嵌入式软件架构篇

合集下载

嵌入式开发中的软件架构设计

嵌入式开发中的软件架构设计

嵌入式开发中的软件架构设计嵌入式开发是现代科技领域中的重要一环,它涉及到各种智能设备和嵌入式系统的开发与设计。

在嵌入式开发中,软件架构设计起着至关重要的作用。

本文将介绍嵌入式开发中的软件架构设计原则、常见的软件架构模式,以及如何选择适合的软件架构设计方案。

一、嵌入式开发中的软件架构设计原则在进行嵌入式软件架构设计时,需要遵循一些基本原则,以确保软件架构的稳定性、可靠性和可维护性。

以下是几个重要的原则:1. 模块化设计:嵌入式系统通常由多个模块组成,每个模块负责不同的功能。

模块化设计可以使系统的各个模块相互独立,易于调试和维护。

2. 可重用性:合理设计软件模块,以便于在不同的项目中重复使用。

这将提高开发效率,减少代码量,降低项目开发成本。

3. 可扩展性:嵌入式系统的需求可能会随时间不断变化。

因此,软件架构设计应具备良好的可扩展性,以便于根据实际需求进行系统的扩展和升级。

4. 可靠性和安全性:嵌入式系统通常面临着严格的可靠性和安全性要求。

软件架构设计应当考虑到系统的性能和稳定性,并采取相应的措施来确保数据的安全性。

5. 性能优化:嵌入式系统通常拥有有限的资源,包括处理能力、内存和存储空间等。

软件架构设计应当考虑到这些资源限制,并尽可能优化系统的性能。

二、常见的嵌入式软件架构模式针对不同的应用场景和需求,存在多种嵌入式软件架构模式可供选择。

以下是一些常见的模式:1. 单机框架模式:在这种模式下,嵌入式系统作为一个单一的实体存在,所有的功能模块都运行在同一台设备上。

这种模式适用于资源较为充足、功能相对简单的嵌入式系统。

2. 分布式框架模式:在这种模式下,嵌入式系统的各个功能模块分布在不同的设备上,通过网络进行通信和协作。

这种模式适用于功能复杂、需要协同工作的嵌入式系统。

3. 客户端-服务器模式:这种模式下,嵌入式系统被分为客户端和服务器两个部分。

客户端负责与用户进行交互,服务器负责处理数据和逻辑。

这种模式适用于需要与用户进行交互的嵌入式系统。

嵌入式软件架构设计之分层设计

嵌入式软件架构设计之分层设计

嵌入式软件架构设计之分层设计嵌入式软件分层设计是一种常用的软件架构设计方法,它将整个软件系统分为不同的层次,每个层次有各自的职责和功能,层之间通过接口进行通信和协作。

分层设计的优点是提高了软件系统的可维护性、可扩展性和可重用性,降低了软件模块之间的耦合度。

1.应用层:应用层是整个软件系统的最高层,负责处理用户界面和应用逻辑。

它接收用户的输入,并根据用户的操作来调用下一层的功能模块。

在分层设计中,应用层通常只包含少量的代码,主要是调用下一层的接口函数,并将结果返回给用户。

这样可以保持应用层的简洁和灵活性。

2.业务逻辑层:业务逻辑层是整个软件系统的核心层,负责实现系统的核心功能和业务逻辑。

它包含了系统的主要算法和数据处理逻辑,通过调用下一层的接口函数来实现具体的功能。

业务逻辑层的设计应该尽量遵循高内聚、低耦合的原则,将复杂的业务逻辑拆分成独立的模块或函数,提高系统的可维护性和可扩展性。

3.数据访问层:数据访问层负责与外部设备或数据库进行数据的读写操作。

它提供了统一的接口函数,隐藏了底层硬件或数据库的细节,使上层模块可以方便地访问和操作数据。

数据访问层的设计要考虑到数据的安全性和一致性,同时还要注意性能和效率的问题。

4.设备驱动层:设备驱动层负责与硬件设备进行通信和控制。

它提供了统一的接口函数,使上层模块可以方便地调用设备的功能和服务。

设备驱动层的设计要考虑到硬件设备的特性和接口规范,同时还要保证设备的稳定性和可靠性。

在嵌入式软件分层设计中,每个层次都有自己的职责和功能,层之间通过接口进行通信和协作。

这种分层结构可以将软件系统的复杂性降低到可控制的范围内,提高软件的可维护性和可扩展性。

此外,分层设计还可以促进模块的重用和共享,提高开发效率和软件质量。

但是,在进行嵌入式软件分层设计时,需要注意以下几点:1.合理划分层次:层次划分要合理,避免层次之间的功能重复或交叉。

每个层次应该具有清晰的职责和功能,遵循单一职责原则和层次内聚原则。

嵌入式系统架构:CISC家族之X86架构

嵌入式系统架构:CISC家族之X86架构

嵌入式系统架构:CISC家族之X86架构X86 处理器应用在嵌入式系统的历史相当悠久,以Intel 为例,其Pentium3 时代的处理器与芯片组,至今仍活跃在许多工控电脑产业中。

