表面活性剂的复配
双联(Gemini)两性表面活性剂的复配性能研究

双联(Gemini)两性表面活性剂的复配性能研究张建;赵苑;李昂;丁佳佳;李洵洲【摘要】合成了一种新型双联(Gemini)两性表面活性剂-乙二醇双琥珀酸一氯羟丙基季铵双酯磺酸钠(HDBC).同时研究了HDBC与其它表面活性剂的在表面张力上的协同效应.结果表明:HDBC与十二烷基硫酸钠(SDS)质量比为5:5时,协同增效作用最佳.以最佳比例复配后,使用量为0.5g/L,表面张力达到35.61 mN/m.而HDBC 或SDS在浓度为0.5g/L时,各自的表面张力为44.89、41.56mN/m,复配后大大降低了表面张力.【期刊名称】《甘肃高师学报》【年(卷),期】2018(023)002【总页数】4页(P25-28)【关键词】双联两性表面活性剂;表面张力;协同效应【作者】张建;赵苑;李昂;丁佳佳;李洵洲【作者单位】兰州城市学院化学与环境工程学院,甘肃兰州730070;兰州城市学院化学与环境工程学院,甘肃兰州730070;兰州城市学院化学与环境工程学院,甘肃兰州730070;兰州城市学院化学与环境工程学院,甘肃兰州730070;上海赢创食品有限公司,上海201806【正文语种】中文【中图分类】O647.11 前言表面活性剂的应用范围涉及到人类方方面面,不管是生活日用品,还是工业等各个领域都离不开表面活性剂的使用.而探索并合成具有高活性的新型表面活性剂一直是当今的热点课题.早在1988年日本Osaka大学的Okahara等人开发出了以柔性基团联接离子头基的若干双烷烃链表面活性剂[1].1991年,Menger等人首次合成了刚性基团联接离子头基的双烷烃链表面活性剂,并命名这种双亲分子的表面活性剂为Gemini表面活性剂 [2],同时对Gemini表面活性剂的吸附行为及其胶束的形式作了深入探讨[3].结果表明,阴离子Gemini表面活性剂与阴离子表面活性剂[4],阴离子Gemini表面活性剂与非离子表面活性剂,阳离子Gemini表面活性剂与非离子表面活性剂[5],两性Gemini表面活性剂与阴离子表面活性剂等的复配均表现出良好的协同效应.目前,低聚表面活性剂之间的协同效应研究较少,而低聚表面活性剂因其具有特殊的结构特点,从理论上可知这种表面活性剂之间应具有优良的复配、协同效应[6].此外,一些低聚表面活性剂还具有良好的钙皂分散性能、较强的抗菌性、优良的耐温性等优点[7].但具有两性Gemini新型表面活性剂与其他表面活性剂相互复配的研究报道相对较少,本文用两性Gemini新型表面活性剂与其他表面活性剂相互复配进行表面张力的研究,以期能得到比较好的复配配方和良好的协同效应.2 实验部分2.1 试剂顺丁烯二酸酐、无水乙醇、亚硫酸氢钠、无水乙酸钠、丙酮、环氧氯丙烷(以上均为A.R.)、十二烷基磺酸钠(C18H29NaSO3,G.R.)、十二烷基硫酸钠(SDS,C12H25NaSO4,R.G.)、十六烷基三甲基溴化铵([CH3(CH2)15]N(CH3)3Br,A.R.),以上药品均购置于国药试剂有限公司,乙二醇双琥珀酸一氯羟丙基季铵双酯磺酸钠(HDBC)按参考文献[8]制备.2.2 表面活性剂的合成2.2.1 酯化反应(乙二醇双马来酸单酯的合成)实验步骤:在装有搅拌、回流冷凝器和温度计的三口烧瓶中加入马来酸酐113.0 g、乙二醇30.00 mL,n(乙二醇):n(马来酸酐)=1.00:2.15[8],再加入 5.5 mL乙酸钠溶液(1.0%)作催化剂,加入30.00 mL丙酮为溶剂,沸点回流反应2 h.产物使用丙酮重结晶3次,得到乙二醇双马来酸单酯的白色结晶固体(中间体 1)60.82 g,产率为 44.49%.2.2.2 开环反应(乙二醇双琥珀酸一氯羟丙基酯的合成)实验步骤:在三口烧瓶中加入丁二醇双马来酸单酯(中间体 1)35.51 g、环氧氯丙烷 40.7 mL,再加入40.7 mL丙酮为溶剂,在温度35℃下反应时间24 h.将所得产物减压蒸馏除去溶剂和过量环氧氯丙烷,得到黄色透明黏稠液体(中间体2)40.9 g,产率为94.11%.2.2.3 季铵化反应(乙二醇双琥珀酸一氯羟丙基季铵双酯的合成)实验步骤:将上步产物(中间体2)40.9 g与55.35 g十二烷基叔胺一起加入三口烧瓶中,用100mL乙醇作溶剂,温度控制在85℃,反应时间4 h.粗产物经减压蒸馏除去乙醇,得到橙黄色透明粘稠液体88.7 g.产率为92.16%.2.2.4 磺化反应(乙二40醇双琥珀酸一氯羟丙基季铵双酯磺酸钠的合成)实验步骤:将上步产物与76.7 mL亚硫酸氢钠水溶液(30%wt)于三口烧瓶中混合,加入一定量的水作溶剂,在80℃下反应时间4 h.常压蒸馏除去溶剂得到黏稠状粗产物.再用无水乙醇溶解粗产物、过滤除盐、蒸馏除去乙醇,干燥后得最终产物—乙二醇双琥珀酸一氯羟丙基季铵双酯磺酸钠(HDBC)[8].称量最后产物的质量是98.89 g,产率为84.45%.2.3 实验方法威廉米吊片法(拉脱法)测定表面张力:依次分别配制浓度为10-2,10-3,10-4,10-5,10-6,0.5×10-6,10-7,10-8和10-9g/mL的一系列表面活性剂溶液,在25℃下用表面张力仪测定各溶液的表面张力.作表面张力(γ)-浓度对数(logC)图,得到的曲线上转折点的相应浓度即是表面活性剂的临界胶束浓度(CMC).根据计算公式:K=σ/△h,计算出表面活性剂的K值,则K=71.97/90.7143=0.7934.3 实验结果与讨论3.1 单一表面活性剂的表面张力比较选择了四种典型的表面活性剂,分别测定了各自的表面张力,结果如图1所示.在25℃时,水(接触面为空气)的表面张力为71.96 mN/m.在浓度为1.5g/L时,Gemini产物HDBC的最低表面张力可以降到32.53mN/m,而由图1中曲线拐点可知HDBC的CMC为0.01g/L.由图1可知,各种表面活性剂在低浓度时,表面张力相差不大,这主要是在低浓度时,由于浓度太低,表面活性剂对水的表面张力影响很小,所以,测得的表面张力很接近水的表面张力.但当浓度逐渐增大时,表面活性剂在水中的各自之间表面张力就有一定的差距,这主要是浓度增加,表面活性剂对水的表面张力产生较大的影响.从图1可见,各个表面活性剂随着浓度的增加,表面张力逐渐降低,而当浓度为4g/L左右之后,表面张力随着变化逐渐趋向平缓.由图1可见,随着浓度增加,HDBC表面活性剂显示出较好的表面活性,在浓度为4g/L时,表面张力为32.56mN/m,而当浓度为10g/L时,表面张力达到30.70mN/m,这比其它表面活性剂的表面活性都好.