MATLAB图形绘制

合集下载

Matlab绘制图像

Matlab绘制图像
Matlab绘制图像
第一种方法 在Workspace中绘制
绘图基本线型和颜色
符号 y m c r g b w k 颜色 黄色 紫红 青色 红色 绿色 蓝色 白色 黑色 符号 . 。 x + * : -. -线型 点 圆圈 x 标记 加号 星号 实线 点线 点划线 虚线
绘图命令
绘图命令plot 主要是在数值计算中绘制函数图像。 绘制反函数图像非常容易。
绘图命令plot
调用格式1:plot(x,y)
1. 首先定义自变量X的取值向量(横坐标) 2. 再定义函数Y的取值向量(纵坐标) 3. 用plot(x,y)命令给出平面曲线图。 在绘图参数中可以给出绘制图形的线型和颜 色的参数。例:plot(x,y,’r*’) 就是用红色的 ****线型绘图。
技巧
x=0:0.1:2*pi; y1=sin(x); y2=exp(-x); plot(x,y1,'--*',x,y2,':o'); xlabel('t=0 to 2\pi'); ylabel('value of sin(t) and e^{-x}') title('Function sin(t) and e^{-x}'); legend('sin(t)','e^{-x}') 后期的制作
ቤተ መጻሕፍቲ ባይዱ
绘出下面函数及其反函数的图像
1 1 y (x ) 2 x (1 x )
程序如下: x=1:0.001:5; %定义横坐标 y=1/2*(x+1./x); %定义纵坐标 plot(x,y,'r',y,x,'b') %红色画f(x) 蓝色画f(y).

(打印)实验四 MATLAB 高级图形绘制

(打印)实验四 MATLAB 高级图形绘制

实验四MATLAB 高级图形绘制一、实验目的及要求:1.熟悉各种绘图函数的使用;2.掌握图形的修饰方法和标注方法;3.了解MATLAB 中图形窗口的操作。

二、实验内容:1.用图形表示连续调制波形Y=sin(t)sin(9t)及其包络线。

程序代码如下:包络线:2.x=[-2π,2π],y1=sinx、y2=cosx、y3=sin2x、y4=cos 2x①用MATLAB语言分四个区域分别绘制的曲线,并且对图形标题及横纵坐标轴进行标注。

程序:结果:②另建一个窗口,不分区,用不同颜色、线型绘出四条曲线,并标注图例注解。

程序:结果:③绘制三维曲线:⎪⎩⎪⎨⎧=≤≤==)cos()sin()200()cos()sin(t t t z t t y t x π程序:结果:3.绘制极坐标曲线ρ=asin(b+nθ),并分析参数a、b、n对曲线形状的影响。

(1)a=1;b=1;n=1(2)a=10;b=1;n=1(3)a=10;b=10;n=1 (4)a=10;b=10;n=10参数a、b、n对曲线形状的影响:由上面绘制的图形可知:a决定图形的大小,当a为整数时,图形半径大小就是a;b决定图形的旋转角度,图形的形状及大小不变;n决定图形的扇叶数,当n 为奇数时,扇叶数为n,当n为偶数时,扇叶数为2n。

三、结论本次实验用到了曲线绘图、三位曲线绘图的知识,与老师上课的内容一致,让我学的matlab绘图的知识得到了巩固,我还学会了如何使用title、subplot、plot、axis等函数。

在做实验的过程复习了hold on指令是覆盖函数继续绘图的意思。

使用matlab绘制三维图形的方法

使用matlab绘制三维图形的方法

使用matlab绘制三维图形的方法要使用MATLAB绘制三维图形,首先需要了解MATLAB中的三维绘图函数和绘图选项。

下面将介绍一些常用的绘制三维图形的方法。

1.绘制基本的三维图形要绘制基本的三维图形,可以使用以下函数:- plot3(函数:用于在三维坐标系中绘制线条。

- scatter3(函数:用于在三维坐标系中绘制散点图。

- surf(函数:用于绘制三维曲面图。

- mesh(函数:用于绘制三维网格图。

- bar3(函数:用于绘制三维条形图。

- contour3(函数:用于绘制三维等高线图。

例如,下面的代码演示了如何使用plot3(函数绘制一个三维线条图:```x = linspace(0, 2*pi, 100);y = sin(x);z = cos(x);plot3(x, y, z, 'LineWidth', 2);xlabel('X');ylabel('Y');zlabel('Z');title('3D Line Plot');```2.添加颜色和纹理在绘制三维图形时,可以使用颜色和纹理来增加图形的信息。