而随着两大X86 厂商放弃RISC 产品线,并积极规划移动应用产品,X86 进入到消费性电子嵌入式市场就不再只是传言。

当然,X86 处理器普遍都还是有功耗过高,且芯片数量庞大的缺点,不适合应用在要求精简省电的嵌入式架构中,但随着发展,这一切都有了根本上的改变。

尽管Pentium4 是Intel 相对失败之作,但Pentium3 依旧是市场的最爱,就连Intel 本身也舍不得放弃Pentium3 的微架构,如今已经经过数次的翻新与修改,即便是最新的4 核心产品,依然有Pentium3 的影子存在。

卖旧式架构产品,对Intel 来说,其实不无小补,由于旧架构经过长久验证,不需重新设计,且在生产上的成本非常低,制程提升还可以进一步拉抬芯片产量,但不止Intel 有旧架构产品,AMD 其实也运用同样的手法来经营其AthlonXP 处理器,但是Intel决心要让对手难以追赶,因此规划了一系列以移动产品应用为主的嵌入式处理器。

Intel 过去在X86 产品规划上,其实几乎从未接触过移动通讯应用,即便是雷声大雨点小的UMPC 产品,也都不含移动通讯功能,在这边我们指的是诸如3G、3.5G 的通讯能力,而当Intel 主推的WiMAX 正式被纳入3G 标准之一,也让Intel 重新考虑该公司的移动应用产品。

在最近的技术展示中,即便是最接近手机设计的MID(Mobile Intel Device)装置,也都仅定位于移动上网工具,而非行动通讯系统。

但是根据Intel 的最新规划,MID平台已经从单纯的行动上网,转而将会跨进现有的BlackBerry(黑莓)及I-Phone的相同市场,前者拥有强大的网际网络通讯能力,而I-Phone则是拥有强大的多媒体能力,但是Intel 的MID 平台基本上是一部微型X86 计算机系统,在功能性可以达到相当全面的地步,且具备了ARM、MIPS 等处理器架构难以满足的X86 软件兼容资源,导入移动通讯只不过是在目前的硬件规划基础上,进行软件模块的增加而已。

