模糊神经网络的基本原理与应用概述
神经网络与模糊控制的结合应用
神经网络与模糊控制的结合应用I. 引言神经网络和模糊控制都是近年来广泛应用于自动控制领域的两种重要技术。
神经网络以其较好的学习能力和预测能力,受到了广泛的关注。
而模糊控制以其强大的非线性建模和很好的抗干扰能力而备受推崇。
为了克服单一控制技术的局限性,研究者开始尝试将神经网络和模糊控制进行结合应用。
II. 神经网络和模糊控制的概述1. 神经网络神经网络是一种学习型系统,其结构可以类比为人类大脑的神经元网络。
神经网络通过学习数据集中的模式,能够从中学习出输入输出之间的映射关系。
神经网络的优点在于其能够进行非线性建模、通用近似和容错性能强等特点。
2. 模糊控制模糊控制是一种基于模糊逻辑的控制方法。
其将模糊逻辑应用于实际系统的控制过程中,达到了比传统控制方法更好的抗干扰能力和系统的非线性动态性能。
III. 神经网络模糊控制器设计及应用1. 神经网络模糊控制结合的优点神经网络模糊控制相较于传统的控制方法,具有较强的非线性建模和很好的抗干扰能力,能够捕捉到很好的系统动态,从而实现控制的效果。
2. 神经网络模糊控制器的建立神经网络模糊控制系统可以分为两个部分,分别是模糊控制器和神经网络控制器。
其中模糊控制器负责实现对系统模糊建模,而神经网络控制器则用于学习模糊控制器的输入输出映射关系。
图1:神经网络模糊控制器的框图3. 神经网络模糊控制器在机器人路径规划中的应用机器人路径规划是一个非常复杂的问题,需要考虑到环境的不确定性以及机器人动力学特性。
神经网络模糊控制器通过学习路径规划时的输入输出映射关系,能够提高路径规划的准确性和鲁棒性。
4. 神经网络模糊控制器在工业过程控制中的应用在工业过程控制中,神经网络模糊控制器可以通过学习过程时的输入输出映射关系,实现对工业过程的自适应控制。
其优点在于能够实现强大的建模能力和很好的自适应性,从而提升了工业过程的控制性能。
IV. 总结神经网络和模糊控制都是近年来比较热门的技术,两者在控制领域的应用也在不断发展。
Matlab中的模糊逻辑与神经网络
Matlab中的模糊逻辑与神经网络引言近年来,随着计算机科学的快速发展,智能系统的研究也取得了巨大的进展。
其中,模糊逻辑和神经网络作为两种重要的智能系统模型,在现实世界的应用中展现出了巨大的潜力。
而在Matlab这一强大的科学计算软件中,模糊逻辑和神经网络的实现也变得更加便捷和高效。
本文将深入探讨Matlab中模糊逻辑与神经网络的基本原理、实现方法以及它们在应用中的潜力。
一、模糊逻辑1.1 模糊逻辑的基本原理模糊逻辑是建立在模糊集合理论基础上的一种扩展了传统二值逻辑的推理方法。
与传统的二值逻辑只有真和假两种可能性不同,模糊逻辑将事物的陈述表达为程度或概率的形式。
在模糊逻辑中,每个事物都有一个隶属度函数,表示它属于不同模糊集合的程度。
1.2 Matlab中的模糊逻辑工具箱为了便于模糊逻辑的建模和推理,Matlab提供了专门的模糊逻辑工具箱。
该工具箱包含了许多用于模糊集合操作、规则定义和推理等的函数和工具。
用户可以根据具体的需求,使用这些函数和工具快速构建模糊逻辑系统,并进行复杂的推理过程。
二、神经网络2.1 神经网络的基本原理神经网络是模拟人脑神经元间相互作用的一种计算模型。
它由大量的人工神经元(或称为节点)组成,这些神经元通过连接强度(或称为权重)相互连接。
神经网络具有自学习的能力,可以通过训练样本自动调整连接权重以实现任务的学习和推理。
2.2 Matlab中的神经网络工具箱与模糊逻辑类似,Matlab也提供了专门的神经网络工具箱,用于构建和训练神经网络模型。
这个工具箱包括了许多常用的神经网络模型,如前馈神经网络、循环神经网络和自组织神经网络等。
用户可以通过简单的调用这些函数和工具,实现各种复杂的神经网络任务。
三、Matlab中的模糊逻辑与神经网络的结合3.1 模糊神经网络模糊神经网络是将模糊逻辑和神经网络相结合的一种智能系统模型。
它通过在神经网络中引入模糊逻辑的概念,能够更好地处理不确定性和模糊性的问题。
第九章模糊神经网络
模糊神经网络) 模糊规则的后件是输出量的某一模糊集合。
❖ 自适应模糊神经推理系统(基于T-S的模糊神经网 络)
模糊规则的后件是输入语言变量的函数(线性组合)。
17
基于标准模型的模糊神经网络
第一层为输入层,为精确值。 节点个数为输入变量的个数。
7
模糊神经网络概述
• 模糊神经网络(FNN)就是模糊系统和神经网 络的结合,本质上就是将常规的神经网络赋予 模糊输入信号和模糊权值。是模糊逻辑推理与 神经网络有机结合的产物。
• 模糊神经网络主要利用神经网络结构来实现模 糊逻辑推理,从而使传统神经网络没有明确物 理含义的权值被赋予了模糊逻辑中推理参数的 物理含义。
26
基于T-S的模糊神经网络
该自适应网络是一个多层前馈网络,其中的方形节点需要进 行参数学习
27
基于T-S的模糊神经网络
x
y
第1层:为输入变量的隶属函数层,负责输入信号的模糊化,
节点i具有输出函数 或
Oi1 Ai (x) Oi1 Bi ( y)
i 1,2 i 1,2
28
基于T-S的模糊神经网络
x
y
第5层:为一个固定节点,计算所有输入信号的总输出:
给定前后件O参i5数后,i自fi 适应模i糊fi 神/ 经推i 理系i 统 1的, 2输出可以表 示成后件参数的线性组合: Oi5 1 f1 2 f2
(1x) p1 (1 y)q1 r1 (2 x) p2 (2 y)q2 r2
32
后者具有自学习的智能控制特性。
11
模糊神经网络概述
(3)神经元、模糊模型
以模糊控制为主体,用神经元网络实现模糊控制决策,以模糊控制 方法为“样本”,对神经网络进行离线训练学习。“样本”就是学习的 “教师”。 所有样本学习完后,这个神经元网络,就是一个聪明、灵活 的模糊规则表,具有自学习、自适应功能。
模糊神经网络简介
(2)知识库(knowledge base)
知识库中存贮着有关模糊控制器的一切知识,包
含了具体应用领域中的知识和要求的控制目标,
它们决定着模糊控制器的性能,是模糊控制器的 核心。
如专家经验等。
比如:If浑浊度 清,变化率 零,then洗涤时间 短