图1 几种不同表面活性剂的表面张力3.2 HDBC与不同表面活性剂的复配表面活性比较3.2.1 与阴离子表面活性剂的配伍性Gemini型季铵盐表面活性剂与阴离子表面活性剂复配体系在生成胶团能力方面有很强的协同效应.这主要由以下两个因素决定:(1)两个离子头基的联接基团由化学键联接使得两个表面活性剂单体离子的紧密联接;(2)一个阳离子Gemini型季铵盐的表面活性剂分子带有两个正电荷,而一个普通阳离子表面活性剂只带有一个正电荷.因此阳离子Gemini型季铵盐表面活性剂与阴离子表面活性剂之间的相反电性头基比普通阳离子表面活性剂多近一倍,其相互的静电引力要大.这两个因素均会对复配体系形成胶团起着促进作用,即引起复配体系的临界胶团浓度大幅度下降.图2 HDBC与阴离子表面活性剂复配表面张力关系在与阴离子复配过程中,选择了两种典型的阴离子表面活性剂:十二烷基磺酸钠和十二烷基硫酸钠,分别与HDBC进行复配,在总浓度为0.5g/L的条件下,进行不同质量比例的复配,实验结果如图2所示.结果表明,HDBC与SDS有比较好的复配效果,当HDBC:SDS质量比为5:5时,有最佳的复配效果.在浓度为0.5g/L时单一使用HDBC、SDS,表面张力分别为44.89、41.56mN/m,而HDBC与SDS复配后表面张力为35.61 mN/m.这大大降低了表面张力,因此与SDS复配效果较好.3.2.2 与非离子表面活性剂的配伍性图3 HDBC与非离子表面活性剂复配表面张力关系从图3可知,HDBC与Trixton-100也有较好的复配效果,在总浓度为0.5g/L条件下,HDBC:Trxiton-100=5:5时,有最佳的复配效果.当两者复配后,HDBC和Trixton-100表面张力由原来的44.89、36.66mN/m,变为36.09mN/m.尽管复配后表面张力下降的不多,但是两者能相互共存,这在实际应用中有比较大的价值,作为两性表面活性剂,如果能与其它表面活性剂相互复配能弥补其它方面的缺陷,能起到一个互补作用.实验结果表明,欲使二元表面活性剂复配体系产生胶团化增效作用,仅靠烷烃链间的疏水相互作用是不够的,还需自亲水基的吸引力,这正是为什么正/负离子表面活性剂复配体系通常表现出胶团化增效作用,而离子/非离子表面活性剂复配体系却往往不存在这种增效的原因.3.2.3 与阳离子表面活性剂复配从图4知,HDBC与十六烷基三甲基溴化铵复配效果不好,起伏不定,从而说明,HDBC与十六烷基三甲基溴化铵之间的电荷以及空间结构之间存在相互的抵触作用,使得两者对降低水的表面张力没有互补作用.从电荷的角度看,HDBC还是显有一定负电荷性能,从而难以与阳离子表面活性剂相互复配,更多的是两种表面活性剂的电荷处于相互中和的可能.图4 HDBC与阳离子表面活性剂复配表面张力关系4 结论新型Gemini表面活性剂与四种表面活性剂的复配实验结果表明,其中SDS和Trixton-100表面活性剂与新型Gemini表面活性剂有很好的协同效应,在总浓度为0.5g/L的条件下,质量比HDBC:SDS=5:5,HDBC:Trixton-100=5:5时,有较好的复配效果,且HDBC与SDS复配效果较好.HDBC和SDS表面张力分别为44.89、41.56mN/m,而复配后表面张力为35.61 mN/m.这为其在实际应用提供了较强的理论依据.参考文献:[1]Zhu Y,Masuyama A,Okahara M.Preparation and surface active propertiesof amphipathic compounds with two sulfate groups and two lipophilicalkyl chains[J].Journal of the American Oil Chemists’Society,1990,67(7):459-463.[2]Menger F M,Littau C A.Gemini-surfactants:synthesis andproperties[J].Journal of the American chemical society,1991,113(4):1451-1452.[3]Menger F M,Littau C A.Adsorption of zwitterionic gemini surfactants at the air–water and solid–water interfaces[J].Colloids and Surfaces A:Physicos Chemical Engineering Aspects,2002,203(1):245-258.[4]Kaznynki Tsubone,The interaction of an Anionic Gemini surfactant with Conventional Anionic surfactants[J].Journal of colloid and interface science,2003,261(2):524-528.[5]Shivaji S K,Rodgers C,Palepu R M,et al.Studies of Mixed Surfactant Solutions of Cationic Dimeric(Gemini) Surfactant with Nonionic Surfactant C12E6in Aqueous Medium[J].Journal of Colloid and Interface Science,2003,268(2):482-488.[6]Kumar A,Alami E,Holmberg K,et al.Branched Zwitterionic Gemini Surfactants Micellizati-on and Interaction with Surfactants[J].Colloids and Surfaces A:Physicos Chemical Engineering Aspects,2003,228(1):197-207.[7]Reiko O,Ivan H.Danino D,et al.Aggregation Properties and Mixing Behavior of Hydrocarbon,Fluorocarbon,and Hybrid Hydrocarbon Fluorocarbon Cationic Dimeric Surfactants[J].Langmuir,2000,16(25):9759-9769.[8]杨青,曹丹红,方波.一种新型双联两性表面活性剂的合成与性能[J].高校化学工程学报,2009,23(1):110-115.。
表面活性剂复配对1