嵌入式单片机三种应用程序架构

嵌入式单片机三种应用程序架构

嵌入式单片机三种应用程序架构嵌入式单片机是一种集成了处理器、存储器、输入输出接口等功能的微型计算机系统,广泛应用于各种电子设备中。

针对不同的应用需求,嵌入式单片机可以采用不同的应用程序架构。

下面将介绍三种常见的嵌入式单片机应用程序架构,包括单任务、多任务和事件驱动架构。

一、单任务架构在单任务架构下,嵌入式单片机只能执行一项任务,也就是一次只能处理一个事件。

程序代码是按照顺序执行的,没有并行处理的能力。

在单任务架构下,主程序中通常包含一个主循环,通过循环不断地检测各种外部事件的发生并作出相应的处理。

例如,一个简单的嵌入式系统可能需要周期性地读取传感器数据并进行处理,然后将处理结果输出到显示屏上。

单任务架构的优点在于编程简单,逻辑清晰,适用于单一功能较简单的场景。

同时,由于不需要考虑并行处理的复杂性,系统资源的管理也相对简单。

然而,单任务架构的缺点在于不能同时进行多个任务处理,效率较低,且无法处理实时性要求较高的应用场景。

二、多任务架构多任务架构是一种支持多个任务并发执行的应用程序架构。

在多任务架构下,嵌入式单片机可以同时处理多个任务,提高系统的处理效率。

每个任务都有自己的代码段和数据段,并且任务之间可以实现相互通信和数据共享。

实现多任务的方法有多种,最常见的是利用操作系统的支持。

操作系统可以为每个任务分配独立的时间片,并负责任务的切换和调度。

常见的嵌入式操作系统有uc/OS、FreeRTOS等。

多任务架构的优点在于可以提高系统的并发处理能力,适用于多任务、复杂功能的应用场景。

同时,多任务架构可以实现任务间的相互独立,提高系统的可维护性和可重用性。

然而,多任务架构在设计和开发过程中需要考虑任务间的调度、通信、同步等问题,复杂度较高。

三、事件驱动架构事件驱动架构是一种基于事件触发的应用程序架构。

在事件驱动架构下,嵌入式单片机依据外部事件的发生而作出相应的响应,而非简单的按序执行代码。

事件可以是外部信号(如按键输入、传感器数据等)、定时器中断、通信中断等。

嵌入式架构设计文档模板

嵌入式架构设计文档模板

嵌入式架构设计文档模板一、项目概述。

1. 项目背景。

咱这个项目呢,就是为了解决[具体问题]而诞生的。

比如说,就像我们每天都觉得找东西很麻烦,那这个嵌入式设备就像是一个超智能的小管家,能帮我们快速搞定那些让人头疼的事儿。

2. 目标。

咱这个嵌入式系统的目标呀,就是要又快又稳又聪明!具体来说呢,就是要在[规定的时间内]完成[任务1]、[任务2]这些事儿,而且不能出岔子,得像老黄牛一样踏实可靠。

同时,还得有那么点“小机灵鬼”的感觉,能够根据不同的情况做出正确的反应。

二、硬件架构设计。

1. 处理器选型。

我思来想去啊,最后选了[处理器型号]这个家伙。

为啥呢?它就像一个超级大脑,运算速度那叫一个快,就像闪电侠一样。

而且它的功耗还特别低,就像一个很会过日子的小能手,不会一下子就把电量给耗光光。

另外呀,它的接口特别丰富,就像一个有好多口袋的神奇背包,能轻松连接各种各样的设备。

2. 存储系统。

存储这一块也很重要呢。

我们采用了[存储类型,如闪存或者DDR内存等]。

闪存就像是一个超级记忆大师,断电了也不会把数据忘掉,而DDR内存呢,速度快得像火箭,能让数据快速地跑来跑去。

它们两个搭配起来,就像是一对好搭档,一个负责稳稳地保存数据,一个负责快速地处理数据的临时周转。

3. 外设接口。

外设接口那可真是五花八门呀。

有像[接口1名称,如USB接口]这样的大众明星接口,大家都认识它,能方便地连接各种外部设备,像鼠标、键盘这些小伙伴。

还有[接口2名称,如SPI接口]这种比较专业的接口,它就像是一个幕后英雄,默默地连接着一些特殊的传感器或者芯片,让整个系统能够获取更多的信息。

三、软件架构设计。

1. 操作系统选择。

操作系统这事儿我可琢磨了好久。

最后决定用[操作系统名称]。

这个操作系统就像是一个超级大管家,把所有的软件和硬件资源都管理得井井有条。

它比较小巧玲珑,不会占用太多的资源,就像一个很会节省空间的小房子。

而且它的实时性很强,就像一个严格遵守时间的小闹钟,什么时候该做什么事儿,都安排得明明白白的。

嵌入式系统的软件架构设计

嵌入式系统的软件架构设计

嵌入式系统的软件架构设计一、嵌入式系统软件架构设计的原则1.单一职责原则:模块化设计,每个模块负责独立的功能或任务,使得系统具有高内聚性和低耦合性,易于维护和拓展。

2.低功耗原则:嵌入式系统通常运行在资源受限的环境中,所以在设计过程中应考虑功耗的优化,如合理使用睡眠模式、降低组件工作频率等。

3.实时性原则:对于需要实时响应的系统,需要保证任务的实时性和可靠性。

可以使用实时操作系统,合理分配任务优先级,提供正确的调度机制。

4.可靠性原则:嵌入式系统通常运行在无人值守的环境中,对于需要长时间运行的系统,需要考虑到系统的稳定性和错误处理机制,如保证数据一致性、异常处理等。

二、常用的嵌入式系统软件架构模式1.分层结构:将系统划分为若干层,每一层负责特定的功能或任务。

上层可以调用下层的服务,实现系统的复用和模块化设计。

常见的分层结构有应用层、服务层、驱动层等。

2.客户端-服务器模式:将系统拆分为客户端和服务器,客户端负责用户界面和输入输出处理,服务器负责核心业务逻辑和数据处理。

这种模式适用于需要分布式处理和网络通信的系统。

3.事件驱动模式:通过订阅和发布机制,实现模块之间的高效通信和数据传递。

当一个模块触发一个事件时,相关的订阅者可以接收并处理这个事件。

这种模式适用于需要实现松耦合的模块间通信的系统。

4.状态机模式:系统根据不同的状态进行不同的处理,通过定义状态转换规则,可以实现系统的复杂逻辑控制。

这种模式适用于需要根据不同状态处理不同事件的系统,如自动控制系统。

三、嵌入式系统软件架构设计的指导1.准确定义需求:在设计阶段之前,清楚地定义系统的功能需求、性能需求、可靠性需求等,并根据需求确定软件架构的基本模型和模式。

2.模块化设计和接口定义:将系统划分为若干独立的模块,并定义模块之间的接口和通信机制。

模块化设计可以提高系统的复用性、拓展性和维护性。

3.确定关键任务:对于需要实时响应的系统,需要确定关键任务,并按照优先级进行调度。

嵌入式软件架构分层的内涵与优缺点

嵌入式软件架构分层的内涵与优缺点

嵌入式软件架构分层的内涵与优缺点作者:蒙晓燕来源:《无线互联科技》2021年第21期摘要:文章首先从架构分层内涵出发,阐述了多层软件开发模型,然后分析了嵌入式软件架构分层优点和缺点,最后探讨了嵌入式软件架构分层设计方式与实现举措,希望以此为研究相同问题的人士提供有价值的参考,继而有效提高软件的实用性与经济效益。

关键词:嵌入式软件;架构分层;内涵;优缺点0引言嵌入式系统关键是以应用为主,将计算机技术作为基础,充分满足用户对成本与功能、体积与功耗等多方面要求的系统。

但在过去开发嵌入式系统软件的时候,全部软件涵盖操作系统、应用程序与硬件底层,是共同开发的,不能分开。

伴随嵌入式系统软件规模越来越复杂,越来越庞大,该种开发模式愈发暴露出更多的缺点和不足。

由于该模式针对不一样的硬件平台需要重新开始,接着开发出新的软件就其要实现的功能大部分相差无几甚而相同,但限制了软件的反复使用,与此同时还增加了开发时间与开发成本。

1架构分层内涵伴随社会经济的持续发展与进步,开始涌现出了各种各样的高新技术,这些高新技术在很大程度上有效改善了传统劳动力生产的模式,促使人们在工作岗位上可以更好地释放出自己的潜在能力。