If浑浊度 较浊,变化率入输出样本中学习,
无需人来设置。
将两者结合起来,在处理大规模的模糊应用问题 方面将表现出优良的效果。
3、模糊神经网络(FNN)
模糊神经网络(Fuzzy Neural Network,简称 FNN)将模糊系统和神经网络相结合,充分考虑了 二者的互补性,集逻辑推理、语言计算、非线性动
语言信息和在模糊逻辑原则下系统地利用这类语
言信息的一般化模式;
缺点:输入输出均为模糊集合,不易为绝大数工
程系统所应用。
2.2.2 高木-关野模糊系统
该系统是由日本学者Takagi和Sugeno提出的,
系统输出为精确值,也称为T-S模糊系统或
Sugeno系统。
举例:
典型的一阶Sugeno型模糊规则形式如下:
结构上像神经网络,功能上是模糊系统,这是目
前研究和应用最多的一类模糊神经网络。
该网络共分5层,是根据模糊系统的工
作过程来设计的,是神经网络实现的模糊
推理系统。第二层的隶属函数参数和三、
四层间及四、五层间的连接权是可以调整
的。
典型的模糊神经网络结构
第一层为输入层,为精确值。 节点个数为输入变量的个数。
模糊神经网络的三种形式:
逻辑模糊神经网络
算术模糊神经网络(常规模糊神经网络) 混合模糊神经网络
控制系统的模糊神经网络滑模控制方法
控制系统的模糊神经网络滑模控制方法模糊神经网络(Fuzzy Neural Network,FNN)是一种将模糊逻辑和神经网络相结合的控制方法,具有较强的非线性建模和控制能力,在控制系统中得到广泛应用。
而滑模控制是一种基于变结构控制理论的控制方法,能够实现对系统的快速响应和强鲁棒性的控制。
本文将介绍控制系统中模糊神经网络与滑模控制相结合的方法,即模糊神经网络滑模控制方法。
一、模糊神经网络的基本原理模糊神经网络是通过模糊逻辑推理和神经网络学习相结合的方法,能够实现对系统的非线性建模和控制。
其基本原理如下:1. 模糊化处理:将输入和输出量转化为模糊量,通过隶属度函数描述其隶属度,得到模糊变量。
2. 规则库设计:构建一系列模糊规则,描述输入变量和输出变量之间的模糊关系。
3. 推理机制:根据输入变量通过模糊规则进行模糊推理,得到模糊输出。
4. 解模糊化处理:将模糊输出通过解模糊函数映射为实际输出量。
二、滑模控制的基本原理滑模控制是一种基于变结构控制理论的控制方法,其基本思想是通过引入滑模面,使得系统状态能够迅速地切换到滑模面,从而实现对系统的快速响应和强鲁棒性的控制。
其基本原理如下:1. 设计滑模面:根据系统的特性和要求,设计一个滑模面,使系统状态能够在其上快速切换。
2. 设计滑模控制律:根据滑模面的切换条件和系统模型,设计相应的滑模控制律,使系统状态能够快速地切换到滑模面。
3. 添加辅助控制律:为了降低滑模面的切换频率和振荡幅度,可以加入辅助控制律以提高系统的性能。
三、模糊神经网络滑模控制方法模糊神经网络滑模控制方法将模糊神经网络与滑模控制相结合,以充分发挥二者的优势,提高系统的控制性能。
其基本步骤如下:1. 建立模糊神经网络:根据系统的特性和要求,设计模糊神经网络的输入变量、输出变量和隐含层,确定隶属度函数和模糊规则,并通过神经网络学习算法训练网络参数。
2. 设计滑模面:根据系统的特性和要求,设计滑模面,并确定其滑模控制律。
模糊聚类算法的原理和实现方法
模糊聚类算法的原理和实现方法模糊聚类算法是一种数据分类和聚类方法,它在实际问题中有着广泛的应用。
本文将介绍模糊聚类算法的原理和实现方法,包括模糊C均值(FCM)算法和模糊神经网络(FNN)算法。
一、模糊聚类算法的原理模糊聚类算法是基于模糊理论的一种聚类方法,它的原理是通过对数据进行模糊分割,将每个数据点对应到多个聚类中心上,从而得到每个数据点属于各个聚类的置信度。
模糊聚类算法的原理可以用数学公式进行描述。
设有n个数据样本点X={x1, x2, ..., xn},以及m个聚类中心V={v1, v2, ..., vm}。
对于每个数据样本点xi,令uij为其属于第j个聚类中心的置信度,其中j=1,2,..., m,满足0≤uij≤1,且∑uij=1。
根据模糊理论,uij的取值表示了xi属于第j个聚类中心的隶属度。
为了达到聚类的目的,我们需要对聚类中心进行调整,使得目标函数最小化。
目标函数的定义如下:J = ∑∑(uij)^m * d(xi,vj)^2其中,m为模糊度参数,d(xi,vj)为数据点xi与聚类中心vj之间的距离,常用的距离度量方法有欧氏距离和曼哈顿距离。
通过不断调整聚类中心的位置,最小化目标函数J,即可得到模糊聚类的结果。
二、模糊C均值(FCM)算法的实现方法模糊C均值算法是模糊聚类算法中最经典的一种方法。
其具体实现过程如下:1. 初始化聚类中心:随机选取m个数据点作为初始聚类中心。
2. 计算隶属度矩阵:根据当前聚类中心,计算每个数据点属于各个聚类中心的隶属度。
3. 更新聚类中心:根据隶属度矩阵,更新聚类中心的位置。
4. 判断是否收敛:判断聚类中心的变化是否小于设定的阈值,如果是则停止迭代,否则返回第2步。
5. 输出聚类结果:将每个数据点分配到最终确定的聚类中心,得到最终的聚类结果。
三、模糊神经网络(FNN)算法的实现方法模糊神经网络算法是一种基于模糊理论和神经网络的聚类方法。
其实现过程和传统的神经网络类似,主要包括以下几个步骤:1. 网络结构设计:确定模糊神经网络的层数和每层神经元的个数。
基于模糊神经网络的温度控制系统设计
基于模糊神经网络的温度控制系统设计随着温度控制技术的发展,温度控制系统的精确性和可靠性已经被广泛应用于各个行业,从汽车制造业到化学工艺,从冶金到电子工程,温度控制系统已经成为维护各类工艺技术的基础设施。
由于这种应用的重要性,对温度控制系统进行研究和改进一直都是众多研究者感兴趣的领域,模糊神经网络(FNN)为改进温度控制系统提供了新的思路。
一、温度控制的基本原理温度控制是一种控制现象,涉及被控对象的温度反馈系统,这是一个“输入-输出”模型,它指的是系统的输入和输出的关系,在工业中应用温度控制,该模型由输入和输出环节组成。
输入部分称为控制律,它是一种控制量,用来确定控制系统输出的变化;而输出则为实际控制值,它指示被控对象的状态,如温度和压力。