表面活性剂复配对1/3焦煤润湿性能的影响研究摘要:以1/3焦煤为研究对象,选取5种表面活性剂,通过接触角、表面张力和沉降实验,研究表面活性剂及其复配溶液对煤尘润湿性能的影响;通过红外光谱实验,分析复配溶液对煤表面官能团的影响。
结果发现当表面活性剂的浓度达到CMC 后,继续增加表面活性剂的浓度,表面活性剂的表面张力、接触角和煤尘的沉降速度呈现不同的变化规律,分析认为表面活性剂分子吸附状态发生变化是导致这种现象发生的原因;0.4wt%APG0810+0.4wt%JFC-E 的等质量复配溶液,对1/3焦煤有着显著的协同润湿效应。
煤尘沉降速度达到了45.45mg/s 。
煤样经0.4wt%APG0810+0.4wt%JFC-E 的复配溶液浸泡处理后,含氧官能团和亲水官能团的比例升高,分别达到了50.24%和83.65%。
由此推断,复配后表面活性剂分子在煤尘上有更高的吸附密度。
关键词:1/3焦煤;煤尘;表面活性剂;复配溶液;润湿中图分类号:X964文献标识码:A文章编号:2095-0438(2024)03-0145-06(1.安徽理工大学安全科学与工程学院;2.安徽理工大学煤炭安全精准开采国家地方联合工程研究中心安徽淮南232001)在煤炭开采过程中,会产生大量的煤尘,其中综采工作面和掘进工作面煤尘浓度可达3000mg/m 3[1]。
远远超过国家标准,严重危害煤矿企业的安全生产与煤矿工人的身体健康[2]。
由于煤表面有大量的芳香族、脂肪族等疏水性官能团,而且纯水的表面张力高达72mN/m ,导致纯水难以在煤的表面铺展,对煤尘的润湿效果有限[3-5]。
国内外学者研究发现,在水中添加表面活性剂能大幅降低水的表面张力,提高对煤尘的润湿效果[6-8]。
朱森等[9]合成了一种Gemini 阴离子表面活性剂,研究发现Gemini 阴离子表面活性剂在降低水的表面张力方面具有极高的效率。
张政等[3]研究发现,十二烷基硫酸钠(SDS )溶液对烟煤有良好的润湿效果。
阴-阳离子表面活性剂复配研究与应用

阴-阳离子表面活性剂复配研究与应用摘要:综合介绍了阴-阳离子表面活性剂复配体系在各种物化性能的增效效应,例如降低表面张力的效能、表面张力的效率、降低临界胶束浓度的能力、改善表面吸附的能力,以及这些增效效应在去污、增溶、泡沫、润湿、乳化等方面的应用。
讨论了提高阴-阳离子表面活性剂之间的可配伍性之对策,诸如采用非等摩尔比复配、在离子型表面活性剂中引入聚氧乙烯链及加入非离子或两性表面活性剂进行调节等手段以优化配方性能和提高综合经济效益。
总结了阴—阳离子表面活性剂复配体系用于洗涤用品的可行性配方技术,即采取无机助剂、水溶性有机高聚物或非离子表面活性剂包裹阳离子表面活性剂的措施。
关键词:阴离子表面活性剂;阳离子表面活性剂;复配体系;增效效应;研究;应用目前,表面活性剂复配体系的研究与应用已形成热点,如表面活性剂与无机物、高聚物或表面活性剂之间复配等,其目的是提高含表面活性剂配方的性能,优化使用并提高经济效益。
长期以来,在表面活性剂复配应用过程中把阳离子型表面活性剂与阴离子型表面活性剂的复配视为禁忌,一般认为两者在水溶液中相互作用会产生沉淀或絮状络合物,从而产生负效应甚至使表面活性剂失去表面活性。
研究发现,在一定条件下阴-阳离子表面活性剂复配体系具有很高的表面活性,显示出极大的增效作用,这样的复配体系已成功地用于实际。
由于阴-阳离子表面活性剂复配在一起相互之间必然产生强烈的电性作用,因而使表面活性大大提高。
有人认为阳离子型表面活性剂与阴离子型表面活性剂混合之后形成了“新的络合物”,并会表现出优异的表面活性和各方面的增效效应。
1阴-阳离子表面活性剂复配的增效效应1.1降低表面张力的效能复配溶液所能达到的最低表面张力,即在cmc时的表面张力γcmc比单一组分的最低表面张力低。
阳离子表面活性剂C8H17N(CH3)3Br(以下用C8N表示)与阴离子表面活性剂C8H17SO4Na(以下用C8S表示)等摩尔复配体系的γcmc比两纯组分各自的γcmc低得多,尤其在正庚烷/水溶液界面的界面张力的降低表现更为突出,等摩尔复配体系的界面张力可以低至0.2mN/m,而两种纯表面活性剂溶液相应的界面张力则高得多(分别为14mN/m和11mN/m)。
表面活性剂的复配原理

表面活性剂的复配原理表面活性剂的复配原理是指将不同种类的表面活性剂按一定的比例和方式组合使用,以达到更好的表面张力调节、乳化稳定以及分散悬浮等效果。
表面活性剂由亲水基和疏水基组成,亲水基具有亲水性,疏水基具有疏水性。
在液体中,亲水基会向水相靠近,而疏水基会向空气相靠近。
当表面活性剂溶解在液体中时,由于其分子有两个相对独立的界面,即表面活性剂分子的水溶液界面和水/空气界面。
在这两个界面上,亲水基和疏水基具有不同的定位,形成了所谓的吸附层,这种吸附行为也决定了表面活性剂的表面活性。
通过复配不同种类的表面活性剂可以调节表面张力和稳定乳液、分散悬浮体系。
具体原理如下:1. 鸟嘌呤类表面活性剂与短链烷基硫酸盐类表面活性剂的复配:鸟嘌呤类表面活性剂具有良好的乳化性能,但其乳化稳定性较差。
而短链烷基硫酸盐类表面活性剂具有良好的乳化稳定性。
因此,将两者复配使用可以提高乳化体系的稳定性,同时实现良好的乳化效果。
2. 非离子型表面活性剂与阳离子型表面活性剂的复配:非离子型表面活性剂在水性体系中具有较好的乳化性能,但其稳定性相对较差。
而阳离子型表面活性剂则具有良好的稳定性。
将两者复配使用可以同时实现较好的乳化效果和乳化稳定性。
3. 阴离子型表面活性剂与非离子型表面活性剂的复配:阴离子型表面活性剂在水性体系中具有较好的分散悬浮性能,但其分散稳定性较差。
而非离子型表面活性剂具有较好的分散稳定性。
将两者复配使用可以提高分散悬浮体系的稳定性,同时实现良好的分散效果。
通过合理复配不同种类的表面活性剂,可以充分利用各种表面活性剂的特性,实现更好的表面张力调节、乳化稳定以及分散悬浮等效果。
表面活性剂的复配