MATLAB 提供了一系列函数来处理颜色和纹理,如:- colormap(函数:用于设置颜色映射。

- caxis(函数:用于设置坐标轴范围。

- shading(函数:用于设置颜色插值方法。

- texturemap(函数:用于设置纹理映射方法。

例如,下面的代码展示了如何使用纹理映射来绘制一个球体:```[X, Y, Z] = sphere(50);C = colormap('jet');surface(X, Y, Z, 'FaceColor', 'texturemap', 'CData', C);axis equal;```3.绘制多个数据集要在同一张图中绘制多个数据集,可以使用hold on和hold off命令。

matlab--函数图形绘制实验报告1

matlab--函数图形绘制实验报告1

实验报告课程名称: 数学实验学院名称: 数学与统计学院班级:姓名:学号:2012-2013 学年第学期数学与统计学院制(二)参数方程作图例2: 画出星形线{ 及旋轮线{ 的图形解: 输入以下命令:%星形线作图t=linspace(0,2*pi,5000);x=2*(cos(t)).^3;y=2*(sin(t)).^3;plot(x,y),grid;结果:%旋轮线作图t=linspace(0,4*pi,5000); x=2*(t-sin(t));y=2*(1-cos(t));plot(x,y),axis equal; axis(0,8*pi,0,5);grid;结果:(三)极坐标方程图形例3:画出四叶玫瑰线的图形。

知其极坐标方程: ρ=acos(2 )。

解: 取a=5做图。

在命令窗口输入下命令theta=linspace(0,2*pi);r=2*cos(2*theta);polar(theta,r)结果:(四)空间曲面(线)的绘制例4: 绘制双曲抛物面z= 。

解:将其化为参数方程:{ , 编写m文件运行以下命令r=linspace(-4,4,30);s=r;[u,v]=meshgrid(r,s);x=u;y=v;z=(u.^2-v.^2)./4;surf(x,y,z);bix on;结果:(五)空间曲线在坐标平面上的投影曲面和投影柱面例5: 画出螺旋线{ , 在xOz面上的正投影曲线的图形。

解:化为参数方程{ , 运行下列程序t=linspace(-2*pi,2*pi);x=10*cos(t);z=2*t;h=plot(x,z);grid;xlabel('x');ylabel('z');set(h,'linewidth',2);结果:(一)实验分析:(二)在本次实验中我们初步了解了matlab。

