径的圆的方程为x 2+y 2=1.当AB ⊥y 轴时,以AB 为直径的圆的方程为x 2+⎝ ⎛⎭⎪⎫y +132=169,由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+⎝ ⎛⎭⎪⎫y +132=169,可得⎩⎪⎨⎪⎧x =0,y =1,由此可知,若以AB 为直径的圆恒过定点,则该定点必为Q(0,1).下证Q(0,1)符合题意.当AB 不垂直于坐标轴时,设直线AB 方程为y=kx -13,A(x 1,y 1),B(x 2,y 2).由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx -13,得(1+2k 2)x 2-43kx -169=0,由根与系数的关系得,x 1+x 2=4k+2k2,x 1x 2=-16+2k2, ∴QA ―→·QB ―→=(x 1,y 1-1)·(x 2,y 2-1) =x 1x 2+(y 1-1)(y 2-1)=x 1x 2+⎝⎛⎭⎪⎫kx 1-43⎝ ⎛⎭⎪⎫kx 2-43 =(1+k 2)x 1x 2-43k(x 1+x 2)+169=(1+k 2)-16+2k 2-43k·4k +2k 2+169 =-16-16k 2-16k 2++2k 2+2k2=0, 故QA ―→⊥QB ―→,即Q(0,1)在以AB 为直径的圆上. 综上,以AB 为直径的圆恒过定点(0,1). 3.解:(1)因为抛物线y 2=4x 的焦点(1,0)与椭圆C 的一个焦点重合,所以c=1. 又椭圆C 短轴的一个端点和其两个焦点构成直角三角形,所以b=c=1,故椭圆C 的方程为x 22+y 2=1,“相关圆”E 的方程为x 2+y 2=23.(2)证明:当直线l 的斜率不存在时,不妨设直线AB 的方程为x=63,A ⎝ ⎛⎭⎪⎫63,63,B ⎝ ⎛⎭⎪⎫63,-63,则∠AOB=π2. 当直线l 的斜率存在时,设其方程为y=kx +m ,A(x 1,y 1),B(x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,得x 2+2(kx +m)2=2,即(1+2k 2)x 2+4kmx +2m 2-2=0,Δ=16k 2m 2-4(1+2k 2)(2m 2-2)=8(2k 2-m 2+1)>0,即2k 2-m 2+1>0, ⎩⎪⎨⎪⎧x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2.因为直线l 与“相关圆”E 相切,所以|m|1+k2=m21+k 2=23,即3m 2=2+2k 2, 所以x 1x 2+y 1y 2=(1+k 2)x 1x 2+km(x 1+x 2)+m2=+k22-1+2k2-4k 2m 21+2k 2+m 2=3m 2-2k 2-21+2k 2=0,所以OA ―→⊥OB ―→,所以∠AOB=π2. 综上,∠AOB=π2,为定值.4.解:(1)由题意,得2a 2+32b 2=1,且|4-a|=2,若a=2,则b 2=3;若a=6,则b 2=2717(舍去),所以椭圆Ω的方程为x 24+y23=1.(2)由(1)知,点F 的坐标为(1,0).当l 1,l 2中有一条直线的斜率不存在时,可得|AB|=4,|CD|=3或者|AB|=3,|CD|=4,此时四边形ACBD 的面积S=12×4×3=6.当l 1,l 2的斜率均存在时,设直线l 1的斜率为k ,则k≠0,且直线l 2的斜率为-1k.直线l 1:y=k(x -1),l 2:y=-1k(x -1).联立⎩⎪⎨⎪⎧y =-,x 24+y23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0.由直线l 1过椭圆内的点,知Δ>0恒成立,设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2.|AB|=1+k 2|x 1-x 2|=1+k 21+x 22-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫8k 23+4k 22-4×4k 2-123+4k 2=2+3+4k 2.以-1k 代替k ,得|CD|=2+4+3k2. 所以四边形ACBD 的面积S=12|AB|·|CD|=2+2+4k 2+3k 2≥2+2⎣⎢⎡⎦⎥⎤+4k 2++3k 222=2+2⎣⎢⎡⎦⎥⎤2+22=28849, 当且仅当k 2=1,即k=±1时等号成立.由于28849<6,所以四边形ACBD 面积的最小值为28849.5.证明:(1)设A(x 1,y 1),B(x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k=-34m .①由题设得0<m<32,故k<-12.(2)由题意得F(1,0).设P(x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0).由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m<0.又点P 在C 上,所以m=34,从而P ⎝ ⎛⎭⎪⎫1,-32,|FP ―→|=32, 于是|FA ―→|=1-2+y 21=1-2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12. 同理|FB ―→|=2-x 22.所以|FA ―→|+|FB ―→|=4-12(x 1+x 2)=3.故2|FP ―→|=|FA ―→|+|FB ―→|,即|FA ―→|,|FP ―→|,|FB ―→|成等差数列. 设该数列的公差为d ,则2|d|=||FB ―→|-|FA ―→||=12|x 1-x 2|=121+x 22-4x 1x 2.② 将m=34代入①得k=-1,所以l 的方程为y=-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d|=32128.所以该数列的公差为32128或-32128.6.解:(1)x 2+y 2+2x -2y +1=0可化为(x +1)2+(y -1)2=1,则圆心C 的坐标为(-1,1). ∵F ⎝ ⎛⎭⎪⎫p 2,0,∴|CF|= ⎝ ⎛⎭⎪⎫p 2+12+-2=17,解得p=6. ∴抛物线E 的方程为y 2=12x.(2)显然直线l 的斜率非零,设直线l 的方程为x=my +t(t≠0),A(x 1,y 1),B(x 2,y 2).由⎩⎪⎨⎪⎧y 2=12x ,x =my +t ,得y 2-12my -12t=0,Δ=(-12m)2+48t=48(3m 2+t)>0, ∴y 1+y 2=12m ,y 1y 2=-12t ,由OA ⊥OB ,得OA ―→·OB ―→=0,∴x 1x 2+y 1y 2=0,即(m 2+1)y 1y 2+mt(y 1+y 2)+t 2=0,整理可得t 2-12t=0,∵t≠0,∴t=12,满足Δ>0,符合题意. ∴直线l 的方程为x=my +12,故直线l 过定点P(12,0).∴当CP ⊥l ,即线段MP 经过圆心C(-1,1)时,动点M 到动直线l 的距离取得最大值,此时k CP =1-0-1-12=-113,得m=113,此时直线l 的方程为x=113y +12,即13x -y -156=0.7.解:(1)由已知条件,得b=3,且2a +2c2×3=33,∴a +c=3.又a 2-c 2=3,∴a=2,c=1,∴椭圆的方程为x 24+y 23=1.(2)显然直线的斜率不能为0,设直线的方程为x=my -1,A(x 1,y 1),B(x 2,y 2). 联立方程⎩⎪⎨⎪⎧x 24+y 23=1,x =my -1,消去x 得,(3m 2+4)y 2-6my -9=0.∵直线过椭圆内的点,∴无论m 为何值,直线和椭圆总相交. ∴y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4.∴S △F 2AB=12|F 1F 2||y 1-y 2|=|y 1-y 2|=1+y 22-4y 1y 2=12m 2+12+2=4m 2+1⎝⎛⎭⎪⎫m 2+1+132=41m 2+1+23+12+,令t=m 2+1≥1,设f(t)=t +19t ,易知t ∈⎝ ⎛⎭⎪⎫0,13时,函数f(t)单调递减,t ∈⎝ ⎛⎭⎪⎫13,+∞时,函数f(t)单调递增, ∴当t=m 2+1=1,即m=0时,f(t)取得最小值,f(t)min =109,此时S △F 2AB 取得最大值3.8.解:(1)由⎩⎪⎨⎪⎧2a =|EF 1|+|EF 2|,a 2=b 2+c 2,c =1,解得⎩⎨⎧a =2,c=1,b =3,所以椭圆C 的方程为x 24+y23=1.(2)由题意得直线l 的方程为y=k(x +1)(k>0),联立方程⎩⎪⎨⎪⎧y =+,x 24+y23=1,整理得⎝ ⎛⎭⎪⎫3k 2+4y 2-6k y -9=0,Δ=144k 2+144>0,设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=6k 3+4k 2,y 1y 2=-9k23+4k2,又AF 1―→=λF 1B ―→,所以y 1=-λy 2,所以y 1y 2=-λ-λ2(y 1+y 2)2,则-λ2λ=43+4k 2,λ+1λ-2=43+4k2,因为2≤λ<3,所以12≤λ+1λ-2<43,即12≤43+4k 2<43,且k>0,解得0<k≤52. 故直线l 的斜率k 的取值范围是⎝ ⎛⎦⎥⎤0,52.9.解:10.(2)①证明:设P(m,0.5m2)(m>0),由x2=2y,可得y′=x,所以直线l的斜率为m,因此直线l的方程为y-0.5m2=m(x-m).即y=mx-0.5m2.。
2020年高考山东版高考理科数学 10.4 圆锥曲线的综合问题
(1)求C的方程; (2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的 中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.
