第一章_波动方程
第一章 三类典型方程和定解条件
a 其中,ij (x), bi (x), c x , f (x)都只是 x1 , x2, , xm 的已知 函数,与未知函数无关。
若一个函数具有某偏微分方程中所需 要的各阶连续偏导数,并且代入该方程中 能使它变成恒等式,则此函数称为该方程 的解(古典解)。 初始条件和边界条件都称为定解条件。 把某个偏微分方程和相应的定解条件 结合在一起,就构成了一个定解问题。 只有初始条件,没有边界条件的定解问题 称为始值问题(或柯西问题)。反之,只 有边界条件,没有初始条件的定解问题称 为边值问题。既有初始条件又有边界条件 的定解问题,称为混合问题。
数学物理方程
第一章 三类典型方程和定解条件 第二章 分离变量法 第三章 Laplace方程的格林函数法
第四章 贝塞尔函数及勒让德多项式
第一章 三类典型方程和定解条件
数学物理方程的研究对象——定解问题。 一个定解问题是由偏微分方程和相应的定解 条件组成。我们先来介绍三类典型的方程:
三类典型方程
一、波动方程 二、热传导方程
用以说明初始状态的条件称为初始条件。 用以说明边界上的约束情况的条件称为边 界条件。
一、初始条件
比如说波动方程(1.3)其初始条件有两 个,一个是参数u,一个是u的一阶导数。 即: u u t 0 及 都已知。 t
t 0
而热传导方程(1.7)其初始条件只有一 个,就是参数u。即:
Байду номын сангаасu t 0 是已知。
一个定解问题提的是否符合实际情况,从 数学角度来看,有三方面可以加以检验:
1、解的存在性,看定解问题是否有解。
2、解的唯一性,看是否只有一个解。
3、解的稳定性,看当定解条件有微小
变动时,解是否相应地只有微小的变 动,若确实如此,则称此解是稳定的。
波动方程_精品文档
l
=
=
12
50
600
s
=
1
(
)
υ
例题:有一列向x 轴正方向传播的平面简谐波,
它在t = 0 时刻的波形如图所示其波速为:
u = 600m/s 。试写出波动方程。
=
5m
A
24m
l
=
从波形图中可知:
ω
=
π
2
=
π
50
(
)
rad.
s
1
υ
原点处质点的振动方程为:
波动方程为:
y
0
2
π
由旋转矢量法:
u
l
=
=
=
t
+
cos
(
)
y
A
ω
0
1.时间推迟方法
x
x
u
y
o
P
·
A
已知振源(波源)的振动方程为:
振源的振动状态从0点以传播速度u传送到P 点,显然时间要落后:
´
u
x
=
t
u
x
j
=
t
+
cos
(
)
A
ω
-
j
=
t
+
cos
(
)
y
A
ω
0
´
t
j
=
t
+
cos
(
)
y
A
ω
-
P
介质中任一质点(坐标为 x)相对其平衡位
置的位移(坐标为 y)随时间t 的变化关系。
=
0
数学物理方程答案谷超豪
数学物理方程答案谷超豪数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程u ?x.u?2u?ux2?[l?(x??x)]∣x??x?g?[l?x]∣?gxx?x?t利用微分中值定理,消去?x,再令?x?0得2u??ug[(l?x)]。
x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程2222u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?y x,y,t有二阶连续偏导数。
且232u(t2?x2?y2)?tt35u(t2?x2?y2)2?3(t2?x2?y2)2?t22t(t2x2?y2)32(2t2?x2?y2)u(t2?x2?y2)?x32x2u?x2t?x22352?2222?22?y?3t?x?yx52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2y所以即得所证。
2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2 2u2?u?2?a2t?x?ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5?t2?x2?y22t2?2x2?y22u?x22u?y2t?x?225?y222t2x?y22t2.2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。
数学物理方程习题讲义
t
=
0
:
v
=
(h
−
x)ϕ(x),
∂v ∂t
=
(h
−
x)ψ(x)
因此
v(x, t)
=
1 2
((h
−
x
+
at)ϕ(x − at) + (h
−
x
−
at)ϕ(x + at))
+
1 2a
x+at
(h − ξ)ψ(ξ)dξ,
x−at
从而
u(x, t)
=
1 2(h − x)
((h
−
x
+
at)ϕ(x
−
at)
+
(h
−
(x
+
∆x,
t)
−
E
(x)
S
(x)
∂u ∂x
(x,
t)
=
