二次函数系数的意义讲义
二次函数系数的意义讲义

二次函数系数的意义讲义二次函数是代数学中一种重要的函数形式,具有形如y=ax^2+bx+c的特征。
其中,a、b、c为实数,a不等于0。
对于任何给定的二次函数,三个系数a、b、c都具有一定的意义和影响。
首先,系数a决定了二次函数的开口方向和开口程度。
当a大于0时,二次函数开口向上,形状像一个U形,称为上凸二次函数;当a小于0时,二次函数开口向下,形状像一个倒U形,称为下凸二次函数。
而当a的绝对值越大时,函数的开口程度越大,即函数的曲线越陡峭。
其次,系数b对二次函数的对称轴起到决定性作用。
对称轴是二次函数曲线的中心轴线,使得曲线在对称轴上左右对称。
对称轴的方程可以通过-b/2a求得。
当b大于0时,对称轴向右倾斜,当b小于0时,对称轴向左倾斜。
系数b的绝对值越大,对称轴的倾斜程度越大。
最后,系数c则是二次函数曲线和y轴的交点,也即是二次函数的纵截距。
当c大于0时,曲线与y轴的交点在y轴上方;当c小于0时,曲线与y轴的交点在y轴下方。
系数c的绝对值越大,曲线和y轴的交点距离越远。
此外,通过解析式y=ax^2+bx+c可以进一步观察到系数的影响。
对于给定的二次函数,通过对其进行分解因式或配方可求得其两个根,也即是函数的零点。
根的特点和系数a、b、c之间存在一定的关系。
当a不等于0且b^2-4ac大于0时,二次函数有两个不同的实根。
这表示二次函数与x轴交点的个数为2个,且这两个交点在x轴上分布在对称轴的两侧。
在实际问题中,这意味着二次函数将在对称轴的两侧的处取得最小或最大值。
当a不等于0且b^2-4ac等于0时,二次函数有两个相等的实根,也即仅有一个交点。
此时,这个根称为二次函数的重根。
在实际问题中,这意味着二次函数将在对称轴上的一些位置取得最小或最大值。
当a不等于0且b^2-4ac小于0时,二次函数没有实根。
也即二次函数与x轴没有交点。
这种情况在实际问题中代表着二次函数对应的抛物线位于x轴的上方或下方,而不会与之相交。
二次函数系数的意义讲义

二次函数系数的意义讲义一.【知识点拨】(1)a,b,,c 符号判别二次函数y=ax 2+bx+c (a ≠0) 中a 、b 、c 的符号判别:①a 的符号判别由开口方向确定:当开口向上时,a >0;当开口向下时,a <0;②c 的符号判别由与Y 轴的交点来确定:若交点在X 轴的上方,则c >0;若交点在X 轴的下方,则C <0;③b 的符号由对称轴来确定:对称轴在Y 轴的左侧,则a 、b 同号;若对称轴在Y 轴的右侧,则a 、b 异号;(2)抛物线与x 轴交点个数①Δ= b 2-4ac >0时,抛物线与x 轴有2个交点。
这两点间的距离:()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121②Δ= b 2-4ac=0时,抛物线与x 轴有1个交点。
顶点在x 轴上。
③Δ= b 2-4ac <0时,抛物线与x 轴没有交点。
(3)二次函数图像的特殊情况:①二次函数y=ax 2+bx+c (a ≠0)与X 轴只有一个交点或二次函数的顶点在X 轴上,则Δ=b 2-4ac=0;②二次函数y=ax 2+bx+c (a ≠0)的顶点在Y 轴上或二次函数的图象关于Y 轴对称,则b=0;③二次函数y=ax 2+bx+c (a ≠0)经过原点,则c=0; (4)平移、平移步骤:①将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ②左加右减,上加下减(5)用待定系数法求二次函数的解析式①一般式:c bx ax y ++=2。
已知图像上三点或三对x 、y 的值,通常选择一般式。
②顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式。
③交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式: ()()21x x x x a y --=。
(6)应注意的特殊值:x=1 ☞ y=a+b+c; x=-1 ☞ y=a-b+c.教师寄语:钉子有两个长处:一个是“挤”劲,一个是“钻”劲。
二次函数讲义详细

第一讲 二次函数的定义知识点归纳:二次函数的定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数具备三个条件,缺一不可:(1)是整式方程;(2)是一个自变量的二次式;(3)二次项系数不为0考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式例1、 函数y=(m +2)x22-m+2x -1是二次函数,则m= .例2、 下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=21x+x .A .1个B .2个C .3个D .4个例3、某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x ,请你得出每天销售利润y 与售价的函数表达式.例4 、如图,正方形ABCD 的边长为4,P 是BC 边上一点,QP ⊥AP 交DC 于Q ,如果BP=x ,△ADQ 的面积为y ,用含x 的代数式表示y .训练题:1、已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数.2、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。
3、已知函数y=(m -1)x 2m +1+5x -3是二次函数,求m 的值。
4、已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系.5、请你分别给a ,b ,c 一个值,让c bx ax y ++=2为二次函数,且让一次函数y=ax+b 的图像经过一、二、三象限6.下列不是二次函数的是( )A .y=3x 2+4B .y=-31x 2 C .y=52-xD .y=(x +1)(x -2)7.函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数8.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为30米的铁栅栏.(1)求梯形的面积y 与高x 的表达式;(2)求x 的取值范围.9.如图,在矩形ABCD 中,AB=6cm ,BC=12cm .点P 从点A 开始沿AB 方向向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向C 以2cm/s 的速度移动.如果P 、Q 两点分别到达B 、C 两点停止移动,设运动开始后第t 秒钟时,五边形APQCD 的面积为Scm 2,写出S 与t 的函数表达式,并指出自变量t 的取值范围.10.已知:如图,在Rt △ABC 中,∠C=90°,BC=4,AC=8.点D 在斜边AB 上,分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF .设DE=x ,DF=y .(1)AE 用含y 的代数式表示为:AE= ; (2)求y 与x 之间的函数表达式,并求出x 的取值范围; (3)设四边形DECF 的面积为S ,求S 与x 之间的函数表达式.第二讲 二次函数的图像和性质知识点归纳:1、求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. (2)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.2、二次函数的图象及性质:(1)二次函数y=ax 2 (a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大.(2)二次函数c bx ax y ++=2的图象是一条对称轴平行y 轴或者与y 轴重合的抛物线.要会根据对称轴和图像判断二次函数的增减情况。
二次函数讲义

一、二次函数概念:1.二次函数的概念:一般地,形如2=++(a b cy ax bx ca≠)的函数,叫做二次,,是常数,0函数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c=++的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
Array2.2y ax c=+的性质:上加下减。
3.()2y a x h =-的性质:左加右减。
4.()2y a x h k=-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成mc bx axy +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成cm x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k=-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k aa-=-=,.五、二次函数2y ax bx c=++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a<-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2b x a=-时,y有最小值244ac b a-.2.当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a<-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;当2b x a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab的符号的判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2=---;y ax bx c=++关于x轴对称后,得到的解析式是2y a x b x c()2=---;y a x h k=-+关于x轴对称后,得到的解析式是()2y a x h k2. 关于y轴对称2=-+;y ax bx c=++关于y轴对称后,得到的解析式是2y a x b x c()2=++;y a x h k=-+关于y轴对称后,得到的解析式是()2y a x h k3. 关于原点对称2=-+-;y ax bx c=++关于原点对称后,得到的解析式是2y a x b x c()2y a x hk =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c=++关于顶点对称后,得到的解析式是222by ax bx c a=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k=--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k=-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2=++中a,b,c的符号,或由二次函数中a,b,y ax bx cc的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式2(0)++≠本身就是所含字母x的ax bx c a二Array次函数;下面以0a>时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x 22y=3(x+4)22y=3x2y=-2(x-3)22-32十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )0 x o-1 x 0 x A B C D 3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
《二次函数的意义》二次函数

二次函数是一种数学函数,它的一般形式为`y = ax^2 + bx + c`,其中`a`、`b`和`c`是常数,且`a`不等于0。
二次函数的研究对象是二次多项式及其图像,它描述了一个曲线在平面直角坐标系中的形态。
什么是二次函数二次函数的表达方式二次函数的系数和常数项常数项`c`表示函数在y轴上的截距,而一次项系数`b`则表示函数在x轴上的位移。
二次项系数`a`决定了函数的开口方向和大小,如果`a > 0`,函数图像开口向上,如果`a < 0`,函数图像开口向下。
二次函数的系数包括`a`、`b`和`c`,它们分别表示二次项、一次项和常数项的系数。
顶点二次函数图像的顶点取决于一次项系数b和二次项系数a的符号。
如果b=0,顶点在y轴上;如果b>0,顶点在x轴上方;如果b<0,顶点在x轴下方。
开口方向二次函数图像的开口方向取决于二次项系数a的符号。
如果a>0,图像开口向上;如果a<0,图像开口向下。
与x轴的交点二次函数图像与x轴的交点取决于判别式Δ的符号。
如果Δ>0,有两个实数根;如果Δ=0,有一个实数根;如果Δ<0,没有实数根。
二次函数的图像偶函数单调性二次函数的性质1二次函数的对称性和开口方向23二次函数图像的对称轴是x=-b/2a。
对称轴二次函数的开口方向与a的符号有关。
如果a>0,函数图像开口向上;如果a<0,函数图像开口向下。
开口方向当a>0时,二次函数的极值点出现在对称轴处,即x=-b/2a;当a<0时,二次函数的极值点出现在离对称轴最远的点处,即x=(4ac-b^2)/4a。
极值点二次函数的解法030201二次函数的应用场景与方程的联系与不等式的联系二次函数与其他数学知识的联系二次函数与现实生活的联系物理运动在经济学中,二次函数被用来描述成本、收益、产量等之间的关系。
经济学信号处理二次函数在数学学科中的地位和作用解析几何近似计算基础数学03多做练习如何学好二次函数的意义和方法建议01理解基本概念02掌握图像和性质一元二次方程的解法一元二次方程的判别式一元二次方程的标准形式一元二次方程的基本概念二次函数二次函数与一元二次方程的关系和区别二次函数与一元二次方程的区别二次函数与一元二次方程的联系问题描述解决方法示例利用二次函数解决一元二次方程问题举例。
九年级数学上册二次函数讲义

初三数学 二次函数讲义一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查2-32y=-2x 22y=3(x+4)22y=3x2y=-2(x-3)2两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
九年级二次函数讲义

二次函数一.知识梳理1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。
一元二次方程的标准式:ax2+bx+c=0 (a≠0)其中: ax2叫做二次项, bx叫做一次项, c叫做常数项a是二次项系数,b是一次项系数2、一元二次方程根的判别式(二次项系数不为0):“△”读作德尔塔,在一元二次方程ax2+bx+c=0 (a≠0)中△=b2-4ac△=b2-4ac>0 <====> 方程有两个不相等的实数根,即:x1,x2△=b2-4ac=0 <====> 方程有两个相等的实数根,即:x1=x2△=b2-4ac<0 <====> 方程没有实数根。
注:“<====>” 是双向推导,也就是说上面的规律反过来也成立,如:告诉我们方程没有实数根,我们便可以得出△<03、一元二次方程根与系数的关系(二次项系数不为0;△≥0),韦达定理。
ax2+bx+c=0 (a≠0)中,设两根为x1,x2,那么有:因为:ax2+bx+c=0 (a≠0)化二次项系数为1可得,所以:韦达定理也描述为:两根之和等于一次项系数的相反数,两根之积等于常数项。
注意:(1)在一元二次方程应用题中,如果解出来得到的是两个根,那么我们要根据实际情况判断是否应舍去一个跟。
5、一元二次方程的求根公式:注:任何一元二次方程都能用求根公式来求根,虽然使用起来较为复杂,但非常有效。
一、求二次函数的三种形式:1. 一般式:y=ax 2+bx+c ,(已知三个点)顶点坐标(-2b a,244ac b a -)2.顶点式:y=a (x -h )2+k ,(已知顶点坐标对称轴)顶点坐标(h ,k )3.交点式:y=a(x- x 1)(x- x 2),(有交点的情况)与x 轴的两个交点坐标x 1,x 2对称轴为221x x h +=二、a b c 作用分析│a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大,a ,b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b同号时,对称轴x=-2b <0,即对称轴在y 轴左侧,当a ,b•异号时,对称轴x=-2ba>0,即对称轴在y 轴右侧,c•的符号决定了抛物线与y 轴交点的位置,c=0c<0时,与y•轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.二.专题精练专题一:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况. 例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x << B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值y=ax2+bx+c(a>0)y=ax 2+bx+c(a<0)由a,b 和c 的符号确定由a,b 和c 的符号确定 a>0,开口向上a<0,开口向下在对称轴的左侧,y 随着x 的增大而减小. .在对称轴的左侧,y 随着x 的增大而增大. 在.⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=直线abx 2-=直线考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( )专项练习31.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.图2图1(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.专题二、探究几何图形中的二次函数关系【例11】在梯形ABCD 中,AD BC ∥,6AB DC AD ===,60ABC ∠=o,点E F,分别在线段AD DC ,上(点E 与点A D ,不重合),且120BEF ∠=o,设AE x =,DF y =.(1)求y 与x 的函数表达式;(2)当x 为何值时,y 有最大值,最大值是多少课堂检测1、二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移正确的是( )A .先向左平移2个单位,再向上平移1个单位B .先向左平移2个单位,再向下平移1个单位;C .先向右平移2个单位,再向上平移1个单位D .先向右平移2个单位,再向下平移1个单位2、在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( ) A .y =2(x -2)2+ 2 B .y =2(x + 2)2-2 C .y =2(x -2)2-2D .y =2(x + 2)2+ 2A ED FCBO xy1-1A 3、二次函数21(4)52y x =-+的开口方向、对称轴、顶点坐标分别是( ) A .向上、直线x=4、(4,5) B .向上、直线x=-4、(-4,5) C .向上、直线x=4、(4,-5) D .向下、直线x=-4、(-4,5) 4、二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( )A 、a <0B 、abc >0C 、c b a ++>0D 、ac b 42->05、函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )6、二次函数2(0)y ax bx c a =++≠的图象如图4所示, 则下列说法不正确的是( ) A .240b ac -> B .0a >C .0c >D .02ba-<7、如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( ). A .②④ B .①④ C .②③ D .①③8、已知关于x 的函数同时满足下列三个条件:①函数的图象不经过第二象限;②当2<x 时,对应的函数值0<y ;③当2<x 时,函数值y 随x 的增大而增大.你认为符合要求的函数的解析式可以是: (写出一个即可).9、如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B. (1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是等腰三角形,试求点P 的坐标...《专题五。
二次函数复习讲义(完美)