与此同时,流水线形式的生产模式能够大大提高相关人员工作熟练程度,有效地减少了在实际工作中不必要出现的经济损失,不仅提高了生产力,还提升了经济效益与社会效益。

分工合作这一概念同样适用于嵌入式软件开发领域。

首先,相邻的两个软件模块可以彼此紧密联系;其次,好似金字塔结构,下层软件层并不了解还存在高层次软件层。

因此,仅需要满足上述两个特点,即为架构分层,此为软件架构分层思想基础。

软件架构分层发挥着重要作用,特别是在开发阶段,采取架构分层理念,可以发挥出显著的优势,因此需要相关人员做出更加深入的研究和探讨。

2多层软件开发模型分析2.1软件开发分层技术在软件开发中运用分层技术,实则是合理对用户的一切需求展开分析与梳理,把软件系统内每一个功能领域抽象化,明确系统内部每一个层次间的关系,继而简化模块开发过程,把系统开发问题变成了简单软件设计方面的问题。

嵌入式系统体系结构

嵌入式系统体系结构

嵌入式系统体系结构嵌入式系统体系结构:嵌入式系统的组成包含了硬件层、中间层、系统软件层和应用软件层。

1、硬件层:嵌入式微处理器、存储器、通用设备接口和I/O接口。

嵌入式核心模块=微处理器+电源电路+时钟电路+存储器Cache:位于主存和嵌入式微处理器内核之间,存放的是最近一段时间微处理器使用最多的程序代码和数据。

它的主要目标是减小存储器给微处理器内核造成的存储器访问瓶颈,使处理速度更快。

2、中间层(也称为硬件抽象层HAL或者板级支持包BSP).它将系统上层软件和底层硬件分离开来,使系统上层软件开发人员无需关系底层硬件的具体情况,根据BSP层提供的接口开发即可。

BSP有两个特点:硬件相关性和操作系统相关性。

设计一个完整的BSP需要完成两部分工作:A、嵌入式系统的硬件初始化和BSP功能。

片级初始化:纯硬件的初始化过程,把嵌入式微处理器从上电的默认状态逐步设置成系统所要求的工作状态。

板级初始化:包含软硬件两部分在内的初始化过程,为随后的系统初始化和应用程序建立硬件和软件的运行环境。

系统级初始化:以软件为主的初始化过程,进行操作系统的初始化。

B、设计硬件相关的设备驱动。

3、系统软件层:由RTOS、文件系统、GUI、网络系统及通用组件模块组成。

RTOS是嵌入式应用软件的基础和开发平台。

4、应用软件:由基于实时系统开发的应用程序组成。

嵌入式芯片体系结构介绍1.嵌入式微处理器(Micro Processor Unit,MPU)嵌入式微处理器是由通用计算机中的CPU演变而来的。

它的特征是具有32位以上的处理器,具有较高的性能,当然其价格也相应较高。

但与计算机处理器不同的是,在实际嵌入式应用中,只保留和嵌入式应用紧密相关的功能硬件,去除其他的冗余功能部分,这样就以最低的功耗和资源实现嵌入式应用的特殊要求。

和工业控制计算机相比,嵌入式微处理器具有体积小、重量轻、成本低、可靠性高的优点。

目前主要的嵌入式处理器类型有Am186/88、386EX、SC-400、Power PC、68000、MIPS、ARM/ StrongARM系列等。

嵌入式软件架构设计书籍

嵌入式软件架构设计书籍

嵌入式软件架构设计书籍嵌入式软件架构设计是一个复杂而关键的领域,有许多优秀的书籍可以帮助你深入了解该主题。

以下是我推荐的几本书籍,它们涵盖了嵌入式软件架构设计的不同方面:1. 《嵌入式系统软件设计》(Embedded Systems Software Design)Peter Marwedel.这本书提供了关于嵌入式系统软件设计的全面介绍。

它涵盖了从嵌入式系统的硬件和操作系统基础知识到软件设计原则和实践的内容。

2. 《嵌入式软件开发与实践》(Embedded Software Development for the Internet of Things)Klaus Elk.该书讨论了嵌入式软件开发的关键概念和技术,特别是与物联网相关的嵌入式系统。

它涵盖了从需求分析到系统集成的整个开发过程。

3. 《嵌入式系统设计与开发》(Embedded Systems Designand Development)Arnold Berger.这本书提供了关于嵌入式系统设计和开发的详细指南。

它涵盖了硬件和软件设计、系统验证和调试等方面的内容,并提供了许多实际案例和示例。

4. 《实时嵌入式系统设计与分析》(Real-Time Embedded Systems Design and Analysis)Phillip A. Laplante.该书着重介绍了实时嵌入式系统的设计和分析方法。

它涵盖了实时系统的基本概念、任务调度算法、通信和同步机制等内容,并提供了实际案例和工具的使用。

5. 《嵌入式系统软件工程》(Embedded Systems Software Engineering)Daniel D. Gajski.这本书介绍了嵌入式系统软件工程的原理和实践。