节p , 值 也就是界面膜 的 自然曲率 , 使之与油滴 的 自
然 曲率 更 匹配 而 提高 乳液 的稳定 性 。
图 1 界 面 上 的 表 面 活 性 剂 示 意 图
F g r Th c e t i g a o u f c a t n t ei tra e iu e 1 e s h ma i d a r m fs ra t n n e f c c o h
式 中 , 为 表 面 活性 剂 尾 的体 积 , 为 尾 的伸 展 长 v ,
度 , 为 表 面活 性剂 头 在界 面上 的投 影 面积 。 a
油 在 水 中乳 液 的P <1 界 面 膜 为 弯 向油 滴 的 曲 ,
表 面活 性剂 分 子 在油 / 界 面上 , 水 以亲 油端 ( ) 尾 溶 人 油 相 ,以亲 水 端 ( ) 在 界 面 的水 相 一 侧 , 头 贴 如 图 1 示 , 自发 地 、有 序 地 堆 砌 成 一 个 有 自然 曲 所 并 率 的界 面 膜 , 一 曲率 与 表 面 活 性 剂 分 子 的 几 何 形 这
1I 山 v1 e a JE s i' 【1 . i
.
… …. nLeabharlann 2 d hp a 4
.
J h je 。 nW l y& S0 s,2 0 n 01
【 收稿 日期 ] 0 2 0 — 0 2 1— 1 2
堆 砌 参 数 ( 与 表 面 活性 剂 分 子 的几 何 形 状 关 P)
系设 定 如下 :
vl /
D —— 口
平 衡 值 ( B) , 2 表 面 活 性 剂 复 配 比使 用 单 HL 下 以 种
一
的 表 面 活 性 剂 有 更 好 的 乳 化 稳 定 性 。这 是 因 为 ,
牙膏中常用表面活性剂复配效果分析

口腔护理用品工业ORAL CARE INDUSTRY第二十九卷第三册2019年6月29牙膏中常用表面活性剂复配效果分析孟庆瑞彭丁长(广州中汉口腔用品有限公司广州510460)摘要:探讨了牙膏中常用表面活性剂的复配效果,通过试验表明表面活性剂的复配对牙膏的泡沫量影响显著,结果表明月桂醇硫酸酯钠与月桂酰肌氨酸钠最佳配比为3:2,泡沫量170.5mm ;月桂醇硫酸酯钠与甜菜碱最佳配比为3:2,泡沫量180mm ;通过复配,泡沫量显著提高,且减少了单一表面活性剂的使用量。
关键词:表面活性剂;牙膏;复配中图分类号:TS 文献标识码:A 文章编号:2095 -3607(2018)03 -29 -02口腔清洁护理用品中牙膏、漱口水、牙粉等表面 活性剂使用量最多是©2 (月桂醇硫酸酯钠),其次 月桂酰肌氨酸钠、甜菜碱、PEG -40氢化蒐麻油等。
月桂醇硫酸酯钠这种阴离子型表面活性剂在牙膏生产中使用最普遍,有着优秀的发泡力,泡沫量多且 大,乳化力及生物降解性好,但其浓度在10%以上 时对粘膜有刺激性,浓度10%的人体斑贴试验和土 拔鼠积性皮肤刺激试验结果都显示了强烈的刺激反 应⑴。
月桂酰肌氨酸钠具有丰富的发泡能力,泡沫 细密,但泡沫稳定性相对差⑵,其在弱酸性体系中具有抗菌能力,在牙膏中的使用限度在5%以下,当 添加量高于此限量时会引起口腔粘膜的脱落,此外 还有一种特殊的气味⑶。
甜菜碱是两性表面活性剂家族中常见的温和型活性剂,在任何的pH 值下, 不产生沉淀⑷,同时具有良好的起泡能力和显著的 增稠性,分散好,优良的配伍性和溶解性,低刺激和 杀菌能力,但相对前两种乳化剂成本较髙。
PEG-40氢化曹麻油多用在漱口水中,做为乳化剂。
目前 市面出现少量的低泡牙膏用氢化龍麻油做乳化剂,不做具体分析,同时也有部分泡沫漱口水中使用02与月桂酰肌氨酸钠复配。
本研究探讨复配乳化剂在牙膏中的应用,通过调整乳化剂配比,选择最优 配比方案。
表面活性剂复配

阳离子:质量分数0.5%十六烷基三甲基溴化铵(分子量364.45),
阴离子:质量分数0.5%十二烷基苯磺酸钠(分子量348.48),
非离子:质量分数0.5%TO-10(分子量630)
仪器:烧杯,移液管,滴管,天平
2.实验部分
2.1向阳离子中滴加阴离子,记录发生沉淀时阴阳离子比例,获得阴
阳离子混合时发生沉淀反应的区域。
2.2在生成沉淀的区域,选择不同的阴阳离子比例,向其中加入非离子,当沉淀消失时,记录三者的用量比。
2.3选择某一比例的复配体系,测定其表面张力。
3.结果
3.1向阳离子中加入阴离子,发现当阴阳离子体积比大于12:5时会有
白色浑浊生成,即生成沉淀的区域为V阳离子:V阴离子< 5:12
3.2向阳离子中加入阴离子,产生沉淀后继续加入非离子至浑浊消失,三者的用量比例列入下表
序号 1 2 3 4 5 6 7 8 9 10 11 十六烷基三甲基溴化铵/ml 5 5 5 5 5 5 5 5 5 5 5 十二烷基苯磺酸钠/ml 12 15 20 25 30 35 40 45 50 55 60 TO-10/ml 1 18 27 50 65 67 67 67 67 67 67 3.3(表面张力测定结果)
阴阳离子进行复配时会有沉淀生成,影响表面活性剂的使用,加入一定比例的某些非离子型表面活性剂后可以使沉淀消除,增大阴阳离子表面活性剂的使用比例范围。
阴阳离子表面活性剂的复配