二、模糊神经网络在温度控制系统中的应用模糊神经网络(FNN)是一种模糊控制理论中的神经网络结构,它通过模糊推理算法来解决模糊逻辑问题,具有自适应性和决策性,多次引用系统的非线性性质,能够对被控对象的各种状态进行有效控制,因此,模糊神经网络在温度控制系统中被广泛应用。
模糊控制器采用模糊规则定义规则,并且可以根据系统状态更新规则,使用自适应技术来跟踪变化的状态,而模糊神经网络则利用神经网络的技术,对模糊控制器的表现进行评价,使其具有自适应性和可调节性,从而提高温度控制的精度和准确性。
三、基于模糊神经网络的温度控制系统设计基于模糊神经网络的温度控制系统主要分为数据处理部分、模糊决策部分和控制决策部分。
首先,采用控制对象的反馈信号作为输入,输入到温度控制系统中,然后进行数据处理,将实时温度信号转换为规定的模糊变量,再利用模糊推理算法,根据模糊变量决定出控制变量,最后进行参数估计和控制决策,从而实现对控制对象的温度控制。
四、基于模糊神经网络的温度控制优势(1)模糊神经网络的自适应性强,采用模糊规则建立模糊控制器,可以根据实际系统状态自动调整控制量,使之自动适应环境的变化,从而实现控制的准确性和精确性;(2)模糊神经网络在模糊控制器的基础上,引入神经网络技术,使其具有仿生学上一种行为,具有可调节性和反馈性,能够对不确定的控制对象有效控制,提高温度控制的精度和准确性;(3)模糊神经网络的实现比较简单,因为采用的是模板匹配算法,不需要考虑系统的模型参数,只需要调整模板变量即可,使温度控制系统设计变得非常容易和快捷。
模糊神经网络的设计与训练
模糊神经网络的设计与训练模糊神经网络(Fuzzy Neural Networks,FNN)作为一种融合了模糊推理和神经网络的智能计算模型,已经在各个领域展示了强大的应用潜力。
它能够处理模糊和不确定性信息,具有较强的自适应性和泛化能力。
本文将深入探讨模糊神经网络的设计与训练方法,并探索其在实际问题中的应用。
一、概述模糊神经网络是在传统神经网络基础上引入了模糊推理机制的一种扩展形式。
它利用模糊逻辑处理输入数据,并通过神经网络学习算法进行自适应调整,从而实现对输入数据进行分类、识别和预测等任务。
与传统方法相比,模糊神经网络具有更强大的表达能力和更好的鲁棒性。
二、设计方法模糊神经网络设计中最基本的问题是确定输入输出变量之间的关系以及它们之间相互作用方式。
常用方法包括基于规则、基于模型以及基于数据等。
基于规则方法通过人工构建规则集合来描述变量之间关系,并利用规则集合进行推理。
这种方法的优点是能够直观地表达专家知识,但缺点是规则集合的构建和调整需要大量的人力和时间。
基于模型方法利用数学模型来描述变量之间的关系,如模糊推理系统和模糊Petri网等。
这种方法可以通过数学推导和优化算法来确定模型参数,但需要对问题进行较为精确的建模。
基于数据方法利用大量数据来学习变量之间的关系。
常用算法包括神经网络、遗传算法、粒子群优化算法等。
这种方法可以通过大规模数据集进行训练,但对于数据质量和训练时间要求较高。
三、训练方法模糊神经网络的训练是指通过调整网络参数使其能够更好地适应输入输出之间的关系。
常用的训练算法包括基于梯度下降法、遗传算法以及粒子群优化等。
基于梯度下降法是一种常用且有效的训练方法,其基本思想是通过计算误差函数对网络参数求导,并根据导数值调整参数值。
这种方法可以在一定程度上保证误差函数逐渐减小,但容易陷入局部最优解。
遗传算法是一种模拟自然进化过程的优化算法,通过选择、交叉和变异等操作来搜索最优解。
这种方法适用于复杂的非线性问题,但计算复杂度较高。
模糊神经网络算法研究
模糊神经网络算法研究一、引言模糊神经网络算法是一种结合了模糊逻辑和神经网络的计算模型,用于处理模糊不确定性和非线性问题。
本文将通过研究模糊神经网络的原理、应用和优化方法,探索其在解决实际问题中的潜力和局限性。
二、模糊神经网络算法原理1. 模糊逻辑的基本概念模糊逻辑是处理模糊信息的数学工具,其中包括模糊集合、隶属函数、模糊关系等概念。
模糊集合用来描述不确定或模糊的概念,而隶属函数表示一个元素属于某个模糊集合的程度。
模糊关系则用于表达模糊集合之间的关系。
2. 神经网络的基本原理神经网络是一种由人工神经元构成的计算系统,以模仿生物神经系统的运作方式。
其中的神经元接收输入信号、进行加权处理,并通过激活函数输出计算结果。
神经网络通过训练和学习来调整连接权值,以实现对输入输出之间的映射关系建模。
3. 模糊神经网络的结构和运算模糊神经网络结合了模糊逻辑的不确定性处理和神经网络的学习能力,并采用模糊化和去模糊化的过程来实现输入输出之间的映射。
常见的模糊神经网络结构包括前馈神经网络、递归神经网络和模糊关联记忆。
三、模糊神经网络算法应用1. 模糊神经网络在模式识别中的应用模糊神经网络在模式识别领域有广泛应用,例如人脸识别、手写识别和语音识别等。
由于模糊神经网络对于模糊和不完整信息的处理能力,能够更好地应对现实场景中的噪声和不确定性。
2. 模糊神经网络在控制系统中的应用模糊神经网络在控制系统中的应用主要体现在模糊控制器的设计和优化。
通过模糊控制器的设计,可以实现对复杂系统的自适应控制和非线性控制。
同时,模糊神经网络还可以与PID控制器相结合,提高系统的控制性能。
3. 模糊神经网络在预测和优化中的应用模糊神经网络在时间序列预测和多目标优化等问题中也有广泛应用。
例如,使用模糊神经网络来预测股票市场的趋势和交通流量的变化,以及应用模糊神经网络来优化生产调度和资源分配等问题。
四、模糊神经网络算法优化1. 模糊神经网络参数优化模糊神经网络的性能很大程度上依赖于其参数的设置。
模糊神经网络应用流程和操作
模糊神经网络应用流程和操作模糊神经网络是一种前馈神经网络,它可以将非精确信息以数学方法更好地处理。
在本文中,我们将介绍模糊神经网络的应用流程和操作,以便帮助读者更好地理解这种神经网络。
一、模糊神经网络的基本概念和特点模糊神经网络是一种基于模糊集合理论的神经网络,它与其他神经网络相比,有以下几个独特的特点:1.具有模糊性:传统的神经网络只能处理精确的数据,而模糊神经网络可以处理不确定、模糊或误差较大的数据。
2. 具有贡献性:通过模糊神经网络的学习和训练,它可以为每个输入变量分配权重,以确定每个变量的贡献度。