解析
(1)由题意有
a2 a
b2
= 2 2
, a42 + b22 =1,解得a2=8,b2=4.
所以C的方程为x 2 +y 2 =1.
84
(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).将y=kx+b代
入x 2 +y 2 =1得(2k2+1)x2+4kbx+2b2-8=0.
84
故xM=x1 x2
2
= 2kb
2k 2 1
,yM=k·xM+b=2 k 2b1
.
于是直线OM的斜率kOM=xy MM =-2 1k ,即kOM·k=-12 .
消去y得(4k2+3)x2-8k2x+4k2-12=0,
得xM= 12 · 4k82k2
3
= 4k 2
4k 2
3
,yM=k(xM-1)=-4 k32k
3
,
同理可得xN= 4
4 3k
2
,yN=- 1 (xN-1)= 3k
k
4 3k
2
,
若M,N关于x轴对称后得到M',N',
则得到的直线M'N'与MN关于x轴对称,
是k>0,k≠3.
由(1)得OM的方程为y=- 9 x.
k
设点P的横坐标为xP.
由
y
9 k
2020年理科数学高考大题专项5 直线与圆锥曲线压轴大题
考情分析 必备知识
2.直线与圆锥曲线相交时的弦长问题
(1)斜率为 k(k≠0)的直线与圆锥曲线交于两点 P1(x1,y1),P2(x2,y2),
则所得弦长|P1P2|= 1 + ������2·|x1-x2|或|P1P2|= 1 + ���1���2|y1-y2|. (2)当斜率 k 不存在时,可求出交点坐标,直接计算(利用两点间距
则
S=2������△������������������1 =2×
1 2
×|F1F2|×|y1-y2|=2×
3������2���+��� 4=24×
3������������22++41.
设 t= ������2 + 1,则 m2=t2-1(t≥1),
所以 S=24× 3������2������+1=24× 3������1+1������,因为 t≥1,所以 3t+1������ ≥4, 所以 S∈(0,6],所以四边形 AMBF1 面积的最大值为 6.
考情概览·备考定向
-16-
题型一
题型二
题型三
解 (1)设切点为 Q x0,���4���02 ,y'=12x,则 k1=���2���0,
∴Q 点处的切线方程为 y-���4���02 = ���2���0(x-x0). ∵直线 l 过点 P,∴-���4���02 = ���2���0(a-x0),解得 x0=2a 或 x0=0.
考情分析 必备知识
5.通径:过椭圆、双曲线、抛物线的焦点垂直于焦点所在坐标轴
的弦称为通径,椭圆与双曲线的通径长为
2������2 ������
,过椭圆焦点的弦中通
2020年高考全国ⅰ、ⅱ、ⅲ卷数学(理)圆锥曲线解答题对比
1.(2020•新课标Ⅰ)已知A ,B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G 为E 的上顶点,8AG GB =.P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.2.(2020•新课标Ⅱ)已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C ,D两点,且4||||3CD AB =. (1)求1C 的离心率;(2)设M 是1C 与2C 的公共点.若||5MF =,求1C 与2C 的标准方程.3.(2020•新课标Ⅲ)已知椭圆222:1(05)25x y C m m+=<<,A ,B 分别为C的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ ∆的面积.参考答案与试题解析1.(2020•新课标Ⅰ)已知A,B分别为椭圆222:1(1)xE y aa+=>的左、右顶点,G为E的上顶点,8AG GB=.P 为直线6x=上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.【解答】解:如图示:(1)由题意(,0)A a-,(,0)B a,(0,1)G,∴(,1)AG a=,(,1)GB a=-,218AG GB a=-=,解得:3a=,故椭圆E的方程是2219xy+=;(2)由(1)知(3,0)A-,(3,0)B,设(6,)P m,则直线PA的方程是(3)9my x=+,联立22222219(9)69810(3)9xym x m x mmy x⎧+=⎪⎪⇒+++-=⎨⎪=+⎪⎩,由韦达定理2222981327399c cm mx xm m--+-=⇒=++,代入直线PA的方程为(3)9my x=+得:269cmym=+,即22327(9mCm-++,26)9mm+,直线PB的方程是(3)3my x=-,联立方程22222219(1)6990(3)3x y m x m x m m y x ⎧+=⎪⎪⇒+-+-=⎨⎪=-⎪⎩,由韦达定理22229933311D D m m x x m m --=⇒=++, 代入直线PB 的方程为(3)3m y x =-得221D my m -=+,即2233(1m D m -+,22)1mm -+,∴直线CD 的斜率243(3)C D CD C D y y mK x x m -==--, ∴直线CD 的方程是22222433()13(3)1m m m y x m m m ---=-+-+,整理得:243()3(3)2m y x m =--, 故直线CD 过定点3(2,0).【点评】本题考查了求椭圆的方程问题,考查直线和椭圆的关系以及直线方程问题,是一道综合题.2.(2020•新课标Ⅱ)已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C ,D两点,且4||||3CD AB =. (1)求1C 的离心率;(2)设M 是1C 与2C 的公共点.若||5MF =,求1C 与2C 的标准方程. 【解答】解:(1)因为F 为1C 的焦点且AB x ⊥轴,可得(,0)F c ,22||b AB a=,设2C 的标准方程为22(0)y px p =>, 因为F 为2C 的焦点且CD x ⊥轴,所以(2pF ,0),||2CD p =, 因为4||||3CD AB =,1C ,2C 的焦点重合,所以224223p c bp a ⎧=⎪⎪⎨⎪=⎪⎩,消去p ,可得2843b c a=,所以232ac b =,所以22322ac a c =-, 设1C 的离心率为e ,由ce a=,则22320e e +-=, 解得1(22e =-舍去),故1C 的离心率为12;(2)由(1)可得2a c =,3b c =,2p c =,所以22122:143x y C c c+=,22:4C y cx =,联立两曲线方程,消去y ,可得22316120x cx c +-=,所以(32)(6)0x c x c -+=,解得23x c =或6x c =-(舍去),从而25||5233p MF x c c c =+=+==, 解得3c =,所以1C 和2C 的标准方程分别为2213627x y +=,212y x =.【点评】本题考查抛物线和椭圆的定义、方程和性质,考查直线和椭圆的位置关系,考查方程思想和运算能力,属于中档题.3.(2020•新课标Ⅲ)已知椭圆222:1(05)25x y C m m+=<<15,A ,B 分别为C的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ ∆的面积.【解答】解:(1)由c e a =得2221b e a =-,即21511625m =-,22516m ∴=,故C 的方程是:221612525x y +=;(2)由(1)(5,0)A -,设(,)P s t ,点(6,)Q n , 根据对称性,只需考虑0n >的情况, 此时55s -<<,504t<, ||||BP BQ =,∴有222(5)1s t n -+=+①,又BP BQ ⊥,50s nt ∴-+=②,又221612525s t +=③, 联立①②③得312s t n =⎧⎪=⎨⎪=⎩或318s t n =-⎧⎪=⎨⎪=⎩,当312s t n =⎧⎪=⎨⎪=⎩时,则(3,1)P ,(6,2)Q ,而(5,0)A -, 则(8,1)AP =,(11,2)AQ =,15|82111|22APQ S ∆∴=⨯-⨯=, 同理可得当318s t n =-⎧⎪=⎨⎪=⎩时,52APQ S ∆=,综上,APQ ∆的面积是52. 【点评】本题考查求椭圆方程以及了直线和椭圆的关系,考查转化思想,是一道综合题.。
2020届高考数学突破圆锥曲线压轴题专题专题03 最值问题(精讲篇)