∂ ∂x
E
(x∗)
S
(x∗)
∂u ∂x
(x∗,
t)
∆x
-1-
1.2 习题选讲
其中x∗ ∈ (x, x + ∆x).约去∆x并令∆x → 0,即得
∂ ∂t
ρ
(x)
S
(x)
∂u ∂t
=
∂ ∂x
E
(x)
S
(x)
∂u ∂x
当S(x)为常数时,即为
∂ ∂t
第四章 二阶线性偏微分方程的分类与总结. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1 学习要求 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 习题选讲 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
第一章----波动方程
总之:
无外力作用的一维弦振动方程:
2u t 2
a2
2u x2
0
外力作用下的弦振动方程:
(1.4)
2u t 2
a2
2u x2
f (x,t)
(1.5)
其中 a2 T , f F , f 称为非齐次项(自由项)。
注:弦振动方程也叫波动方程,因为它描述的是一种 振动或波动现象,后面将给出解释。
1973年布莱克(Black)和休尔斯(Scholes)建立了倒向 微分方程决定欧式期权的无套利价格:
f t
rS
f S
1 2S2
2
2 f S 2
rf
这里,对买入期权有 f (S,t) |tT max{ST X ,0} ;对卖出期权有
f (S,t) |tT max{X ST ,0} 。其中 r 为无风险利率, S 为股票价格,
一般步骤(从宇宙探星谈起): 1、将物理问题归结为数学上的定解问题; 2、求解定解问题; 3、对求得的解给出物理解释。
四、偏微分方程的研究内容-适定性的概念
1、存在性 2、唯一性 3、稳定性
如果一个定解问题的解是存在的、 唯一的,而且是稳定的,则称该定 解问题是适定的。
五、微分方程的重要作用
可以说有了微积分,就有了微分方程 (微积分是17世纪为了解决物理、力学、 天体问题而产生的,而这些问题多为数学 物理方程)。
1 (tan )2 dx 1 2 dx dx
(2)弦上各点的张力是常数
由于弦做横振动,弦沿 x 轴无运动,所以合力为零
T1 cos1 T2 cos2 T1 T2 T
数学物理方程答案谷超豪
数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。
?x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?yx,y,t有二阶连续偏导数。
且232?u??(t2?x2?y2)?t??t35??u(t2?x2?y2)2?3(t2?x2?y2)2?t22?t?(t2?x2?y2)?32?(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x?2u?x2?t?x?22352?2222?22?y?3t?x?yx??????52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2?y所以即得所证。
2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2??2u2?u?2?a2t?x??ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5??t2?x2?y22t2?2x2?y2??2u?x2?2u?y2?t?x??225?y22??2t2?x?y22???t2.?2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。
微分方程波动方程
2u u ∣ x 2 [l ( x x)] x t
∣ x g
运动方程为:
x sx x
2u
u u ES xx ES x b x s x t t 2
利用微分中值定理,消去 x ,再令 x 0 得
o
x
所
以
证明: (1) 如果初始条件在 x 轴的区间[x 1 ,x 2 ]上发生变化,那末 对应的解在区间[ x1 ,
令 x-at=0 得 ( x) =F(0)+G(2x)
(1)
以
令 x+at=0 得 ( x) =F(2x)+G(0) 所以 F(x)= ( ) -G(0). G(x)= ( ) -F(0). 且 所以 F(0)+G(0)= (0) (0). u(x,t)= (
所
x 2
利用微分中值定理,消去 x ,再令 x 0 得
2u u g [(l x) ] 。 2 x x t
5. 验证
x sx 2ຫໍສະໝຸດ u ( x, y , t )
1 t x y
2 2
2u u u ES b x s x 2 t x x t
其中 h 为圆锥的高(如图 1) 证:如图,不妨设枢轴底面的半径为 1,则 x 点处截面的半径 l 为:
E ( x)S ( x)u x ( x, t ); E ( x x)S ( x x)u x ( x x, t ).