二次函数最全面的复习讲义学习目标1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.知识网络要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数. 要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.二、用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式:(1)一般式:(a,b,c为常数,a≠0);(2)顶点式:(a,h,k为常数,a≠0);(3)交点式:(,为抛物线与x轴交点的横坐标,a≠0).三、2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如或,或,其中a≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中.类型一:二次函数的概念1、下列函数中,是关于x的二次函数的是__________________(填序号).(1)y=-3x2;(2);(3)y=3x2-4-x3; (4);(5)y=ax2+3x+6;(6).【变式1】下列函数中,是二次函数的是( )A. B. C.D.【变式2】如果函数是二次函数,求m的值类型二、求二次函数的解析式1.已知二次函数的图象经过原点及点,且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为______________.【答案】或.【变式】已知:抛物线y=x2+bx+c的对称轴为x=1,交x轴于点A、B(A在B的左侧),且AB=4,交y轴于点C.求此抛物线的函数解析式及其顶点M的坐标.【答案】∵对称轴x=1,且AB=4∴抛物线与x轴的交点为:A(-1,0),B(3,0)∴y=x2-2x-3为所求,∵x=1时y=-4,∴M(1,-4).课堂练习1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式【答案与解析】本题已知三点求解析式,可用一般式.设此二次函数的解析式为y=ax2+bx+c(a≠0),由题意得:解得∴所求的二次函数的解析式为y=-x2+3x-5.2 在直角坐标平面内,二次函数图象的顶点为,且过点.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.【答案】(1).(2)令,得,解方程,得,.∴二次函数图象与轴的两个交点坐标分别为和.∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与轴的另一个交点坐标为3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为(a≠0),由图象知函数图象经过点(3,0),(0,3).则有解得∴抛物线解析式为.解法二:设抛物线解析式为(a≠0).由图象知,抛物线与x轴两交点为(-1,0),(3,0).则有,即.又,∴∴抛抛物物解析式为.课后巩固练习一、选择题1. 二次函数的图象经过点A(0,0),B(-1,-11),C(1,9)三点,则它的解析式为( ).A. B. C. D.2.二次函数有( )A.最小值-5 B.最大值-5 C.最小值-6 D.最大值-63.把抛物线y=3x2先向上平移2个单位再向右平移3个单位,所得的抛物线是()A.y=3(x-3)2+2B.y=3(x+3)2+2C.y=3(x-3)2-2D.y=3(x+3)2-24.如图所示,已知抛物线y=的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为 ( )A.(2,3)B.(3,2)C.(3,3)D.(4,3)5.将函数的图象向右平移a(a>0)个单位,得到函数的图象,则a的值为( )A.1 B.2 C.3 D.46.若二次函数的x与y的部分对应值如下表:x -7 -6 -5 -4 -3 -2Y -27 -13 -3 3 5 3则当x=1时,y的值为 ( )A.5 B.-3 C.-13 D.-27二、填空题7.抛物线的图象如图所示,则此抛物线的解析式为______________.第7题第10题8.已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),则这个二次函数的关系式为______.9.已知抛物线.该抛物线的对称轴是________,顶点坐标________;10.如图所示已知二次函数的图象经过点(-1,0),(1,-2),当y 随x的增大而增大时,x的取值范围是______________.11.已知二次函数(a≠0)中自变量x和函数值y的部分对应值如下表:…-1 0 1 ……-2 -2 0 …则该二次函数的解析式为______________.12.已知抛物线的顶点坐标为(3,-2),且与x轴两交点间的距离为4,则抛物线的解析式为______________.三、解答题13.根据下列条件,分别求出对应的二次函数解析式.(1)已知抛物线的顶点是(1,2),且过点(2,3);(2)已知二次函数的图象经过(1,-1),(0,1),(-1,13)三点;(3)已知抛物线与x轴交于点(1,0),(3,0),且图象过点(0,-3).14.如图,已知直线y=-2x+2分别与x轴、y轴交于点A,B,以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,求过A、B、C三点的抛物线的解析式.15.在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在的直线为轴和轴建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数(k >0)的图象与AC边交于点E.(1)求证:AE×AO=BF×BO;(2)若点E的坐标为(2,4),求经过点O,E,F三点的抛物线的解析式.一、选择题1.【答案】D;【解析】设抛物线的解析式为(a≠0),将A、B、C三点代入解得,,c=0.2.【答案】C;【解析】首先将一般式通过配方化成顶点式,即,∵a=1>0,∴x=-1时,.3.【答案】A;4.【答案】D;【解析】∵点A,B均在抛物线上,且AB与x轴平行,∴点A与点B关于对称轴x=2对称,又∵A(0,3),∴AB=4,y B=y A=3,∴点B的坐标为(4,3).5.【答案】B;【解析】抛物线的平移可看成顶点坐标的平移,的顶点坐标是,的顶点坐标是,∴移动的距离.6.【答案】D;【解析】此题如果先用待定系数法求出二次函数解析式,再将x=1代入求函数值,显然太繁,而由二次函数的对称性可迅速地解决此问题.观察表格中的函数值,可发现,当x=-4和x=-2时,函数值均为3,由此可知对称轴为x=-3,再由对称性可知x=1的函数值必和x=-7的函数值相等,而x=-7时y=-27.∴x=1时,y=-27.二、填空题7.【答案】;【解析】由图象知抛物线与x轴两交点为(3,0),(-1,0),则.8.【答案】;【解析】设顶点式,再把点(0,0)代入所设的顶点式里即可.9.【答案】(1)x=1;(1,3);【解析】代入对称轴公式和顶点公式即可.10.【答案】;【解析】将(-1,0),(1,-2)代入中得b=-1,∴对称轴为,在对称轴的右侧,即时,y随x的增大而增大.11.【答案】;【解析】此题以表格的形式给出x、y的一些对应值.要认真分析表格中的每一对x、y值,从中选出较简单的三对x、y的值即为(-1,-2),(0,-2),(1,0),再设一般式,用待定系数法求解.设二次函数解析式为(a≠0)由表知解得∴二次函数解析式为.12.【答案】【解析】由题意知抛物线过点(1,0)和(5,0).三、解答题13.【答案与解析】(1)∵顶点是(1,2),∴设(a≠0).又∵过点(2,3),∴,∴a=1.∴,即.(2)设二次函数解析式为(a≠0).由函数图象过三点(1,-1),(0,1),(-1,13)得解得故所求的函数解析式为.(3)由抛物线与x轴交于点(1,0),(3,0),∴设y=a(x-1)(x-3)(a≠0),又∵过点(0,-3),∴a(0-1)(0-3)=-3,∴a=-1,∴y=-(x-1)(x-3),即.14.【答案与解析】过C点作CD⊥x轴于D.在y=-2x+2中,分别令y=0,x=0,得点A的坐标为(1,0),点B的坐标为(0,2).由AB=AC,∠BAC=90°,得△BAO≌△ACD,∴AD=OB=2,CD=AO=1,∴C点的坐标为(3,1).设所求抛物线的解析式为,则有,解得,∴所求抛物线的解析式为.15.【答案与解析】(1)证明:由题意知,点E、F均在反比例函数图象上,且在第一象限,所以AE×AO=k,BF×BO=k,从而AE×AO=BF×BO.(2)将点E的坐标为(2,4)代入反比例函数得k=8,所以反比例函数的解析式为.∵OB=6,∴当x=6时,点F的坐标为.设过点O、E、F三点的二次函数表达式为(a≠0),将点0(0,0),E(2,4),三点的坐标代入表达式得:解得∴经过O、E、F 三点的抛物线的解析式为:.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴) (0,0)(轴) (0,)(,0)(,)() 2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用:(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.类型一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=x2的图象对称轴左侧上有两点A(a,15),B(b,),则a-b_______0(填“>”、“<”或“=”号).【解析】将A(a,15),分别代入y=x2中得:∴;,又A、B在抛物线对称轴左侧,∴a<0,b<0,即,∴【变式1】二次函数与的形状相同,开口大小一样,开口方向相反,则______.【答案】2.【变式2】不计算比较大小:函数的图象右侧上有两点A(a,15),B(b,0.5),则a______b.答案】>.2.已知y=(m+1)x是二次函数且其图象开口向上,求m的值和函数解析式.【答案与解析】由题意,,解得m=1,∴二次函数的解析式为:y=.3.求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线;(2)顶点为(0,1),经过点(3,-2)并且关于y轴对称的抛物线.【答案与解析】(1)由于待求抛物线形状相同,开口方向相反,可知二次项系数为,又顶点坐标是(0,-5),故常数项,所以所求抛物线为.(2)因为抛物线的顶点为(0,1),所以其解析式可设为,又∵该抛物线过点(3,-2),∴,解得.∴所求抛物线为.4.在同一直角坐标系中,画出和的图象,并根据图象回答下列问题.(1)抛物线向________平移________个单位得到抛物线;(2)抛物线开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线,当x____时,随x的增大而减小;当x____时,函数y有最____值,其最____值是____.【答案与解析】函数与的图象如图所示:(1)下;l ;(2)向下;y轴;(0,1);(3)>0;=0;大;大;1.课堂练习一、选择题1. 关于函数y=的图象,则下列判断中正确的是()A. 若a、b互为相反数,则x=a与x=b的函数值相等;B. 对于同一个自变量x,有两个函数值与它对应;C. 对任一个实数y,有两个x和它对应;D. 对任意实数x,都有y>0.2. 下列函数中,开口向上的是()A. B. C. D.3. 把抛物线向上平移1个单位,所得到抛物线的函数表达式为().A.B.C.D.4. 下列函数中,当x<0时,y值随x值的增大而增大的是()A. B. C. D.5. 在同一坐标系中,作出,,的图象,它们的共同点是().A.关于y轴对称,抛物线的开口向上B.关于y轴对称,抛物线的开口向下C.关于y轴对称,抛物线的顶点都是原点D.关于原点对称,抛物线的顶点都是原点6. 晴天时,汽车的刹车距离s (m)与开始刹车时的速度v(m/s)之间满足二次函数,若汽车某次的刹车距离为2.25m,则开始刹车时的速度为( ).A. 10m/sB. 15m/sC. 20m/sD. 25m/s二、填空题7. 已知抛物线的解析式为y=-3x2,它的开口向______,对称轴为______,顶点坐标是________,当x>0时,y随x的增大而________.8. 若函数y=ax2过点(2,9),则a=________.9. 已知抛物线y=x2上有一点A,A点的横坐标是-1,过点A作AB∥x轴,交抛物线于另一点B,则△AOB的面积为________.10. 写出一个过点(1,2)的函数解析式_________________.11. 函数,、的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.12. 若对于任意实数x,二次函数的值总是非负数,则a的取值范围是____________.三、解答题13.已知是二次函数,且当x>0时,y随x的增大而增大.(1)求m的值;(2)画出函数的图象.14. 已知抛物线经过A(-2,-8).(1)求此抛物线的函数解析式;(2)判断B(-1,-4)是否在此抛物线上?(3)求此抛物线上纵坐标为-6的点的坐标.15.函数y=ax2 (a≠0)的图象与直线y=2x-3交于点(1,b).(1)求a和b的值;(2)求抛物线y=ax2的解析式,并求顶点坐标和对称轴;(3)x取何值时,y随x的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.一、选择题1.【答案】A.2.【答案】D;【解析】开口方向由二次项系数a决定,a>0,抛物线开口向上;a<0,抛物线开口向下.3.【答案】A;【解析】由抛物线的图象知其顶点坐标为(0,0),将它向上平移1个单位后,抛物线的顶点坐标为(0,1),因此所得抛物线的解析式为.4.【答案】B;【解析】根据抛物线的图象的性质,当a<0时,在对称轴(x=0)的左侧,y值随x值的增大而增大,所以答案为B.5. 【答案】C;【解析】y=2x2,y=-2x2,的图象都是关于y轴对称的,其顶点坐标都是(0,0).6. 【答案】B;【解析】当s=2.25时,,v=15.二、填空题7.【答案】下;y轴;(0,0);减小;8.【答案】;【解析】将点(2,9)代入解析式中求a.9.【答案】1 ;【解析】由抛物线的对称性可知A(-1,1),B(1,1),则.10.【答案】【解析】答案不唯一.11.【答案】,,.【解析】先比较,|1|,|3|的大小关系,由|a|越大开口越小,可确定从里向外的三条抛物线所对应的函数依次是y=3x2,y=x2,.12.【答案】a>-1;【解析】二次函数的值总是非负数,则抛物线必然开口向上,所以a+1>0.三、解答题13. 【解析】解:(1)∵为二次函数,且当x>0时,y随x的增大而增大,∴,∴,∴m=1.(2)由(1)得这个二次函数解析式为,自变量x的取值范围是全体实数,可以用描点法画出这个函数的图象.如图所示.14. 【解析】解:(1)∵抛物线经过A(-2,-8),∴-8=4a,∴a=-2,抛物线的解析式为:.(2)当x=-1时,y=-2=-2≠-4,∴点B(-1,-4)不在此抛物线上.(3)当y=-6时,即,得,∴此抛物线上纵坐标为-6的点的坐标是(,-6)和(,-6).15. 【解析】解:(1)将x=1,y=b代入y=2x-3,得b=-1,所以交点坐标是(1,-1).将x=1,y=-1代入y=ax2,得a=-1,所以a=-1,b=-1.(2)抛物线的解析式为y=-x2,顶点坐标为(0,0),对称轴为直线x=0(即y轴).(3)当x<0时,y随x的增大而增大.(4)设直线y=- 2与抛物线y=-x2相交于A、B两点,抛物线顶点为O(0,0).由,,得∴A(,-2),B(,-2).∴AB=|-(-)|=2,高=|-2|=2.∴.类型二、二次函数y=a(x-h)^2+k(a≠0)的图象与性质1.将抛物线作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;(2)顶点不动,将原抛物线开口方向反向;(3)以x轴为对称轴,将原抛物线开口方向反向.【答案与解析】抛物线的顶点为(1,3).(1)将抛物线向左平移2个单位,再向下平移3个单位后,顶点为(-1,0),而开口方向和形状不变,所以a=2,得到抛物线解析式为.(2)顶点不动为(1,3),开口方向反向,则,所得抛物线解析式为.(3)因为新顶点与原顶点(1,3)关于x轴对称,故新顶点应为(1,-3).又∵抛物线开口反向,∴.故所得抛物线解析式为.2.把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,求b,c的值.【答案与解析】根据题意得,y=(x-4)2-2=x2-8x+14, 所以【变式】二次函数的图象可以看作是二次函数的图象向平移4个单位,再向平移3个单位得到的.【答案】上;右.3.已知与的图象交于A、B两点,其中A(0,-1),B(1,0).(1)确定此二次函数和直线的解析式;(2)当时,写出自变量x的取值范围.【答案与解析】(1)∵,的图象交于A、B两点,∴且解得且∴二次函数的解析式为,直线方程为.(2)画出它们的图象如图所示,由图象知当x<0或x>1时,.4.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积;(3)若点P(m,-m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q 的坐标.(注:抛物线y=ax2+bx+c的对称轴是x=-).【答案与解析】解:(1)设二次函数的解析式为y=a(x-2)2+1,将点O(0,0)的坐标代入得:4a+1=0,解得a=-.所以二次函数的解析式为y=-(x-2)2+1;(2)∵抛物线y=-(x-2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴S△AOB =×4×1=2;(3)∵点P(m,-m)(m≠0)为抛物线y=-(x-2)2+1上一点,∴-m=-(m-2)2+1,解得m1=0(舍去),m2=8,∴P点坐标为(8,-8),∵抛物线对称轴为直线x=2,∴P关于抛物线对称轴对称的点Q的坐标为(-4,-8).如下图.课堂巩固一、选择题1.抛物线的顶点坐标是()A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)2.函数y=x2+2x+1写成y=a(x-h)2+k的形式是()A.y=(x-1)2+2 B.y=(x-1)2+C.y=(x-1)2-3D.y=(x+2)2-13.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )A.y=(x+3)2-2B.y=(x-3)2+2C.y=(x-3)2-2 D.y=(x+3)2+2 4.把二次函数配方成顶点式为()A. B.C.D.5.由二次函数,可知()A.其图象的开口向下B.其图象的对称轴为直线C.其最小值为1D.当时,y随x的增大而增大6.在同一坐标系中,一次函数与二次函数的图象可能是()二、填空题7. 抛物线y=-(•x+•3)2•-•5•的开口向_______,•对称轴是________,•顶点坐标是_______.8.已知抛物线y=-2(x+1)2-3,如果y随x的增大而减小,那么x的取值范围是_ _____.9.抛物线y=-3(2x2-1)的开口方向是_____,对称轴是_____.10.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为.11.将抛物线向上平移3个单位,再向右平移4个单位得到的抛物线是__ _____.12.抛物线的顶点为C,已知的图象经过点C,则这个一次函数的图象与两坐标轴所围成的三角形面积为________.三、解答题13.已知抛物线的顶点(-1,-2),且图象经过(1,10),求抛物线的解析式.14. 已知抛物线向上平移2个单位长度,再向右平移1个单位长度得到抛物线;(1)求出a,h,k的值;(2)在同一直角坐标系中,画出与的图象;(3)观察的图象,当________时,y随x的增大而增大;当________时,函数y有最________值,最________值是________;(4)观察的图象,你能说出对于一切的值,函数y的取值范围吗?15.已知抛物线的顶点为A,原点为O,该抛物线交y轴正半轴于点B,且,求:(1)此抛物线所对应的函数关系式;(2)x为何值时,y随x增大而减小?一、选择题1.【答案】D;【解析】由顶点式可求顶点,由得,此时,.2.【答案】D;【解析】通过配方即可得到结论.3.【答案】A;【解析】抛物线y=x2向左平移3个单位得到y=(x+3)2,再向下平移2个单位后,所得的抛物线表达式是y=(x+3)2-2.4.【答案】B【解析】通过配方即可得到结论.5.【答案】C;【解析】可画草图进行判断.6.【答案】C;【解析】A中的符号不吻合,B中抛物线开口不正确.D中直线与y轴交点不正确.二、填空题7.【答案】下;直线x=-3 ;(-3,-5);【解析】由二次函数的图象性质可得结论.8.【答案】x≥-1;【解析】由解析式可得抛物线的开口向下,对称轴是x=-1,对称轴的右边是y随x的增大而减小,故x≥-1.9.【答案】向下,y轴;10.【答案】;【解析】设过点(1,-14)得,所以.11.【答案】;【解析】先化一般式为顶点式,再根据平移规律求解.12.【答案】1;【解析】C(2,-6),可求与x轴交于,与y轴交于(0,3),∴.三、解答题13.【答案与解析】∵抛物线的顶点为(-1,-2)∴设其解析式为,又图象经过点(1,10),∴,∴,∴解析式为.14.【答案与解析】(1)由向上平移2个单位,再向右平移1个单位所得到的抛物线是.∴,,.(2)函数与的图象如图所示.(3)观察的图象,当时,随x的增大而增大;当时,函数有最大值,最大值是.(4)由图象知,对于一切的值,总有函数值.15.【答案与解析】(1)由题意知A(2,1),令,则,所以.由得,所以,因此抛物线的解析式为.(2)当时,y随x增大而减小.类型三:二次函数y=ax^2+bx+c(a≠0)的图象与性质类型一、二次函数的图象与性质1.求抛物线的对称轴和顶点坐标.【变式】把一般式化为顶点式.(1)写出其开口方向、对称轴和顶点D的坐标;(2)分别求出它与y轴的交点C,与x轴的交点A、B的坐标.2.如图所示,抛物线的对称轴是x=1,与x轴交于A、B两点,点B的坐标为(,0),则点A的坐标是_______.类型二、二次函数的最值3.求二次函数的最小值.类型三、二次函数性质的综合应用4.已知二次函数的图象过点P(2,1).(1)求证:;(2)求bc的最大值.【答案与解析】(1)∵的图象过点P(2,1),∴1=4+2b+c+1,∴c=-2b-4.(2).∴当时,bc有最大值.最大值为2.课堂巩固一、选择题1. 将二次函数化为的形式,结果为().A.B.C.D.2.已知二次函数的图象,如图所示,则下列结论正确的是().A.B.C.D.3.若二次函数配方后为,则b、k的值分别为().A.0,5B.0,1 C.-4,5D.-4,14.抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为,则b、c的值为().A.b=2,c=2B.b=2,c=0C.b= -2,c= -1 D.b= -3,c=25.已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),则a+b+c的值()A. 等于0B.等于1C. 等于-1D. 不能确定6.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是( )二、填空题7.二次函数的最小值是________.8.已知二次函数,当x=-1时,函数y的值为4,那么当x=3时,函数y的值为________.9.二次函数的图象经过A(-1,0)、B(3,0)两点,其顶点坐标是________.10.二次函数的图象与x轴的交点如图所示.根据图中信息可得到m 的值是________.第10题第11题11.如图二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴第①问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0其中正确的结论的序号是___;第②问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确的结论的序号是___ __.12.已知二次函数y=x2-2x-3的图象与x轴交于点A、B两点,在x轴上方的抛物线上有一点C,且△ABC的面积等于10,则C点的坐标为__ __.三、解答题13.(1)用配方法把二次函数变成的形式;(2)在直角坐标系中画出的图象;(3)若,是函数图象上的两点,且,请比较、的大小关系.14.如图所示,抛物线与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.15.已知抛物线:(1)求抛物线的开口方向、对称轴和顶点坐标;(2)画函数图象,并根据图象说出x取何值时,y随x的增大而增大?x取何值时,y随x 的增大而减小?函数y有最大值还是最小值?最值为多少?一、选择题1.【答案】D;【解析】根据配方法的方法及步骤,将化成含的完全平方式为,所以.【解析】由图象的开口方向向下知;图象与y轴交于正半轴,所以;2.【答案】D;又抛物线与x轴有两个交点,所以;当时,所对应的值大于零,所以.3.【答案】D;【解析】因为,所以,,.4.【答案】B;【解析】,把抛物线向左平移2个单位长度,再向上平移3个单位长度后得抛物线,∴,∴,.5.【答案】A;【解析】因为抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),所以过点(1,0)代入解析式得a+b+c=0.6.【答案】A;【解析】分类讨论,当a>0,a<0时分别进行分析.二、填空题7.【答案】-3;【解析】∵,∴函数有最小值.当时,.8.【答案】4【解析】由对称轴,∴x=3与x=-1关于x=1对称,∴x=3时,y=4.9.【答案】(1,-4) ;【解析】求出解析式.10.【答案】4;【解析】由图象发现抛物线经过点(1,0),把,代入,得,解得.11.【答案】①④,②③④;12.【答案】(-2,5)或(4,5);【解析】先通过且△ABC的面积等于10,求出C点的纵坐标为5,点C在抛物线y=x2-2x-3上,所以x2-2x-3=5,解得x=-2或x=5,则C点的坐标为(-2,5)或(4,5).三、解答题13.【答案与解析】(1).(2)略.(3)∵,∴当时,y随x增大而减小,又,∴.14.【答案与解析】(1)把点C(5,4)代入抛物线得,,解得.∴该二次函数的解析式为.∵,∴顶点坐标为.(2)(答案不唯一,合理即正确)如先向左平移3个单位,再向上平移4个单位,得到二次函数解析式为,即.15.【答案与解析】(1)∵,b=-3,∴,把x=-3代入解析式得,.∴抛物线的开口向下,对称轴是直线x=-3,顶点坐标是(-3,2).(2)由于抛物线的顶点坐标为A(-3,2),对称轴为x=-3.抛物线与x轴两交点为B(-5,0)和C(-1,0),与y轴的交点为,取D关于对称轴的对称点,用平滑曲线顺次连结,便得到二次函数的图象,如图所示.从图象可以看出:在对称轴左侧,即当x<-3时,y随x的增大而增大;在对称轴右侧,即当x >-3时,y 随x 的增大而减小.因为抛物线的开口向下,顶点A 是抛物线的最高点,所以函数有最大值,当x =-3时,.要点三、二次函数与一元二次方程的关系函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解 方程有两个相等实数解方程没有实数解类型一、函数与方程4.已知抛物线与x 轴没有交点.①求c 的取值范围; ②试确定直线经过的象限,并说明理由.【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是( )A.B.C.D.【变式2】对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数(m为实数)的零点的个数是( )A.1 B.2 C.0 D.不能确定要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.类型一、利用二次函数求实际问题中的最大(小)值1.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.(1)写出商场卖出这种商品每天的销售利润y与每件的销售价x之间的函数关系;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?【答案与解析】(1)∵每件商品利润为(x-30)元.∴销售m件商品利润为m(x-30)元,又∵m=162-3x,∴每天利润y=(162-3x)(x-30).即y=-3x2+252x-4860.(2)∵y=-3x2+252x-4860=-3(x-42)2+432,又∵a=-3<0,∴当x=42时,=432(元).。
人教版九年级数学第22章二次函数 22.1 二次函数讲义