(三)学会了一些简单绘图。

(四)在编制中我们要很明确“点乘的重要性”。

如何使用Matlab进行3D图形绘制

如何使用Matlab进行3D图形绘制

如何使用Matlab进行3D图形绘制1. 引言在科学研究、工程设计和数据可视化的过程中,3D图形绘制是一项非常重要的技能。

Matlab作为一种功能强大且易于上手的工具,在3D图形绘制方面有着很大的优势。

本文将介绍如何使用Matlab进行3D图形绘制,以帮助读者更好地掌握这一技术。

2. 准备工作在开始使用Matlab进行3D图形绘制之前,我们需要先进行一些准备工作。

首先,确保已经安装了Matlab软件,并且具备了一定的基本操作能力。

其次,了解Matlab的数据管理和处理方式,掌握常用的数据结构和操作方法。

最后,对于3D图形绘制的相关概念和技术有一定的了解,包括坐标系、曲线和曲面等基本概念。

3. 坐标系和坐标变换在进行3D图形绘制之前,首先需要了解坐标系的概念以及如何进行坐标变换。

Matlab中使用的3D坐标系是右手坐标系,其中x轴指向右侧,y轴指向前方,z轴指向上方。

在进行坐标变换时,可以使用Matlab提供的函数进行平移、旋转和缩放等操作,以便更好地展示3D图形。

4. 曲线绘制在Matlab中,使用函数plot3可以绘制3D曲线。

该函数的基本用法是plot3(x,y,z),其中x、y、z分别为曲线上各点的x、y、z坐标。

可以通过对坐标点进行适当的变换和调整,绘制出各种形状和曲线。

5. 曲面绘制除了曲线,我们还可以使用Matlab绘制3D曲面。

Matlab提供了函数surf和mesh来实现曲面绘制。

函数surf绘制带有颜色的曲面,而函数mesh绘制网格型的曲面。

这两个函数的基本用法都是类似的,可以通过传入坐标点数据和数据值来绘制出曲面图像。

6. 其他3D图形效果除了曲线和曲面,我们还可以通过Matlab实现其他各种各样的3D图形效果。

例如,绘制3D散点图可以使用函数scatter3,绘制3D柱状图可以使用函数bar3,绘制3D等高线图可以使用函数contour3等。

这些函数都有类似的参数传递方式,通过调整函数参数可以实现各种个性化的效果。

MATLAB中的三维图形绘制与动画制作技巧

MATLAB中的三维图形绘制与动画制作技巧

MATLAB中的三维图形绘制与动画制作技巧引言MATLAB是一种强大的科学计算软件,广泛应用于工程、物理、数学等各个领域。

其中,三维图形绘制和动画制作是其功能的重要一部分。

本文将深入探讨MATLAB中三维图形绘制与动画制作的技巧,并给出一些实用的示例。

一、三维图形绘制1. 坐标系的设定在绘制三维图形之前,我们需要设定坐标系。

通过使用MATLAB的figure函数和axes函数,我们可以创建一个三维坐标系,并设置其属性,如坐标轴的范围、标签等。

2. 点的绘制在三维图形中,最基本的图元是点。

通过scatter3函数,我们可以绘制出一系列点的三维分布情况。

可以通过设置点的大小、颜色、透明度等属性,增加图像的美观性。

3. 曲线的绘制MATLAB提供了多种绘制曲线的函数,如plot3、line、quiver等。

通过这些函数,我们可以绘制各种样式的曲线,例如直线、曲线、矢量、流线等。

我们可以根据需要设置线条的样式、颜色、宽度等属性。

4. 曲面的绘制除了曲线,我们还可以绘制三维曲面。

通过函数mesh、surf和contour,我们可以绘制出具有平滑外形的曲面。

可以通过设置颜色映射和透明度等属性,使得曲面具有更加细腻的外观。

二、动画制作1. 创建动画对象要制作动画,我们需要先创建一个动画对象。

通过使用MATLAB的videoWriter函数,我们可以创建一个视频文件,并设置其参数,如帧率、分辨率等。

2. 绘制关键帧动画的核心是绘制一系列关键帧,并在每一帧之间进行插值。

通过在每一帧中修改图形对象的属性,我们可以实现对象的平移、旋转和缩放等变换。

通过MATLAB提供的getframe函数,我们可以将当前图像存储为一个帧对象。

3. 帧之间的插值在关键帧之间,我们需要进行插值,以平滑动画的过渡。

通过使用MATLAB 的linspace函数,我们可以生成两个关键帧之间的若干插值。

然后,我们可以在每个插值处更新图形对象的属性,从而实现动画效果。

第三章 matlab图形绘制

第三章 matlab图形绘制
gtext 用于在图形中特定的位置加字符串,位置用鼠标
指定
grid 图形中加网格
例3.在同一坐标系下画出sinx和cosx的图形,并适当加 标注.
x=linspace(0,2*pi,30);y=[sin(x);cos(x)]; plot(x,y);grid;xlabel (‘x’);ylabel (‘y’); title(‘sine and cosine curves’); text(3*pi/4,sin(3*pi/4),’\leftarrowsinx’); text(2.55*pi/2,cos(3*pi/2),’cos\rightarrow’)
结果见下图.
4.多幅图形
subplot(m,n,p)可以在同一个图形窗口中画出多个图 形,用法见下例.
x=linspace(0,2*pi,30);y=sin(x);z=cos(x);u=2*sin(x).* cos(x);v=sin(x)./cos(x); subplot(2,2,1),plot(x,y),title(‘sin(x)’) subplot(2,2,2),plot(x,z),title(‘cos(x)’) subplot(2,2,3),plot(x,u),title(‘2sin(x)cos(x)’) subplot(2,2,4),plot(x,v),title(‘sin(x)/cos(x)’)
plot(x1,y1,x2,y2, …) 在此格式中,每对x,y必须符合 plot(x,y)中的要求,不同对之间没有影响,命令对每 一对x,y绘制曲线.
例1.做出y=sinx在[0,2π]上的图形,结果见下图.
x=linspace(0,2*pi,30); sin(x);plot(x,y)
例2.在同一坐标系下做出两条曲线y=sinx和y=cosx 在[0,2π]上的图形.结果见下图.