专题03 最值问题作者:上海市特级教师 文卫星最值(含范围)问题是解析几何中常见的 问题之一,其基本解题方法是把所求量表示成某个变量的函数,利用二次函数或函数单调性 求最值或范围,也可以利用基本不等式,有时 也会利用几何量的有界性确定范围. 最值问题不仅解答题中分量较大,而且客 观题中也时常出现.求最值的思维导图如右 最大最小为最值 单调二次不等式 几何有界也有用 具体问题再审视思路点拨解1 显然两条直线的斜率都存在且不为0,抛物线2:4C y x =的焦点(1,0)F .设1:(1)l y k x =-,由2(1)4y k x y x =-⎧⎨=⎩,,消元y 得2222(24)0k x k x k -++=,所以22224424A B k AB x x p k k+=++=+=+, 同理,244DE k =+,2214()816AB DE k k+=++≥,当且仅当1k =±时取等号.选(A ). 解2 设直线1l 的倾斜角为α,则2l 的倾斜角为2+πα,因为22sin p AB =α,22sin ()2pDE =+πα, 例1 已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为(A )16 (B )14 (C )12 (D )10 用参数表示该量求 某 量 最 值 化简、换元转化为可以利用函数单调性、二次函数、基本不等式、导数、几何图形有界等方法求最值所以2244sin sin ()2AB DE +=++παα 2222444sin cos sin cos =+=αααα21616sin 2=≥α, 当且仅当4=πα或34=πα时取等号.选(A ).注1 过抛物线22y px =的焦点弦长22||sin p AB θ=.注2 也可以设1:1l x ty =+,则214x ty y x =+⎧⎨=⎩,,消取x 得2440y ty --=,所以2()444A B A B AB x x p t y y t =++=++=+,同理,244DE t =+, 2214()816AB DE t t +=++≥,当且仅当1t =±时取等号.思路点拨当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=o,则tan 60a b ≥=o≥,得01m <≤. 当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=o,则tan 60ab≥=o≥,得9m ≥. 故m 的取值范围为(0,1][9,)+∞U .思路点拨要求两个绝对值之和的最小值,就要去掉绝对值,需要分类讨论.怎么确定分类标准?就是令绝对值内部的式子为0.比如,若令220x y +-=,则直线220x y +-=与圆相交,把圆分成两部分.解1 原问题可以转化为如下的非线性规划问题:可行域为单位圆(含内部)的任意一点,直线22y x =-将可行域分成两个部分,不妨将左下方的区域(大弓形区域)记作Ⅰ,将右上方的区域(小弓形区域)记作Ⅰ.因为单位圆221x y +≤及其内部在直线630x y --=下方,所以630x y -->,所以(,)|22||63|f x y x y x y =+-+--42,22,834,22.x y y x x y y x +-≥-⎧=⎨--<-⎩ 直线22y x =-与单位圆221x y +=交点10E ,(),3455F (,).设1242,834z x y z x y =+-=--,分别作直线13,24y x y x ==-并平移,则1242,834z x y z x y =+-=--都在点3455F (,)取得最小值3.所以2263x y x y +-+--的最小值是3.解2 (,)|22||63|f x y x y x y =+-+--|(22)(63)||348|x y x y x y ≥+----=+-,(当220x y +-≤时取等号).设cos ,sin x r y r θθ==,其中01,02r θπ≤≤≤≤. 则 |348||3cos 4sin 8|x y r r θθ+-=+-|5sin()8|85853r r θϕ=+-≥-≥-=.其中ϕ由34sin ,cos 55ϕϕ==确定,等号当且仅当1,sin+=1r θϕ=(),即3455x ,y ==.另外,当220x y +->时,2263x y x y +-+--3>. 所以2263x y x y +-+--的最小值是3.思路点拨在平面直角坐标系中画出可行域如图,22x y +的几何意义为可行域内的点到原点距离的平方.xy BA –1–2–3–412341234例4 已知实数,x y 满足240,220,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩则22x y +的取值范围为____.是 .过原点O 作直线220x y +-=的垂线,垂足为A ,可以看出图中A 点距离原点最近,此时距离为原点O 到直线220x y +-=的距离,d ==()22min45x y +=, 图中B 点距离原点最远,B 点为240x y -+=与330x y --=交点,则()2,3B ,则()22max13xy +=.所以,22x y +的取值范围为4[,13].5思路点拨第(2)题的关键是选择适当的参数表示||||PA PQ ⋅,可以用直线AP 的斜率为k 为参数,需要求出Q 的坐标,再分别求出||||PA PQ 、的表达式,计算量较大.也可以设2(,)P t t ,以t 为参数,从向量的角度得到||||||||cos AP PQ AP PB BPQ ⋅=⋅∠u u u r u u u r u u u r u u u r PA PQ =-⋅u u u r u u u r+PA PB BQ PA PB =-⋅-⋅u u u r u u u r u u u r u u u r u u u r ()=.转化为t 函数,再求最大值. 满分解答(1)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-.(2)解1设直线AP 的斜率为k ,则 直线AP 的方程为y =kx +12k +14,BQ 的方程为y =13924x k k -++.联立直线AP 与BQ 的方程1102493042kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩,,解得点222234981(,)2244k k k k Q k k +-++++.因为1||)1)2PA x k =+=+,2||)Q PQ x x =-=,所以3||||(1)(1)PA PQ k k ⋅=--+.令3()(1)(1)f k k k =--+,因为2()(42)(1)f k k k '=--+,所以()f k 在区间1(1,)2-上单调递增,1(,1)2上单调递减,因此当12k =时,||||PA PQ ⋅取得最大值2716. 解2 用向量法,令2(,)P t t ,所以||||||||cos AP PQ AP PB BPQ ⋅=⋅∠u u u r u u u r u u u r u u u r PA PQ PA PB =-⋅=-⋅u u u r u u u r u u u r u u u r221319()()()()2244t t t t =+-+--4233216t t t =-+++222127(1)(1)216t t =----+2716≤. 当且仅当1t =时等号成立.第(2)题可设SOMθ∠=,则2SOTθ∠=,则23sin23ABMCOM OC ABθ==+.223OCAB=+⋅,只要求sinθ的最小值,即只要求OCAB的最小值.(2) 设SOMθ∠=,则2SOTθ∠=,且223sin2233ABMCOCOM OC ABABθ===++⋅.设1122(,),(,)A x yB x y,联立方程22112xyy k x⎧+=⎪⎪⎨⎪=-⎪⎩,得2211(42)10k x x+--=,由题意知0∆>,且1121222111,212(21)x x x x k k +==-++,故12212AB x k =-=+.联立方程221124x y y x k ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此OC ==.注 211k OCAB +=22=令21112,1(0,1)t k t t =+>∈,,则211=2t k -,代入上式整理得OC AB =当且仅当112t=,即2t =时OC AB的最小值23,此时12k =±.思路点拨第(1)题直接计算可得。
2020年高考数学试题分项版解析专题10 圆锥曲线(学生版) 理
2020年高考试题分项版解析数学(理科)专题10 圆锥曲线(学生版)一、选择题:1.(2020年高考新课标全国卷理科4)设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30o 的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 452.(2020年高考新课标全国卷理科8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 83. (2020年高考福建卷理科8)双曲线22214x y b-=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A .5B .24C .3D .56.(2020年高考安徽卷理科9)过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =,则AOB ∆的面积为( )()A 22 ()B 2 ()C 322()D 228. (2020年高考四川卷理科8)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
若点M 到该抛物线焦点的距离为3,则||OM =( ) A 、22 B 、23 C 、4 D 、259.(2020年高考全国卷理科3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )A .2211612x y += B .221168x y += C .22184x y += D .221124x y +=二、填空题:1. (2020年高考江苏卷8)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率为5,则m 的值为 .2.(2020年高考北京卷理科12)在直角坐标系xOy 中,直线l 过抛物线=4x 的焦点F.且与该撇物线相交于A 、B 两点.其中点A 在x 轴上方。
专题20 圆锥曲线的综合问题(解析版)