于 是 得 运 动 方 程
l 1 x h
x h
2
( x)s( x) x utt ( x, t ) ESu x ( x x) | x x ESu x ( x) | x
第一章_波动方程
假定有垂直于x轴方向的外力存在,并设其线密度为F(x,t),则 弦段(x, x+Δx)上的外力为:
x x
x
F ( x ,t) dx
它在时间段(t, t+Δt)内的冲量为:
t x
t t x x
F ( x , t ) dx dt
数学物理方程
第一章 波动方程
于是有:
2 2 u ( x , t ) u ( x , t ) [ 2 T F ( x , t )] dx dt 0 2 t x t x t t x x
数学物理方程
第一章 波动方程
回 答 下 列 方 程 是 线 性、 的非 线 性 的 ? 齐 次 非次 齐? 阶 数 ?
(1)
4u
4
x x y y u u ( 2)u xy 0 x x
2u
2
2
4u
2 2
4u
4
0
四阶线性齐次 一阶非线性,拟线性的 二阶线性齐次的 二阶线性非齐次的 三阶非线性
要在区域 ( 0 x l ,t 0 )上(见右上图)求上述定解问题的解,就是
要求这样的连续函数u(x, t) ,它在区域0<x<l,t>0中满足波动方程(2.1);在x 轴上的区间[0,l]上满足初始条件(2.2);并在边界x=0和x=l上满足边界条件 (2.3)和 (2.4)。 一般称形如(2.3)和(2.4)的边界条件为第一类边界条件,也叫狄利克雷 (Dirichlet)边界条件。
非均匀弦的强迫横振动方程
一维波动方程不仅可以描述弦的振动,还可以描述: 弹性杆的纵向振动 管道中气体小扰动的传播 ………等等 因此,一个方程反应的不止是一个物理现象, 而是一类问题。
第一章 波动方程和行波法
如弦振动方程: utt a2uxx 0
其初始条件为: 同一时刻( t 0 )情况
u ut
t0 (x) t0 (x)
初始位移 初始速度
注意:( a)初始条件应是整个系统的初始
状态,而不是系统中个别点的初始状态。
31
如:一根长为 l 的两端固定的弦,用手把它的 中点朝横向拔开距离h,然后放手任其振动( 初始时该就为放手的时刻),则初始条件应为:
Tux (x0 0,t) Tux (x0 0,t) F (t) ②
①、②合称为衔接条件,这时振动问题适定。
42
再如,不同材料组成的杆的振动,在
衔接处的位移和能量相等,即:
u u 1 x x0
2 x x0
E1u1x xx0 E1u2 x xx0
u1(x,t), u2 (x,t) :杆的两部分位移. E1 , E2 :两部分的杨氏模量.
27
二、定解条件的提出 1、必要性。导出方程后,就得对方程进行求
解。但是只有泛定方程不足以完全确定方程的 解,即不足以完全确定具体的物理过程,因为 具体的物理过程还与其初始状态及边界所受的 外界作用有关,因而必须找一些补充条件,用 以确定该物理过程。
28
从物理角度看:泛定方程仅表示一般性(共 性),要为物体的运动个性化附加条件。
10
由于张力的作用,一个小段的振动必带动它 的邻段,邻段又带动它自己的邻段,这样一个 小段的振动必然传播到整个弦,这种振动的传 播现象叫作波。弦是轻质弦(其质量只有张力 的几万分之一)。跟张力相比,弦的质量完全 可以略去。
11
① 模型实际上就是:柔软轻质细弦(“没 有质量”的弦)
② 将无质量的弦紧绷,不振动时是一根直 线,取为 x 轴。
波动方程和振动方程的表达式(3篇)
第1篇一、波动方程波动方程是描述波动在连续介质中传播的偏微分方程。
常见的波动方程有弦振动方程、声波方程、光波方程等。
以下列举几种常见的波动方程及其表达式:1. 弦振动方程弦振动方程描述了弦在受到外力作用下的振动规律。
假设弦的线密度为λ,张力为T,弦上某点的位移为y(x,t),则弦振动方程可表示为:∂²y/∂t² = (T/λ)∂²y/∂x²其中,x表示弦的长度,t表示时间,y(x,t)表示弦上某点的位移。
2. 声波方程声波方程描述了声波在介质中的传播规律。