MATLAB作图(超详细)

MATLAB作图(超详细)

2020/5/31
数学建模
3. 对数坐标图
在很多工程问题中,通过对数据进行对数转换可以 更清晰地看出数据的某些特征,在对数坐标系中描绘数 据点的曲线,可以直接地表现对数转换.对数转换有双对 数坐标转换和单轴对数坐标转换两种.用loglog函数 可以实现双对数坐标转换,用semilogx和semilogy 函数可以实现单轴对数坐标转换. loglog(Y) 表示 x、y坐标都是对数坐标系
单击鼠标左键,则在当前图形窗口中,以鼠标点中的点为 中心的图形放大2倍;单击鼠标右键,则缩小2倍.
zoom off 关闭缩放模式
grid on
%标注格栅
MATLAB liti37
例 创建一个简单的半对数坐标图. 解 输入命令:
x=0:.1:10;
semilogy(x,10.^x)
MATLAB liti38
例 绘制y=x3的函数图、对数坐标图、半对数坐标图.
2020/5/31
MATLAB liti22 数学建模
返回
三维图形 1. 空间曲线 2. 空间曲面
semilogx(Y) 表示 x坐标轴是对数坐标系
semilogy(…) 表示y坐标轴是对数坐标系
plotyy 有两个y坐标轴,一个在左边,一个在右边
2020/5/31
数学建模
例 用方形标记创建一个简单的loglog.
解 输入命令:
x=logspace(-1,2);
loglog(x,exp(x),’-s’)
数学建模
返回
2. 定制坐标 Axis([xmin xmax ymin ymax zmin zmax])定制图形坐标
x、y、z的最大、最小值
Axis
将坐标轴返回到自动缺省值

MATLAB图形绘制命令

MATLAB图形绘制命令

∙图形绘制命令∙∙title ——给图形加标题∙xlable ——给x轴加标注∙ylable ——给y轴加标注∙text ——在图形指定的任意位置加标注∙gtext ——利用鼠标将标注加到图形任意位置∙grid on ——打开坐标网格线∙grid off——关闭坐标网格线∙legend ——添加图例∙axis ——控制坐标轴刻度∙hold on; %后续图形叠加显示plot函数绘制二维曲线,常用格式有:plot(x):缺省自变量的绘图格式,x可为向量或矩阵。

plot(x, y):基本格式,x和y可为向量或矩阵。

plot(x1, y1, x2, y2,…):多条曲线绘图格式,在同一坐标系中绘制多个图形。

plot(x, y, ‘s’):开关格式,开关量字符串s设定了图形曲线的颜色、线型及标示符号。

cleart=0:0.1:10;y1=sin(t);y2=cos(t);plot(t,y1,'r',t,y2,'b--');x=[1.7*pi;1.6*pi];y=[-0.3; 0.7];s=['sin(t)';'cos(t)'];text(x, y, s); %指定位置加标注title('正弦和余弦曲线'); %标题legend('正弦','余弦') %添加图例注解xlabel('时间') %x坐标名ylabel('正弦&余弦') %y坐标名grid on %添加网格axis square %将图形设置为正方形采用图形窗口分割方法进行比较显示cleart=0:pi/10:2*pi;y1=sin(t);y2=cos(t);y3=cos(t+pi/2);y4=cos(t+pi);%将图形窗口分割成两行两列,要画的图形为第1行第1列subplot(2,2,1);plot(t,y1);%将图形窗口分割成两行两列,要画的图形为第1行第2列subplot(2,2,2);plot(t,y2);%将图形窗口分割成两行两列,要画的图形为第2行第1列subplot(2,2,3);plot(t,y3);%将图形窗口分割成两行两列,要画的图形为第2行第2列subplot(2,2,4);plot(t,y4);。

Matlab图形绘制 (2)

Matlab图形绘制 (2)

②极坐标系函数polar,调用形式为:polar(theta,rho)或polar(theta,r h③o,双s)纵坐标(双y轴坐标系)函数plotyy,调用形式为: ➢plotyy(X1,Y1,X2,Y2) ➢plotyy(X1,Y1,X2,Y2,fun) fun可以是plot、semilogx、semilogy或log log 注➢:pl双ot坐yy标(X绘1,制Y1图,X形2,的Y2调,f用un过1,程fu中n2,) 不fu能n1够绘像制前(X面1,的Y1p)l,otf函un数2绘那制样(对X2曲,Y线2) 属性进行设置,需要使用句柄图形控制完成。
说明 填充绘图 条形图
barh 水平条形图 comet 彗星图 errorbar 误差带图
ezplot ezpolar
简单绘制函数 图
简单绘制极坐 标图
函数名 feather stem
fill stairs contour
contour f scatter
说明 矢量图 离散序列饼状 图 多边形填充 阶梯图 等高线图
Hist用来显示资料的分段情况和统 计特性,适合于大量数据的情况
示例:x=randn(9999,1);hist(x,50)
Rose与hist接近,将资料的大小视 为角度,资料的个数作为距离,采 示例:x=randn(9999,1);rose(x,50) 用极坐标绘图。
Stem产生针状图,常被用来绘制数 x=linspace(0,10,100);y=sin(x).*exp 位讯号。
(-x/4);stem(x,y);
Fill将资料点视为多边形顶点,并 x=linspace(0,10,100);y=sin(x).*exp 将此多边形涂上颜色。
(-x/4);fill(x,y,’c’);