专题20 圆锥曲线的综合问题命题规律内 容典 型1 圆锥曲线中的弦长(面积)问题 2020年高考全国Ⅲ卷理数20 2圆锥曲线中的定点问题 2020年高考全国Ⅲ卷理数20 3 圆锥曲线中的最值问题 2020年高考浙江卷21 4 圆锥曲线中的定值问题 2020•山东高考,22 5 圆锥曲线中的取值范围问题 2020•上海高考,20 6圆锥曲线中的证明问题2018年高考全国Ⅲ理数命题规律一 圆锥曲线中的弦长(面积)问题【解决之道】圆锥曲线中的弦长(面积)问题,一般利用根与系数的关系采用“设而不求”“整体代入”等解法. 【三年高考】1.【2020年高考全国Ⅲ卷理数20】已知椭圆()222:10525x y C m m +=<<,,A B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且,BP BQ BP BQ =⊥,求△APQ 的面积.【解析】解法一:(1)由c e a =,得2221b e a =-,即21511625m =-,∴22516m =,故C 的方程为221612525x y +=. (2)设点P 的坐标为(,)s t ,点Q 的坐标为(6,)n ,根据对称性,只需考虑0n >的情形,此时55s -<<,504t<. ∵||||BP BQ =,∴有222(5)1s t n -+=+ ①. 又∵BP BQ ⊥,∴50s nt -+= ②.又221612525s t +=③. 联立①、②、③,可得,312s t n =⎧⎪=⎨⎪=⎩或318s t n =-⎧⎪=⎨⎪=⎩.当312s t n =⎧⎪=⎨⎪=⎩时,(8,1)AP =,(11,2)AQ =,∴22215()|82111|22APQ S AP AQ AP AQ =⋅-⋅=⨯-⨯=△.同理可得,当318s t n =-⎧⎪=⎨⎪=⎩时,52APQ S =△.综上所述,可得APQ △的面积为52.解法二:(1)222:1(05)25x y C m m +=<<,∴5a =,b m =,根据离心率4c e a ====,解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=.(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,根据题意画出图形,如图,||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=. 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-, ①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图,(5,0)A-,(6,2)Q,可求得直线AQ的直线方程为:211100x y-+=,根据点到直线距离公式可得P到直线AQ的距离为:5d===,根据两点间距离公式可得:AQ ==∴APQ面积为:1522⨯=.②当P点为(3,1)-时,故5+38MB==,PMB BNQ≅△△,∴||||8MB NQ==,可得:Q点为(6,8),画出图象,如图,(5,0)A-,(6,8)Q,可求得直线AQ的直线方程为:811400x y-+=,根据点到直线距离公式可得P 到直线AQ的距离为:d===,根据两点间距离公式可得:AQ==∴APQ面积为:1522=.综上所述,APQ面积为:52.2.【2020年高考天津卷18】已知椭圆22221(0)x ya ba b+=>>的一个顶点为(0,3)A-,右焦点为F,且||||OA OF=,其中O为原点.(Ⅲ)求椭圆的方程;(Ⅲ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【解析】(Ⅲ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,所以椭圆的方程为221189x y +=.(Ⅲ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++,所以点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭, 因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121kk k -⎛⎫ ⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0,所以直线CP 的斜率为222303216261121CP k kk k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-.3.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若,求|AB |. 【解析】设直线()()11223:,,,,2l y x t A x y B x y =+. 323AP PB =(1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-.(2)由3AP PB =可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||AB =. 4.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.【答案】(1)22154x y +=;(2或. 【解析】(1)设椭圆的半焦距为c ,依题意,24,5c b a ==,又222a b c =+,可得a =2,b =1c =.所以,椭圆的方程为22154x y +=.(2)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠, 又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P k x k =-+,代入2y kx =+得2281045P k y k-=+, 进而直线OP 的斜率24510P p y k x k-=-. 在2y kx =+中,令0y =,得2M x k=-. 由题意得()0,1N -,所以直线MN 的斜率为2k -. 由OP MN ⊥,得2451102k k k-⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而k =±所以,直线PB的斜率为5或5-. 5.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 232==, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =.又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.6.【2018年高考全国Ⅱ卷理数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【答案】(1)1y x =-;(2)22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 【解析】(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->. 设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+>,故122224kx k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=.由题设知22448k k +=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.7..【2018年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.【答案】(1)椭圆C 的方程为2214x y +=,圆O 的方程为223x y +=;(2)①;②y =+. 【解析】(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b+=>>.又点1)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=,所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y ==.因此点P的坐标为.②因为三角形OAB,所以1 2AB OP ⋅=,从而AB =. 设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为. 综上,直线l的方程为y =+.8.【2018年高考天津卷理数】设椭圆22221x y a b+=(a >b >0)的左焦点为F ,上顶点为B.已知椭圆的离心率为A 的坐标为(,0)b,且FB AB ⋅= (1)求椭圆的方程;(2)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点),求k 的值. 【答案】(1)22194x y +=;(2)111228或. 【解析】(1)设椭圆的焦距为2c ,由已知有2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB =,由FB AB ⋅=ab =6, 从而a =3,b =2,所以椭圆的方程为22194x y +=.(2)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-. 又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ =.由AQ AOQ PQ=∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =. 易知直线AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k +1)=两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以k 的值为111228或. 命题规律二 圆锥曲线中定点问题【解决之道】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 【三年高考】1.【2020年高考全国Ⅰ卷理数20】已知,A B 分别为椭圆()222:11x E y a a+=>的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线6x =上的动点,PA 与E 的另一交点为,C PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点. 