3. 可以建立映射关系:模糊神经网络可以将输入变量映射到输出变量,形成一种非线性的映射关系。
二、模糊神经网络的应用流程模糊神经网络的应用流程包括以下几个步骤:1. 确定输入变量和输出变量:首先,需要确定待处理数据的输入变量和输出变量,同时确定它们的值域。
2. 设计模糊集合:建立输入变量和输出变量的模糊集合,用于描述变量之间的映射关系。
3. 确定规则:利用专家知识或数据分析技术,确定变量之间的模糊规则,以便建立输入变量和输出变量之间的对应关系。
4. 建立神经网络:将模糊集合和规则输入到模糊神经网络中进行计算,以建立输入变量和输出变量的映射关系。
5. 网络训练:通过迭代反馈的方式,对模糊神经网络进行训练和优化,以提高网络的性能和准确度。
6. 模型验证:验证模糊神经网络的模型准确度和稳定性,以确定其在实际应用中的可靠性。
三、模糊神经网络的操作模糊神经网络的操作包括以下几个方面:1. 数据预处理:对输入数据进行标准化、归一化和特征提取等操作,以便更好地适应模糊神经网络的处理方式。
2. 模型选择:根据不同的应用场景和数据类型,选择适合的模型结构和参数配置,以便更好地满足实际需求。
3. 网络训练:通过反向传播算法等训练方法,对模糊神经网络进行训练和优化,以提高其性能和准确度。
4. 模型评估:对训练好的模型进行测试和验证,评估其准确度、稳定性和可靠性等方面的性能指标。
浅析模糊神经网络
定量分析
一.模糊理论 1、模糊理论 1965年,Zadeh教授发表论文“模糊集合”(Fuzzy set), 标志模糊数学的诞生。
模糊集合的基本思想是把经典集合中的绝对隶属关系灵活 化,即元素对“集合”的隶属度不再是局限于取0或1,而 是可以取从0到1间的任一数值。
用隶属函数(Membership Function)来刻画处于中间过渡
xa a xb bxc cxd dx
梯形隶属函数
高斯形隶属函数
g ( x; c, )
1 x c 2 ( ) 2 e
钟型隶属函数
c代表MF的中心; 决定MF的宽度。 1 bell ( x; a, b, c) x c 2b 1 a
隶属函数是模糊理论中的重要概念,实际应用中经常 用到以下三类隶属函数: (1)S函数(偏大型隶属函数)
举例:
典型的一阶Sugeno型模糊规则形式如下:
If x is A and y is B then z px qy r.
其中:
x和y为输入;A和B为推理前件的模糊集合;z
为输出;p、q、k为常数。
二、神经网络简介
生物神经网络
• 人类的大脑大约有1.41011个神经细胞,亦称为神经元。 每个神经元有数以千计的通道同其它神经元广泛相互连接, 形成复杂的生物神经网络。
纯模糊逻辑系统的优点:提供了一种量化专辑语言信
息和在模糊逻辑原则下系统地利用这类语言信息
的一般化模式;
缺点:输入输出均为模糊集合,不易为绝大数工
程系统所应用。
2.2.2 高木-关野模糊系统
该系统是由日本学者Takagi和Sugeno提出的,
系统输出为精确值,也称为T-S模糊系统或
模糊逻辑与模糊神经网络的比较
模糊逻辑与模糊神经网络的比较随着信息时代和物联网的飞速发展,人们越来越需要处理大量复杂的模糊数据,这其中模糊逻辑和模糊神经网络这两种方法被广泛应用。
本文通过比较模糊逻辑和模糊神经网络的原理、应用场景、优缺点等方面,来探讨它们在实际应用中的差异和优缺点。
一、模糊逻辑与模糊神经网络的基本原理模糊逻辑和模糊神经网络都是用来处理模糊数据的方法,但是它们的原理有所不同。
模糊逻辑是建立在传统逻辑的基础上的一种扩展,基于自然语言和模糊集合理论,用来处理模糊信息。
它将某个事物的特征看作一个隶属度,在0-1之间,来表示该事物与该特征的相似程度。
在模糊逻辑中,关系不是非黑即白,而是含有一定程度的模糊性。
模糊逻辑的核心工具是模糊推理,基本方法是通过规则的嵌套和组合得到需要的推理结论。
相比之下,模糊神经网络是一种基于神经网络的算法,用来对模糊数据进行处理。
模糊神经网络的基本结构包括输入层、隐含层、输出层等,在网络中每个节点的值都是一个隶属度函数,用来表示样本数据与其所代表的类别的相似程度。
模糊神经网络的训练过程就是通过学习样本数据来不断修改隶属度函数和权值,使得网络的输出结果更接近于样本数据的实际类别。
二、模糊逻辑和模糊神经网络的应用场景模糊逻辑和模糊神经网络两种方法各有优势,在应用场景上也有所不同。
模糊逻辑主要应用于自然语言处理、控制系统、人工智能等领域。
在自然语言处理中,模糊逻辑被用来处理带模糊性质的自然语言表达,如“大约”、“可能”等词语。
在控制系统中,模糊逻辑可以处理一些难以确定精确关系的问题,如空调的温度、湿度等控制。
不过,在处理大量数据时,模糊逻辑的推理过程可谓是比较复杂,特别是对于多属性决策问题,它可能会遇到维数爆炸的困难。
模糊神经网络则主要应用于模式分类、图像识别、语音识别等领域。
比如,模糊神经网络可以用来分类含有噪声的图像,并且可以自动学习图像的特征,提高识别准确率。
除此之外,模糊神经网络还可以用来进行非线性系统的建模、优化问题的求解等。
模糊神经网络
表示第 i个样本的第 j个指标, f个样本的 n个指
标可用下表表示。
三.分类系统的设计与实现
f个样本第j个指标的平均值及标准差分别为:
均值:
标准差:
原始数据标准化为:
R' : IFx1ISA1 j ANDx2 ISA2k ANDx3ISA3lTHENyISfi
i A1 j ( x1 ) A2k ( x2 ) A3k ( x3 )
i i
其中A1 j , A2k , A3l 为模糊变量
k 1
p
A1 j ( x1 ), A2k ( x2 ), A3l ( x3 )为隶属函数
三.分类系统的设计与实现
训练集输出散点图
测试集输出散点图
测试集中第3、16、23个 样本的输出与BP神经网络分 类不同,其他值均完全符合
三.分类系统的设计与实现
经过反向误差传播算法优化后的FIS系统三个输入变量的隶属 函数如下图所示:
三.分类系统的设计与实现
3.建立模糊规则 模糊规则如图所示,其中所有规则的权重值均为1。
j = 1 ,2 , ,m;m= mi
i 1
n
i1 { 1 ,2 , , m1} i 2 { 1 ,2 , , m2} i3 { 1 ,2 , , m3}