人教版九年级数学第22章二次函数 22.1 二次函数讲义合作探究探究点1 二次函数的概念情景激疑我们知道形如b k b kx y ,(+=是常数,k ≠0)的式子是一次函数,那么什么样的函数是二次函数呢?判断二次函数又需要消足哪些条件?知识讲解一般地,形如c b a c bx ax y ,,(2++=是常数,a ≠0)的函数,叫做二次函数。
其中,x 是自变量,a,b,c 分别是函数解析式的次项系数、一次项系数和常数项,如73,23,32222+-=+=+-=x y x x y x x y 等都是二次函数。
(1)c b a c bx ax y ,,(2++=是常数,a ≠0)叫做二次函数的-般式任何一个二次函数的解析式都可以化为c b a c bx ax y ,,(2++=是常数,a ≠0)的形式.(2)在二次函数c b a c bx ax y ,,(2++=是常数,a ≠0)中,a 必須不等于O,因为若a=0的话,此式子则变为c bx y +=的形式,就不是二次函数了.(3)在二次函数c b a c bx ax y ,,(2++=是常数,a ≠0)中,若y=0.则二次函数可以转化为一元二次方程)0(02≠=++a c bx ax 典例剖析例1 下列哪些函数是二次函数?解析 判断一个函数是不是二次函数,先把关系式化简 整理,再分三个步骤来判断:(1)看它的等号两边是否都是整式,如果不都是整式,则必不是二次函数:(2)当它的等号两边都号林式时,再看它是否含有自变量的二次式,如果含有自变量的二安式,那就可能是二次函数,否则就不是:(3)看它的二次项系数是否为0,如果不为0,那就是二次函教.只要按上述三步来分析。
即可作出正确判断.答案 ①③④是二次函数.⑤不一定是二次函数,只有当a ≠0时,才是二次函数②不是整式,故不是二次函数,易错警示二次涵数关系式的等号两边都是整式.答案 (1)设一次购买x 只.才能以最低价购买,则有0.1(x-10)=20-16,解这个方程得x=50.答:一次至少买50只,才能以最低价购买。
二次函数辅导讲义(学生版)

⼆次函数辅导讲义(学⽣版)⼆次函数辅导讲义⼀、基础知识讲解+中考考点、例题分析考点1:⼆次函数的图象和性质⼀、考点讲解:1.⼆次函数的定义:形如(a≠0,a,b,c为常数)的函数为⼆次函数.2.⼆次函数的图象及性质:⑴⼆次函数y=ax2 (a≠0);当a>0时,抛物线开⼝向上,顶点是最低点;当a<0时,抛物线开⼝向下,顶点是最⾼点;a越⼩,抛物线开⼝越⼤.y=a(x-h)2+k的对称轴是x=h,顶点坐标是(h,k)。
⑵⼆次函数,顶点为(-,),对称轴x=-;当a>0时,抛物线开⼝向上,图象有最低点,且x>-,y随x的增⼤⽽增⼤,x<-,y随x的增⼤⽽减⼩;当a<0时,抛物线开⼝向下,图象有最⾼点,且x>-,y随x的增⼤⽽减⼩,x<-,y随x的增⼤⽽增⼤.解题⼩诀窍:⼆次函数上两点坐标为(),(),即两点纵坐标相等,则其对称轴为直线。
3.图象的平移:⼆次函数y=ax2 与y=-ax2 的图像关于x轴对称。
平移的简记⼝诀是“上加下减,左加右减”。
⼀、经典考题剖析:【考题1】在平⾯直⾓坐标系内,如果将抛物线向右平移2个单位,向下平移3个单位,平移后⼆次函数的关系式是()A.B.C.D.2.⼆次函数的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是()A. B. C. D.4.已知⼆次函数(a≠0)与⼀次函数y=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图1-2-7所⽰,能使y1>y2成⽴的x取值范围是_______5.已知直线y=x 与⼆次函数y=ax 2 -2x -1的图象的⼀个交点 M 的横标为1,则a 的值为()A 、2B 、1C 、3D 、 46.已知反⽐例函数y= x k 的图象在每个象限内y 随x 的增⼤⽽增⼤,则⼆次函数y=2kx 2 -x+k 2的图象⼤致为图1-2-3中的()7、读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发⽣变化.例如:由抛物线①,有y=②,所以抛物线的顶点坐标为(m ,2m -1),即③④。
初中数学 函数模块3-4 二次函数讲义(含答案解析)