【解析】(1)依据题意作出如下图像:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G ,∴(),1AG a =,(),1GB a =-,∴218AG GB a ⋅=-=,∴29a =,∴椭圆方程为:2219x y +=. (2)证明:设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+,联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+,将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+,∴点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭, ∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭,整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭,故直线CD 过定点3,02⎛⎫ ⎪⎝⎭.2.【2019年高考全国Ⅲ卷理数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 【答案】(1)见详解;(2)3或 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- .整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E到直线AB的距离,则12d d ==因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±. 当t =0时,S =3;当1t =±时,S =因此,四边形ADBE 的面积为3或3.【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点. 【答案】(1)抛物线C 的方程为24x y =-,准线方程为1y =;(2)见解析.【解析】(1)由抛物线2:2C x py =-经过点(2,1)-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =. (2)抛物线C 的焦点为(0,1)F -. 设直线l 的方程为1(0)y kx k =-≠. 由21,4y kx x y=-⎧⎨=-⎩得2440x kx +-=. 设()()1122,,,M x y N x y ,则124x x =-. 直线OM 的方程为11y y x x =. 令1y =-,得点A 的横坐标11A x x y =-. 同理得点B 的横坐标22B x x y =-. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=---=--- ⎪ ⎪⎝⎭⎝⎭,21212(1)x x DA DB n y y ⋅=++ 2122212(1)44x x n x x =++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭ 21216(1)n x x =++ 24(1)n =-++.令0DA DB ⋅=,即24(1)0n -++=,则1n =或3n =-. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)-.命题规律三 圆锥曲线中的最值问题【解决之道】圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解. 【三年高考】1.【2020年高考江苏卷18】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为1F 、2F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,直线1AF 与椭圆E 相交于另一点B .(1)求12AF F ∆的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB ∆与MAB ∆的面积分别为12,S S ,若213S S =,求点M 的坐标.【解析】(1)12AF F ∆的周长226l a c =+=.(2)由椭圆方程得3(1,)2A ,设点(,0)P t ,则直线AP 方程为32()1y x t t =--,令24a x c ==得361232 12(1)Q t t y t t --==--,即123(4,)22t Q t --,123(4,)22t QP t t -=--, 224(2)44OP QP t t t ⋅=-=--≥-,即OP QP ⋅的最小值为4-.(3)设 O 到直线AB 的距离为1d ,M 到直线AB 的距离为2d ,若213S S =,则2111||||322AB d AB d ⨯⨯=⨯⨯⨯,即213d d =, 由(1)可得直线AB 方程为3(1)4y x =+,即3430x y -+=,∴135d =,295d =.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为340x y m -+=,与直线AB 的距离为95,95=,即6m =-或12.当6m =-时,直线l 为3460x y --=,即3(2)4y x =-, 联立223(2)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩可得(2)(72)0x x -+=,即20M N x y =⎧⎨=⎩或27127M Nx y =⎧⎪-=⎨-⎪⎪⎪⎩, ∴(2,0)M 或212(,)77--. 当12m =时,直线l 为34120x y -+=,即3(4)4y x =+, 联立223(4)4143y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩可得221182404x x ++=,9(3656)0∆=⨯-<,∴无解. 综上所述,M 点坐标为(2,0)或212(,)77--. 2.【2020年高考浙江卷21】如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅲ)若116=p ,求抛物线2C 的焦点坐标; (Ⅲ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值. 【解析】(Ⅲ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅲ)设()()()112200,,,,,,:A x y B x y M m l x y x y λ=+由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩ 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++ 由M 在抛物线上,∴()222222244222m pm mp λλλλλ=⇒=+++ 22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩ 12101021202222222y y p x x y m y m p mmx p m λλλλλλ∴+=∴+=+++=+∴=+-+由22221{42,22x y x px y px+=⇒+==即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+18p ≥,21160p ≤,p ≤ ∴p的最大值为40,此时(55A .3.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =.记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k=+.从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+. 所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =||PG =△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k ,则由k >0得t ≥2,当且仅当k =1时取等号.因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.4.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为1+G (2,0).【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23Ac t t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,12212221343242S m S m m m m m =-=--=+++++. 当m =时,12S S 取得最小值1+G (2,0). 命题规律四 圆锥曲线中的定值问题【解决之道】圆锥曲线中定值问题的特点及两大解法(1)特点:待证几何量不受动点或动线的影响而有固定的值. (2)两大解法:①从特殊入手,求出定值,再证明这个值与变量无关;②引起变量法:其解题流程为【三年高考】1.(2020•山东高考,22)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,且过点(2,1)A .(1)求C 的方程;(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得||DQ 为定值. 