2006_全国数学建模C题易拉罐形状和尺寸的最优设计.解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
易拉罐形状和尺寸的最优设计
摘要
本题在建立数学模型的基础上,用LINGO实证分析了各种标准下易拉罐的优化设计问题,并将实测数据和模型摸拟结果进行了对比分析。结论表明,易拉罐的设计不但要考虑材料成本(造价),还要满足结构稳定、美观、方便使用等方面的要求。
在第二个问题中,易拉罐被假定为圆柱体,针对材料最省的标准,得到了不同顶部、底部与侧面材料厚度比时的最优设计方案。针对材料厚度的不同,建立两个模型:模型一,设易拉罐各个部分厚度和材料单价完全相同,最优设计方案为半径与高的比:1:2
R H=(H为圆柱的高,R为圆柱的半径);模型二,设易拉罐顶盖、底部厚度是罐身的3倍,通过计算得到半径与高:1:6
R H=时,表面积最小。一般情况下,当顶盖、底部厚度是罐身的b倍时,最优设计方案为:2
=。
R H b 在第三问中,针对圆柱加圆台的罐体,本文也建立了两个模型:模型三,设易拉罐整体厚度相同,利用LINGO软件对模型进行分析,得出当24
+==(h为
H h R r
圆台的高,r为圆台上盖的半径)时,设计最优;模型四,假设罐顶盖、底部的厚度是罐身的3倍,同样利用软件LINGO对其进行分析,得出 4.5
r→时
H h R
+≈,0
材料最省,即顶部为圆锥时材料最省,模型的结果在理论上成立,但与实际数据不符。原因是厂商在制作易拉罐时,不仅要考虑材料最省,还要考虑开盖时所受到的压力、制造工艺、外形美观、坚固耐用等因素。
在第四问中,本文根据第三问中模型最优设计结果与实测数据的误差,调整了的设计标准,在材料最省的基础上,加入了方便使用,物理结构更稳定等标准。通过比较发现,前面四个模型中,模型二和模型四体现了硬度方面的要求。进一步对模型二、四进行比较,发现模型四的结论更优。为此,将模型四结论中的底部也设计为圆锥。此时,材料最省。但是,两端都设计为圆锥时,无法使用。因此,将项部和底部设计为圆台,并考虑拉环长度和手指厚度(易于拉动拉环)时,得到圆台顶端和底部半径都为2.7。此时,易拉罐形状和尺寸最优。如果设计为旋转式拉环,====时,可以得到优于现实中易拉罐的设计方案。
r h R H
2.2,0.75,
3.93, 6.86
最后,本文总结了此次数学建模中有益的经验--在数学建模过程必须灵活应用从简到繁、由易到难不断扩展的研究方法,并且要充分发挥数学软件在优化设计中无可比拟的优势;同时,通过此次数学建模比赛深刻体会到了数学工具在生产实践中的重要作用。
关键词:易拉罐最优设计材料体积 lingo软件
文中符号注解
R:圆柱半径
r:圆台半径
H:圆柱高
h:圆台高
S:易拉罐表面积
V:易拉罐体积
MIN:最小化
为方便在LINGO软件中计算,定义:
X1:在软件LINGO中的圆柱半径(R)
X2:在软件LINGO中的圆柱高(H)
X3:在软件LINGO中的圆台半径(r)
X4:在软件LINGO中的圆台高(h)
第一问:取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量你们以为验证模型所需要的数据,例如易拉罐各部分的直径、高度、厚度等,并把数据列表加以说明:如果数据不是你们自己测量得到的,那么你们必须注明出处。
表1:数据测量结果
注:数据由测量可口可乐355ml易拉罐所得。
本文测量以上数据是为了在以下建模中,提供数据和验证结果。重要的是,拉环长度与易拉罐项部直径相差约1.53厘米左右,正好是指头厚度。显然是使用方便设计的。
第二问设易拉罐是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。
一问题重述
一个饮料量为355毫升的易拉罐,找出易拉罐的最优设计。假设它是一个正圆柱体,在不考虑易拉罐受外界影响下,求在正圆柱体的表面积最小时,底半径r与高度h的比值。
二问题分析
假设最优化条件为保证容积的情况下,使制作易拉罐所需材料最省(表面积为最小)。在表面积为最小时,设圆柱形的体积V为常数,求底半径r与高度h的比值,如果能求出一定比例,就能找出模型最优设计。在建立模型之前,必须考虑易拉罐的厚度,一种是在考虑节约材料前提下,另一种是在考虑材料受力的情况。
三模型假设、建立与求解
(一)易拉罐整体厚度相同时的最优设计模型
1、假设:(1)易拉罐是正圆柱体
(2)易拉罐整体厚度均相同
2、 确定变量和参数:设易拉罐内半径为R ,高为H ,,厚度为a ,体积为V ,其中r 和h 是自变量,所用材料的面积S 是因变量,而V 是固定参数,则S 和V 分别为:
()()22
22S R a a R a H R H πππ=+⨯++⨯-
22332422aR a R a HRa Ha πππππ=++++
2V R H π=, 2
V
H R
π=
设()2,g R H R H V π=- 3、 模型建立:
()min ,0,0
S r h R H >> (),0g R H =
其中S 是目标函数,(),0g R H =是约束条件,V 是已知的,即要在体积一定的条件下求S 的最小值时,r 和h 的取值是多少
4、模型求解
因为按照实际测量数据可知a
r ,所以带2a ,3a 的项可以忽略,且2
V
H R
π=,则有 ()()22,2aV
S R H R aR R
π=+
求()(),S r h r 的最小值,令其导数为零,即()(),0S R H R '=,解得临界点为
R =
,则2
22V H R π=== 因为()344aV S R a R π''=+
,则120S a π''=>,所以当R:H=1:2时,是S 最优解
5.模型结论