阴-阳离子表面活性剂复配研究与应用目前,表面活性剂复配体系的研究与应用已形成热点,如表面活性剂与无机物、高聚物或表面活性剂之间复配等,其目的是提高含表面活性剂配方的性能,优化使用并提高经济效益。
长期以来,在表面活性剂复配应用过程中把阳离子型表面活性剂与阴离子型表面活性剂的复配视为禁忌,一般认为两者在水溶液中相互作用会产生沉淀或絮状络合物,从而产生负效应甚至使表面活性剂失去表面活性。
研究发现,在一定条件下阴-阳离子表面活性剂复配体系具有很高的表面活性,显示出极大的增效作用,这样的复配体系已成功地用于实际。
由于阴-阳离子表面活性剂复配在一起相互之间必然产生强烈的电性作用,因而使表面活性大大提高。
有人认为阳离子型表面活性剂与阴离子型表面活性剂混合之后形成了“新的络合物”,并会表现出优异的表面活性和各方面的增效效应。
1阴-阳离子表面活性剂复配的增效效应1.1降低表面张力的效能复配溶液所能达到的最低表面张力,即在cmc时的表面张力γcmc比单一组分的最低表面张力低。
阳离子表面活性剂C8H17N(CH3)3Br(以下用C8N表示)与阴离子表面活性剂C8H17SO4Na(以下用C8S表示)等摩尔复配体系的γcmc比两纯组分各自的γcmc低得多,尤其在正庚烷/水溶液界面的界面张力的降低表现更为突出,等摩尔复配体系的界面张力可以低至0.2mN/m,而两种纯表面活性剂溶液相应的界面张力则高得多(分别为14mN/m和11mN/m)。
事实上,在单组分的碳氢链表面活性剂中尚未见报道能达到如此低的表面张力和界面张力。
1.2降低表面张力的效率达到指定的表面张力γ时,复配体系所需表面活性剂总浓度比单一表面活性剂溶液所需浓度低。
十二醇聚氧乙烯醚硫酸铵(AESA)与阳离子表面活性剂十二烷基三甲基溴化铵(DTAB)以9/1(mol)复配,当达到相同的表面张力38mN/m时,体系的总浓度为5×10-6mol/L,远比单一组分AESA(4×10-4mol/L及DTAB(1×10-2mol/L)的浓度低得多。
复配表面活性剂的增效作用

一、复配表面活性剂的增效作用当表面活性剂溶液中含有同系物或添加另一种表面活性剂或其他有机物,无机电介质后,溶液的物理化学或表面特性将发生明显的变化,并将改变其应用性能。
通常对表面活性剂是由不同的亲水基团与憎水基团组合而成,常采用亲水—亲油平衡值(HLB)来表示表面活性剂分子中这两种不同极性基团的相互平衡程度,对非离子表面活性剂还采用浊点来表示亲水性大小,HLB值愈大,浊点愈高,表面活性剂的亲水性愈好。
另外,常把临界胶束浓度(CMC)作为表面活性剂形成胶束的最低浓度;同时以临界胶束浓度的倒数(1/CMC)表示降低表面张力的效率,临界胶束浓度愈低,则效率愈高。
此外,还将表面活性剂在临界胶束浓度时的表面张力δcmc可作为表征表面活性剂表面特性的量度。
1、非—非离子表面活性剂复配后的表面特性不同结构非离子表面活性剂复配后的表面特性:非—非离子表面活性剂复配后,浊点,CMC和δcmc 均介于两组分之间。
由此可见,非—非离子表面活性剂复配后形成的胶团可视为理想胶团,所形成的混合液可作为同系物混合物,它们是一类具有相同结构的极性基或非极性基组成,仅仅在链长有一些差别,故而它们的物理化学性质或表面特性处于各表面活性剂之间,但不是简单平均值。
而且还表明非—非离子表面活性剂混合体系中,CMC值较低的表面活性较高的组分(如AEO—9,MSE)容易在混合液中形成胶团;反之,CMC值较高的表面活性较低的表面活性剂(如AEP—13等)则不易形成胶团。
反胶团是指表面活性剂溶解在有机溶剂中,当其浓度超过CMC (临界胶束浓度)后,形成亲水极性头朝内,疏水链朝外的液体颗粒结构。
反胶团内核可增溶水分子,形成水核,颗粒直径小于100 nm时,称为反胶团,颗粒直径介于100~2 000 nm时,称为W/O 型微乳液。
反胶团或微乳液体系一般由表面活性剂,助表面活性剂,有机溶剂和H 2 O 四部分组成。
它是一个热力学稳定体系,其水核相当于一个“微型反应器”,这个“微型反应器”具有很大的界面,在其中可以增溶各种不同的化合物,是非常好的化学反应介质。
浅谈表面活性剂的复配理论

力差 ,则与阴离 子型表 面活性剂 的相互作 用也较低 。 4 . 添加无机 电解质 的影响 无机 电解 质 的天加 ,会使 离子 型表 面活性 剂 与聚氧 乙烯 型 非离 子 表面 活性 剂混 合体 系 中分 子问 相互作 用力 降低 ,这说 明 此两类 表面 活 性 剂 分 子 问 存 在 着 静 电力 的作 用 。 温 度 的 影 响 :通 常 情 况 下 ,在 1 o 一 4 o 度 范围内 ,分 子问的作 用力随温 度的升 高而降低 。 四 、 相 互 作 用 参 数 B 的 意 义
和 增效作 用。
示 两种分 子相 互排斥 ; B值 接近 0时 ,表 明两种 分子 间几 乎没有 相互 作 用 ,近 乎于理想 混合 。许 多学 者通过 大量实 验和计算 发现 B 值一般 在 一 2( 弱排 斥)到 一 4 0( 强 吸引)之 间。
三 、影 响分 子 间相 互 作 用 参 数 的 因 素
五 、 产 生 加 和 增 效 作 用 的 判 据
表 面活性 剂 最基本 的性 质是 降低表 面张 力和 形成 胶束 ,衡 量表 面 活性 剂活 性大 小主要 是考 察其 溶液表 面张 力 降低 的程度 和临 界胶束 浓 度 的大小 。一般 情况下 ,性能优 良的表面 活性剂能 够在 较低 的浓度下 , 使溶 液的表面 张力下 降到很低 的程 度并形 成胶束 。 1 . 降低表面 张力 在降低表 面 张力方 面 ,加和 增效 作用是 指使 溶液 的表 面张 力 降低 到 一定程 度 时 ,所 需 的两种表 面活 性剂 的浓 度之和 低于 单独使 用复 配 体 系 中的任何 一种 表面 活性 剂所需 的浓 度 。如 果这 个浓 度高 于其 中任 何 一种表面活 性剂所 需的浓度 ,则说 明产生了负 的加和增效 作用 。 2 . 形成 混合胶束 当复配 体系 水溶 液形 成混合 胶束 的临 界胶束 浓度 低 于其 中任何 一 种 单一 表 面活性 剂 的临 界胶 束浓 度 时 ,即称 为产 生 正加 和增 效 作用 ; 如 果混 合物 的I 临界胶束 浓度 比任 何一 种单一 组分 的高 ,则称 产生 负加
第9章 表面活性剂的复配