【解析】(1)离心率c e a ==a ∴=,又222a b c =+, b c ∴=,a =,把点(2,1)A 代入椭圆方程得,224112b b+=,解得23b =, 故椭圆C 的方程为22163x y +=.(2)①当直线MN 的斜率存在时,设其方程为y kx m =+,联立22163y kx mx y =+⎧⎪⎨+=⎪⎩,得222(21)4260k x kmx m +++-=,由△222(4)4(21)(26)0km k m =-+->,知2263m k <+,设1(M x ,1)y ,2(N x ,2)y ,则122421kmx x k +=-+,21222621m x x k -=+,AM AN⊥,∴1(2AM AN x =-,121)(2y x --,21)0y -=,即221212(1)(2)()250k x x km k x x m m ++--++-+=,22222264(1)(2)()2502121m kmk km k m m k k -∴++---+-+=++,化简整理得,2248321(21)(231)0k km m m k m k m ++--=+-++=, 12m k ∴=-或213k m +=-, 当12m k =-时,21y kx k =-+,过定点(2,1)A ,不符合题意,舍去; 当213k m +=-时,213k y kx +=-,过定点21(,)33-. 设0(D x ,0)y ,则00y kx m =+, ()i 若0k ≠,AD MN ⊥,∴00112kx m k x +-=--,解得20224633k k x k ++=+,20234133k k y k +-=+, ∴22422222002222412422428(21)8()()()()3333339(1)9k k k k k k x y kk k -+++-++-+-=+==+++,∴点D 在以4(3,1)3为半径的圆上, 故存在4(3Q ,1)3,使得||DQ =,为定值.()ii 若0k =,则直线MN 的方程为13y =-,AD MN ⊥,1(2,)3D ∴-,||DQ ∴=,为定值.②当直线MN 的斜率不存在时,设其方程为x t =,(,)M t s ,(,)N t s -,且22163t s +=,AM AN ⊥,∴(2AM AN t =-,1)(2s t --,22231)454202s t t s tt --=--+=-+=,解得23t =或2(舍2),2(3D ∴,1),此时||DQ ==,为定值. 综上所述,存在定点4(3Q ,1)3,使得||DQ .2.【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.【答案】(1)(-∞,-3)∪(-3,0)∪(0,1);(2)见解析.【解析】(1)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y x y kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k <0或0<k <1. 又P A ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3. 所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)设A (x 1,y 1),B (x 2,y 2). 由(1)知12224k x x k -+=-,1221x x k =. 直线P A 的方程为1122(1)1y y x x --=--. 令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λ,=QN QO μ得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------.所以11λμ+为定值.命题规律五 圆锥曲线中的取值范围问题【解决之道】解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系; (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围. 【三年高考】1.(2020•上海,20)已知双曲线2212:14x y bΓ-=与圆2222:4(0)x y b b Γ+=+>交于点(A A x ,)A y (第一象限),曲线Γ为1Γ、2Γ上取满足||A x x >的部分. (1)若A x =b 的值;(2)当b 2Γ与x 轴交点记作点1F 、2F ,P 是曲线Γ上一点,且在第一象限,且1||8PF =,求12F PF ∠;(3)过点2(0,2)2b D +斜率为2b-的直线l 与曲线Γ只有两个交点,记为M 、N ,用b 表示OM ON ,并求OM ON 的取值范围.【解析】(1)由A x =,点A 为曲线1Γ与曲线2Γ的交点,联立222222144A A A Ax y bx y b ⎧-=⎪⎨⎪+=+⎩,解得A y =,2b =; (2)由题意可得1F ,2F 为曲线1Γ的两个焦点,由双曲线的定义可得12||||2PF PF a -=,又1||8PF =,24a =, 所以2||844PF =-=,因为b =3c =, 所以12||6F F =,在△12PF F 中,由余弦定理可得22212121212||||||cos 2||||PF PF F F F PF PF PF +-∠=6416361128416+-==⨯⨯,由120F PF π<∠<,可得1211arccos16F PF ∠=;(3)设直线24:22b b l y x +=-+,可得原点O 到直线l 的距离24||b d +== 所以直线l 是圆的切线,设切点为M , 所以2OM k b =,并设2:OM y x b =与圆2224x y b +=+联立,可得222244x x b b+=+, 可得x b =,2y =,即(,2)M b ,注意直线l 与双曲线的斜率为负的渐近线平行, 所以只有当2A y >时,直线l 才能与曲线Γ有两个交点, 由222222144A A A Ax y b x y b⎧-=⎪⎨⎪+=+⎩,可得422A b y a b =+,所以有4244b b<+,解得22b >+22b <-, 因为OM 为ON 在OM 上的投影可得,24OM ON b =+,所以246OM ON b =+>+,则(6OM ON ∈+)+∞.2.【2018年高考浙江卷】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.【答案】(1)见解析;(2)]4. 【解析】本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.满分15分. (1)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(2)由(1)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩所以2221200013||()384PM y y x y x =+-=-,12||y y -=因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是. 命题规律六 圆锥曲线中的证明问题【解决之道】圆锥曲线中证明问题,常见位置关系方面的,如证明相切、垂直、过定点等;数量关系方面的,如存在定值、恒成立等.在熟悉圆锥曲线的定义和性质的前提下,要多采用直接法证明,但有时也会用到反证法. 【三年高考】1.【2018年高考全国Ⅲ卷理数】设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【答案】(1)y x =或y x =;(2)见解析. 【解析】(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-,所以AM 的方程为2y x =-2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=.所以21221222422,2121x x x k k k x k -+==++, 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.2.【2018年高考全国Ⅲ卷理数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.【答案】(1)见解析;(2)见解析.【解析】(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=.两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=.由题设知12121,22x y x y m ++==,于是34k m=-. 由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=. 由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是1||(22x FA x ===-,同理2||22x FB =-, 所以121||||4()32FA FB x x +=-+=,故2||||||FP FA FB =+,即||,||,||FA FP FB 成等差数列.设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=.① 将34m =代入34k m =-得1k =-,所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=,故121212,28x x x x +==,代入①解得||d =或。
2020高考圆锥曲线试题带答案
1. 如果方程 x2 y2 1 表示焦点在 y 轴上的椭圆,则 m 的取值范围是 ( 4m m3
A. 3 m 4
B. m 7 2
C. 3 m 7 2
D. 7 m 4 2
2.如图,F1,F2 是双曲线
C:
x2 a2
y2 b2
1(a>0,b>0)的左、右焦
4
2
4
1
A.