二次函数题型练题型一:二次函数的定义1.二次函数的概念:一般地,形如²y ax bx c =++(a ,b ,c 是常数,0a ≠)的函数,叫做二次函数.这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b ,c 可以为零,二次函数的定义域是全体实数.2.二次函数²y ax bx c =++的结构特征:(1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2(2)a ,b ,c 是常数,a 是二次项系数,b 是一次项系数,c 是常数项.①二次函数的识别例1.1下列函数中,是二次函数的是()A .261y x =+B .61y x =+C .8y x =D .281y x=-+【详解】解:A .是二次函数,故本选项符合题意;B .是一次函数,不是二次函数,故本选项不符合题意;C .是反比例函数,不是二次函数,故本选项不符合题意;D .等式的右边是分式,不是整式,不是二次函数,故本选项不符合题意;故选:A .变式1.11.下列各式中,y 是x 的二次函数的是()A.31y x =-B.21y x =C.231y x x =+- D.212y x x=+【答案】C 【解析】【分析】根据二次函数的定义:形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数求解可得.【详解】解:A 、y =3x -1是一次函数,不符合题意;B 、21y x =中右边不是整式,不是二次函数,不符合题意;C 、y =3x 2+x -1是二次函数,符合题意;D 、212y x x=+中右边不是整式,不是二次函数,不符合题意;故选:C .【点睛】本题主要考查二次函数的定义,解题的关键是掌握形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.②根据二次函数的定义求参数例1.2如果函数22(2)27my m x x -=-+-是二次函数,则m 的取值范围是()A .2m =±B .2m =C .2m =-D .m 为全体实数【详解】解:由题意得:20m -≠,222m -=,解得:2m =-,故选:C .变式1.22.已知函数y =(2﹣k )x 2+kx +1是二次函数,则k 满足__.【答案】k ≠2【解析】【分析】利用二次函数定义可得2﹣k ≠0,再解不等式即可.【详解】解:由题意得:2﹣k ≠0,解得:k ≠2,故答案为:k ≠2.【点睛】本题主要考查了二次函数的定义,准确分析计算是解题的关键.题型二:二次函数表达式的图像和性质①2y ax =方的图像和性质a 的符号开口方向顶点坐标对称轴性质a >向上()0,0y 轴0x >时,y 随着x 的增大而增大;0x <时,y 随着x的增大而减小;0x =时,y 有最小值00a <向下()0,0y 轴0x >时,y 随着x 的增大而减小;0x <时,y 随着x的增大而增大;0x =时,y 有最大值0例2.1抛物线22y x =-的对称轴是()A .直线12x =B .直线12x =-C .直线0x =D .直线0y =【详解】解:对称轴为y 轴,即直线0x =.故选C .变式2.13.抛物线y =2x 2,y =-2x 2,y =12x 2的共同性质是()A.开口向上B.对称轴是y 轴C.都有最高点D.y 随x 的增大而增大【答案】B 【解析】【分析】根据二次函数的图象与性质解题.【详解】抛物线y =2x 2,y =12x 2开口向上,对称轴是对称轴是y 轴,有最低点,在y 轴的右侧,y 随x 的增大而增大,y =-2x 2,开口向下,对称轴是对称轴是y 轴,有最高点,在y 轴的左侧,y 随x 的增大而增大,故抛物线y =2x 2,y =-2x 2,y =12x 2的共同性质是对称轴是y 轴,故选:B .【点睛】本题考查二次函数图象的性质,是重要考点,难度较易,掌握相关知识是解题关键.②2y ax c =+方的图像和性质a 的符开口顶点坐对称性质号方向标轴a >向上()0,c y 轴0x >时,y 随着x 的增大而增大;0x <时,y 随着x的增大而减小;0x =时,y 有最小值c0a <向下()0,c y 轴0x >时,y 随着x 的增大而减小;0x <时,y 随着x的增大而增大;0x =时,y 有最大值c例2.24.将抛物线y =x 2+3向右平移2个单位后,所得抛物线顶点是_______________.【答案】(2,3)【解析】【分析】根据题目给出的二次函数顶点式,以及“左加右减”的平移原则写出平移后的顶点式,再写出对应的顶点坐标.【详解】解:根据“左加右减”的平移原则,向右平移两个单位,平移后解析式应该是2(2)3y x =-+,∴顶点坐标是()2,3.故答案是:()2,3.【点睛】本题考查二次函数的平移,解题的关键是掌握二次函数平移的方法.【详解】解:根据“左加右减”的平移原则,向右平移两个单位,平移后解析式应该是2(2)3y x =-+,∴顶点坐标是()2,3.故答案是:()2,3.变式2.25.在同一直角坐标系中,画出下列二次函数的图象:222111,2,2222y x y x y x ==+=-.【答案】见解析【解析】【分析】利用描点法可画出这三个函数的图象.【详解】解:列表:描点:见表中的数据作为点的坐标,在平面直角坐标系中描出各点;连线:用平滑的线连接,如图所示:【点睛】本题主要考查二次函数图象的画法,掌握基本的描点法作函数图象是解题的关键.③顶点式()2y a x h k =-+的性质a 的符号开口方向顶点坐标对称轴性质a >向上(),h k 直线x h=x h >时,y 随着x 的增大而增大;x h <时,y 随着x 的增大而减小;x h =时,y 有最小值k0a <向下(),h k 直线x h >时,y 随着x 的增大而减小;x h <时,y 随x h =着x 的增大而增大;x h =时,y 有最大值k例2.3若二次函数2()1y x m =--.当3x ≤时,y 随x 的增大而减小,则m 的取值范围是()A .3m =B .3m >C .3m ≥D .3m ≤【详解】解:由题知二次函数对称轴为x m =,开口向上,根据二次函数图像的性质:只需满足3x m ≤≤即可满足题意,故选C .变式2.36.已知点P (m ,n )在抛物线y =a (x ﹣5)2+9(a ≠0)上,当3<m <4时,总有n >1,当7<m <8时,总有n <1,则a 的值为()A.1B.﹣1C.2D.﹣2【答案】D 【解析】【分析】根据抛物线的解析式可以确定抛物线的顶点和增减性,再根据已知条件确定a 的符号和关于a 的不等式,从而得到a 的值.【详解】解:∵抛物线y =a (x ﹣5)2+9(a ≠0),∴抛物线的顶点为(5,9),∵当7<m <8时,总有n <1,∴a 不可能大于0,则a <0,∴x <5时,y 随x 的增大而增大,x >5时,y 随x 的增大而减小,∵当3<m <4时,总有n >1,当7<m <8时,总有n <1,且x =3与x =7对称,∴m =3时,n≥1,m =7时,n≤1,∴491491a a +≥⎧⎨+≤⎩,∴4a+9=1,∴a =﹣2,故选:D .【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的顶点坐标、增减性及其与图象的关系是解题关键.④一般式2y ax bx c=++a 的符号开口方向顶点坐标对称轴性质a >向上24,24b ac b a a ⎛⎫-- ⎪⎝⎭直线2bx a=-2bx a >-时,y 随着x 的增大而增大;2b x a <-时,y 随着x 的增大而减小;2b x a =-时,y 有最小值244ac b a -0a <向下24,24b ac b aa ⎛⎫-- ⎪⎝⎭直线2bx a=-2bx a>-时,y 随着x 的增大而增大;0x <时,y 随着x 的增大而增大;2b x a=-时,y 有最小值244ac b a -例2.4若()1–3.5,A y 、()2–1,B y 、()31,C y 为二次函数2––45y x x =+的图象上三点,则123,,y y y 的大小关系是__________.(用>连接)【详解】对称轴为直线4222(1)b x a -==-=⨯-,∵–10a =<,∴当–2x <时,y 随x 的增大而增大,当–2x >时,y 随x 的增大而减小,∵2( 3.5)2 3.5 1.5,1(2)121,1(2)123---=-+=---=-+=--=+=,∴213y y y >>.故答案为:213y y y >>.变式2.47.某同学利用描点法画二次函数y =ax 2+bx+c (a ≠0)的图象时,列出的部分数据如下表:序号①②③④⑤x 01234y3﹣23经检查,发现表格中恰好有一组数据计算错误,请你找出错误的那组数据_____.(只填序号)【答案】③.【解析】【分析】由图表的信息知:第一、二、四、五个点的坐标都关于x=2对称,所以错误的一组数据应该是(2,-2);可选取其他四组数据中的任意三组,用待定系数法求出抛物线的解析式.【详解】解:选取(0,3)、(1,0)、(3,0);设抛物线的解析式为y=a (x-1)(x-3),则有:a (0-1)(0-3)=3,a=1;∴y=(x-1)(x-3)=x 2-4x+3.当x =2时,y =22﹣4×2+3=﹣1≠﹣2,所以③数据计算错误.故答案为:③.【点睛】本题考查了用待定系数法求函数解析式的方法,能够正确的判断出错误的一组数据是解答此题的关键.⑤一般式与顶点式的转换将一般式进行配方变形得到224y 24b ac b a x a a -⎛⎫=±+⎪⎝⎭可以根据上述公式,实现二次函数的一般式与顶点式之间的转换.例2.5对于抛物线243y x x =-+.(1)将抛物线的一般式化为顶点式.(2)在坐标系中利用五点法画出此抛物线.x……y ……(3)结合图象,当03x <<时,求出y 的取值范围.【详解】(1)()222434443(2)1y x x x x x =-+=-+-+=--.∴抛物线的顶点式为2(2)1y x =--.(2)x (012)34…y…31-03…函数图象如图所示:(3)根据函数图象可知,当03x <<时,y 的取值范围是13y -≤<.变式2.58.将抛物线223y x x =--变成顶点式为________.【答案】()214y x =--【解析】【分析】由于二次项系数是1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】解:223y x x =--2214x x =-+-()214x =--.故答案为:()214y x =--.【点睛】本题主要考查的是二次函数的顶点式,正确配方是解题的关键.⑥二次函数图象的平移例2.6将抛物线2y x =向右平移1个单位,再向上平移3个单位后,它的解析式为()A .2(1)3y x =++B .2(1)3y x =-+C .2(1)3y x =+-D .2(1)3y x =--【详解】解:将抛物线2y x =图象向右平移1个单位,再向上平移3个单位,所得图象解析式为2(1)3y x =-+故选择:B .变式2.69.把抛物线y=-2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.()2y 211x =-++ B.()2y 211x =--+C.()2y 211x =--- D.()2y 211x =-+-【答案】B【解析】【分析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】抛物线22y x =-向上平移1个单位,可得221y x =-+,再向右平移1个单位得到的抛物线是()2211y x =--+.故选B .【点睛】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a (x -h )2+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.题型三:各项系数与函数图像的关系a 决定二次函数图象的开口方向,a ,b 决定对称轴的位置,(左同右异,即a 与b 同号,则对称轴在y 轴左侧,反之在y 轴右侧)c 决定抛物线与y 轴交点的位置.例3已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:①0,0b c <>;②0a b c ++<;③方程的两根之和大于0;④0a b c -+<,其中正确的个数是()A .4个B .3个C .2个D .1个【详解】试题分析:∵抛物线开口向下,∴0a <,∵抛物线对称轴0x >,且抛物线与y 轴交于正半轴,∴0,0b c >>,故①错误;由图象知,当1x =时,0y <,即0a b c ++<,故②正确,令方程20ax bx c ++=的两根为1x 、2x ,由对称轴0x >,可知1202x x +>,即120x x +>,故③正确;由可知抛物线与x 轴的左侧交点的横坐标的取值范围为:10x -<<,∴当1x =-时,0y a b c =-+<,故④正确.故选B .变式310.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是()A.1B.2C.3D.4【答案】C【解析】【详解】①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x ==﹣1,∴b =2a <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确;②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac <b 2,所以②正确;③∵b =2a ,∴2a ﹣b =0,所以③错误;④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确.故选C .视频题型四:待定系数法求二次函数解析式一般用待定系数法求解二次函数的解析式,再求解过程中需要注意其使用的形式,1.已知抛物线上的三点坐标,一般用一般式求解析式2.已知抛物线顶点或对称轴或最值,一般用顶点式进行求解,3.已知抛物线与x 轴的交点横坐标,一般用交点式进行求解,4.已知抛物线上纵坐标相同的两点,一般用顶点式进行求解.例4已知二次函数2y x bx c =-++的图象经过(1,0),(0,5)-两点,则这个二次函数的解析式为_______.【详解】解:把()1,0、()0,5代入2y x bx c =-++,得105b c c --+=⎧⎨=⎩,解得45b c =⎧⎨=⎩,所以二次函数的解析式为245y x x =-++.故答案为:245y x x =-++.变式411.若二次函数的图象过(﹣3,0)、(1,0)、(0,﹣3)三点,则这个二次函数的解析式为________________.【答案】223y x x =+-.【解析】【分析】设出二次函数的解析式为2y ax bx c =++,将三点坐标代入二次函数解析式求出a ,b ,c 的值,即可确定出解析式.【详解】设二次函数的解析式为2y ax bx c =++,将(﹣3,0)、(1,0)、(0,﹣3)三点代入解析式得:93003a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得:123a b c =⎧⎪=⎨⎪=-⎩.则二次函数解析式为223y x x =+-.故答案为:223y x x =+-.【点睛】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.题型五:二次函数与一元二次方程1.一元二次方程20ax bx c ++=,是二次函数2y ax bx c =++当0y =,即与x 轴相交的特殊情况2.二次函数与x 轴的交点个数当0∆>是,抛物线与x 轴有两个交点;当0∆=是,抛物线与x 轴有一个交点;当∆<0是,抛物线与x 轴没有交点;①抛物线与X 轴Y 轴的交点问题例5.1抛物线23y x =+与y 轴的交点坐标为()A .()3,0B .()0,3C .D .【详解】当0x =时,3y =,则抛物线23y x =+与y 轴交点的坐标为()0,3,故选B .变式5.112.抛物线y =2x 2﹣2x 与x 轴的交点坐标为___.【答案】(0,0),(1,0).【解析】【分析】解方程2x 2﹣2x =0,即可求出抛物线与x 轴的交点坐标.【详解】当y =0时,2x 2﹣2x =0,解得x 1=0,x 2=1,所以抛物线与x 轴的交点坐标为(0,0),(1,0).故答案为(0,0),(1,0).【点睛】本题考查了二次函数与坐标轴的交点坐标与一元二次方程解的关系,二次函数与x 轴的交点横坐标是ax 2+bx +c =0时方程的解,纵坐标是y =0.②根据二次函数图象确定相应方程根的情况例5.2已知函数2y ax bx c =++的图象如图所示,则关于x 的方程240ax bx c ++-=的根的情况是()A .有两个相等的实数根B .有两个异号的实数根C .有两个不相等的实数根D .没有实数根【详解】∵函数的顶点的纵坐标为4,∴直线4y =与抛物线只有一个交点,∴方程240ax bx c ++-=有两个相等的实数根,故选A .变式5.213.如图,抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()2,4A -,()1,1B ,则关于x 的方程20ax bx c --=的解为______.【答案】12x =-,21x =【解析】【分析】根据二次函数图象与一次函数图象的交点问题得到方程组2y ax y bx c ⎧=⎨=+⎩的解为1124x y =-⎧⎨=⎩,2211x y =⎧⎨=⎩,于是易得关于x 的方程ax 2-bx-c=0的解.【详解】解:∵抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()2,4A -,()1,1B ,∴方程组2y ax y bx c ⎧=⎨=+⎩的解为1124x y =-⎧⎨=⎩,2211x y =⎧⎨=⎩,即关于x 的方程20ax bx c --=的解为12x =-,21x =.故答案为x 1=-2,x 2=1.【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a ≠0)的顶点坐标是24(,)24b ac b a a--,对称轴直线x=-2b a .也考查了二次函数图象与一次函数图象的交点问题.③用图象求一元二次方程的近似根例5.3如表是一组二次函数23y x x =--的自变量和函数值的关系,那么方程230x x --=的一个近似根是()x1234y 3-1-39A .1.2B .2.3C .3.4D .4.5【解析】【分析】根据二次函数的图象特征解答.【详解】解:观察表格得:方程230x x --=的一个近似根在2和3之间,故选:B .变式5.3.114.如图,以直线1x =为对称轴的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是().A.23x << B.34x << C.45x << D.56x <<【答案】C【解析】【分析】先根据图象得出对称轴左侧图象与x 轴交点横坐标的取值范围,再利用对称轴1x =,可以算出右侧交点横坐标的取值范围.【详解】∵二次函数2y ax bx c =++的对称轴为1x =,而对称轴左侧图象与x 轴交点横坐标的取值范围是32x -<<-,∴右侧交点横坐标的取值范围是45x <<.故选:C .【点睛】本题主要考查了图象法求一元二次方程的近似根,解答本题首先需要观察得出对称轴左侧图象与x 轴交点横坐标的取值范围,再根据对称性算出右侧交点横坐标的取值范围.变式5.3.215.若m 、n (n <m )是关于x 的一元二次方程1﹣(x ﹣a )(x ﹣b )=0的两个根,且b <a ,则m ,n ,b ,a 的大小关系是()A.m<a<b<nB.a<m<n<bC.b<n<m<aD.n<b<a<m【答案】D【解析】【详解】试题分析:如图抛物线y=(x ﹣a )(x ﹣b )与x 轴交于点(a ,0),(b ,0),抛物线与直线y=1的交点为(n ,1),(m ,1),由图象可知,n <b <a <m .故选D .考点:抛物线与x 轴的交点.③利用图象求不等式的取值范围例5.3如图是抛物线2(0)y ax bx c a =++≠图象的一部分.当0y <时,自变量x 的范围是___【详解】解:∵由函数图象可知,函数图象与x 轴的一个交点坐标为(1,0)-,对称轴为直线2x =,∴抛物线与x 轴的另一个交点坐标为()5,0,∴当0y <时,15x -<<.故答案为:15x -<<.变式5.316.二次函数2y x bx c =-++的部分图象如图所示,由图象可知,方程20x bx c -++=的解为___________________;不等式20x bx c -++<的解集为___________________.【答案】①.11x =-,25x =②.1x <-或5x >【解析】【分析】根据抛物线的对称轴和抛物线与x 轴一个交点求出另一个交点,再通过二次函数与方程的两根,二次函数与不等式解集的关系求得答案.【详解】∵抛物线的对称轴为2x =,抛物线与x 轴一个交点为(5,0)∴抛物线与x 轴另一个交点为(-1,0)∴方程20x bx c -++=的解为:11x =-,25x =由图像可知,不等式20x bx c -++<的解集为:1x <-或5x >.故答案为:11x =-,25x =;1x <-或5x >.【点睛】本题考查了二次函数的图像性质,掌握二次函数与方程的两根,二次函数与不等式的解集关系,是解决问题的关键.④求x 轴与抛物线的截线长例5.4已知二次函数24y x x m =-+的图象与x 轴交于A 、B 两点,且点A 的坐标为()1,0,则线段AB 的长为()A .1B .2C .3D .4【详解】将点()1,0A 代入24y x x m =-+,得到3m =,所以243y x x =-+,与x 轴交于两点,设()()1122,,,A x y b x y ∴2430x x -+=有两个不等的实数根,∴12124,3x x x x +=⋅=,∴122AB x x =-==;故选B .变式5.417.已知方程2x 2﹣3x ﹣5=0两根为52,﹣1,则抛物线y =2x 2﹣3x ﹣5与x 轴两个交点间距离为_________.【答案】72【解析】【详解】试题分析:根据一元二次方程与二次函数的关系可知抛物线与x 轴两交点的横坐标,再根据距离公式即可得出答案.解:∵方程2x 2﹣3x ﹣5=0两根为52,﹣1,∴抛物线y =2x 2﹣3x ﹣5与x 轴两个交点的横坐标分别为52,﹣1,∴两个交点间距离为57(1)22--=.故答案为72.题型六:实际问题与二次函数①图形问题例6.1如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为10m ),围成中间隔有一道篱笆的长方形花圃(由两个小矩形花圃组成).设花圃的一边AB 为m x ,面积为2m S .(1)求S 与x 之间的函数表达式(写出自变量的取值范围).(2)如果要围成面积为245m 的花圃,那么AB 的长是多少米?(3)能围成面积比245m 更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.【详解】解:(1)∵024310x <-≤,∴1483x ≤<∴()21424332483S x x x x x ⎛⎫=-=-+≤< ⎪⎝⎭.(2)当45S =时,有232445x x -+=.解得123,5x x ==.∵1483x ≤<,∴5x =,即AB 的长为5m .(3)能围成面积比245m 更大的花圃.∵()223243448S x x x =-+=--+,其函数图象开口向下,对称轴为直线4x =,当4x >时,y 随x 的增大而减小,∴在1483x ≤<的范围内,当143x =时,S 取得最大值,1403S =最大值.即最大面积为2140m 3,此时14m,10m 3AB BC ==.变式6.1设等边三角形的边长为()0x x >,面积为y ,则y 与x 的函数关系式是()A .212y x =B .214y x =C .22y x =D .24y x =【详解】解:作出BC 边上的高AD .∵ABC 是等边三角形,边长为x ,∴12CD x =,∴高为2=h x ,∴2124y x h x =⨯=.故选:D .②图形运动问题例6.2如图,矩形ABCD 中,6cm,3cm AB BC ==,动点P 从A 点出发以1cm /秒向终点B 运动,动点Q 同时从A 点出发以2cm /秒按A D C B →→→的方向在边,,AD DC CB 上运动,设运动时间为x (秒),那么APQ 的面积()2cmy 随着时间x (秒)变化的函数图象大致为()A .B .C .D .【详解】根据题意可知:,2AP x AQ x ==,①当点Q 在AD 上运动时,211222y AP AQ x x x =⋅⋅=⋅=,为开口向上的二次函数;②当点Q 在DC 上运动时,1133222y AP DA x x =⋅=⨯=,为一次函数;③当点Q 在BC 上运动时,211(122)622y AP BQ x x x x =⋅⋅=⋅⋅-=-+,为开口向下的二次函数.结合图象可知A 选项函数关系图正确.故选:A .变式6.218.如图,在矩形ABCD 中,6AB cm =,12BC cm =,点P 从点A 出发,沿AB 边向点B 以1cm/s 的速度移动,同时点Q 从点B 出发,沿BC 边向点C 以2cm/s 的速度移动,分别到达B ,C 两点就停止运动,则△PQB 的面积最大时,所用时间为()A.2sB.3sC.4sD.5s【答案】B【解析】【分析】表示出PB ,BQ 的长,根据三角形面积公式列出函数关系式,然后配方求解即可.【详解】解:由题意得:AP=tcm ,则PB=(6-t)cm ,BQ=2tcm ,故S △PQB =221(6)26(3)92t t t t t ??-+=--+,∴当t=3s 时,△PQB 的面积最大,故选B.【点睛】本题考查的是二次函数的应用,根据题意表示出三角形的两直角边长是根本,得出面积并配方找最大值是关键.③拱桥问题例6.3如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.【详解】抛物线依坐标系所建不同而各异,如下图.(仅举两例)①如图1建立坐标系,∵顶点在原点,∴设函数解析式为2y ax =,∵图像过()20,6,∴2620a =⨯,解得:3200a =-,∴抛物线的表达式为23200y x =-.②如图2建立坐标系,∵图像相当于图1的图像向上平移6,∴抛物线的表达式为236200y x =-+.故正确,抛物线表达式为23200y x =-或236200y x =-+.变式6.319.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m,那么木船的高不得超过______m.【答案】1.2【解析】【详解】以水面所在水平线为x轴,过拱桥顶点作水平线的垂线,作为y轴,建立坐标系,设水平面与拱桥的交点为A(-2,0),B(2,0),C(0,2),利用待定系数法设函数的解析式为y=a(x+2)(x-2)代入点C坐标,求得a=-12,即抛物线的解析式为y=-12(x+2)(x-2),令x=1,解得y=1.5,船顶与桥拱之间的间隔应不少于0.3,则木船的最高高度为1.5-0.3=1.2米.故答案为:1.2.④销售问题例6.4我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.某市某电器商场根据民众健康需要,代理销售某种空气净化器,其进价时200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低5元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)求出月销售量y (单位:台)与售价x (单位:元/台)之间的函数关系式,并求出自变量x 的取值范围;(2)当售价x 定为多少时,商场每月销售这种空气净化器所获得的利润w (单位:元)最大?最大利润是多少?【详解】解:(1)根据题中条件销售价每降低5元,月销售量就可多售出50台,当售价为x 时,降了()400x -,所以月销售多了()10400x -台,则月销售量y (台)与售价x (元/台)之间的函数关系式;()10400200104200y x x =-+=-+∵空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台∴300104200450x x ≥⎧⎨-+≥⎩解得300375x ≤≤(2)由题意有:(200)w x y=-(200)(104200)x x =--+2106200840000x x =-+-210(310)121000x =--+∴当售价x 定为310元时,w 有最大值,为121000变式6.420.某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.【答案】(1)20元;(2)每件衬衫应降价15元,商场盈利最多,共1250元.【解析】【分析】(1)总利润=每件利润×销售量,根据题意可得利润表达式,再求当1200w =时x 的值;(2)根据函数关系式,运用二次函数的性质求最值.【详解】解:设每天利润为w 元,每件衬衫降价x 元,根据题意得()()()22402022608002151250w x x x x x =-+=-++=--+(1)当1200w =时,22608001200x x -++=,解之得121020x x ==,.根据题意要尽快减少库存,所以应降价20元.答:每件衬衫应降价20元.(2)解:商场每天盈利w=()()40202x x -+()22151250x =--+.∵-2<0∴抛物线开口向下∴当x=15时,w 有最大值,w 的最大值为1250,所以当每件衬衫应降价15元时,商场盈利最多,共1250元.答:每件衬衫降价15元时,商场平均每天盈利最多.【点睛】本题考查二次函数应用的销售问题的最值,熟练掌握二次函数的性质是解题的关键.⑤投球问题例6.5如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度()m y 与运行的水平距离()m x 满足关系式()2y a x k h =-+.已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是()A .球不会过网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定【详解】分析:(1)将点()0,2A 代入2(6) 2.6y a x =-+求出a 的值;分别求出9x =和18x =时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点()0,2A 代入2(6) 2.6y a x =-+,得:362.62a +=,解得:160a =-,∴y 与x 的关系式为21(6) 2.660y x =--+;当9x =时,21(96) 2.6 2.45 2.4360y =--+=>,∴球能过球网,当18x =时,21(186) 2.60.2060y =--+=>,∴球会出界.故选C .变式6.521.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是()A. 4.6mB. 4.5mC.4mD.3.5m【答案】B【解析】【分析】根据题意将篮圈高度y =3.05代入函数21 3.55y x =-+解得x ,再加上3即可求得L .【详解】如图,把y =3.05代入函数21 3.55y x =-+,解得:x =1.5或x =﹣1.5(舍),则L =3+1.5=4.5m.故选B.⑥喷水问题例6.6如图,花坛水池中央有一喷泉,水管3m OP =,水从喷头P 喷出后呈抛物线状先向上至最高点后落下,若最高点距水面4m ,P 距抛物线对称轴1m ,则为使水不落到池外,水池半径最小为()A .1B .1.5C .2D .3【详解】如图建立坐标系:抛物线的顶点坐标是()1,4,设抛物线的解析式是()214y a x =-+,把()0,3代入解析式得:43a +=,解得:1a =-,则抛物线的解析式是:()214y x =--+,当0y =时,()2140x --+=,解得:123,1x x ==-(舍去),则水池的最小半径是3米.故选:D .变式6.622.如图,斜坡AB 长10米,按图中的直角坐标系可用53y x =-+表示,点A 、B 分别在x 轴和y 轴上,在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示.(1)求抛物线的函数关系式;(2)求水柱离坡岗AB的最大高度.【答案】(1)21533y x x =-++;(2)254【解析】【分析】(1)根据直角三角形的性质求出点A 、B 的坐标,再利用待定系数法求解可得;(2)水柱离坡面的距离d=21553x x ⎛⎫-++-+ ⎪ ⎪⎝⎭,整理成一般式,再配方成顶点式即可得.【详解】解:(1)∵AB=10、∠OAB=30°,∴OB=12AB=5、OA=ABcos ∠OAB=10×2=,则A(,0)、B (0,5),将A 、B 坐标代入213y x bx c =-++,得175035c c ⎧-⨯++=⎪⎨⎪=⎩,解得:35b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为21533y x x =-++;(2)水柱离坡面的距离d=21553x x ⎛⎫-++-+ ⎪ ⎪⎝⎭,=2125324x ⎛⎫--+ ⎪ ⎪⎝⎭,∴当254.【点睛】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式、二次函数的图象与性质等知识点,难度不大.⑦增长率问题例6.7共享单车为市民出行带来了方便,某单车公司第一个月投放a 辆单车,计划第三个月投放单车y 辆,设该公司第二、三两个月投放单车数量的月平均增长率为x ,那么y 与x 的函数关系是()A .2y x a=+B .()21y a x =+C .()21y x a=-+D .()21y a x =-【详解】解:设该公司第二、三两个月投放单车数量的月平均增长率为x ,依题意得第三个月第三个月投放单车()21a x +辆,则()21y a x =+.故选:B .变式6.723.某工厂前年的生产总值为10万元,去年比前年的年增长率为x ,预计今年比去年的年增长率仍为x ,今年的总产值为y 万元.(1)求y 关于x 的函数关系式.(2)当x=20%时,今年的总产值为多少?(3)在(2)的条件下,前年、去年和今年三年的总产值为多少万元?【答案】(1)210(1)y x =+;(2)14.4万元;(3)36.4万元.【解析】【分析】(1)根据题意列式为y=10×(1+x)×(1+x)=10(1+x)²;(2)把x 的值代入(1)求解即可;(3)代入求解即可.【详解】(1)根据题意列式为y=10×(1+x)×(1+x)=10(1+x)²;(2)当x=20%时,今年的总产值=10(1+20%)²=14.4万元;(3)依题意,得前年,去年和今年三年的总产值为:10+10(1+20%)+10(1+x)²=36.4(万元).【点睛】本题考查了二次函数的应用,解题的关键是将实际问题转化为二次函数求解.⑧其他问题例6.8小明和小丽先后从A 地出发同一直道去B 地,设小丽出发第min x 时,小丽、小明离B 地的距离分别为1y m 、2y m ,1y 与x 之间的数表达式11802250y x =-+,2y 与x 之间的函数表达式是22101002000y x x =--+.(1)小丽出发时,小明离A 地的距离为m .(2)小丽发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少?【详解】解(1)当0x =时,122250,2000y y ==∴1222502000250(m)y y -=-=故答案为:250(2)设小丽出发第min x 时,两人相距m S ,则()21802250101002000S x x x =-+---+即21080250S x x =-+其中010x ≤≤因此,当8042210b x a -=-=-=⨯时S 有最小值,224410250(80)904410ac b a -⨯⨯--==⨯也就是说,当小丽出发第4min 时,两人相距最近,最近距离是90m变式6.824.如图,有一个横截面边缘为抛物线的隧道入口,隧道入口处的底面宽度为8m ,两侧距底面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个隧道入口的最大高度为_________m .。
初中数学《二次函数解析式》讲义及练习 (2)