假设介质的密度为ρ,声速为c,声波在介质中的波动函数为p(x,t),则声波方程可表示为:∂²p/∂t² = c²∂²p/∂x²其中,x表示声波传播的距离,t表示时间,p(x,t)表示声波在介质中的波动函数。
3. 光波方程光波方程描述了光波在介质中的传播规律。
假设光波在介质中的波动函数为E(x,t),介质的折射率为n,则光波方程可表示为:∂²E/∂t² = (n²/c²)∂²E/∂x²其中,x表示光波传播的距离,t表示时间,E(x,t)表示光波在介质中的波动函数。
二、振动方程振动方程描述了物体在受到外力作用下的振动规律。
常见的振动方程有单摆运动方程、弹簧振动方程等。
以下列举几种常见的振动方程及其表达式:1. 单摆运动方程单摆运动方程描述了单摆在重力作用下的振动规律。
假设单摆的摆长为L,摆球质量为m,摆球偏离平衡位置的角度为θ,则单摆运动方程可表示为:mL²θ'' = -mgLsinθ其中,θ'表示摆球偏离平衡位置的角度对时间的导数,θ''表示摆球偏离平衡位置的角度对时间的二阶导数。
2. 弹簧振动方程弹簧振动方程描述了弹簧在受到外力作用下的振动规律。
假设弹簧的劲度系数为k,弹簧的位移为x,则弹簧振动方程可表示为:mω²x = -kx其中,ω表示弹簧振动的角频率,m表示弹簧的质量。
数学物理方程(谷超豪)课后答案
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。
1波动方程
t x y = A cos2π + T λ
x y = A cos 2π ν t + λ 2π x y = A cos[ 2πν t +]
Tu = λ
1 ν= T
y
λ
ut
0 x X
T=λ/u=0.4/20=0.02s y(0,0)=0 v0>0 初位相为 φ= -π/2 2π 2πx π y = Acos( t + ) λ 2 T
F
y
0.04m
u
0.2m 0.4m
X
= 4 ×10 2 cos(100πt + 5πx π 2)m 17
因为: 因为: = y = y( x, t ) = Aω sin[ω (t + x ) + 0 ] v u t 所以 v = y = y ( x, t ) = 12.6 cos(100πt + 5πx)(m / s ) t 显然与波速u=20m/s 不同. 不同. 显然与波速 上例中条件是已知t=0时刻的波动方程 时刻的波动方程. 上例中条件是已知 时刻的波动方程. 如果t=0时 波源 波源x=0点的振动方程为: 点的振动方程为: 如果 时,波源 点的振动方程为
19
三,波函数的物理意义
1.振动方程与波动方程的区别 振动方程与波动方程的区别
x = A cos(ωt + )
振动方程是时间 t 的函 数 波动方程是坐标 x 和时间 t 的函数, 的函数,表示的是参与波 动的一系列的质点任意时 刻的振动位移. 刻的振动位移.
x o
x = f (t )
t
y = f ( x ,t )
播放动画
5
6
四,波阵面,波射线,波前 波阵面,波射线,
1 波动方程
例1:已知波源在原点的一列平面简谐波,波 动方程为y=Acos(Bt-Cx),其中A,B,C为 正值恒量,求:
(1)波的振幅,波速,频率,周期和波长; (2)写出传播方向上距离波源为l处的一点 的振动方程; (3)任一时刻,在波的传播方向上相距为d 的两点的相位差。
例2:一平面简谐波沿x轴负向传播,波长为 1.0m,原点处质点的振动频率为2Hz,振幅 为A=0.1m,且在t=0时恰好通过平衡位置向y 轴负向运动,求此平面波的波动方程。
设初相为0. 1. 当 x 一定时,由波动方程就可以得到固定点 的振动方程。
y Acos( t )
2 πx x λ u
2. 当 t 一定时,波函数表示该时刻波线上各点相 对其平衡位置的位移,即此刻的波形。
y
O
x1
x2
x
这个图线称为波形曲线,它反映了在某一时刻各 个质元的位移。
(3)波阵面(波前)
在某一个时刻,由波源最初振动状态传到各点所连成的曲面 称为波阵面或者波前。
(4) 球面波和平面波
波前 波面
*
球面波
波线
平面波
2.惠更斯原理
波所到达的每一点都可以看作是发射次级子波的波源, 而在其后的任意时刻,这些子波的包络就是新的波前.