一般情况下,当两种表面活性剂 产生复配效应时,其混合体系的临界 胶束浓度并不等于二者临界胶束浓度 的平均值,而是小于其中任何一种表 面活性剂单独使用的临界胶束浓度。 造成这种情况的原因就是表面活性剂 分子间的相互作用。
复配使用的两种表面活性剂,会在表面上 形成混合单分子吸附层,在溶液内部形成 混合胶束。无论是混合单分子吸附层还是 混合胶束,两种表面活性剂分子间均存在 相互作用。其相互作用的形式和大小可用
3.产品中夹带副产物。有些反应得不到单一 的表面活性剂,如聚氧乙烯的聚合反应得 到一系列聚合度不同的产品。
4.人为地进行混合。利用各种表面活性剂之 间的配伍性或相溶性,通过几种表面活性 剂的混合,可是商品配方或制剂的效果更 好,达到改善表面活性剂性能的目的,此 即表面活性剂的复配。
协同效应:表面活性剂复配的目的是达到 加和增效作用,即协同效应。即把不同 类型的表面活性剂人为地进行混合,得 到的混合物性能比原来单一组分的性能 更加优良,也就是通常所说的“1+1〉2” 的效果。
基于同样的原因,两性表面活性剂本 身碱性较低,获得质子的能力差,则 与阴离子型表面活性剂的相互作用也 较低。
4.添加无机电解质的影响
无机电解质的天加,会使离子型表面活性 剂与聚氧乙烯型非离子表面活性剂混合 体系中分子间相互作用力降低,这说明 此两类表面活性剂分子间存在着静电力 的作用。
5.温度的影响
12-混合体系
表面活性剂分子间的相互作用参数 β值和两种表面活性剂混合的自由能有关, β值为负值表示两种分子相互吸引;β值 为正值时,表示两种分子相互排斥;β值 接近0时,表明两种分子间几乎没有相互 作用,近乎于理想混合。
许多学者通过大量实验和计算发现β 值一般在-2(弱排斥)到-40(强吸引) 之间。
表面活性剂的复配

9.2 产生加和增效作用的判据
9.2.1 降低表面张力
• 加和增效作用:使溶液的表面张力降低到一定程度时,所 需的两种表面活性剂的浓度之和低于单独使用复配体系中 的任何一种表面活性剂所需的浓度
• 负的加和增效作用:使溶液的表面张力降低到一定程度时, 所需的两种表面活性剂的浓度之和高于单独使用复配体系 中的任何一种表面活性剂所需的浓度
• 例如,N-(2-羟基十二烷基)-N(2-羟乙基)-β-丙氨酸与十二烷 基苯磺酸钠复配时
– 在pH≥8.5时,两性表面活性剂的羧 基负离子与阴离子表面活性剂的磺酸 基负离子通过Na+缔合起来
– 当pH<8.5时,两性表面活性剂的季 铵阳离子与磺酸基负离子通过离子键 发生相互作用
CH3(CH2)9CHCH2 OH
2. 疏水基团的影响
随表面活性剂疏水基碳链长度的增加,βσ和βM变得更负,即绝 对值增加,且为负值
3. 介质pH值的影响
– 溶液pH值低于两性表面活性剂的等电点时,活性剂分子以正离子 形式存在,通过正电荷与阴离子表面活性剂发生相互作用
– 当介质的碱性或pH值增加,两性表面活性剂逐渐转变为电中性的 分子,甚至于负离子,与阴离子表面活性剂的相互作用力降低
1
ln(C12 / X 1C10 )
(1 X 1 ) 2
- α:混合表面活性剂溶液中表面活性剂1所占的摩尔百分数,则表 面活性剂2的摩尔百分数为(1-α)
- X1是混合单分子吸附层(膜)中表面活性剂1所占的摩尔百分数, 则混合单分子层中表面活性剂2的摩尔百分数为(1-X1)
- C10、C20和C12分别是两种表面活性剂及其混合物在溶液中的浓度
图9-1 十二烷基苯磺酸钠图9-2 十二烷基苯磺酸钠与月桂醇聚 氧乙烯醚硫酸钠复配体系的去污力
表面活性剂的复配名词解释

表面活性剂的复配名词解释表面活性剂是一种化学物质,通常被广泛应用于日常生活和工业领域。
它能够改变液体或固体表面的性质,使其具有较好的润湿性能和界面活性。
表面活性剂的复配是指将两种或更多种表面活性剂混合使用,以提高其性能和应用范围。
下面将对表面活性剂常用的复配名词进行解释。
1. 合成复配合成复配是指通过合成方法将不同种类的表面活性剂分子有机地连接在一起形成复配分子。
这种复配能够综合各个成分的优点,以产生更好的表面活性效果。
例如,将疏水性表面活性剂与亲水性表面活性剂通过酯化、醚化等方法连接在一起,可以在较低的浓度下提供更好的起泡性和去污能力。
2. 物理复配物理复配是指将两种或多种表面活性剂以机械混合的方式共同应用。
这种复配通常在液体洗涤剂和清洁剂中常见。
物理复配能够通过不同种类表面活性剂之间的相互作用,实现更好的清洁效果和稳定性。
例如,将非离子表面活性剂与阳离子表面活性剂物理复配,可以提高洗涤剂对油污和蛋白质的去除能力,并增强泡沫稳定性。
3. 亲合复配亲合复配是指将两种或多种互相配合的表面活性剂共同应用。
这种复配能够通过表面活性剂之间的疏水相互作用和亲水相互作用,实现更好的稳定性和表面活性效果。
例如,将疏水性阴离子表面活性剂与疏水性非离子表面活性剂亲合复配,可以提高洗涤剂对油污的去除能力,并增加表面张力。
4. 微乳液复配微乳液复配是指将两种或多种表面活性剂与水相结合,形成微乳液体系。
微乳液复配具有优异的稳定性和清洁性能。
这种复配通常应用于皮肤护理产品和清洁剂。
例如,将阴离子表面活性剂与非离子表面活性剂复配形成的微乳液,能够提供丝滑的质感和有效去除油脂。
微乳液复配既具有水溶性的特点,又具有油溶性成分的特点,能够更好地提高功效成分的吸收和释放。
在表面活性剂的复配中,需要考虑各种表面活性剂之间的相容性、稳定性和协同效应。
根据应用需求和使用环境,选择适当的复配方式和成分比例,可以最大程度地发挥表面活性剂的性能和应用效果。
表面活性剂和助剂的配伍