板块考试要求A 级要求B 级要求C 级要求二次函数能根据实际情境了解二次函数的意义;会利用描点法画出二次函数的图像能通过对实际问题中的情境分析确定二次函数的表达式;能从函数图像上认识函数的性质;会确定图像的顶点、对称轴和开口方向;会利用二次函数的图像求出二次方程的近似解能用二次函数解决简单的实际问题;能解决二次函数与其他知识结合的有关问题一、二次函数的图像与系数关系1. a 决定抛物线的开口方向:当0a >时⇔抛物线开口向上;当0a <时⇔抛物线开口向下a 决定抛物线的开口大小:a 越大,抛物线开口越小; a 越小,抛物线开口越大.注:几条抛物线的解析式中,若a 相等,则其形状相同,即若a 相等,则开口及形状相同,若a 互为相反数,则形状相同、开口相反.2. b 和a 共同决定抛物线对称轴的位置.(对称轴为:2bx a=-)当0b =时,抛物线的对称轴为y 轴; 当,a b 同号时,对称轴在y 轴的左侧; 当,a b 异号时,对称轴在y 轴的右侧.3. c 的大小决定抛物线与y 轴交点的位置.(抛物线与y 轴的交点为()0c ,) 当0c =时,抛物线与y 轴的交点为原点; 当0c >时,交点在y 轴的正半轴; 当0c <时,交点在y 轴的负半轴.二、二次函数的三种表达方式(1)一般式:()20y ax bx c a =++≠ (2)顶点式:()2y a x h k =-+()0a ≠(3)双根式(交点式):()()()120y a x x x x a =--≠2.如何设点:⑴ 一次函数y ax b =+(0a ≠)图像上的任意点可设为()11x ax b +,.其中10x =时,该点为直线与y 轴交知识点睛中考要求第二讲二次函数的解析式点.⑵ 二次函数2y ax bx c =++(0a ≠)图像上的任意一点可设为()2111x ax bx c ++,.10x =时,该点为抛物线与y 轴交点,当12bx a=-时,该点为抛物线顶点. ⑶ 点()11x y ,关于()00x x ,的对称点为()010122x x y y --,. 4.如何设解析式:① 已知任意3点坐标,可用一般式求解二次函数解析式;② 已知顶点坐标或对称轴时,可用顶点式求解二次函数解析式;③ 已知抛物线与x 的两个交点坐标,可用交点式求解二次函数解析式.④ 已知抛物线经过两点,且这两点的纵坐标相等时,可用对称点式求解函数解析式(交点式可视为对称点式的特例)注:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.一、二次函数图象分布与系数的关系【例1】 ⑴(07济南)已知2y ax bx =+的图象如下左图所示,则y ax b =-的图象一定过( )A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限⑵(07常州)若二次函数222y ax bx a =++-(a b ,为常数)的图象如下中图,则a 的值为( )A. 2-B. 2-C. 1D. 2⑶(07南宁)已知二次函数2y ax bx c =++的图象如下右图所示,则点()P a bc ,在第 象限. OyxyxAO yxO重、难点1. 灵活应用二次函数的三种表达形式,求二次函数解析式。
第1课二次函数(学生版)九年级数学上册讲义(浙教版)