它涵盖了嵌入式软件开发的整个生命周期,包括需求分析、架构设计、开发和测试等阶段。

以上这些书籍都是在嵌入式软件架构设计领域非常有价值的资料,它们从不同的角度和深度介绍了嵌入式软件架构设计的相关知识和技术。

嵌入式产品的架构设计与模块划分

嵌入式产品的架构设计与模块划分

嵌入式产品的架构设计与模块划分当谈到嵌入式产品的设计与开发时,架构设计和模块划分是至关重要的。

嵌入式产品通常是指在其中运行软件的专用计算设备,如智能手机、家用电器、汽车控制系统等。

良好的架构设计和模块划分能够提高产品的稳定性、性能和可维护性。

一、架构设计在嵌入式产品的架构设计中,首先需要考虑硬件平台和软件平台的选择。

硬件平台包括处理器、存储器、传感器等硬件组件,而软件平台则包括操作系统、驱动程序、应用程序等软件组件。

选择合适的硬件平台和软件平台可以最大程度地发挥产品的性能,并且降低成本。

其次,在架构设计中需要考虑产品的功能和性能需求。

不同的嵌入式产品有不同的功能和性能需求,因此需要根据具体情况来设计产品的架构。

例如,一款智能手机需要具有快速的处理器和大容量的存储器,而一款家用电器则可能更关注节能和稳定性。

最后,在架构设计中需要考虑产品的扩展性和可靠性。

产品的架构应该具有良好的扩展性,可以方便地添加新的功能模块或硬件组件。

同时,架构设计应该考虑产品的可靠性,避免单点故障,确保产品的稳定运行。

二、模块划分在嵌入式产品的模块划分中,通常会采用模块化设计的方式。

模块化设计将产品分解为多个相互独立的模块,每个模块负责特定的功能。

这样可以降低系统的复杂性,提高开发效率和可维护性。

在模块划分中,需要根据产品的功能和性能需求来划分模块。

通常会将产品分为硬件模块和软件模块,然后再进一步将每个模块分解为更小的子模块。

例如,一个智能家居产品可以划分为传感器模块、控制模块、通信模块等。

除了根据功能和性能需求来划分模块,还需要考虑模块之间的接口和通信方式。

模块之间的接口应该设计清晰、稳定,以确保模块之间正常的通信和数据交换。

同时,模块之间的通信方式也需要谨慎选择,以保证系统的实时性和可靠性。

总而言之,嵌入式产品的架构设计和模块划分是产品设计过程中至关重要的环节。

良好的架构设计和模块划分可以提高产品的性能和稳定性,降低开发成本和维护成本。

嵌入式系统软硬件架构和开发流程

嵌入式系统软硬件架构和开发流程

嵌入式系统软硬件架构和开发流程软硬件架构是嵌入式系统的核心组成部分,它由软件和硬件两部分构成。

软件部分包括操作系统、应用程序和驱动程序等,而硬件部分包括中央处理器、存储器、输入输出接口和外围设备等。

在嵌入式系统中,软硬件之间需要进行紧密的协作,以实现系统的功能需求。

软件通过驱动程序和操作系统的支持,使用硬件提供的接口与外围设备进行通信。

而硬件则通过中央处理器执行软件指令,将结果存储在内存中,或通过输入输出接口与外部设备进行交互。

首先,在需求分析阶段,开发团队需要与用户进行沟通,了解系统的功能需求和性能指标。

然后,根据需求分析结果,确定系统的整体架构和组成部分。

接下来,在系统设计阶段,开发团队将根据需求分析的结果,设计系统的软硬件架构。

在软件设计方面,需要确定操作系统、应用程序和驱动程序的功能和接口,并确定软件和硬件之间的通信方式。

在硬件设计方面,则需要确定中央处理器的型号和频率、存储器的类型和容量、输入输出接口的数量和类型等。

然后,在软硬件开发阶段,开发团队将分别进行软件和硬件的开发工作。

在软件开发方面,需要编写操作系统、应用程序和驱动程序,并进行调试和测试。

在硬件开发方面,则需要进行电路设计、原型制作和测试等工作。

在验证测试阶段,开发团队将对系统进行全面的测试和验证,以确保系统的功能和性能满足需求。

测试的内容包括功能测试、性能测试和稳定性测试等。

最后,在部署维护阶段,开发团队将系统部署到实际的硬件设备中,并进行维护和更新。

维护包括修复系统中的bug、优化系统的性能和功能等。

总之,嵌入式系统的软硬件架构和开发流程是一个高度协同的过程。

软硬件之间需要紧密配合,以实现系统功能和性能的要求。

通过明确的开发流程和合理的架构设计,可以确保嵌入式系统的质量和可靠性。

嵌入式软件架构设计之分层设计

嵌入式软件架构设计之分层设计

嵌入式软件架构设计之分层设计嵌入式软件架构设计中,分层设计是一种常用的设计模式,它将系统划分为多个层次,并定义了每个层次的功能和职责,实现了模块化、可维护、可扩展的软件系统。

本文将介绍嵌入式软件架构设计中的分层设计,并阐述其重要性及优势。

分层设计是指将整个软件系统划分成不同层次的模块,每个模块都有其特定的功能和职责。

分层设计的主要目标是实现模块的独立性和可重用性,在不同层次之间建立清晰的界限,减少模块之间的依赖性,提高系统的可维护性和可扩展性。

分层设计通常包括以下几个层次:1.应用层:应用层是系统的最高层,负责处理用户界面和用户交互逻辑。

它与底层硬件和中间层进行通信,向用户提供统一的界面,并将用户的请求转发给相应的模块进行处理。

2.业务逻辑层:业务逻辑层负责处理系统的核心业务逻辑,独立于具体的实现细节。

它通过调用底层的服务接口实现业务逻辑的处理和数据的访问,可以进行事务的管理和错误处理等操作。

3.数据访问层:数据访问层负责与底层的数据库或文件系统进行交互,实现数据的持久化和访问。

它包括数据库的连接和查询操作,文件的读写操作等。

4.服务层:服务层提供系统的核心功能和服务,独立于具体的应用。

它通过调用底层的服务接口实现功能的处理和数据的访问,可以进行事务的管理和错误处理等操作。

5.硬件层:硬件层是指系统的底层硬件和设备驱动程序,包括操作系统、外部设备等。

它负责与硬件进行通信,获取传感器的数据、控制执行器的动作等。

分层设计的重要性和优势主要体现在以下几个方面:1.模块化和可重用性:分层设计将系统划分成多个层次的模块,每个模块都有明确的功能和职责,可以独立开发、测试和维护,提高了模块的可重用性。