该层的结点总数 N3 = m,对于给定的输入 ,只有在输入点附近的 语言变量值才有较大的隶属度值,远离输入点的语言变量值的隶属度 或者很小或者为0。当隶属度很小(例如小于0. 05) 时近似取为0。
k
模糊神经网络的基本原理与应用概述
模糊神经网络的基本原理与应用概述Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】模糊神经网络的基本原理与应用概述摘要:模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。
本文旨在分析模糊神经网络的基本原理及相关应用。
关键字:模糊神经网络,模糊控制,神经网络控制,BP算法。
Abstract: A fuzzy neural network is a neural network and fuzzy logic system with the combination of a powerful. The self-learning and self-tuning function of the network, is a very intelligent control theory research in the field of active branches. So the fuzzy neural network control research has the vital significance. The purpose of this paper is to analysis the basic principle of fuzzy neural networks andrelated applications.Key Words: Fuzzy Neural Network, Fuzzy Control, Neural Network Control, BP Algorithm.1人工神经网络的基本原理与应用概述人工神经网络的概念人工神经网络(Artificial Neural Network,简称ANN)是由大量神经元通过极其丰富和完善的联接而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其它神经元获得信息,同时加以简单的运算,将结果输出到外界或其它人工神经元。
《模糊神经网络》课件
模糊神经网络在语音识别中的应用
总结词
语音信号具有时变性和非线性特性,模糊神经网络能够有效地处理这些特性,提高语音识别的准确性 。
详细描述
在语音识别领域,模糊神经网络被广泛应用于语音分类、语音合成、语音识别等方面。通过结合模糊 逻辑和神经网络的优点,模糊神经网络能够更好地处理语音信号中的噪声和不规则性,提高语音识别 的准确性和鲁棒性。
02
模糊逻辑与神经网 络的结合
模糊逻辑的基本概念
1
模糊逻辑是一种处理不确定性、不完全性知识的 工具,它允许我们描述那些边界不清晰、相互之 间没有明确界限的事物。
2
模糊逻辑通过使用隶属度函数来描述事物属于某 个集合的程度,而不是简单地用“是”或“否” 来回答。
3
模糊逻辑在许多领域都有应用,例如控制系统、 医疗诊断、决策支持等。
详细描述
在萌芽期,研究者们开始探索将模糊逻辑和神经网络相结合的可能性。随着相关理论和技术的发展,模糊神经网 络逐渐进入发展期,开始在实际应用中得到广泛关注和应用。如今,随着人工智能技术的不断进步,模糊神经网 络已经进入了成熟期,成为处理不确定性和非线性问题的有效工具。
模糊神经网络的应用领域
总结词
模糊神经网络在许多领域都有广泛的应用,如控制系 统、模式识别、智能机器人等。
模糊神经网络的性能评估
准确率
损失函数
衡量分类问题中神经网络正确分类的样本 比例。
评估神经网络预测结果与实际结果之间的 误差,用于优化神经网络参数。
泛化能力
过拟合与欠拟合
衡量神经网络对新样本的适应能力,即训 练好的网络对未见过的样本的预测能力。
过拟合指模型在训练数据上表现很好,但 在测试数据上表现不佳;欠拟合则指模型 在训练数据和测试数据上的表现都不佳。
模糊神经网络的结构与实现方法
模糊神经网络的结构与实现方法概述:在数学、计算机科学、人工智能领域中,神经网络是一种模仿人类神经系统结构与功能的数学模型,被广泛用于模式识别、机器学习和人工智能等领域。
模糊神经网络就是基于模糊数学理论的神经网络。
本文将介绍模糊神经网络的基本结构和实现方法。
模糊神经网络的基本结构:模糊神经网络的结构与普通神经网络的结构类似,由输入层、隐藏层和输出层三个部分组成。
1.输入层:输入层用于接收外部输入的模糊信息。
一般来说,输入的信息经过模糊化处理,以便于神经网络进行处理。
这些信息可以是关于物体颜色、大小、形状和运动方向等方面的特征。
2.隐藏层:隐藏层通常用于进行信息加工、转化和计算。
在模糊神经网络中,隐藏层的作用是将输入的模糊信息转换成一组更加抽象和具有判断性质的特征。
这些特征可以用于后续的分类和识别。
3.输出层:输出层将隐藏层计算后的特征转换成分类结果。
在模糊神经网络中,输出层的结果通常为一组置信度或概率,表示某个输入向量属于每个不同类别的可能性大小。
模糊神经网络的实现方法:模糊神经网络的实现方法一般分为两种:基于规则的模糊神经网络和基于学习的模糊神经网络。
1.基于规则的模糊神经网络:基于规则的模糊神经网络是一种预设规则的模糊推理方法。
它使用if-then规则作为知识表示形式,通过模糊逻辑运算对规则进行推理,以得出输出结果。
这种方法的优点是不需要进行训练,但是缺点是规则需要手动预设,需要专家经验,并且容易出现规则矛盾的情况。
2.基于学习的模糊神经网络:基于学习的模糊神经网络是一种通过样本训练来确定模型参数的方法。
它使用输入和输出的训练样本集来训练网络的权重和阈值,以得出输出结果。
这种方法的优点是可以自动学习知识,并且可以处理复杂的非线性问题,但是需要大量的训练数据和时间。
总结:模糊神经网络作为一种非常有效的神经网络类型,已经被广泛应用于图像处理、模式识别、控制系统等领域。
本文简要介绍了模糊神经网络的基本结构和实现方法,并且指出了它的优点和缺点。