表面活性剂和助剂的配伍表面活性剂的清洗能力和它本身的结构(亲水基的类型及疏水基的结构等)有着密切的联系,不同类型的表面活性剂,它们的洗涤能力也不同。
因此在配制清洗剂时需选择合适类型的表面活性剂。
但在相当多的情况下,即使已经挑选出性能最好的表面活性剂品种,仍不能达到预期的目标,或者性能虽然可以满足要求,但从经济角度来看又不可行。
此时即应考虑使用混合表面活性剂。
在实际应用中,洗涤剂是由多种成分复配而成的,通过复配可以提高表面活性剂的活性,同时还引入一些附加的其他洗涤力,互相协同,达到提高去污力,改善使用性能和降低成本的目的。
因此研究和开发表面活性剂和助剂的复配技术非常重要,它所带来的经济效益和社会效益往往比研制新结构的表面活性剂更直接、更显著。
研究和开发洗涤剂配方要根据洗涤对象(污垢)的性质、洗涤要求、洗涤条件、经济性及环境保护等方面的因素来决定。
另一方面,配方不仅是指配方组分的组成比例,而且还包括配制工艺。
洗涤剂是一个相当复杂的混合体系。
在体系中存在着表面活性剂之间、洗涤助剂和表面活性剂之间、洗涤助剂之间的物理化学作用。
因此这些组分之间是否具有良好的配伍性及协同性都是需要考虑的。
如果能了解和掌握它们直接的复配规律来寻求适用高效的配方是最好不过了。
但是这个混合体系少则几个组分,多则十几个组分,相互影响十分复杂,我们只能在掌握表面活性剂及洗涤助剂的性能、作用及其复配规律等物化知识的配方技术的基础上,大体估计这些组分在复配体系中的行为,作为配方的指导。
1表面活性剂之间的复配目前在大多数实用洗涤剂的配方中,都是采用多种表面活性剂的复合活性物来达到提高性能和降低成本的目的。
不同种类的表面活性剂复配后,常可达到比混合物中任一组分都好的性能,此时我们称之发生了增效作用(或协同作用);但若搭配不当(如品种或混合比例选择不合理)也会出现性能变劣的情况。
对于混合表面活性剂的增效作用,近年来的研究工作非常活跃,在理论与应用两个方面均是如此,并且取得了长足的进步,已初步掌握了混合表面活性剂体系的一些规律。
表面活性剂复配原理分析

16
cmc与所加盐的浓度有下列关系:
lgcmc=A2-k0lgC/i
(5-43)
式中,A2-常数;
K0-与胶团反离子结合度有关的常数; C/i-表面活性剂反离子的浓度。
RCOOK:1.C9H19CCOK
1C12H25O(C2H4O)6H-C8H17O(C2H4O)6H
2 C10H21COOK
2 C12H25O(C2H4O)6H-C12H25O(C2H4O)12H
3 C11H23COOK
4 C13H27COOK
13
5.2无机电解质
• 协同作用:无机电解质使溶液的表面活性 提高。
40
研究表明:阴离子表面活性剂与非离子表面活性剂的 相互作用明显强于阳离子表面活性剂与非离子表面 活性剂。
非离子表面活性剂(如聚氧乙烯链中的氧原子)通 过氢键与H2O及H3O+结合,从而使这种非离子 表面活性剂分子带有一些正电性。
41
5.5阳离子表面活性剂与阴离子表面活性剂混合物
5.5.1表面活性 阴离子表面活性剂与阳离子表面活性剂相互作用 可形成一种复合物,其临界胶束浓度远小于各自 离子表面活性剂的临界胶束浓度,阴离子-阳离子 复配具有很高的表面活性。 阴离子表面活性剂与阳离子表面活性剂形成的复 合物,其组成是1:1等物质的量的。
表面活性剂溶液
气泡寿命/s 液滴寿命/s
C8H17SO4Na溶液 C8H17(CH3)3Br溶液 两者1:1复合物溶液
19Leabharlann 111812
表面活性剂

9.3表面活性剂复配体系
*与中性无机盐的配伍 *有机添加剂 *水溶性高分子
*表面活性剂混合体系
*阴离子-阴离子
*阴离子-阳离子
*阴离子-两性离子
*阴离子-非离子
*阳离子-非离子
*非离子-非离子
16
表面活性剂同系物复配规律
*同系物混合物的物理化学性质介于各个化合
物之间;且表面活性也符合线性规则. *同系混合物cmc可根据单一表面活性的cmc 通过公式计算 *二组分表面活性剂体系,其中有较高表面活 性的组分在混合胶团中的比例较大,而且在胶 团中的摩尔分数比溶液中的摩尔分数大。 *两种阴离子表面活性剂复配时,性能往往以其 中一种为主。
11
表面活性剂与极性有机物混合体系 短链脂肪醇的影响 CMC:浓度小时可使CMC降低;浓度高时 则CMC随浓度变大而增加。
-溶剂性质改变使表面活性剂的溶解度变大; -醇浓度增加而使溶液的介电常数变小,胶团 离子头之间的排斥作用增加。
12
表面活性剂与极性有机物混合体系
水溶性及极性较强的极性有机物的影响
31
描述表面活性剂溶解性的方法
1.溶解度: 在水中溶解度↑,亲水性强↑; 2.CMC:亲水性强↑,CMC↑; 点:离子型Tk低,亲水性强↑; 4.Tp:非离子型Tp↑,亲水性强↑(浊点以上不溶
于水);
5.HLB:亲水基的强度与亲油基的强度之比值, (亲水基值/亲油基值);HLB值↑,亲水性强↑;
力不及分同子类间型的表疏水面作活用性,相剂互的作影用响大大增强,常使溶液产
生分混子浊,间甚的至作沉淀用力主要是疏水基之间的作用 4. 典不力型发的生与亲相静水互电非作作离用子,用聚而合中物等与疏聚水氧的乙聚烯合类物非则离可子以表发面生活相性互剂作
表面活性剂的复配(共28张PPT)