2.接口和依赖管理:分层设计通过定义清晰的接口和依赖关系,减少模块之间的耦合度,提高了系统的可维护性。

当一个模块需要修改时,不会影响到其他模块的功能。

3.系统扩展性:分层设计将系统划分成多个层次,每个层次可以独立扩展,不会影响整个系统的功能和性能。

嵌入式软件框架(一)

嵌入式软件框架(一)

嵌入式软件框架(一)引言概述:嵌入式软件框架是一种用于开发和运行嵌入式系统的软件基础架构。

它提供了一套工具和功能,使开发人员能够在嵌入式设备上实现各种应用程序。

本文将介绍嵌入式软件框架的基本概念、特点和应用场景,并详细描述了其五个重要方面。

正文内容:一、硬件抽象层1. 定义硬件接口和功能2. 提供对硬件资源的访问和控制3. 简化开发者的硬件驱动开发流程4. 实现硬件平台的移植性和可移植性5. 优化系统性能和资源利用率二、任务调度和管理1. 提供多任务处理的支持2. 实现任务的调度和切换3. 确保多任务之间的资源共享和互斥访问4. 支持任务的优先级和时序要求5. 提高系统的响应能力和并发处理能力三、设备驱动程序1. 实现硬件设备的抽象和封装2. 提供对设备的标准接口和功能3. 支持设备的配置和初始化4. 实现设备的读写和控制5. 提供设备驱动接口的扩展性和可定制性四、通信协议和接口1. 定义嵌入式系统的通信要求和规范2. 支持不同的通信协议和接口类型3. 提供通信协议的解析和处理功能4. 实现数据的传输和交互5. 支持网络通信和远程控制五、安全性和稳定性1. 提供安全性机制和保护措施2. 防止恶意攻击和非法访问3. 实现数据的加密和身份认证4. 提供错误处理和异常情况的处理机制5. 确保系统的稳定运行和可靠性总结:嵌入式软件框架是开发和运行嵌入式系统的重要工具,它在硬件抽象层、任务调度和管理、设备驱动程序、通信协议和接口、以及安全性和稳定性等方面提供了丰富的功能和支持。

通过使用嵌入式软件框架,开发人员可以更加高效地开发嵌入式应用程序,并提高系统的性能和可维护性。

《嵌入式软件概述》课件

《嵌入式软件概述》课件

应用挑战
安全问题
随着嵌入式软件的应用范围越来越广,安全问题也日益突出,如何 保障嵌入式软件的安全性和可靠性是应用挑战之一。
互操作性
不同的嵌入式设备和应用场景可能存在差异,如何实现互操作性和 兼容性是应用挑战之二。
用户体验
嵌入式软件的用户体验直接影响到产品的质量和竞争力,如何提高 用户体验是应用挑战之三。
确保任务能够在规定时间内完成。
多任务并发
总结词
多任务并发是嵌入式软件的重要技术之一, 要求软件能够同时处理多个任务。
详细描述
嵌入式软件多任务并发要求软件能够同时处 理多个任务,并保证每个任务都能得到及时 的处理。为实现这一目标,嵌入式软件需要 采用多线程或协程等技术,以提高任务处理 的并发性和效率。
自动化生产线控制、机器人控制系统等。
02
嵌入式软件在工业控制系统中的作用
实现生产过程的自动化控制、数据采集与监控、故障诊断等功能,提高
生产效率和产品质量。
03
嵌入式软件技术要求
高可靠性、高安全性、高稳定性,以确保生产过程的安全和稳定。
医疗设备系统
医疗设备系统案例
医疗影像设备、监护仪、手术机器人等。
嵌入式软件在医疗设备系统中的作用
实现医疗设备的智能化控制、数据采集与处理、远程监控等功能,提高医疗服务的效率和 质量。
嵌入式软件技术要求
高可靠性、高安全性、实时性,以确保医疗设备的安全和稳定运行,保障患者的生命安全 。
THANKS
感谢观看
存储器
存储器用于存储程序代码 、数据以及实时数据库等 。
软件心,负责任务调度、 资源管理、中断处理等。
中间件
中间件是介于操作系统和应用软件之间的软件,提供 通信、数据管理、安全等基础服务。