模糊数学方法与应用
模糊数学方法与应用概述模糊数学是一种用来处理不确定性和模糊性问题的数学方法。
它的基本思想是将模糊性和不确定性引入数学模型中,以便更好地描述和解决现实世界中的复杂问题。
模糊数学的应用非常广泛,包括工程、经济、管理、决策等领域。
本文将介绍模糊数学的基本原理以及它在实际应用中的一些具体案例。
模糊数学的基本原理模糊数学的核心是模糊集合理论,它是对传统集合理论的扩展和推广。
在传统集合理论中,一个元素要么属于一个集合,要么不属于一个集合,不存在模糊性。
而在模糊集合理论中,一个元素可以以一定的隶属度属于一个集合,这个隶属度是介于0和1之间的一个实数。
例如,对于一个人的年龄来说,年轻人和老年人是两个模糊集合,一个人可以以0.7的隶属度属于年轻人,以0.3的隶属度属于老年人。
模糊数学的应用案例1. 控制系统模糊控制理论是模糊数学的一个重要应用领域。
传统的控制系统设计需要精确的数学模型和准确的参数,但是在现实问题中,很难得到完全准确的模型和参数。
模糊控制理论通过引入模糊逻辑和模糊推理的方法,可以处理这些不确定性和模糊性的问题。
例如,模糊控制器可以根据当前的温度、湿度等参数来控制空调的温度和风速,以提供一个舒适的室内环境。
2. 人工智能模糊数学在人工智能领域也有广泛的应用。
在模糊推理中,基于模糊集合的推理可以处理不完全和不确定的信息。
例如,通过使用模糊推理系统,可以根据一些模糊的规则和输入信息来进行判断和决策。
模糊神经网络是一种基于模糊数学的人工神经网络模型,它可以用来解决一些复杂的分类和模式识别问题。
3. 经济与金融在经济学和金融学中,模糊数学可以用来处理一些模糊和不确定的经济和金融问题。
例如,模糊数学可以用来描述和分析不完全和不确定的市场需求、价格波动等。
另外,模糊集合和模糊推理可以用来建立一些模糊决策模型,以辅助经济和金融决策。
4. 交通运输交通运输领域是另一个模糊数学的重要应用领域。
在交通规划和交通控制中,模糊数学可以用来处理交通流量、交通信号等模糊和不确定的问题。
模糊神经网络在图像处理中的应用
模糊神经网络在图像处理中的应用第一章:引言图像处理是计算机视觉领域中的重要研究方向,它涉及到图像的获取、分析、处理和理解等多个方面。
随着科技的不断发展,图像处理在各个领域都扮演着重要的角色,例如医疗影像、人脸识别、自动驾驶等。
而模糊神经网络(Fuzzy Neural Network)作为人工智能领域的重要技术之一,也被广泛应用于图像处理中,以提高图像的质量、准确性和效率等。
本文将从模糊神经网络的基本原理、图像处理的基本概念开始,详细介绍模糊神经网络在图像处理中的应用,并展望未来的发展方向。
第二章:模糊神经网络基本原理2.1 模糊逻辑的基本概念模糊逻辑是一种推理方法,它模拟人类的思维方式,通过模糊集合和模糊关系来对不确定性问题进行处理。
模糊集合是一种包含了隶属度的集合,而模糊关系则描述了两个或多个模糊集合之间的关系。
2.2 神经网络的基本原理神经网络是由大量的神经元组成的,并通过神经元之间的连接来传递和处理信息。
神经元接收到输入信号后,经过激活函数的处理后输出一个结果。
2.3 模糊神经网络的组成模糊神经网络是基于模糊逻辑和神经网络原理的结合,它使用模糊推理和神经网络的技术来处理图像。
模糊神经网络由输入层、隐层和输出层组成,其中输入层接收图像的像素值,隐层对输入信号进行处理,输出层则输出最终的处理结果。
第三章:模糊神经网络在图像处理中的应用3.1 图像增强图像增强是指通过一系列的处理方法,来增强图像的视觉效果。
模糊神经网络可以通过对图像进行模糊和锐化等处理,来提高图像的清晰度和细节。
3.2 图像去噪图像去噪是指通过一系列的算法,去除图像中的噪声。
模糊神经网络可以通过对图像进行滤波等处理,来减少噪声的影响,提高图像的质量。
3.3 图像分割图像分割是指将图像划分为不同的区域,以便进行后续的分析和处理。
模糊神经网络可以通过对图像进行聚类等处理,来实现图像分割的目的。
3.4 图像识别图像识别是指通过对图像进行分析和处理,来识别图像中的目标或特征。
模糊算法与神经网络的结合技术与应用
模糊算法与神经网络的结合技术与应用在现代人工智能技术中,模糊算法与神经网络被广泛应用并取得了很大的进展。
两者各自有着自己的优势和不足,但结合使用可以弥补彼此的缺陷,提高整体性能。
本文将介绍模糊算法与神经网络的结合技术,以及在实际应用中的一些案例。
一、模糊算法与神经网络的结合1.1 模糊神经网络模糊神经网络就是将模糊逻辑与神经网络相结合,由此产生的一种新型的神经网络。
它采用了模糊推理的方法,使得网络对于不确定的、模糊的信息也能进行有效的处理,提高了网络的健壮性和泛化能力。
1.2 模糊控制神经网络模糊控制神经网络是把模糊控制和神经网络相结合的一种方法。
它是一种基于经验的控制方法,能够自适应改善模糊系统的性能,实现控制目标。
它充分利用了模糊逻辑思想,能够处理输入具有模糊性质的问题,在非线性、不确定和时变等复杂情况下具有更好的控制效果。
1.3 模糊神经网络算法在模糊神经网络中,有许多不同的算法被提出和应用。
如ANFIS(自适应神经模糊推理系统)、WFNN(波形神经网络)和FILP(模糊逻辑程序设计)等。
这些算法各有特点,可以根据不同的实际需求和应用场景进行选择。
1.4 神经网络模糊化神经网络模糊化是指将神经网络中的输入和输出模糊化,从而实现对于不确定性信息的处理。
通过将模糊集合和模糊逻辑引入神经网络中,可以增强网络的适应性和鲁棒性,提高网络的泛化性能。
二、模糊算法与神经网络的应用案例2.1 工业控制在工业自动化控制中,模糊算法和神经网络通常被用来处理过程中的不确定性和非线性问题。
例如在温度控制、液位控制和车间调度等方面,它们能够提供更加精确和稳定的控制效果。
2.2 金融风险管理在金融风险管理方面,模糊算法和神经网络能够帮助银行和金融机构对金融市场和客户的信息进行分析和预测,建立风险模型和评估风险,以提高金融机构的风险管理能力。
2.3 图像和语音识别在图像和语音识别领域,模糊算法和神经网络能够处理复杂的、模糊的信息,提高识别精度。
模糊神经网络的研究及其应用
目录
01 一、模糊神经网络的 基本概念和特点
02