B.
C.
D.
5
3
7
2
7.若直线 y kx 2 与双曲线 x2 y2 6 的右支交于不同的两点, 则实数 k 的取值范围是
( D)
A.( 15 , 15 ) 33
B.(0, 15 ) 3
C.( 15 , 0) 3
D.( 15 , 1) 3
8. 已知直线 l1, l2 是经过椭圆
F2
'( 0 , 6 )
,
设所求双曲线的标准方程为 y 2 a2
x2 b2
1(a
0, b
0) ,
由题意知半焦距 c =6,
2a 4 5 a 2 5 ∴ b 4 ,
故所求双曲线的标准方程为 y 2 x 2 1 . 20 16
考点: (1)椭圆的标准方程; (2)双曲线的标准方程.
则点 P 的轨迹方程为___ y 4(x 2) _____.
三 解答题 1. (12 分)已知椭圆的两个焦点分别是 (2, 0), (2, 0) , 并且经过点 ( 5 , 3) , 求它的标准方程.
22
16.由椭圆定义知 2a
5 2
2
2
2020高考数学分项汇编专项09圆锥曲线(含解析)理
得 OQM ONQ ?假设存在,求点 Q 的坐标;假设 不存在,说明理由.
x2
【答案】 (1)
y2
m
1, M(
,0) ,(2) 存在点 Q(0, 2)
2
1n
考点: 1. 求椭圆方程; 2. 求直线方程及与坐标轴的交点; 3. 存在性问题 .
椭圆上,假设 | PF1 | 4 ,那么 | PF2 | _________; F1PF2 的小大为 __________.
【答案】 2, 120
考点:圆的定义、焦点、长轴、短轴、焦距之间的关系以及余弦定理
.
4. 【 2018 高考北京理第 13 题】双曲线 x 2 a2
y2 b2
x2 1 的离心率为 2,焦点与椭圆
16. 【 2019 高考北京理第 19 题】〔本小题总分值 14〕
椭圆 C : x2 2 y2 4 . 〔 1〕求椭圆 C 的离心率; 〔 2〕设 O 为原点,假设点 A 在椭圆 C 上,点 B 在直线 y 2 上,且 OA OB ,试判断直线 AB 与圆 x2 y 2 2 的位置关系,并证明你的结论 .
14. 【 2019 高考北京理第 19 题】〔本小题共 14 分〕
曲线 C : 5 m x2 m 2 y2 8 m R . 〔 1〕假设曲线 C 是焦点在 x 轴上的椭圆,求 m 的取值范围; 〔 2〕设 m 4 ,曲线 C 与 y 轴的交点为 A , B 〔点 A 位于点 B 的上方〕,直线 y kx 4 与 曲线 C 交于不 同的两点 M , N ,直线 y 1与直线 BM 交于点 G ,求证: A , G , N
10. 【 2018 高考北京理第 19 题】〔本小题共 14 分〕
菱形 ABCD 的顶点 A,C 在椭圆 x2 3y2 4 上,对角线 BD 所在直线的斜率为 1. 〔Ⅰ〕当直线 BD 过点 (0,1) 时,求直线 AC 的方程; 〔Ⅱ〕当 ABC 60 时,求菱形 ABCD 面积的最大值.
【600分考点-700分考法】2020版高考数学(理科):专题(10)圆锥曲线课件(附答案)
考点一 椭圆 4.椭圆中的特殊量
9
考点一 椭圆
对于椭圆
由焦半径公式
可得,椭
圆上任一点P到焦点F1的最小距离为a-c,最大距离为a+c,此时点P在长轴 的两端点处;由椭圆的对称性知,点P到焦点F2也有相同的结论.
(2)椭圆的焦点弦
当直线和椭圆相交时,截在椭圆内的线段(包括端点)叫做椭圆的弦.当弦过
焦点时,称其为焦点弦.
设
是椭圆
上两点,若弦AB过左焦点F1,则
10
考点一 椭圆
(3)椭圆的焦点三角形
设F1,F2为椭圆 则△PF1F2为焦点三角形. 如图所示,
的左、右焦点,P为椭圆上异于左、右顶点的点,
11
考点一 椭圆
⑥焦点三角形的周长是2(a+c).
⑦若焦点三角形的内切圆圆心为I,延长PI交线段F1F2于点Q, (角平分线定理),
求椭圆方程一般采取“先定位,后定量”的方法.所谓定位,就是研究 一下此椭圆是不是标准形式的椭圆,其焦点在x轴上还是在y轴上;所谓定量就 是求出椭圆的a,b,c,从而写出椭圆的方程.
14
考点一 椭圆 2.椭圆系方程
15
考点一 椭圆
例1、求适合下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别是(-12,0),(12,0),椭圆上一点P到两焦点的距离的和
19
考点一 椭圆
20
考点一 椭圆
21
考点一 椭圆 方法2 椭圆定义的应用
椭圆定义的应用类型及方法
(1)利用定义确定平面内的动点的轨迹是否为椭圆;
(2)利用定义解决与焦点三角形相关的周长、面积及最值问题.利用定义和余弦定
理可求得|PF1|·|PF2|,再结合
进行转化,进而求得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考数学圆锥曲线最值问题大题精做理科
1.已知椭圆()22
22:10x y C a b a b
+=>>,B 为其短轴的一个端点,1F ,2F 分别为其左右两个
焦点,已知三角形
12BF F 121
cos 3
F BF ∠=.
(1)求椭圆C 的方程;
(2)若动直线22:0,3l y kx m m k ⎛
⎫=+≠≠ ⎪⎝
⎭与椭圆C 交于()11,P x y ,()22,Q x y ,M 为线段PQ
的中点,
且22
12
3x x +=,求OM PQ ⋅的最大值.
2.已知点()1,0F -,直线:4l x =-,P 为平面内的动点,过点P 作直线l 的垂线,垂足为点M ,且11022PF PM PF PM ⎛⎫⎛⎫
-⋅+= ⎪ ⎪⎝⎭⎝⎭
.