嵌入式软件架构设计之分层设计

嵌入式软件架构设计之分层设计
7.因为有两个.bin程序。所以就需要配置icf文件,并且call_app(addr)这个addr为app.bin里面common_startup函数的地址。因此需要编译app.bin后在output文件里面的app.map里面查看common_startup的地址是多少(由于这个函数是程序最先执行的函数,所以其地址为icf配置的起始地址)。
{
int (*startup)(struct libdev_ops *ops);
startup = (int(*)(struct libdቤተ መጻሕፍቲ ባይዱv_ops *))(addr);
libdev_ops_init(&ops);
startup(&ops);
}
4.重新封装所有函数,如下:
int dev_PortOpen(int PortNum, char *PortPara)
另外一种方式:底层软件和应用软件是两个独立的bin文件,姑且叫libdev.bin和app.bin。非操作系统的嵌入式是没有动态库.so这样一说的,不过底层软件这个可执行文件姑且就认为是app的.so吧。
这两个bin文件通过配置icf,映射到不同的flash空间以及分配不同的RAM空间。显然,这两个bin文件的关系是app.bin会调用libdev.bin的实现。
但是他们是独立的bin文件,如何关联起来呢。这事就需要一个函数表告诉app.bin到哪里去调用libdev.bin里面的函数实现。要实现这个函数表,就需要有统一的函数接口才方便管理。这个函数表可用静态库.a实现(libdev.a)。libdev.a的功能就是要映射所有libdev的接口函数,使app调用某一接口函数时,可以跳转到libdev.bin里面执行。

嵌入式系统架构

嵌入式系统架构

嵌入式系统架构嵌入式系统是一种专用计算机系统,被嵌入到其他设备中,用来控制和管理这些设备的特定功能。

而嵌入式系统的架构是指其硬件和软件之间的组织结构和工作方式,它直接决定了嵌入式系统的性能和功能。

本文将介绍嵌入式系统架构的基本概念、主要组成部分以及常见的架构类型。

一、嵌入式系统架构的基本概念嵌入式系统的架构是指系统中各个组件的组织方式以及它们之间的交互方式。

一般来说,嵌入式系统架构由以下几个方面构成:1. 处理器:是嵌入式系统的核心部件,负责执行指令和进行数据处理。

处理器的选择可以根据系统的性能要求来确定,有单核处理器、多核处理器等不同类型。

2. 存储器:用于存储指令、数据和中间结果。

常见的存储器包括随机访问存储器(RAM)、只读存储器(ROM)以及闪存等。

3. 输入/输出(I/O)模块:用于与外部设备进行数据交互。

比如,键盘、显示器、传感器等。

I/O模块通常与处理器之间通过总线进行数据传输。

4. 操作系统:是嵌入式系统的核心软件,负责管理和分配系统的资源,提供运行环境和服务。

常见的嵌入式操作系统有实时操作系统(RTOS)和嵌入式Linux等。

5. 通信接口:用于和其他嵌入式系统、计算机或网络进行通信。

通信接口可以是串口、并口、以太网等。

6. 供电与电源管理:嵌入式系统需要一个稳定可靠的电源供应,同时还需要电源管理模块来降低能耗和延长电池寿命。

二、嵌入式系统的主要组成部分嵌入式系统由硬件和软件两个主要组成部分组成。

硬件部分主要包括CPU、内存、存储器、I/O设备等,它们负责系统的数据处理、存储和交互。

软件部分主要包括操作系统、驱动程序、应用程序等,它们控制硬件的工作,实现系统功能。

1. 硬件部分硬件部分是嵌入式系统的基础,它决定了系统的性能和功能。

硬件部分的设计需要根据系统的需求来确定,包括选择适合的处理器、存储器、I/O设备等。

此外,还需要考虑功耗、体积、成本等方面的因素。

2. 软件部分软件部分是嵌入式系统的灵魂,它决定了系统的功能和用户体验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模块划分
模块划分的"划"是规划的意思,意指怎样合理的将一个很大的软件划分为一系列功能独立的部分合作完成系统的需求。

C语言作为一种结构化的程序设计语言,在模块的划分上主要依据功能(依功能进行划分在面向对象设计中成为一个错误,牛顿定律遇到了相对论),C语言模块化程序设计需理解如下概念:
(1)模块即是一个.c文件和一个.h文件的结合,头文件(.h)中是对于该模块接口的声明;
(2)某模块提供给其它模块调用的外部函数及数据需在.h中文件中冠以extern关键字声明;
(3)模块内的函数和全局变量需在.c文件开头冠以static关键字声明;
(4)永远不要在.h文件中定义变量!定义变量和声明变量的区别在于定义会产生内存分配的操作,是汇编阶段的概念;而声明则只是告诉包含该声明的模块在连接阶段从其它模块寻找外部函数和变量。

如:
以上程序的结果是在模块1、2、3中都定义了整型变量a,a在不同的模块中对应不同的地址单元,这个世界上从来不需要这样的程序。

正确的做法是:
这样如果模块1、2、3操作a的话,对应的是同一片内存单元。

一个嵌入式系统通常包括两类模块:
(1)硬件驱动模块,一种特定硬件对应一个模块;
(2)软件功能模块,其模块的划分应满足低偶合、高内聚的要求。

多任务还是单任务
所谓"单任务系统"是指该系统不能支持多任务并发操作,宏观串行地执行一个任务。

而多任务系统则可以宏观并行(微观上可能串行)地"同时"执行多个任务。

多任务的并发执行通常依赖于一个多任务操作系统(OS),多任务OS的核心是系统调度器,它使用任务控制块(TCB)来管理任
务调度功能。

TCB包括任务的当前状态、优先级、要等待的事件或资源、任务程序码的起始地址、初始堆栈指针等信息。

调度器在任务被激活时,要用到这些信息。

此外,TCB还被用来存放任务的"上下文"(context)。

任务的上下文就是当一个执行中的任务被停止时,所要保存的所有信息。

通常,上下文就是计算机当前的状态,也即各个寄存器的内容。

当发生任务切换时,当前运行的任务的上下文被存入TCB,并将要被执行的任务的上下文从它的TCB中取出,放入各个寄存器中。

嵌入式多任务OS的典型例子有Vxworks、ucLinux等。

嵌入式OS并非遥不可及的神坛之物,我们可以用不到1000行代码实现一个针对80186处理器的功能最简单的OS内核,作者正准备进行此项工作,希望能将心得贡献给大家。