二、模糊神经网络的 应用领域
03
三、模糊神经网络的 理论研究
04
四、模糊神经网络的 实际应用
05 五、未来展望
06 参考内容
模糊神经网络是一种结合了模糊逻辑和神经网络的先进技术,它在许多领域 中都得到了广泛的应用。在本次演示中,我们将介绍模糊神经网络的基本概念、 特点、理论研究以及实际应用,最后对未来发展进行展望。
一、模糊神经网络的理论基础
1、模糊逻辑与神经网络
模糊逻辑是一种处理不确定性的逻辑,它允许我们使用“模糊”的概念来描 述现实世界中的复杂现象。与传统的二值逻辑不同,模糊逻辑可以处理事物的中 间状态,更好地适应了现实世界中的复杂性。神经网络是一种模拟人脑神经元网 络的计算模型,具有自学习和自适应的能力。将模糊逻辑与神经网络相结合,形 成了模糊神经网络这一新的计算模型。
一、模糊神经网络的基本概念和 特点
模糊神经网络是一种基于模糊逻辑理论的多层前馈网络,它通过模拟人脑神 经元的连接方式来实现分类和识别等功能。与传统的神经网络相比,模糊神经网 络具有以下特点:
1、模糊化输入:将输入数据转换为模糊量,使网络能够更好地处理不确定 性和非线性问题。
2、采用模糊规则:模糊神经网络采用模糊规则进行计算,这些规则可以很 好地描述现实世界中的模糊现象。
4、伦理和社会责任的考虑:随着人工智能技术的不断发展,伦理和社会责 任问题也日益受到。未来的研究需要考虑到这些方面的问题,确保技术的合理应 用和发展不会带来负面影响。
总之,模糊神经网络作为一种具有重要理论和应用价值的技术,未来将在更 多领域得到应用和发展。我们期待着模糊神经网络在未来的发展中能够取得更加 辉煌的成就。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊神经网络的基本原理与应用概述摘要:模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。
本文旨在分析模糊神经网络的基本原理及相关应用。
关键字:模糊神经网络,模糊控制,神经网络控制,BP算法。
Abstract:A fuzzy neural network is a neural network and fuzzy logic system with the combination of a powerful. The self-learning and self-tuning function of the network, is a very intelligent control theory research in the field of active branches. So the fuzzy neural network control research has the vital significance. The purpose of this paper is to analysis the basic principle of fuzzy neural networks and related applications.Key Words: Fuzzy Neural Network, Fuzzy Control, Neural Network Control, BP Algorithm.1人工神经网络的基本原理与应用概述1.1人工神经网络的概念人工神经网络(Artificial Neural Network,简称ANN)是由大量神经元通过极其丰富和完善的联接而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其它神经元获得信息,同时加以简单的运算,将结果输出到外界或其它人工神经元。
神经网络在输入信息的影响下进入一定状态,由于神经元之间相互联系以及神经元本身的动力学特性,这种外界刺激的兴奋模式会自动地迅速演变成新的平衡状态,这样具有特定结构的神经网络就可定义出一类模式变换即实现一种映射关系。
由于人工神经元在网络中不同的联接方式,就形成了不同的人工神经网络模式,其中误差反向传播网络(Back-Propagation Network,简称BP网络)是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型【1,2】。
1.2人工神经网络研究的发展简史人工神经网络的研究己有近半个世纪的历史但它的发展并不是一帆风顺的,神经网络的研究大体上可分为以下五个阶段[3]。
(1) 孕育期(1956年之前):1943年Mcculloch与Pitts共同合作发表了“A logical calculus of ideas immanent in Nervous Activity”一文,提出了神经元数学模型(即MP模型)。
1949年Hebb提出Hebb学习法则,对神经网络的发展做出了重大贡献。
可以说,MP模型与学习规则为神经科学与电脑科学之间架起了沟通的桥梁,也为后来人工神经网络的迅速发展奠定了坚实的基础。
(2)诞生期(1957年一1968年):1960年Widrow提出了自适应线性元件模型,Rossenbaltt在1957年提出了第一种人工神经网络模式一感知机模式,由二元值神经元组成,该模式的产生激起了人工神经网络研究的又一次新高潮。
(3)挫折期(1969年一1981年):1969年Minsky等人写的《感知机》一书以数学方法证明了当时的人工神经网络模式的学习能力受到很大限制。
之后,人工神经网络的研究一直处于低潮。
(4)重生期(1982年一1986年):1982年Hopfield提出了Hopfield网络,此模式证明了人工神经网络处理单元间的交互作用,可自动使人工神经网络中所定义的能量函数收敛到一个局部最小值,并可用此模式去求解自联想记忆问题。
随后,Hopfield与Tank两位研究者又提出了Hopfield一Tank网络,这为许多组合最优化的问题提供了新的研究途径。
1986年Rumelhart等人出版的《Parallel Distributed Processing》一书更是激发了人们研究神经网络的积极性,再次掀起了人工神经网络的研究热潮。
该书详细介绍了反向传播网络原理,这可能是到1990年为止被引用得最多的人工神经网络文献。