ut
ut
平 面 波
球 面 波
O
u
张力
单位长度的质量
四. 波动方程
1.简谐波
如果振源作的是简谐运动,由此产生的波就称为 简谐波。 平面简谐波:波面为平面的简谐波。
2.平面简谐波的方程
u
点O 的振动状态
yO A cos(t )
x u
如果O点已振动了t秒钟,那么这时P点就只振动了t- 秒 . 点P 振动方程
大学物理-波动方程
2
谱方法的优点是精度高,适用于大规模问题求解, 且能够处理复杂的边界条件和初值条件。
3
谱方法的缺点是计算量大,需要较高的编程技巧 和计算资源,且对非线性问题的处理较为困难。
06 波动方程在物理中的应用
声波传播
声波传播
波动方程可以描述声波在介质中的传播规律 。通过求解波动方程,可以得到声波的传播 速度、振幅和相位等信息。
有限差分法的优点是简单直观,易于编程实现,适用于规则区域的问题求解。
有限差分法的缺点是对不规则区域和边界条件的处理较为复杂,且精度相对较低。
有限元法
01
有限元法是一种将连续的波动问题离散化为有限个相互连接的子域(即有限元 )的方法,通过将波动方程转化为有限元方程组,然后求解该方程组得到波动 问题的数值解。
大学物理-波动方程
contents
目录
• 波动方程概述 • 一维波动方程 • 二维波动方程 • 三维波动方程 • 波动方程的数值解法 • 波动方程在物理中的应用
01 波动方程概述
波动方程的定义
波动方程是描述波动现象的基本数学 模型,它描述了波动在空间和时间上 的变化规律。
波动方程通常表示为偏微分方程,其 中包含未知函数(如波动位移或速度 )及其偏导数。
地震定位与测深
利用地震波的传播规律,可以进行地震定位和测深,以了解地球内 部结构和构造。
地震灾害评估
地震波的传播特性可以为地震灾害评估提供重要信息,如地震烈度、 震源深度和地表破裂带等。
THANKS FOR WATCHING
感谢您的观看
偏微分方程的形式
三维波动方程通常采用偏微分方程的形式,包含了波动传播的空间 和时间信息。
三维波动方程的解法
第一章 波动方程
数学物理方程
§1.2 定解条件
第一章 波动方程
1、初始条件——描述系统的初始状态
波动方程的初始条件
u |t0 (x)
u t
t0
(x)
系统各点的初位移 系统各点的初速度
数学物理方程
第一章 波动方程
2、边界条件——描述系统在边界上的状况
波动方程的三类边界条件
(1)固定端:对于两端固定的弦的横振动,其为:
x x[ u (x ,t t) u (x ,t)] dx
x
t
t
于是由冲量定理:
t t T [ u ( x x , t ) u ( x , t ) ] d x x t [ u ( x , t t ) u ( x , t ) ] d
t
x x x t t
gdx
2u( x, t ) t 2
dx
其中:u(x dx,t) x
u ( x, t ) x
x
u(x,t) x
dx
2u ( x, t ) x2
dx
T
u2 (x,t) x2
g
dx
2u( x, t ) t 2
dx
数学物理方程
第一章 波动方程
T
u2 (x,t) x2
g
dx
2u( x, t ) t 2
例如: 在前面的推导中,弦的两端被固定在x=0和x=l两点,即
u(0, t)=0 , u(l, t)=0,
这两个等式称为边界条件。此外,设弦在初始时刻t=0时的位置和速度为
u ( x , 0 ) ( x ), u ( x , 0 ) ( x )( 0 x l ) t 这两个等式称为初始条件。边界条件和初始条件总称为定解条件。把微分 方程和定解条件结合起来,就得到了与实际问题相对应的定解问题。
波动方程推导过程
例 1.5 一柔软均匀的细弦, 一端固定, 另一端是弹性支承. 设该弦在阻力与速度成正比的介质 中作微小的横振动, 试写出弦的位移所满足的定解问题.