究竟选择多任务还是单任务方式,依赖于软件的体系是否庞大。

例如,绝大多数手机程序都是多任务的,但也有一些小灵通的协议栈是单任务的,没有操作系统,它们的主程序轮流调用各个软件模块的处理程序,模拟多任务环境。

单任务程序典型架构
(1)从CPU复位时的指定地址开始执行;
(2)跳转至汇编代码startup处执行;
(3)跳转至用户主程序main执行,在main中完成:
a.初试化各硬件设备;
b.初始化各软件模块;
c.进入死循环(无限循环),调用各模块的处理函数
用户主程序和各模块的处理函数都以C语言完成。

用户主程序最后都进入了一个死循环,其首选方案是:
有的程序员这样写:
这个语法没有确切表达代码的含义,我们从for(;;)看不出什么,只有弄明白for(;;)在C语言中意味着无条件循环才明白其意。

下面是几个"著名"的死循环:
(1)操作系统是死循环;
(2)WIN32程序是死循环;
(3)嵌入式系统软件是死循环;
(4)多线程程序的线程处理函数是死循环。

你可能会辩驳,大声说:"凡事都不是绝对的,2、3、4都可以不是死循环"。

Yes,you are right,但是你得不到鲜花和掌声。

实际上,这是一个没有太大意义的牛角尖,因为这个世界从来不需要一个处理完几个消息就喊着要OS杀死它的WIN32程序,不需要一个刚开始RUN就自行了断的嵌入式系统,不需要莫名其妙启动一个做一点事就干掉自己的线程。

有时候,过于严谨制造的不是便利而是麻烦。

君不见,五层的TCP/IP协议栈超越严谨的ISO/OSI七层协议栈大行其道成为事实上的标准?
经常有网友讨论:
等类似问题。

面对这些问题,我们只能发出由衷的感慨:世界上还有很多有意义的事情等着我们去消化摄入的食物。

实际上,嵌入式系统要运行到世界末日。

中断服务程序
中断是嵌入式系统中重要的组成部分,但是在标准C中不包含中断。

许多编译开发商在标准C上增加了对中断的支持,提供新的关
键字用于标示中断服务程序(ISR),类似于__interrupt、#program interrupt等。

当一个函数被定义为ISR的时候,编译器会自动为该函数增加中断服务程序所需要的中断现场入栈和出栈代码。

中断服务程序需要满足如下要求:
(1)不能返回值;
(2)不能向ISR传递参数;
(3) ISR应该尽可能的短小精悍;
(4) printf(char * lpFormatString,…)函数会带来重入和性能问题,不能在ISR中采用。

在某项目的开发中,我们设计了一个队列,在中断服务程序中,只是将中断类型添加入该队列中,在主程序的死循环中不断扫描中断队列是否有中断,有则取出队列中的第一个中断类型,进行相应处理。

在主程序循环中判断是否有中断:
按上述方法设计的中断服务程序很小,实际的工作都交由主程序执行了。

硬件驱动模块
一个硬件驱动模块通常应包括如下函数:
(1)中断服务程序ISR
(2)硬件初始化
a.修改寄存器,设置硬件参数(如UART应设置其波特率,AD/DA设备应设置其采样速率等);
b.将中断服务程序入口地址写入中断向量表:
(3)设置CPU针对该硬件的控制线
a.如果控制线可作PIO(可编程I/O)和控制信号用,则设置CPU内部对应寄存器使其作为控制信号;
b.设置CPU内部的针对该设备的中断屏蔽位,设置中断方式(电平触发还是边缘触发)。

(4)提供一系列针对该设备的操作接口函数。

例如,对于LCD,其驱动模块应提供绘制像素、画线、绘制矩阵、显示字符点阵等函数;而对于实时钟,其驱动模块则需提供获取时间、设置时间等函数。

C的面向对象化
在面向对象的语言里面,出现了类的概念。

类是对特定数据的特定操作的集合体。

类包含了两个范畴:数据和操作。

而C语言中的struct仅仅是数据的集合,我们可以利用函数指针将struct模拟为一个包含数据和操作的"类"。

下面的C程序模拟了一个最简单的"类":
我们可以利用C语言模拟出面向对象的三个特性:封装、继承和多态,但是更多的时候,我们只是需要将数据与行为封装以解决软件结构混乱的问题。

C模拟面向对象思想的目的不在于模拟行为本身,而在于解决某些情况下使用C语言编程时程序整体框架结构分散、数据和函数脱节的问题。

我们在后续章节会看到这样的例子。

总结
本篇介绍了嵌入式系统编程软件架构方面的知识,主要包括模块划分、多任务还是单任务选取、单任务程序典型架构、中断服务程序、硬件驱动模块设计等,从宏观上给出了一个嵌入式系统软件所包含的主要元素。

请记住:软件结构是软件的灵魂!结构混乱的程序面目可憎,调试、测试、维护、升级都极度困难。

相关文档
最新文档