MATLAB三维绘图

MATLAB三维绘图

第7讲 绘制三维图(第5章MATLAB 绘图)目的:1.掌握绘制三维图形的方法。

2.掌握绘制图形的辅助操作。

一、绘图时点坐标矩阵的生成。

绘图函数使用描点法绘图,所以在绘图前,需要建立空间点的概念,空间中的点需要三个坐标(,,)x y z ,matlab 使用三个矩阵来存储点的三个坐标,一个矩阵(比如A )存储点的x 坐标,一个矩阵(比如B )存储点的y 坐标,一个矩阵(比如C )存储点的z 坐标。

其中A 、B 、C 三矩阵是同型矩阵。

例如设矩阵123112X ⎛⎫⎪= ⎪ ⎪⎝⎭,014221Y −⎛⎫ ⎪= ⎪ ⎪⎝⎭,510113Z ⎛⎫ ⎪= ⎪ ⎪−⎝⎭则,matlab 绘图函数将绘制点()()1,0,5,(2,1,1),(3,4,0),,2,1,3−共6个点。

如果点的坐标没有规律那么我们需要手工输入坐标矩阵。

如果点的坐标有规律,那么我们可以使用矩阵运算或者matlab 产生点的函数来生成坐标矩阵。

例如,假设空间中点的纵横坐标如下图所示:图中点的坐标有规律:横坐标是(1,2,3,4),纵坐标是(1,2,3),所以可以使用如下方法得到点的坐标矩阵。

方法一:>> a=[1,2,3,4];b=[1,2,3];i=ones(1,3);j=ones(1,4);>>x=i’ *a; y=b‘ *j;方法二:使用matlab系统函数meshgrid(推荐使用)>> a=[1,2,3,4]; b=[1,2,3];>>[x,y]=meshgrid(a,b) % 该函数生成的x,y矩阵和方法一相同。

------------------我是华丽分割线-----------------除meshgrid外,还可以用peaks、cylinder函数等生成点坐标矩阵。

peaks(n): 本身是一个创建具有多个峰值的曲面图,例如:>> peaks(30) %产生的图如下:在matlab中可以使用,例如:命令[x,y,z]=peaks(30)取出曲面点的三个坐标矩阵x,y,z;[a,b]=peaks(30)取出曲面点的前两坐标矩阵x,y;%可以用逻辑运算a==x,b==y验证注意:命令a=peaks(30)取出的a不是曲面点的x坐标,而是点的z坐标;可以用二维绘图函数scatter(x,y)绘制散点图观察取出的坐标点:>>[x,y]=peaks(8);>>scatter(x,y)另一个可以用来取坐标点的函数是sphere(n),命令sphere(n):绘制一个具有n个纵列的单位球面。