目前市售的商品表面活性剂并不是单一组分, 而往往是以混合物的形式存在的,其原因如 下:
1.反应物(原料)不是单一组分,如脂肪酸往 往是几种带有不同长度碳链的脂肪酸的混合 物。
2.表面活性剂产品中含有未反应的原料。
3.产品中夹带副产物。有些反应得不到单一的 表面活性剂,如聚氧乙烯的聚合反应得到一 系列聚合度不同的产品。
表面活性剂分子间的相互作用参数β值和两种表面活性剂混合的自由能有关,β值为负值表示两种分子相互吸引;
非离子型〉聚氧乙烯非离子型-聚氧乙烯非离子型 例如:十二烷基硫酸钠中混有少量的十二醇、十二酰醇胺等物质,可改善其在洗涤剂配方中的起泡、洗涤、降低表面张力、乳化等性能。
例如:十二烷基硫酸钠中混有少量的十二醇、十二酰醇胺等物质,可改善其在洗涤剂配方中的起泡、洗涤、降低表面张力、乳化等性能。
二、影响分子间相互作用参数的因素
大部分混合体系的β值为负值,即两种表面活 性剂分子间是相互吸引的作用。这种吸引 力主要来源于分子间的静电引力,与表面 活性剂分子结构密切相关,并受温度及电 解质等外界因素的影响。
1.表面活性剂离子类型的影响
不同类型表面活性剂分子间的相互作用力大小不同,其大小次 序为
第一节 表面活性剂分子间 的相互作用参数
表面活性剂的两个最基本性质是表面活性 剂的表面吸附及胶束的形成。因此,加和 增效的产生首先会改变体系的表面张力和 临界胶束浓度。一般情况下,当两种表面 活性剂产生复配效应时,其混合体系的临 界胶束浓度并不等于二者临界胶束浓度的 平均值,而是小于其中任何一种表面活性 剂单独使用的临界胶束浓度。造成这种情 况的原因就是表面活性剂分子间的相互作 用。
例如:十二烷基硫酸钠中混有少量的十二醇、 十二酰醇胺等物质,可改善其在洗涤剂配 方中的起泡、洗涤、降低表面张力、乳化 等性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面活性剂化学
2020/5/6
12
同类同系表面活性剂之间的复配
对同类表面活性剂来说,只要在表面活性剂中,加入少 量表面活性剂,即可得到表面活性较高的混合体系。
混合物的表面活性是符合线性规则.
表面活性剂化学
2020/5/6
13
阴离子-阴离子表面活性剂的复配 两种阴离子表面 活性剂复配时,性能
表面活性剂的浊点。
盐溶:cmc↑,浊点↑
盐析:cmc↓,浊点↓
表面活性剂化学
2020/5/6
11
极性有机物与表面活性剂的复配
极性有机物作用的基本原理:使通过混合吸附和形成混合胶 束改变吸附层和胶束层的性质,以及由于与水的强烈相互作 用而影响疏水效应。 --高级脂肪醇可提高表面活性剂的表面活性
--多羟基类物质也可提高表面活性剂的表面活性,使cmc降低.
表面活性剂化学
2020/5/6
8
洗涤剂组分间的协同效应
洗涤剂基本都是通过多种表面活性剂和助剂复配的产品,
并且通过复配技术达到最高性能和降低成本的目的。
电解质和表面活性剂的复配对离子型表面活性剂(特别阴离
子)影响大,两性表面活性剂次之,非离子型表面活性剂较小。
A 电解质和离子型表面活性剂的复配 电解质的加入使离子型表面活性剂的cmc
减小,表面活性剂增大。尤其对阴离子显著。
表面活性剂化学
2020/5/6
9
离子型表面活性剂吸附 层及胶束的扩散双电层结构示意
表面活性剂化学
2020/5/6
10
B 电解质和非离子表面活性剂的复配
电解质主要通过对疏水基的“盐溶”或“盐析” 作用使临界胶束浓度变化;
电解质对非离子表面活性剂的影响,也反映在改变
量表面活性剂亲水亲油的一个物理量,能够全 面反映表面活性剂的性能及各种因素的影响。
影响PIT的因素: (一)表面活性剂的结构&浓度
(二)无机盐种类&含量
(三)油的种类
表面活性剂化学
2020/5/6
5
热力学研究法
热力学研究法是用界面张力仪测定复配体系 在不同温度的表面张力-浓度关系,曲线转折点 即为cmc,求出ln cmc,并作ln cmc-T图,求出 ln cmc/T ,依据Gibbs-Helmholtz公式计算热力 学函数ΔG、ΔH、ΔS。
第九章 表面活性剂的复配
表面活性剂化学
2020/5/6
1
Байду номын сангаас
市售绝大部分商品表面活性剂都是混合物。
1 原料就不是单一组分,各种链长的分子 2 产品夹带原料 3 副产物 4人为的混合
表面活性剂化学
2020/5/6
2
复配的理论研究法
表面张力、吸附量测定法
首先,用实验方法测定溶液的表面张力,绘出 表面张力-浓度对数图,再从曲线转折电求出表 面活性剂的临界胶束浓度(cmc)和此时的表面张 力(γcmc),最后由Gibbs公式求出吸附量。
往往以其中一种为主。
非离子-离子表面活性剂的复配 非离子-离子体系和阳离子-阴离子体系均
为非理想体系,各组分之间相互作用强烈。
★复配后活性提高
表面活性剂化学
2020/5/6
14
阴离子-阳离子表面活性剂的复配
阴离子-阳离子表面活性剂的复配体系具有 以下规律: 1,混合溶液cmc首先取决于两表面活性剂疏水 链碳原子数总和; 2,等两链表长面混活合性物剂最链低长。不同时,γcmc会不同,以
表面活性剂化学
2020/5/6
6
内聚能理论研究法 内聚能理论可以用来描述表面活性剂、油、水
所构成体系中,各分子之间相互作用的强弱。
油/水界面各组分 之间相互作用图
表面活性剂化学
2020/5/6
7
筛选配方研究法 线性研究法
主要用于单因素实验 三角平面图法
最佳去污区 正交设计法
用最少的实验次数来得到最佳实验效 果的方法。
表面活性剂化学
2020/5/6
15
两性离子-阴离子表面活性剂的复配
表面活性剂化学
2020/5/6
16
i=
1 RT
(
ci
)
表面活性剂化学
2020/5/6
3
相互作用参数法
只要测得单组分溶液和某一配比的混合溶液 的表面张力随浓度的变化曲线,就可以求算表 面活性性剂二组分在水溶液-空气表面及胶束中 的相互作用参数βs、 βM 。
表面活性剂化学
2020/5/6
4
相转变温度(PIT)研究法 PIT是考虑到HLB值的缺点提出来的,是衡