第1课 二次函数学习目标1.理解二次函数的概念,掌握二次函数的标准形式2.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.3.会用待定系数法求二次函数的表达式.知识点01 二次函数函数的概念1.形如c bx ax y ++=2(其中c b a ,,是 ,0≠a )的函数叫做 ,称a 为 ,b 为 ,c 为 .注意:二次项系数0a ≠,而b c ,可以为零.二次函数的自变量的取值范围是 .2.二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.知识点02 根据实际问题列二次函数表达式根据实际问题确定二次函数关系式关键是读懂题意,理解题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.知识点03 待定系数法求二次函数的表达式用待定系数法求二次函数的表达式步骤:(1)设二次函数的表达式;(2) 根据已知条件,得到关于待定系数的方程组。
(3)解方程组,求出待定系数的值,从而写出函数的解析式。
知识精讲目标导航能力拓展考点01 二次函数函数的概念【典例1】若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1 B.﹣5 C.﹣1 D.﹣5或﹣1【即学即练1】如果函数y=(m﹣2)是二次函数,则m的值为.考点02 根据实际问题列二次函数表达式【典例2】如图所示,用长为21米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃,为便于进出,开了3道宽为1米的门.设花圃的宽AB为x米,面积为S平方米,则S与x的之间的函数表达式为;自变量x的取值范围为.【即学即练2】某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率x,第3年的销售量为y台,则y关于x的函数解析式为()A.y=5000(1+2x)B.y=5000(1+x)2C.y=5000+2x D.y=5000x2考点03 待定系数法求二次函数的表达式【典例3】已知二次函数y=x2+bx+c,当x=1时y=3;当x=﹣1时,y=1,求这个二次函数的解析式.【即学即练2】二次函数y=ax2+bx﹣3中的x,y满足如表x…﹣1012…y…0﹣3m﹣3…(1)求这个二次函数的解析式;(2)求m的值.分层提分题组A 基础过关练1.下列函数中,属于二次函数的是()A.y=2x﹣3 B.y=(x+1)2﹣x2 C.y=2x(x+1)D.y =﹣2.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为40米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米,围成的苗圃面积为y平方米,则y关于x的函数关系式为()A.y=x(40﹣x)B.y=x(18﹣x)C.y=x(40﹣2x)D.y=2x(40﹣2x)3.已知函数y=ax2+bx,当x=1时,y=﹣1;当x=﹣1时,y=2,则a,b的值分别是()A .,﹣B .,C.1,2 D.﹣1,24.如果二次函数y=ax2+bx,当x=1时,y=2;当x=﹣1时,y=4,则a,b的值是()A.a=3,b=﹣1 B.a=3,b=1 C.a=﹣3,b=1 D.a=﹣3,b=﹣15.已知二次函数y=1﹣5x+3x2,则二次项系数a=,一次项系数b=,常数项c=.6.如果函数y=(m﹣1)x2+x(m是常数)是二次函数,那么m的取值范围是.7.矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及自变量x的取值范围是.8.当系数a,b,c满足什么条件时,函数y=ax2+bx+c是二次函数?是一次函数?是正比例函数?9.已知二次函数y=﹣x2+bx+3,当x=2时,y=3,求这个二次函数的解析式.题组B 能力提升练10.下列函数表达式中,一定为二次函数的是()A.y=2x﹣5 B.y=ax2+bx+c C.h=D.y=x2+11.已知二次函数y=ax2+bx+1,若当x=1时,y=0;当x=﹣1时,y=4,则a、b的值分别为()A.a=1,b=2 B.a=1,b=﹣2 C.a=﹣1,b=2 D.a=﹣1,b=﹣212.一台机器原价100万元,若每年的折旧率是x,两年后这台机器约为y万元,则y与x的函数关系式为()A.y=100(1﹣x)B.y=100﹣x2C.y=100(1+x)2D.y=100(1﹣x)213.n个球队参加篮球比赛,每两队之间进行一场比赛,比赛的场次数m与球队数n(n≥2)之间的函数关系是.14.一个二次函数y=(k﹣1)+2x﹣1.(1)求k值.(2)求当x=0.5时y的值?15.y与x2成正比例,并且当x=﹣1时,y=﹣3.求:(1)y与x的函数关系式;(2)当x=4时,y的值;(3)当时,x的值.题组C 培优拔尖练16.下列具有二次函数关系的是()A.正方形的周长y与边长x B.速度一定时,路程s与时间tC.正方形的面积y与边长x D.三角形的高一定时,面积y与底边长x17.若函数y=mx+4是二次函数,则m的值为()A.0或﹣1 B.0或1 C.﹣1 D.118.若y与x2成正比例,且当x=2时,y=4,则当x=﹣3时,y的值为()A.4 B.9 C.12 D.﹣519.一个二次函数,当x=0时,y=﹣5;当x=﹣1时,y=﹣4;当x=﹣2时,y=5,则这个二次函数的关系式是()A.y=4x2+3x﹣5 B.y=2x2+x+5 C.y=2x2﹣x+5 D.y=2x2+x﹣520.如图,在靠墙(墙长为20m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为50m,设鸡场垂直于墙的一边长x(m),求鸡场的面积y(m2)与x(m)的函数关系式,并求自变量的取值范围.21.在y=ax2+bx+c中,当x=2时y的值是﹣15,x=1时y的值是﹣9,x=﹣1时y的值是﹣3,求a,b、c的值.22.已知二次函数y=ax2+(km+c),当x=3时,y=15;当x=﹣2时,y=5,试求y与x之间的函数关系式.23.已知y=y1+y2,y1与x成正比例,y2与x2成正比例,当x=1时,y=6,当x=3时,y=8,求y关于x 的解析式.。
2023学年浙江九年级数学上学期章节重难点知识讲义第02讲 二次函数图象与系数的关系(解析版)