解: k, σ 为正常数
utt − a2uxx + kut = 0, u|t=0 = φ(x), ut|t=0 = u|x=0 = 0, (ux + σu)|x=l = 0.
解: 设弦长为 l, 取弦上端点为原点, 取铅垂向下的轴为 x 轴. 设 u(x, t) 为时刻 t, x 处的横向位 移. 取位于 (x, x + ∆x) 的微元进行分析, 由绝对柔软的假设, 弦的张力 T 的方向总是沿弦的切
线方向. 又由微小振动的假设 ux ≪ 1. 因此认为弦在振动过程中不伸长, 且张力 T 与时间无 关. 考察受力平衡 (α1, α2 为张力 T 的方向与竖直线的夹角)
第一章 波动方程
齐海涛 山东大学威海分校 数学与统计学院
Email: htqisdu@
September 28, 2011
目录
1 方程的导出、定解条件
2
2 达朗贝尔公式、波的传播
4
3 初边值问题的分离变量法
7
4 高维波动方程的柯西问题
10
5 波的传播与衰减
13
6 能量不等式、波动方程解的唯一性和稳定性
3
2 达朗贝尔公式、波的传播
例 2.1 证明方程
∂ [( x )2 ∂u ] 1 ( x )2 ∂2u
∂x
1− h
∂x
= a2
1− h
∂t2
(h > 0 常数)的通解可以写成
u = F(x − at) + G(x + at) , h−x
波动方程_精品文档
波动方程波动方程是描述波动现象的数学模型。
它是最基本的物理方程之一,广泛应用于各个领域,包括物理学、工程学、地球科学等。
波动方程描述了波动传播的机制和特性,是许多领域中研究和分析波动现象的重要工具。
波动方程的一般形式可以表示为:∇²u = (1/c²) * ∂²u/∂t²其中,u是波动的物理量,∇²代表拉普拉斯算子,c是波速,∂²u/∂t²是波动量的二阶时间导数。
波动方程的解决了初值问题:给定初始条件下,求解在给定时间和空间范围内波动的传播和变化情况。
对于简单的一维情况,波动方程可以简化为:∂²u/∂x² = (1/c²) * ∂²u/∂t²这是常用的一维波动方程,描述了波沿着x轴的传播行为。
根据边界条件和初值条件,可以求解出特定系统下的波动解。
波动方程描述了各种类型的波动现象,包括机械波、电磁波、声波等。
在物理学中,波动方程常被用于研究弹性体的传播行为,如声波在空气中的传播、地震波在地壳中的传播等。
在工程学中,波动方程可以用于分析结构中的振动问题,如桥梁、建筑物等的振动特性。
在地球科学中,波动方程被广泛应用于地震勘探和地震波传播等研究。
波动方程的研究可以帮助我们理解和预测波动现象的行为。
通过求解波动方程,我们可以得到波的传播速度、波的形状、波的幅度等信息。
这些信息对于研究和应用波动现象都非常重要。
除了一维波动方程外,波动方程还可以推广到二维和三维情况。
在二维情况下,波动方程可以表示为:∇²u = (1/c²) * ∂²u/∂t²这是二维波动方程,描述了波沿着平面的传播行为。
在三维情况下,波动方程可以表示为:∇²u = (1/c²) *∂²u/∂t²这是三维波动方程,描述了波沿着空间的传播行为。
对于二维和三维情况,波动方程的求解相对复杂,但同样具有重要的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学物理方程
第一章 波动方程
u 2 ( x, t ) 2 u ( x, t ) T x 2 g dx t 2 dx
T u 2 ( x, t ) 2u ( x, t ) g 2 x t 2
t t
另一方面,在时间段(t, t+Δt)内弦段(x, x+Δx)的动量变化为:
x x x
u ( x , t t ) u ( x , t ) [ ] dx t t
于是由冲量定理:
t t
x u ( x x , t ) u ( x , t )x u ( x , t t ) u ( x , t ) T [ ] dt [ ] d t x x x t t