Matlab中的3D图形绘制方法

Matlab中的3D图形绘制方法

Matlab中的3D图形绘制方法Matlab是一种常用于科学计算和数据可视化的高级编程语言和开发环境。

它的强大功能使得它成为工程师、科学家和研究人员的首选工具之一。

其中一个引人注目的特点是它对3D图形的支持。

在本文中,我们将探讨Matlab中的一些3D图形绘制方法。

Matlab提供了多种绘制3D图形的函数和工具。

最基本的方法是使用“plot3”函数绘制三维数据。

这个函数接受x、y和z三个参数,分别表示三维坐标系上的数据点。

通过给定一系列的数据点,我们可以在三维空间中绘制出线条或散点图。

这种方法适用于简单的数据展示和初步的分析。

除了基本的线条和散点图,Matlab还提供了一些更高级的3D图形绘制函数,如“surface”和“mesh”。

这些函数可以用来绘制三维曲面和网格图。

例如,我们可以使用“surface”函数绘制一个三维山丘的图像,其中x和y轴表示地面上的位置,z轴表示地面的高度。

通过调整x、y和z的数值,我们可以创建出各种形状和复杂度的三维表面。

Matlab还在其图形库中提供了许多其他类型的3D图形绘制函数。

例如,“bar3”函数可以用来绘制三维柱状图,其中x和y轴表示不同的类别,z轴表示各类别的数值。

这种图形可以更直观地展示不同类别之间的关系和差异。

类似地,“contour”函数可以用来绘制三维的等值线图,用于可视化函数的等值线和等高面。

另一个值得一提的技术是使用Matlab的“patch”函数绘制复杂的三维图形。

这个函数可以用来创建和修改三维物体的表面,例如绘制球体、立方体和多面体等。

我们可以通过更改物体的属性和位置来构建各种形状和几何体。

这种灵活性使得“patch”函数在计算机图形学和动画领域中得到广泛应用。

除了这些函数和工具,Matlab还允许用户通过编写自定义的脚本和函数来实现更高级的3D图形绘制。

例如,我们可以使用Matlab的3D绘图工具箱中的一些高级函数和方法来创建特定类型的三维图形,如体积渲染、光线追踪和动画效果等。

Matlab中的三维图形绘制技巧

Matlab中的三维图形绘制技巧

Matlab中的三维图形绘制技巧由于Matlab的强大数据分析和可视化功能,它被广泛应用于许多领域,包括物理学、生物学和工程学。

其中,三维图形绘制是Matlab中一项重要而有趣的技巧。

本文将介绍几种用Matlab绘制三维图形的技巧,并探讨一些常见问题的解决方法。

一、基础知识在开始之前,我们需要了解一些Matlab中三维图形绘制的基础知识。

Matlab 提供了许多函数来绘制三维图形,包括plot3、surf和mesh等函数。

其中,plot3函数用于绘制三维曲线,surf函数用于绘制三维曲面,而mesh函数则可以绘制网格曲面。

此外,Matlab还提供了一些辅助函数来设置坐标轴、标题和标签等。

二、绘制三维曲线首先,我们来学习如何使用plot3函数绘制三维曲线。

该函数接受三个向量作为输入,分别表示曲线上点的x、y和z坐标。

以绘制一个螺旋线为例,我们可以定义一个角度向量theta和对应的x、y和z坐标向量。

然后,使用plot3函数绘制曲线。

```matlabtheta = linspace(0, 10*pi, 1000);x = cos(theta);y = sin(theta);z = linspace(0, 10, 1000);plot3(x, y, z);```通过调整theta的范围和分辨率,我们可以绘制出不同形状和密度的螺旋线。

此外,我们还可以使用颜色、线型和标记等选项来自定义曲线的外观。

三、绘制三维曲面接下来,我们将介绍如何使用surf函数绘制三维曲面。

与绘制曲线类似,surf 函数也接受三个坐标向量作为输入,并将其解释为曲面上的点。

此外,我们还需要定义一个与坐标向量相同维度的矩阵来表示曲面的高度。

以下代码演示了如何绘制一个带有Z轴高度信息的平面曲面。

```matlabx = linspace(-5, 5, 100);y = linspace(-5, 5, 100);[X, Y] = meshgrid(x, y);Z = peaks(X, Y);surf(X, Y, Z);```在此示例中,我们使用meshgrid函数生成X和Y坐标矩阵,并使用peaks函数生成与X和Y相对应的高度矩阵Z。

《MATLAB图形绘制》课件

《MATLAB图形绘制》课件

交互式编程环境
Matlab提供了交互式命令窗口和脚本文 件,方便用户进行编程和调试。
图形绘制功能
Matlab提供了丰富的绘图函数,可以方 便地绘制各种二维、三维图形,支持多种 图形格式输出。
02
Matlab绘图基础
绘图函数的使用
plot函数
用于绘制二维线图,可以绘制一个或多个数 据序列。
bar函数
滤波器应用
通过实例演示如何使用Matlab实现图像的 滤波处理,提高图像质量或突出特定特征。
图像的色彩空间转换
色彩空间
介绍常见的色彩空间如RGB、HSV、 CMYK等,以及它们之间的转换关系 。
转换方法
演示如何使用Matlab进行图像的色彩 空间转换,以便更好地进行图像处理 和分析。
05
Matlab与其他软件的结 合使用
信号处理与通信
05
06
金融建模与预测
Matlab的优点与特点
易用性
Matlab的语法简洁明了,易于学习,适 合初学者快速入门。
支持多种编程范式
Matlab不仅支持传统的命令式编程,还 支持面向对象编程和函数式编程,具有高 度的可扩展性。
强大的数学计算能力
Matlab内置了大量数学函数和算法,支 持矩阵运算、数值分析、统计分析等多种 数学计算。
《Matlab图形绘制》 PPT课件
xx年xx月xx日
• Matlab简介 • Matlab绘图基础 • 高级绘图技巧 • 图像处理与可视化 • Matlab与其他软件的结合使用 • Matlab图形绘制的实际应用案