第2讲 二次函数)0(2≠++=a c bx ax y 图象与系数的关系考点:由二次函数图象中符号判断类问题总结【知识点睛】❖ 一般式中a 、b 、c 的作用❖ 其他常见形式1.只含有a 、b 两个字母时,想对称轴;如:2a+b 与0的大小→找对称轴ab 2-与1的左右关系;2a-b 与0的大小→找对称轴ab 2-与-1的左右关系;a+b 与0的大小→找对称轴a b 2-与21的左右关系;a-b 与0的大小→找对称轴a b 2-与21-的左右关系; 2.含有a 、b 、c 三个字母,且a 和b 系数是平方关系时,给x 取值,结合图像上下判断;如∶二次函数y=ax 2+bx+c (a ≠0),①a+b+c 与0的大小: ∵当x=1时,y=a+b+c ,∴看x=1时,对应抛物线上的点在x 轴上方还是下方, 上方则a+b+c >0,下方则a+b+c <0;②a-b+c 与0的大小:找x=-1时对应抛物线上的点在x 轴上方还是下方,具体方法同上③4a+2b+c 与0的大小:找x=2时对应抛物线上的点在x 轴上方还是下方,具体方法同上④4a-2b+c 与0的大小:找x=-2时对应抛物线上的点在x 轴上方还是下方,具体方法同上3.含有b 2和4ac 时,想顶点纵坐标,或用图象与图象的交点个数想△.4.只含有a 、c 或者只含有b 、c 时,通常对称轴已知,常需要将一部分的a 或b 转化成b 或a ,最后转化成a+b+c 或a-b+c 结论判断.5.其他类型,可考虑给x 取特殊值,联立方程进行判断;也可结合函数最值,图像增减性进行判断.【类题训练】——作业建议:第4、5、6、10、12、13、14、19、24、26题1.已知二次函数y=﹣x2+bx+c的图象如图,其中b,c的值可能是()A.b=﹣3,c=3B.b=3,c=﹣3C.b=3,c=3D.b=﹣3,c=﹣3【分析】由抛物线开口方向得到a<0,根据抛物线的对称轴在y轴的右侧得b>0,由抛物线与y轴的交点位置得到c>0,据此选择即可.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,故选:C.2.已知,在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.【分析】根据二次函数y=ax2与一次函数y=bx+c的图象,即可得出a<0,b>0,c>0,由此即可得出:二次函数y=ax﹣+bx+c的图象开口向上,对称轴x=﹣>0,与y轴的交点在y轴正半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:a<0,b>0,c>0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y轴正半轴.故选:B.3.一次函数y=ax+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【解答】解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a>0,b >0,故本选项错误;B、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0,故本选项错误;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;故选:D.4.在同一平面直角坐标系中,反比例函数y=﹣(k≠0)与二次函数y=x2﹣kx﹣k的大致图象是()A.B.C.D.【分析】根据k的取值范围分当k>0时和当k<0时两种情况进行讨论,根据反比例函数图象与性质以及二次函数图象与性质,结合图形进行判断即可.【解答】解:当k>0时,反比例函数y=﹣(k≠0)的图象经过二、四象限,二次函数y=x2﹣kx﹣k图象的对称轴x=在y轴右侧,并与y轴交于负半轴,则C选项不符合题意,D选项符合题意;当k<0时,反比例函数y=﹣(k≠0)的图象经过一、三象限,二次函数y=x2﹣kx﹣k图象的对称轴x=在y轴左侧,并与y轴交于正半轴,则A、B选项都不符合题意;故选:D.5.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是a1>a2>a3>a4.(请用“>”连接排序)【分析】直接利用二次函数的图象开口大小与a的关系进而得出答案.【解答】解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a46.小明同学在用描点法画二次函数y=a(x﹣h)2+k(a≠0)图象时,列出了下面表格:x…﹣10123…y…m3236…则m的值是6.【分析】根据题目提供的满足二次函数解析式的x、y的值,确定二次函数的对称轴,利用对称轴找到一个点的对称点的纵坐标即可.【解答】解:由上表可知函数图象经过点(0,3)和点(2,3),∴对称轴为x=1,∴当x=﹣1时的函数值等于当x=3时的函数值,∵当x=3时,y=6,∴当x=﹣1时,m=6.故答案为:6.7.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是0<m<2.【分析】根据已知解析式画出函数图象,进而得出常数m的取值范围.【解答】解:如图所示:当x=2时,y=2,故直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是:0<m<2.故答案为:0<m<2.8.如图,已知抛物线y=ax2+bx+c的对称轴在y轴右侧,抛物线与x轴交于点A(﹣2,0)和点B,与y轴的负半轴交于点C,且OB=2OC,则下列结论:①>0;②2b﹣4ac=1;③a=;④c=2b﹣1.其中正确的有()A.1个B.2个C.3个D.4个【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置可判断①,由OB=2OC可得抛物线经过(﹣2c,0),将(﹣2c,0)代入解析式可判断②,由抛物线经过(﹣2,0),(﹣2c,0)可得x1=2,x2=2c为方程ax2+bx+c=0的两根,根据一元二次方程根与系数的关系可判断③,由a的值及4a﹣2b+c=0可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵﹣>0,∴b<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴<0,①错误.∵OB=2OC,∴抛物线经过(﹣2c,0),∴4ac2﹣2bc+c=0,∴4ac﹣2b+1=0,∴2b﹣4ac=1,②正确.∵抛物线经过(﹣2,0),(﹣2c,0),∴x1=2,x2=2c为方程ax2+bx+c=0的两根,∴x1•x2==4c,∴a=.③正确.∵抛物线经过(﹣2,0),∴4a﹣2b+c=0,∴1﹣2b+c=0,∴c=2b﹣1,④正确.故选:C.9.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象经过(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1且x<0时,y的值随x值的增大而增大.其中,正确结论的个数是()A.1B.2C.3D.4【分析】由抛物线对称轴为直线x=2可判断①,由图象可得x=﹣3时,y<0,从而判断②,由抛物线经过(﹣1,0)可得c与a的关系,即可判断③,由图象可得﹣1<x<2时,y随x增大而增大,可判断④.【解答】解:∵抛物线对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,①正确.由图象可得x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,②错误.∵抛物线经过(﹣1,0),∴a﹣b+c=5a+c=0,∴c=﹣5a,∵抛物线开口向下,∴a<0,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a>0,③正确.由图象可得﹣1<x<2时,y随x增大而增大,∴当x>﹣1且x<0时,y的值随x值的增大而增大,④正确.故选:C.10.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,其部分图象交x轴负半轴交于点A,交y轴正半轴于点B,如图所示,则下列结论:①b2﹣4ac>0;②2a﹣b=0;③m(am+b)≤a﹣b(m为任意实数);④点是该抛物线上的点,且y1<y2<y3.其中正确的有()A.①②③B.①②④C.①③④D.①②③④【分析】由抛物线与x轴的交点个数可判断①,由抛物线对称轴为直线x=﹣1可判断②,由抛物线开口向下及对称轴为直线x=﹣1可得a﹣b+c≥am2+bm+c,从而判断③,根据各点与对称轴的距离大小可判断④.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,①正确.∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a,∴2a﹣b=0,②正确.∵抛物线开口向下,对称轴为直线x=﹣1,∴x=﹣1时y取最大值,∴a﹣b+c≥am2+bm+c,∴m(am+b)≤a﹣b,③正确.∵﹣1﹣(﹣)<﹣(﹣1)<﹣1﹣(﹣),∴y2>y3>y1,④错误.故选:A.11.已知二次函数y=ax2+bx+c(a>0)的图象与x轴负半轴交于A,B两点,与y轴的正半轴交于点C,它的对称轴为直线x=﹣1,有下列结论:①abc<0;②c﹣a>0;③当x =﹣k2﹣2(k为任意实数)时,y≥c;④若x1,x2(x1<x2)是方程ax2+bx+c=0的两根,则方程a(x﹣x1)(x﹣x2)﹣1=0的两根m,n(m<n)满足m<x1且n>x2;其中,正确结论的个数是()A.1个B.2个C.3个D.4个【分析】由抛物线对称轴及抛物线与y轴交于正半轴可得b,c的符号,从而判断①,由x=﹣1时y<0及b与a的关系可判断②,由抛物线的对称性可得抛物线经过(﹣2,c),由x<﹣1时,y随x增大而减小可判断③,将方程的解的问题转化为图象交点问题,根据抛物线开口向上可判断④.【解答】解:∵抛物线与y轴交与正半轴,∴c>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,∴abc>0,①错误.∵抛物线开口向上,对称轴为直线x=﹣1,∴a﹣b+c<0,∴a+c<b,即a+c<2a,∴c<a,∴c﹣a<0,②错误.∵抛物线经过(0,c),对称轴为直线x=﹣1,∴抛物线经过(﹣2,c),∵x<﹣1时,y随x增大而减小,﹣k2﹣2≤﹣2,∴x=﹣k2﹣2时,y≥c.③正确.∵x1,x2(x1<x2)是方程ax2+bx+c=0的两根,∴抛物线y=ax2+bx+c与x轴交点横坐标为x1,x2,∵抛物线开口向上,∴抛物线与直线y=1的交点在x轴上方,∴m<x1<x2<n,④正确.故选:B.12.如图,二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,下列结论:①abc<0;②(9a+c)2<(3b)2;③若顶点坐标为(﹣2,﹣7a),则5a﹣2b﹣c=0;④若(x1,y1)和(x2,y2)是抛物线上的两点,则当|x1+2|>|x2+2|时,y1<y2;其中正确的结论有()A.5个B.4个C.3个D.2个【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置可判断①,由抛物线经过(﹣5,0)及抛物线对称轴为直线x=﹣2可得抛物线与x轴另一交点坐标,从而可得x=﹣3及x=3时y的符号,从而判断②,将b=4a及顶点坐标代入解析式可得c与a 的关系,从而判断③,根据|x1+2|>|x2+2|可得点到对称轴的距离大小关系,结合图象可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣2,∴b=4a>0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc<0,①正确.由图象可得x=﹣3时,y=9a﹣3b+c<0,∵抛物线经过(﹣5,0),对称轴为直线x=﹣2,∴抛物线经过(1,0),∴x=3时,y=9a+3b+c>0,∴(9a+c)2﹣(3b)2=(9a+3b+c)(9a﹣3b+c)<0,即(9a+c)2<(3b)2,②正确.∵b=4a,∴y=ax2+4ax+c,将(﹣2,﹣7a)代入y=ax2+4ax+c得﹣7a=4a﹣8a+c,解得c=﹣3a,∴5a﹣2b﹣c=5a﹣8a+3a=0,③正确.∵|x1+2|>|x2+2|,∴点(x1,y1)到对称轴距离大于点(x2,y2)到对称轴的距离,∴y1>y2.④错误.故选:C.13.如图是抛物线y=ax2+bx+c的部分图象,图象过点(3,0)对称轴为直线x=1,有下列四个结论:①abc>0;②a﹣b+c=0;③y的最大值为3;④方程ax2+bx+c+1=0有实数根;⑤4a+c<0.其中,正确结论的个数是()A.1B.2C.3D.4【分析】根据二次函数的图象和性质依次判断即可.【解答】解:∵抛物线开口向下,与y轴交于正半轴,∴a<0,c>0,∵抛物线的对称轴为x=﹣=1,且过点(3,0),∴b=﹣2a>0,抛物线过点(﹣1.0).∴abc<0,a﹣b+c=0.∴①错误,②正确.∵抛物线开口向下,对称轴是直线x=1,∴当x=1时,y有最大值=a+b+c=﹣2a+(﹣3a)=﹣5a,其值与a有关,∴③错误.∵方程ax2+bx+c+1=0的根即是y=ax2+bx+c的图象与y=﹣1的交点,由图象知,y=ax2+bx+c的图象与y=﹣1的图象有两个交点.∴④正确.∵抛物线过点(﹣1,0),∴a﹣b+c=0,∴a+2a+c=0,∴3a+c=0,∴4a+c=a<0,∴⑤正确.故选:C.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,其顶点为(,1),有下列结论:①ac<0;②函数最大值为1;③b2﹣4ac<0;④2a+b=0.其中,正确结论的个数是()A.1B.2C.3D.4【分析】由抛物线开口方向,与y轴交点位置可判断①,由抛物线开口方向及顶点坐标可判断②,由抛物线与x轴交点个数可判断③,由抛物线对称轴为直线x=可判断④.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∴ac<0,①正确.∵抛物线开口向下,顶点为(,1),∴函数最大值为y=1,②正确.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,③错误.∵﹣=,∴b=﹣a,∴a+b=0,④错误.故选:B.15.已知二次函数y=ax2+2ax+a﹣1的图象只经过三个象限,下列说法正确的是()A.开口向下B.顶点在第一象限C.a≥1D.当x>1时,y的最小值为﹣1【分析】由抛物线的解析式化成顶点式,即可求得顶点为(﹣1,﹣1),得到顶点在第三象限,由二次函数y=ax2+2ax+a﹣1的图象只经过三个象限可知抛物线开口向上,a﹣1≥0,即可得到a≥1,根据二次的性质即可得到x≥﹣1时,y的最小值为﹣1.【解答】解:∵y=ax2+2ax+a﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1),∴顶点在第三象限,∵二次函数y=ax2+2ax+a﹣1的图象只经过三个象限,∴抛物线开口向上,a﹣1≥0,∴a≥1,∵抛物线开口向上,对称轴为直线x=﹣1,∴x≥﹣1时,y的最小值为﹣1,故A、B、D错误,C正确;故选:C.16.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,OA=2OC,点B的坐标为(﹣1,0),顶点为D,对称轴与x轴交于点E,则下列结论:①abc>0,②a+c<0,③a=,④当c<﹣1时,在线段DE上一定存在点P,使得△ABP为等腰直角三角形,其中正确的结论的有()A.1个B.2个C.3个D.4个【分析】由OA=2OC,点B坐标为(1,0)可得x=﹣1和x=﹣2c为方程ax2+bx+c=0的两个根,根据一元二次方程根与系数的关系可得2c=,从而判断①,由抛物线开口方向,对称轴的位置及抛物线与y轴交点位置可判断②,由c<﹣1可得OC>OB,即∠ABC>45°,从而可得判断③.【解答】解:∵y=ax2+bx+c,∴抛物线与y轴交点坐标为(0,c),c<0,∴点A坐标为(﹣2c,0),∵点B坐标为(﹣1,0),∴x=﹣1和x=﹣2c为方程ax2+bx+c=0的两个根,∴﹣1×(﹣2c)=2c=,∴a=,③正确,∵抛物线对称轴在y轴右侧,a>0,∴b<0,∴abc>0,①正确.∵抛物线经过(﹣1,0),∴a﹣b+c=0,即a+c=b<0,②正确.当c=﹣1时,OB=OC,∠ABC=45°,∵c<﹣1,∴OC>OB,∴∠ABC>45°,∴线段DE上一定存在点P,使得△ABP为等腰直角三角形,③正确.故选:C.17.二次函数y=ax2﹣6ax﹣5(a≠0),当5≤x≤6时,对应的y的整数值有4个,则a的取值范围是()A.B.C.或D.或【分析】根据二次函数的性质求出y的范围,再求a的范围.【解答】解:原函数化为:y=a(x﹣3)2﹣9a﹣5,当a>0时,抛物线开口向上,对称轴是直线x=3,∴当5≤x≤6时,y随x的增大而增大,∴﹣5a﹣5≤y≤﹣5,∵y的整数值只有4个,∴﹣9<﹣5a﹣5≤﹣8,∴≤a<,当a<0时,抛物线开口向下,对称轴是直线x=3,∴当5≤x≤6时,y随x的增大而减小,∴﹣5≤y≤﹣5a﹣5,∵y的整数值只有4个,∴﹣2≤﹣5a﹣5<﹣1,∴﹣<a≤﹣.综上:﹣<a≤﹣或≤a<,故选:D.18.如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)的顶点为(1,n),抛物线与x轴交于点A(3,0),则下列结论:①abc>0;②若方程ax2+bx+c﹣1=0的解是x1,x2,且满足x1<x2,则x1<﹣1,x2>3;③关于x的方程ax2+bx+c﹣n+1=0有两个不等的实数根;④2c﹣a<2n.其中,正确的结论有()A.1个B.2个C.3个D.4个【分析】利用待定系数法求得抛物线的系数之间的关系式,利用数形结合的方法得到a,b,c的符号,再利用二次函数的性质对每个结论进行逐一判断即可.【解答】解:由题意得:﹣=1,∴b=﹣2a.∵抛物线的开口方向向上,∴a>0.∴b<0.∵抛物线与y轴的交点在y轴的负半轴,∴c<0.∴abc>0.∴①的结论正确;∵方程ax2+bx+c﹣1=0的解是x1,x2,∴抛物线与直线y=1的交点的横坐标为x1,x2,∵对称轴为直线x=1,抛物线与x轴交于点A(3,0),∴抛物线与x轴的另一个交点为(﹣1,0),∵抛物线开口向上,∴x1<﹣1,x2>3,∴②的结论正确;∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的顶点坐标是(1,n),∴二次函数有最小值n.∴抛物线y=ax2+bx+c与直线y=n﹣1没有公共点.∴方程ax2+bx+c=n﹣1无解.即方程ax2+bx+c﹣n+1=0没有实数根.∴③的结论错误;∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的顶点坐标是(1,n),∴n=a+b+c.∵b=﹣2a,∴n=﹣a+c,∴2n=﹣2a+2c,∴2n﹣(﹣a+2c)=﹣a<0,∴2c﹣a>2n,∴④的结论错误.综上,正确的结论为:①②,故选:B.19.如图.二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象给出下列结论:①a+b+c=0;②a﹣2b+c<0;③若关于x的一元二次方程ax2+bx+c=5(a≠0)的一根是3,则另一根是﹣5;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3.其中正确的结论的序号为①②③.【分析】由抛物线经过(1,0)可判断①,由抛物线对称轴可得b=2a,由抛物线与y轴交点位置可得c<0,从而判断②,由抛物线的对称性及二次函数与方程的关系可判断③,根据各点与抛物线对称轴的距离大小可判断④.【解答】解:∵抛物线经过(1,0),∴a+b+c=0,①正确.∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a,∵抛物线与y轴交点在x轴下方,∴c<0,∵抛物线开口向上,∴a>0,∴a﹣2b+c=﹣3a+c<0,②正确.∵抛物线对称轴为直线x=﹣1,∴抛物线上的点(3,5)关于对称轴的对称点坐标为(﹣5,5),∴方程ax2+bx+c=5的另一个根是﹣5,③正确.∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向上,∴y2<y1<y3.④错误.故答案为:①②③.20.抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a﹣b+c,则m的取值范围是﹣4<m<0.【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置及抛物线经过(1,0)可得a,b,c的等量关系,然后将x=﹣1代入解析式求解.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴﹣<0,∴b>0,∵抛物线经过(0,﹣2),∴c=﹣2,∵抛物线经过(1,0),∴a+b+c=0,∴a+b=2,b=2﹣a,∴y=ax2+(2﹣a)x﹣2,当x=﹣1时,y=a+a﹣2﹣2=2a﹣4,∵b=2﹣a>0,∴0<a<2,∴﹣4<2a﹣4<0,故答案为:﹣4<m<0.21.已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,则下列结论正确的有②④.(填序号)①abc<0;②b﹣4a=0;③(a+c)2<b2;④若当x=0时,y=2.5,则有.【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置可判断①②,由图象可得x=﹣1时,y=a﹣b+c>0,x=1时,y=a+b+c>0,从而判断③,由x=0时,y=2.5,可得c=,再由x=2时y>0,x=3时,y<0,列不等式求解可判断④.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=﹣=﹣2,∴b=4a<0,b﹣4a=0,②正确.∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,①错误.由图象可得x=﹣1时,y=a﹣b+c>0,x=1时,y=a+b+c>0,∴(a﹣b+c)(a+b+c)=(a+c)2﹣b2>0,∴(a+c)2>b2,③错误.∵当x=0时,y=2.5,∴c=,∵x=2时y>0,x=3时,y<0,∴,即,解得.∴④正确.故答案为:②④.22.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如表:x…﹣1012…y=ax2+bx+c…m﹣1﹣1n t…且当x=﹣时,与其对应的函数值y>0,有下列结论:①abc>0;②当x>1时,y随x 的增大而减小;③关于x的方程ax2+bx+c=t的两个根是和1﹣;④m+n>.其中,正确的结论是①③④.【分析】由抛物线经过(0,﹣1),(1,﹣1)可得抛物线对称轴为﹣=,c=﹣1,再根据x=﹣时,y>0可判断a与b的符号,进而判断①②,由抛物线的对称性可得抛③物线经过点(1﹣,t),从而判断③,由x=﹣时,y>0可判断a的取值范围,进而判断④.【解答】解:∵抛物线经过(0,﹣1),(1,﹣1),∴抛物线对称轴为直线x=,c=﹣1∵x=0时,y<0,x=﹣时y>0,∴x<时,y随x增大而减小,即图象开口向上,∴a>0,∵﹣=,∴b=﹣a<0,∴abc>0,①正确.∵x>时,y随x增大而增大,∴x>1时,y随x增大而增大,∴②错误.∵抛物线经过(,t),抛物线的对称轴为直线x=,∴抛物线经过点(1﹣,t),∴关于x的方程ax2+bx+c=t的两个根是和1﹣,③正确.∵b=﹣a,c=﹣1,∴y=ax2﹣ax﹣1,当x=﹣时,y=a+a﹣1>0,∴a>.当x=﹣1时,m=2a﹣1,当x=2时,n=2a﹣1,∴m+n=4a﹣2>,④正确.故答案为:①③④.23.如图,抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,OA=OC,抛物线的对称轴为x=1,下列结论:①abc<0;②ac+b+1=0;③2+c是关于x的一元二次方程ax2+bx+c=0的一个根;④a(m2﹣1)+b(m﹣1)≥0,其中正确结论的序号有②④.【分析】由开口方向得a>0,由对称轴得b=﹣2a<0,由与y 轴的交点得c<0,然后得abc的正负,由OA=OC,得函数图象经过点(c,0),从而得ac+b+1的值,进而判断2+c是否是关于x的一元二次方程ax2+bx+c=0的一个根,最后由开口方向和对称轴得到函数的最小值判断④.【解答】解:∵开口向上,∴a>0,∵对称轴为直线x=1,∴b=﹣2a<0,∵抛物线与y轴的交点在y轴负半轴上,∴c<0,点(0,c)在抛物线上,∴abc>0,故①错误,不符合题意;∵OA=OC,∴函数图象经过点(c,0),∴ac2+bc+c=0,∴ac+b+1=0,故②正确,符合题意;∵对称轴为直线x=1,∴函数图象与x轴的交点B的坐标为(2﹣c,0),∴2+c不是关于x的一元二次方程ax2+bx+c=0的根,故③错误,不符合题意;∵开口向上,对称轴为直线x=1,∴当x=1时,y的最小值为a+b+c,∴am2+bm+c≥a+b+c,∴a(m2﹣1)+b(m﹣1)≥0,故④正确,符合题意;∴正确的序号有②④,故答案为:②④.24.已知二次函数y=x2﹣2mx+m2﹣1(m为常数)的图象与x轴交于A,B两点,顶点为C.(1)若把二次函数图象向下平移3个单位恰好过原点,求m的值.(2)①若P(m﹣3,y1),Q(m+2,y2)在已知的二次函数图象上,比较y1,y2的大小;②求△ABC的面积.【分析】(1)求出平移后抛物线解析式,由抛物线经过原点求解.(2)①由抛物线解析式可得抛物线开口方向及对称轴,根据P,Q到对称轴的距离大小求解.②由抛物线解析式可得抛物线与x轴交点坐标及顶点坐标,进而求解.【解答】解:(1)二次函数图象向下平移3个单位后解析式为y=x2﹣2mx+m2﹣4,由题意得m2﹣4=0,解得m=±2.(2)①∵y=x2﹣2mx+m2﹣1,∴抛物线开口向上,对称轴为直线x=﹣=m,∵m﹣(m﹣3)>m+2﹣m,∴y1>y2.②令x2﹣2mx+m2﹣1=0,则(x﹣m)2=1,解得x1=m﹣1,x2=m+1,∴AB=2,点C坐标为欸(m,﹣1),∴S△ABC=AB•|y C|=×2×1=1.25.已知抛物线y=﹣x2+(b+1)x+c经过点P(﹣1,﹣2b).(1)若b=﹣3,求这条抛物线的顶点坐标;(2)若b<﹣3,过点P作直线P A⊥y轴,交y轴于点A,交抛物线于另一点B,且BP =3AP,求这条抛物线所对应的二次函数关系式.【分析】(1)将b=﹣3代入抛物线解析式及点P坐标,通过待定系数法求出函数解析式,将解析式化为顶点式求解.(2)由抛物线对称轴为直线x=及b<﹣3,可得抛物线对称轴与点P的位置关系,从而可得点P,点A,点B的横坐标,即可求出抛物线对称轴,进而求解.【解答】解:(1)∵b=﹣3,∴y=﹣x2﹣2x+c,点P坐标为(﹣1,6),将(﹣1,6)代入y=﹣x2﹣2x+c得6=﹣1+2+c,解得c=5,∴y=﹣x2﹣2x+5=﹣(x+1)2+6,∴抛物线顶点坐标为(﹣1,6).(2)∵y=﹣x2+(b+1)x+c,∴抛物线对称轴为直线x=,∵b<﹣3,∴<﹣1,∴抛物线对称轴在点P左侧,∴AP=1,∵BP=3AP=3,∴AB=AP+BP=4,∴点B横坐标为x=﹣4,∴抛物线对称轴为直线x===﹣,∴b=﹣6,y=﹣x2﹣5x+c,点P坐标为(﹣1,12),将(﹣1,12)代入y=﹣x2﹣5x+c得12=﹣1+5+c,解得c=8,∴y=﹣x2﹣5x+8.26.已知二次函数y=ax2+bx﹣3(a≠0).(1)若函数图象的对称轴为直线x=1,且顶点在x轴上,求a的值;(2)若a=1,b=2,点(m,n)为该二次函数图象在第三象限内的点,请分别求出m,n的取值范围;(3)若点P(a,a﹣3)始终是函数图象上的点,求证:a2+b2≥.【分析】(1)利用待定系数法解得即可;(2)求得抛物线与xzhou负半轴的交点坐标与抛物线的顶点坐标,根据第三象限点的坐标的特征解答即可;(3)利用待定系数法将点P坐标代入整理得到b与a的关系式,计算a2+b2的值,再利用配方法解答即可.【解答】(1)解:∵函数图象的对称轴为直线x=1,∴=1,∴b=﹣2a.∵二次函数y=ax2+bx﹣3的顶点在x轴上,∴b2﹣4a×(﹣3)=0,∴4a2+12a=0,∵a≠0,∴a=﹣3;(2)解:若a=1,b=2,则y=x2+2x﹣3,∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线y=x2+2x﹣3的顶点坐标为(﹣1,﹣4),∵a=1>0,∴抛物线y=x2+2x﹣3的的开口方向向上,令y=0,则x2+2x﹣3=0,解得:x=﹣3或1.∴抛物线y=x2+2x﹣3与x轴交于点(﹣3,0)和(1,0).∵点(m,n)为该二次函数图象在第三象限内的点,∴﹣3<m<0,﹣4≤n<0;(3)证明:∵点P(a,a﹣3)始终是函数图象上的点,∴a•a2+b•a﹣3=a﹣3.∴a3+ab=a.∵a≠0,∴a2+b=1.∴b=1﹣a2.∴a2+b2=a2+(1﹣a2)2=a4﹣a2+1=,∵≥0,∴a2+b2有最小值,∴a2+b2≥.27.在直角坐标系中,设函数y1=ax2+bx﹣a(a,b是常数,a≠0).(1)已知函数y1的图象经过点(1,2)和(﹣2,﹣1),求函数y1的表达式.(2)若函数y1图象的顶点在函数y2=2ax的图象上,求证:b=2a.(3)已知点A(﹣2,0),B(1,k2﹣a)在函数y1的图象上,且k≠0.当y1>0时,求自变量x的取值范围.【分析】(1)将已知点代入函数表达式即可.(2)先不是函数顶点坐标,代入y2表达式即可.(3)根据二次函数性质求解.【解答】解:(1)函数y1的图象经过点(1,2)和(﹣2,﹣1),∴.∴a=1,b=2.∴y1=x2+2x﹣1.(2)y1=ax2+bx﹣a=a﹣.∴顶点坐标为(﹣,﹣).∵抛物线的顶点在y2=2ax的图象上,∴﹣=﹣2a×,∴b2+4a2=4ab.∴(b﹣2a)2=0.∴b=2a.(3)∵点A(﹣2,0),B(1,k2﹣a)在函数y1的图象上,∴.∴a=k2,b=k2,∴y1=k2x2+k2x﹣k2=(2x﹣1)(x+2).∴当y1=0时,x=或x=﹣2.∵k≠0,∴>0,抛物线开口向上.∴y1>0时,x<﹣2或x>.28.抛物线y=ax2+bx+c经过A(0,4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)抛物线同时经过两个不同的点M(k,m)和N(﹣2﹣k,m),求b的值;(3)若抛物线在A和B两点间y随x的增大而减少,求a的取值范围.【分析】(1)利用待定系数法解答即可;(2)利用两点是纵坐标相同,可求得抛物线的对称轴,再利用(1)的结论即可求解;(3)利用分类讨论的方法分a>0和a<0两种情况,结合图象列出不等式,解不等式即可求解.【解答】解:(1)抛物线y=ax2+bx+c经过A(0,4),∴c=4;∵抛物线y=ax2+bx+c经过B(2,0),∴4a+2b+c=0.∴4a+2b=﹣4.∴a,b满足的关系式为:2a+b=﹣2;(2)∵抛物线同时经过两个不同的点M(k,m)和N(﹣2﹣k,m),∴抛物线的对称轴为直线x==﹣1.∴﹣=﹣1.∴b=2a.∴b+b=﹣2.∴b=﹣1.(3)∵2a+b=﹣2,c=4,∴抛物线解析式为y=ax2+(﹣2﹣2a)x+4=0.∴抛物线的对称轴为:x=﹣=.当a>0时,∵抛物线在A和B两点间y随x的增大而减少,∴抛物线的对称轴经过点B或在点B的右侧.∴≥2.∴0<a≤1.当a<0时,∵抛物线在A和B两点间y随x的增大而减少,∴抛物线的对称轴经过点A或在点A的左侧.∴≤0.∴﹣1≤a<0.综上,若抛物线在A和B两点间y随x的增大而减少,a的取值范围为0<a≤1或﹣1≤a <0.。
二次函数专题全解教学讲义