这是人工神经网络研究史上最重大的事件。
(5)成熟期(1987年迄):1987年第一届正式的国际人工神经网络研讨会召开,标志着人工神经网络研究成熟期的到来。
1989年后,国际电子电气工程师协会(IEEE)与国际神经网络学会(INNS),举办的国际联合神经网络大会(IJCNN)已成为目前最重要的人工神经网络研讨会。
各个科技发达国家正进行许多大型的研究计划,展开了对人工神经网络的基本理论、模式及应用等多方面的研究。
大量新的神经网络模式被提出,如机率神经网络、退火神经网络等。
2.神经网络控制2.1神经网络控制的优点从控制角度看,与传统方法相比,神经网络对自动控制具有多种的特征和优势【3】:(1)并行分布式信息处理。
神经网络具有并行结构,可以进行并行数据处理。
这种并行机制可以解决控制系统中大规模实时计算问题,并且并行计算中的冗余性可以使控制系统具有很强的容错性和鲁棒性。
(2)神经网络是本质非线性系统。
理论上,神经网络能以任意精度实现任意非线性映射,网络还可以实现较其他方法更优越的系统建模。
这种特性使神经网络在解决非线性控制问题中具有广阔的前景。
(3)学习和自适应能力。
神经网络是基于所研究系统过去的数据记录来进行训练的。
当提供给网络的输入不包含在训练集中时,一个经过训练的网络具有归纳能力。
神经网络也可以在线进行自适应调节。
(4)多变量系统。
神经网络可以处理很多输入信号,并具有很多输出量,所以很容易用于多变量系统。
(5)神经计算可以解决许多自动控制计算问题,如优化计算和矩阵代数计算等。
而且既可在线计算,也可离线计算,也可用或光学集成系统实现或利用计算机模拟,灵活性大。
神经网络的应用己深入到自动控制领域的各个方面,包括系统辨识、系统控制、优化计算以及控制系统的故障诊断与容错控制等。
经典神经元结构如图2.1所示。
图 2.1 人工神经元结构模型Fig.2.1 Model of artificial neuron2.2常用的神经网络控制方案神经网络的控制研究是随着年代中期神经网络理论研究的不断深入而不断发展起来的,至今只有十几年的历史。
神经网络在控制中的应用可分为三类、在基于模型的各种控制结构,如内模控制、模型参考自适应控制、预测控制等系统中充当对象模型、神经网络本身用作控制器、在控制系统中进行优化计算。
下面从常规控制器与神经网络相结合的角度,几种常见的神经网络控制器有:1.监督控制;2.神经网络直接逆控制;3.内模控制;4.模型预测控制;5.模型参考自适应控制;6、再励学习控制。
3.模糊控制理论3.1模糊控制的基本原理模糊控制的基本原理由图3.1表示,它的核心部分为模糊控制器,如图中虚线框中部分所示。
模糊控制器的控制规律由计算机的程序实现[4],其算法过程:微机经中断采样获取被控量的精确值,然后将此量与给定值比较得到误差信号E 。
一般选误差信号 E 作为模糊控制器的一个输入量。
把误差信号 E 的精确量进行模糊量化变成模糊量,误差 E 的模糊量可用相应的模糊语言表示,得到了误差 E 的模糊语言集合的一个子集 e 。
再由e 和模糊控制规则 R 根据推理的合成规则进行模糊决策,得到模糊控制量u 。
u =e⊙R (3-1)图3.1 模糊控制的基本原理框图Fig.3.1 Basic block diagram of fuzzy controller 为了对被控对象施加精确的控制,还需要将模糊量u 转换为精确量,这一步骤在图3-1中称为非模糊化处理。
得到了精确的数字控制量后,经数模转换变为精确的模拟量送给执行机构,对被控对象进行一步控制。
然后,中断等待第二次采样,进行第二步控制……。
这样循环下去,就实现了被控对象的模糊控制。
3.2模糊控制器的设计模糊逻辑控制器(Fuzzy Logic Controller)简称为模糊控制器(Fuzzy Controller),因为模糊控制器的控制规则是基于模糊条件语句描述的语言控制规则,所以模糊控制器又称为模糊语言控制器。
模糊控制器的组成框图见图3-2,它包括有:输入量模糊化接口、数据库、规则库、推理机和输出解模糊接口五个部分。
图3.2 模糊控制器的组成框图Fig.3.2 Block diagram of fuzzy controller(1)模糊化接口(Fuzzy Interface) 模糊控制器的输入必须通过模糊化才能用于控制输出的求解,因此实际上它是模糊控制器的输入接口。
其主要作用是将真实的确定量输入转换为一个模糊矢量。
(2)数据库(Data Base,DB) 数据库用来定义模糊控制器中语言控制规则和模糊数据操作,它存储着有关模糊化、模糊推理、解模糊等相关知识。
(3)规则库 (Rule Base,RB) 规则库包含若干模糊控制规则。
即以“if…then…”形式表示,对专家控制经验集成而形成的模糊条件语句。
语言控制规则库通过一系列语言控制规则来表征控制目标和该领域专家的控制策略,它是根据被控系统的行为特性和专家的控制经验总结编写而成的。
由规则库和数据库这两部分组成整个模糊控制器的知识库(KB-Knowledge Base)。
(4)推理与解模糊接口(Inference and Defuzzy-Interface) 推理是模糊控制器中,根据输入模糊量,由模糊控制规则完成模糊推理来求解模糊关系方程,并获得模糊控制量的功能部分。
推理结果的获得,表示模糊控制规则推理功能已经完成。
但是,所获得的结果仍是一个模糊矢量,不能直接用来作为控制量,还必须进行一次转换,求得清晰的控制量输出,即为解模糊。
通常把输出端具有转换功能作用的部分称为解模糊接口。
4.模糊神经网络模糊神经网络是一种集模糊逻辑推理的强大结构性知识表达能力与神经网络的强大自学习能力于一体的技术,它是模糊逻辑推理与神经网络有机结合的产物。
一般来讲,模糊神经网络主要是指利用神经网络结构来实现模糊逻辑推理,从而使传统神经网络没有明确物理含义的权值被赋予了模糊逻辑中推理参数的物理含义。
以下主要讨论神经网络与模糊系统的融合技术、模糊推理神经网络的初步研究、模糊推理神经网络。
4.1模糊系统和神经网络的融合模糊神经网络(FNN)近年来逐渐成为研究的热点,原因在于模糊控制和神经网络二者之间的互补、关联性,二者的比较见表 4-1[5]。