(1)求动点P 的轨迹C 的方程;
(2)过点F 作直线1l (与x 轴不重合)交C 轨迹于A ,B 两点,求三角形面积OAB 的取值范围.(O 为坐标原点)
3.如图,已知抛物线2:2C y px =和()2
2:41M x y -+=,过抛线C 上一点()()
000,1H x y y ≥作两条直线与M 相切于A 、B 两点,分别交抛物线于E 、F 两点,圆心点M 到抛物线准线的距离为
17
4
.
(1)求抛物线C 的方程;
(2)当AHB ∠的角平分线垂直x 轴时,求直线EF 的斜率; (3)若直线AB 在y 轴上的截距为t ,求t 的最小值.
4.已知直线2
p
y x =-
与抛物线()2:20C y px p =>交于B ,D 两点,线段BD 的中点为A ,点F 为C 的焦点,且OAF △(O 为坐标原点)的面积为1. (1)求抛物线C 的标准方程;
(2)过点()2,2G 作斜率为()2k k ≥的直线l 与C 交于M ,N 两点,直线OM ,ON 分别交直线2y x =+于P ,Q 两点,求PQ 的最大值.
1.【答案】(1)22132x y +=;
(2)5
2
. 【解析】(1)由22222122
22411
cos 3233
a c c F BF a c a a -∠==⇒=⇒=,222
b
c =,
12121cos sin 3F BF F BF ∠=⇒∠=
,
结合1222132F BF S a a ===△,22b ⇒=,
故椭圆C 的方程为22
132
x y +=.
另解:依题意:12
122
F BF S cb bc =⨯==△2212
12212cos 2cos
1233F BF b F BF a ∠∠=-=⇒=, 解得2
3a =,2
2b =,故椭圆C 的方程为22
132
x y +=.
(2)联立
()()222222222
3263602432032236
y kx m
k x kmx m Δk m k m x y =+⇒+++-⎧⎨⎩=⇒=+->⇒+>+=. 且122632
km
x x k -+=+,21223632m x x k -=+;
依题意()()
()
()222
22
12
12122
22
626323332
32m km x x x x x x k k
--+=⇒+-=⇒-
=++,
化简得:22322k m +=(∵232k ≠);
设()00,M x y ,由()()22
112222
012121222
120222362233236
x y x y y x x y y k x x y x y ⎧⎪⎨+=-⇒-=--⇒==--+=⎪⎩, 又00y kx m =+,解得31,2k M m m ⎛⎫
- ⎪⎝⎭
22222943142k m OM m m +-⇒=
=, ()()
()
()
()2222
2
222
2
122
2
222243222111251132432k m m PQ k
x x k
OM PQ m m m k +-+⎛
⎫⎛⎫=+-=+=
⇒⋅=-+≤
⎪⎪⎝
⎭⎝⎭+, 52OM PQ ⋅≤
.当且仅当221132m m -=+
,即m =时,OM PQ ⋅的最大值为5
2
. 2.【答案】(1)22143x y +=;
(2)30,2⎛⎤
⎥⎝⎦
. 【解析】(1)设动点(),P x y ,则()4,M y -,
由11022PF PM PF PM ⎛⎫⎛⎫
-+= ⎪⎪⎝⎭⎝⎭
,2214PF PM ∴=,
即2
214PF PM ∴=,()222
1144
x y x ∴++=+,化简得22143x y +=.
(2)由(1)知轨迹C 的方程为22143x y +=,
当直线1l 斜率不存在时31,2A ⎛⎫-- ⎪⎝⎭,31,2B ⎛
⎫- ⎪⎝
⎭, 13
22
OAB S AB OF ∴=
⋅=△, 当直线1l 斜率存在时,设直线l 方程为()10x my m =-≠,设()11,A x y ,()22,B x y , 由22
1
14
3x my x y ⎧⎪
⎨-+=⎪⎩=,得()
2234690m y my +--=. 则21441440Δm =+>,122634m y y m +=+,12
29
34
y y m -=+,
1211122
OAB
S OF y y =⋅-=⨯△
=
=,
令()211m t t +=>
,则
OAB S ==△,
令()196f t t t =++,则()21
9f t t
'=-,当1t >时,()0f t '>,
()1
96f t t t
∴=++在()1,+∞上单调递增,()()116f t f
∴>=,32OAB S ∴<=△, 综上所述,三角形OAB 面积的取值范围是30,2⎛⎤
⎥⎝⎦
.
3.【答案】(1)2y x =;(2)1
4
-;(3)11-.
【解析】(1)∵点M 到抛物线准线的距离为17424p +
=,∴1
2
p =,即抛物线C 的方程为2y x =.
(2)∵当AHB ∠的角平分线垂直x 轴时,点()4,2H ,∴HE HF k k =-, 设()11,E x y ,()22,F x y ,∴
1212H H H H y y y y x x x x --=---,∴12
2222
12H H H H y y y y y y y y --=---, ∴1224H y y y +=-=-.21212221212111
4
EF y y y y k x x y y y y --=
===---+. (3)设点()
()2,1H m m m ≥,2
42716HM m m =-+,2
42715HA m m =-+. 以H 为圆心,HA 为半径的圆方程为()()2
2
242715x m y m m m -+-=-+,……①
M 方程:()2
241x y -+=.……②
①-②得:直线AB 的方程为()()
()22422442714x m m y m m m m -----=-+. 当0x =时,直线AB 在y 轴上的截距()15
41t m m m
=-
≥, ∵t 关于m 的函数在[)1,+∞单调递增,∴min 11t =-. 4.【答案】(1)24y x =;(2
) 【解析】(1)设()11,B x y ,()22,D x y ,则
12
12
1y y x x -=-. 由2112y px =,2
2
22y px =两式相减,得()()121212()2y y y y p x x -+=-. ∴12121222x x y y p p y y -+=⋅
=-,所以点A 的纵坐标为12
2
y y p +=, ∴OAF △的面积1122
p
S p =⨯⨯=,解得2p =.故所求抛物线的标准方程为24y x =.
(2)直线l 的方程为()22y k x -=-.
由方程组()2224y k x y x
-=-=⎧⎪⎨⎪⎩,得24880ky y k --+=. 设2
33,4y M y ⎛⎫ ⎪⎝⎭
,244,4y N y ⎛⎫ ⎪⎝⎭,则344y y k +=,348
8y y k =-.
直线OM 的方程为34
y x y =
,代入2y x =+,解得3324y x y =-,所以33328,44y P y y ⎛⎫ ⎪--⎝
⎭. 同理得44428,44y Q y y ⎛⎫
⎪--⎝⎭
.
所以
48
4PQ y ===-
== 因为2k ≥,所以1102k <≤,所以当11
2
k =,即2
k =时,PQ 取得最大值。