目录
01
Matlab简介
Matlab的发展历程
01
1980年代初
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18
【例6-4】 在图形中添加文本字符串。 x=0:0.1:10; y=sin(x); plot(x,y) xlabel('x') ylabel('y=sinx') text(0,sin(0),‘\leftarrowsin(x)=0’) % 在指定位置添
加左箭头及字符串
text(3*pi/4,sin(3*pi/4),'\rightarrowsin(x)=0.707') text(7*pi/4,sin(7*pi/4),'\leftarrowsin(x)=-0.707')
x=x+(x==0)*eps; % 用一个“机器0”小数代替0
y=sin(x)./x; % 用可逻辑运算的sin(esp)/esp近似代替sin(0)/0的极限
plot(x,y)
xlabel('x')
% 在x轴上标注x
ylabel('y=sinx/x')
% 在y轴上标注y=sinx/x
title('门函数的频谱') % 在图形上方添加标题
9
④plotyy指令的常用调用格式 plotyy(x1,y1,x2,y2) plotyy(x1,y1,x2,y2,'f') plotyy(x1,y1,x2,y2,'f1','f2')
指令中出现的参数f、f1、f2等代表绘制数据的 方式,可选择plot、semilogx、semilogy、 loglog等不同的形式。
28
⑤二维区域图的绘制 区域图的绘制使用area指令,该指令用于
在图形窗口中显示一段曲线,该曲线可由一 个矢量生成,也可由矩阵中的列生成(其实 在MATLAB中,矢量是矩阵的一种特殊形式 ,即列数为1的矩阵就是矢量)。如果矩阵的 列数大于1,则area指令将矩阵中每一列的 值都绘制为独立的曲线,并且对曲线之间和 曲线与x轴之间的区域进行填充。这种图形 在MATLAB中就称为区域图。
27
【例6-9】 垂直条形图的绘制。 x=[1 2 3]; %定义条形的位置 y=[3 5 2;
4 6 8; 7 5 3]; %定义条形的高度 bar(x,y) 【例6-10】 绘制一个二维水平且堆叠的条形图。 x=[1 2 3]; y=[3 5 2;
4 6 8; 7 5 3]; barh(x,y)
10
6.2 二维图形的绘制 1. 二维图形的创建及曲线颜色、线型、数据点型
设置 这里通过一个简单的例子引入图形创建过程。 【例6-1】 绘制正弦函数y =sin(x)的曲线。 x=0:0.01:10; %定义采样向量,采样点步长为0.01,共计101个 y=sin(x); plot(x,y) %在二维坐标轴中按线性比例绘制二维图形 运行后结果如图6.3所示。
5
⑤用名称、图例、坐标名、文本等对图形进行注 释,常用典型指令如下。 xlabel('x') ylabel('y') title('图1') text(1,1,'y=f(x)') ⑥打印输出图形,常用典型指令如下。 print–dps2
6
在上述步骤中,(1)、(3)是最基本、最常用 的绘图步骤。一般情况下,由这两步所画出的图 形已经具备足够的表现力,至于其他步骤,并不 完全必需。步骤(2)一般在图形较多的情况下使 用,比如要把几个图放到一起进行比较,此时可 根据所作图形的个数对subplot(m, n, k)指令中的 m、n进行赋值。步骤(4)、(5)的前后次序可按照 指令的常用程度和复杂程度编排,用户可根据自 己的需要改变前后次序。
19
如果在不要求精确定位的情况下对图形进行 标注,还可以使用gtext指令实现以交互的方式将 标注字符串放置在图形中。例如,在图6.8中的 正弦曲线上执行下面的指令
gtext('第一个零点') gtext('第二个零点') gtext('第三个零点') 按回车键后打开图形窗口,当光标进入图形 窗口时,会变成一个大十字,表明系统正在等待 用户的动作。单击想要加入标注的地方即可。
16
此外还可以在不同函数曲线上标注不同的数据 点型以观察数据点。比如对例6-2程序的第一句 及最后一句修改如下 x=0:0.2:10; plot(x,y1,'r:+',x,y2,'g--d',x,y3,'b-.o')
修改第一句的目的是增加数据取值步长,以便 于观察数据点。 运行后结果如图6.8所示 。
25
③极坐标图的绘制 极坐标也是一种常用的坐标形式,在有些场合
