几何图形初步知识点总复习有解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何图形初步知识点总复习有解析
一、选择题
1.如图,在Rt ABC 中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交
AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12
MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD △的面积是( )
A .15
B .30
C .45
D .60 【答案】B
【解析】
【分析】
作DE AB ⊥于E ,根据角平分线的性质得4DE DC ==,再根据三角形的面积公式求解即可.
【详解】
作DE AB ⊥于E
由尺规作图可知,AD 是△ABC 的角平分线
∵90C ∠=︒,DE AB ⊥
∴4DE DC ==
∴△ABD 的面积1302
AB DE =
⨯⨯= 故答案为:B .
【点睛】
本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.
2.将如图所示的Rt △ACB 绕直角边AC 旋转一周,所得几何体的主视图(正视图)是( )
A.B.C.
D.
【答案】D
【解析】
解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.
故选D.
首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.
3.下列各图经过折叠后不能围成一个正方体的是()
A.B.C.D.
【答案】D
【解析】
【分析】
由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.
【详解】
解:A、是正方体的展开图,不符合题意;
B、是正方体的展开图,不符合题意;
C、是正方体的展开图,不符合题意;
D、不是正方体的展开图,缺少一个底面,符合题意.
故选:D.
【点睛】
本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.
4.下列语句正确的是()
A.近似数0.010精确到百分位
B.|x-y|=|y-x|
C.如果两个角互补,那么一个是锐角,一个是钝角
D.若线段AP=BP,则P一定是AB中点
【答案】B
【解析】
【分析】
A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立
【详解】
A中,小数点最后一位是千分位,故精确到千分位,错误;
B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;
C中,若两个角都是直角,也互补,错误;
D中,若点P不在AB这条直线上,则不成立,错误
故选:B
【点睛】
概念的考查,此类题型,若能够举出反例来,则这个选项是错误的
5.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()
A.中B.考C.顺D.利
【答案】C
【解析】
试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“祝”与“考”是相对面,
“你”与“顺”是相对面,
“中”与“立”是相对面.
故选C.
考点:正方体展开图.
6.如图是某个几何体的展开图,该几何体是()
A.三棱柱B.圆锥C.四棱柱D.圆柱
【答案】A
【解析】
【分析】
侧面为三个长方形,底边为三角形,故原几何体为三棱柱.
【详解】
解:观察图形可知,这个几何体是三棱柱.
故选A.
【点睛】
本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..
∠,
7.如图,已知直线AB和CD相交于G点,CG EG
⊥,GF平分AGE
∠=︒,则BGD
34
CGF
∠大小为()
A.22︒B.34︒C.56︒D.90︒
【答案】A
【解析】
【分析】
先根据垂直的定义求出∠EGF的度数,然后根据GF平分∠ABE可得出∠AGF的度数,再由∠AGC=∠AGF-∠CGF求出∠AGC的度数,最后根据对顶角相等可得出∠BGD的度数.【详解】
解:∵CG⊥EG,∴∠EGF=90°-∠CGF=90°-34°=56°,
又GF平分∠AGE,∴∠AGF=∠EGF=56°,
∴∠AGC=∠AGF-∠CGF=56°-34°=22°,
∴∠BGD=∠AGC=22°.
故选:A.
【点睛】
本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题的关键.
8.下列说法,正确的是( )
A.经过一点有且只有一条直线
B.两条射线组成的图形叫做角
C.两条直线相交至少有两个交点
D.两点确定一条直线
【答案】D
【解析】
【分析】
根据直线的性质、角的定义、相交线的概念一一判断即可.
【详解】
A 、经过两点有且只有一条直线,故错误;
B 、有公共顶点的两条射线组成的图形叫做角,故错误;
C 、两条直线相交有一个交点,故错误;
D 、两点确定一条直线,故正确,
故选D .
【点睛】
本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.
9.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )
A .
B .
C .
D .
【答案】D
【解析】
【分析】
根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.
【详解】
解:根据三视图可判断这个几何体是圆柱;D 选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A 选项平面图折叠后是一个圆锥;B 选项平面图折叠后是一个正方体;C 选项平面图折叠后是一个三棱柱.
故选:D.
【点睛】
本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.
10.如图,将三个同样的正方形的一个顶点重合放置,如果145∠=°,330∠=°时,那么2∠的度数是( )