u ( x x, t ) u ( x, t ) T ( sin 2 sin1 ) T (tg 2 tg1 ) T [ ] x x
假设2和假设3
数学物理方程 在时间段(t, t+Δt)内该合力产生的冲量为:
第一章 波动方程
u ( x x , t ) u ( x , t ) T [ ] dt t x x
非均匀弦的强迫横振动方程
一维波动方程不仅可以描述弦的振动,还可以描述: 弹性杆的纵向振动 管道中气体小扰动的传播 ………等等 因此,一个方程反应的不止是一个物理现象, 而是一类问题。
数学物理方程
第一章 波动方程
§1.2 定解条件
列出微分方程的目的是要从微分方程中求得具体问题的解或者研究 解的性质。前面我们看到,弦振动方程描述的是弦作微小横振动时的位 移函数u(x, t)所应满足的一般性规律。仅仅利用它并不能完全确定一条弦 的具体运动状况。这是因为弦的运动还与其初始状态以及边界所处的状 况有关系,因此对于具体的弦振动问题而言,还需要结合实际问题附加 某些特定条件。 例如: 在前面的推导中,弦的两端被固定在x=0和x=l两点,即 u(0, t)=0 , u(l, t)=0,
数学物理方程
第一章 波动方程
§1.1 弦振动方程的导出
基本假设: 1. 弦的质量是均匀的,弦的截面直径与长度相比可以忽略。 弦可以视为一条曲线,线密度为常数。 2. 弦在某一个平面内作微小横振动。 弦的位置始终在一直线段附近,弦上各点在同一平面内垂 直于该直线的方向上作微小振动。 (微幅) 3. 弦是柔软的,它在形变时不抵抗弯曲。 弦上各质点的张力方向与弦的切线方向一致,而弦的伸长 变形与张力的关系服从虎克定律。 (横振动) 基本规律: 牛顿第二定律(冲量定律) (细弦)
y
M'
T'
u ( x, t ) sin tan x u ( x dx, t ) sin ' tan ' x
ds
'
T
M
gds
x x dx x
数学物理方程
第一章 波动方程
T T '
其中: m
ds
u ( x dx, t ) u( x, t ) T gds ma x x
要在区域 ( 0 x l ,t 0 )上(见右上图)求上述定解问题的解,就是
要求这样的连续函数u(x, t) ,它在区域0<x<l,t>0中满足波动方程(2.1);在x 轴上的区间[0,l]上满足初始条件(2.2);并在边界x=0和x=l上满足边界条件 (2.3)和 (2.4)。 一般称形如(2.3)和(2.4)的边界条件为第一类边界条件,也叫狄利克雷 (Dirichlet)边界条件。
u |x0 0,
或: u (a, t ) 0
狄利克雷(Dirichlet) 边界条件
(2)自由端:x=a 端既不固定,又不受位移方向力的作用。
u T x
0
xa
u x
0
xa
ux (a, t ) 0
诺依曼(Neumann) 边界条件
(3) 弹性支承端:在x=a端受到弹性系数为k 的弹簧的支承。
数学物理方程
第一章 波动方程
§1.2 定解条件
1、初始条件——描述系统的初始状态
波动方程的初始条件
u |t 0 ( x) u ( x) t t 0
系统各点的初位移 系统各点的初速度
数学物理方程
第一章 波动方程
2、边界条件——描述系统在边界上的状况
波动方程的三类边界条件 (1)固定端:对于两端固定的弦的横振动,其为:
u ( 3) 2 x 0 y x 2u 2u 2u ( 4) 2 2 2 sin x xy
3u x y
数学物理方程
第一章 波动方程
简化假设:
(1)弦是柔软的,弦上的任意一点的张力沿弦的切线方向。
(2)振幅极小, 张力与水平方向的夹角很小。 牛顿运动定律: 横向: T cos T 'cos ' 纵向: T sin T 'sin ' gds ma 其中:cos 1 cos ' 1
数学物理方程
第一章 波动方程
§1.3 定解问题适定性概念