使用起来非常方便。极坐标图的绘制使用的指令是 polar,其调用格式为polar(theta,rho,linespec), 即用极角theta和极径rho画出极坐标图形,参量 linespec则可以指定极坐标图中线条的线型、标记 符号和颜色等。 【例6-8】 极坐标图的绘制。 x=0:0.01:2*pi; polar(x,sin(2*x).*cos(2*x),'r:') title('八瓣玫瑰图')
3
6.1 MATLAB图形绘制基础
1. MATLAB图形绘制的基本步骤
在MATLAB中,一般按照下述的几个步骤绘制 图形。
①准备需绘制的数据或函数,常用典型指令如下。
x=0:0.1:10; y1=bessel(1,x); y2=bessel(2,x); y3=bessel(3,x);
4
②选择图形输出的窗口及位置,常用典型指令如下。 figure(1) subplot(m,n,k) ③调用基本的绘图函数,常用典型指令如下。 plot(x,y1,x,y2,x,y3) plot3(x,y,z,'r :') ④设置坐标轴的范围、标记号和网格线,常用典型指 令如下。 axis([0,10,-3,3]) axis([x1,x2,y1,y2,z1,z2]) grid on
26
④二维条形图的绘制
在MATLAB中,用指令bar和barh来绘制二维条形 图,其中指令bar用来绘制垂直条形图,barh用来绘 制水平条形图。指令的调用格式为
bar(x, y, width, ‘style’, linespec) 或barh(x, y, width, ‘style’, linespec), 其中的参数width代表条形的宽度,默认值为0.8, 当width的值大于1时,条形将会出现交叠;参数style 用来定义条形的类型,可选值为group或stack,其默 认值为group,如选stack,则对mn矩阵只绘制n组条 形,每组一个条形,且条形的高度为这一列中所有元 素的和;参数linespec用来定义条形的颜色。
7
2. MATLAB基本绘图命令
MATLAB提供了大量的指令用于将矢量数据 以曲线图形的方式进行显示以及这些曲线图形的 注释和打印。 详见表6-1。
①plot指令的常用调用格式 plot(y,'s') plot(x,y,'s') plot(x1,y1,'s1',x2,y2,'s2') h=plot(…)
x=0:0.01:10;
y1=sin(x);
y2=x.*sin(x);
y3=exp(2*cos(x));
subplot(2,2,1),plot(x,y1) % 在第1个子图中显示y1
subplot(2,2,2),plot(x,y2) % 在第2个子图中显示y2
subplot(2,2,3),plot(x,y3) % 在第3个子图中显示y3
另外一种方法,可以通过自定义曲线的颜色、 线型等来区别不同的曲线。对例6-2程序的最后 一句修改如下 plot(x,y1,'r:',x,y2,'g--',x,y3,'b-.') 运行后结果如图6.7所示
在图6.7中,用红色的虚线(在程序中用r:表示) 表示函数y1,用绿色的双画线(在程序中用g--表 示)表示函数y2,用蓝色的点画线(在程序中用b-. 表示)表示y3。这样就能方便区分同一窗口中不 同的曲线。
29
【例6-11】 根据矩阵数据来绘制区域图。
A=[1 2 3 4
2468
3573
7532
6 3 2 1];
area(A)
%绘制区域
set(gca,'xtick',1:5) %设定x轴的标示
%y2=; % y3= e2cosx
plot(x,y1,x,y2,x,y3)
运行后结果如图6.5所示。
13
MATLAB虽然会自动为每条曲线赋予不同的颜 色以示区别,但有时却很难判断曲线和函数的对 应关系,可以通过两种方法来解决这个问题。第 一种方法,把这些曲线在同一个绘图窗口的不同 区域分别显示,把例6-2程序修改如下。
11
有时为了便于观察,可以在图形上加上网格, 此时只需在上例程序后加上grid on即可。 x=0:0.01:10; y=sin(x); plot(x,y) grid on 运行后结果如图6.4所示。
12
【例6-2】在一个图形窗口中绘制多条函数曲线。
x=0:0.01:10;
y1=sin(x);
y2=x.*sin(x);
制二维图形
23
②双y轴图形的绘制 利用MATLAB的plotyy指令可以同时绘制两条
函数曲线,这两条曲线共用一个x轴,而y轴则为 两个,分别位于图形的左边和右边。这时,可以 将具有不同取值范围的两条函数曲线放到一个图 形中,以便进行分析和比较。
24
【例6-7】 双y轴图形的绘制。 x=0:1000; a=1000;b=0.01;c=0.01; y1=a*exp(-b*x); y2=cos(c*x); plotyy(x,y1,x,y2,'semilogy','plot')
相关文档
最新文档