定解问题的存在性、唯一性和稳定性统称为定解问题的适 定性。如果一个定解问题的解是存在的,唯一的,而且是稳定 的,我们就称这个问题是适定的,即认为这样的定解问题的提 法是合适的。对定解问题的适定性进行一定的分析,可以帮助 我们初步判定所归结的定解问题是否合理、所附加的定解条件 是否合适以及对一个偏微分方程应该如何指定定解条件等问题 ,同时也可以对求解定解问题起到一定的指导作用。 除了研究定解问题的适定性外,数理方程中还经常研究的 问题包括:解的正则性(光滑性)、解的渐近性(包括衰减性 )和定解问题的求解方法(精确解、渐近解、数值解)等。
令: a
2
T
2 2u u 2 a g ………一维波动方程 2 2 t x
自由项 忽略重力作用:
------非齐次方程
u 2 u a 2 t x 2
2
2
------齐次方程
数学物理方程
第一章 波动方程
§1.1 弦振动方程的导出
如果弦非均匀,则 和T为x的函数,
(T ( x )u x ) F ( x )utt ( x, t ) x
这两个等式称为边界条件。此外,设弦在初始时刻t=0时的位置和速度为
u ( x , 0 ) u ( x , 0 ) ( x ), ( x )( 0 x l ) t 这两个等式称为初始条件。边界条件和初始条件总称为定解条件。把微分 方程和定解条件结合起来,就得到了与实际问题相对应的定解问题。
数学物理方程
第一章 波动方程
y
M'
研究对象: u ( x, t ) 弦线上任意一点在 t 时刻沿y轴上的位移
T'
ds
'
在右图所示的坐标系,用u(x, t)表示弦 上各点在时刻t沿垂直于x方向的位移。在 这条弦上任意取一弦段(x, x+Δx),它的 弧长为 :
T
M
gds
x
x dx x
由假设3,弦线张力T(x)总是沿着弦在x处的切线方向.由于弦只在垂直x 轴的方向进行横振动,因此可以把弦线的张力T(x)在x轴的方向的分量看成 常数T。对于图中选取的弦段而言,张力在x轴的垂直方向上的合力为:
数学物理方程
第一章 波动方程
§1 方程的导出、定解条件
§1.1 弦振动方程的导出 §1.2 定解条件 §1.3 定解问题适定性概念
数学物理方程
第一章 波动方程
物理背景: 波的传播和弹性体振动。 §1.1 弦振动方程的导出 首先,考察弦横振动这个物理问题:
给定一根两端固定的拉紧的均匀柔软的弦线,设其 长度为l ,它在外力作用下在平衡位置附近作微小的横 振动,求弦上各点的运动规律。 把实际问题提炼为数学模型时必须做一定的理想化 假设,以便抓住问题的最本质特征。
2 2 u ( x , t ) u ( x , t ) 2 2 a f ( x , t ), a T / , f ( x , t ) F ( x , t ) / 2 2 t x
类似地,三维波动方程可以表示为:
2 2 2 2 u u u u 2 a ( ) f ( x , y , z , t ) 2 2 2 2 t x y z
u T x
x a
k u x a
或
u u 0 x xa
数学物理方程
第一章 波动方程
§1.2 定解条件
同一类物理现象中,各个具体问题又各有其特殊性。边
界条件和初始条件反映了具体问题的特殊环境和历史,即
个性。 初始条件:够用来说明某一具体物理现象初始状态的条件。 边界条件:能够用来说明某一具体物理现象边界上的约束 情况的条件。 其他条件:能够用来说明某一具体物理现象情况的条件。
数学物理方程
第一章 波动方程
回 答 下 列 方 程 是 线 性、 的非 线 性 的 ? 齐 次 非次 齐? 阶 数 ?
(1)
4u
4
x x y y u u ( 2)u xy 0 x x
2u
2
2
4u
2 2
4u
4
0
四阶线性齐次 一阶非线性,拟线性的 二阶线性齐次的 二阶线性非齐次的 三阶非线性
数学物理方程
第一章 波动方程
§1.3 定解问题适定性概念 定解问题
把某种物理现象满足的偏微分方程和其相应的定解 条件结合在一起,就构成了一个定解问题。 (1) 初始问题:只有初始条件,没有边界条件的定解问题;