二次函数专题全解教学讲义第一讲:二次函数基础知识讲解知识网络二次函数⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→二次函数的应用程的关系二次函数与一元二次方二次函数的平移图象及性质解析式的求法两点式顶点式一般式分类解析式数含义二次函数一般式中的系定义(或判定)考点解读考点1:二次函数的概念:y=ax 2+bx+c(a ≠0,a 、b 、c 为常数)的函数叫做二次函数.判断二次函数的三要素,缺一不可:①函数关系式是整数;②化简后自变量的最高次数是2;③二次项的系数不为0.考点2.抛物线y=ax 2+bx+c 中系数a 、b 、c 的作用(1)a 的作用:a 的符号决定抛物线的开口方向.a>0时,抛物线开口向上;a<0时,抛物线开口向下.a 的绝对值决定抛物线的开口大小.|a|越大,抛物线开口越小.(2)b 与a 共同决定对称轴的位置:若a 、b 同号,则对称轴位于y 轴左侧;若a 、b 异号,则对称轴位于y 轴右侧;若b=0,则对称轴是y 轴.(可简单记忆为“左同右异”,一定要自己推导一篇,不但要把对称轴的横坐标和0作比较,还要联想到可以吧对称轴的横坐标和1,-1做比较)(3)c 的作用:c 的符号决定抛物线与y 轴的交点位置.若c>0,则抛物线交y 轴于正半轴;若c<0,则抛物线交y 轴于负半轴;若c=0,则抛物线过原点.c 的值就是抛物线与y 轴交点的纵坐标.(4)b 2-4ac 决定抛物线与x 轴交点的个数(5)a+b+c ,a-b+c 是分别横坐标为1,-1是y 的取值. 考点3 二次函数的解析式1.二次函数的解析式的三种设法:(1)一般式:y=ax2+bx+c (a≠0,a、b、c为常数);(2)顶点式: y=a(x-h) 2+k(a≠0,a、h、k为常数);(3)两点式:y=a(x-x1)(x-x2)(a≠0,a、x1、x2为常数).2.二次函数解析式的求法(1)若已知抛物线上三点坐标,可利用待定系数法求得y=ax2+bx+c;(2)若已知抛物线的顶点坐标或对称轴,则可采用顶点式;(3)若已知抛物线与x轴的交点坐标或交点的横坐标,则可采用两根式:y=a(x-x1)(x-x2),其中与x轴的交点坐标为(x1,0),(x2,0).考点4 二次函数的图象和性质考点5 二次函数图象的画法y=ax2+bx+c的步骤:①把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式;②确定抛物线的开口方向、对称轴和顶点坐标;③在对称轴两侧,以顶点为中心,左右对称描点画图.考点6 二次函数图象的平移:“上加下减,左加右减”(1)将y=ax2的图象向上(c>0)或向下(c<0)平移|c|个单位,即可得到y=ax2+c的图象.其顶点是(0,c).形状、对称轴、开口方向与抛物线y=ax2相同.(2)将y=ax2的图象向左(h<0)或向右(h>0)平移|h|个单位,即可得到y=a(x-h) 2的图象.其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.(3)将y=ax2的图象向左(h<0)或向右(h>0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x-h)2+k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同.考点7 二次函数与一元二次方程的关系(1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数y的值为0时的情况.(2)当二次函数y=ax2+bx+c的图象与x轴有两个交点时,则一元二次方程ax2+bx+c=0有两个不相等的实数根;当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根;当二次函数y=ax2+bx+c的图象与x轴没有交点时,则一元二次方程ax2+bx+c=0没有实数根.考点8 二次函数的应用函数的应用指的是运用函数概念建立函数模型,研究、解决某些实际问题的过程和方法,它包括两个方面:(1)用二次函数表示实际问题中变量之间的关系;(2)用二次函数解决实际问题中的最优化问题,其实质就是求函数的最大(小)值.课后测验一、填空题1、已知函数y=(m+2)xm(m+1)是二次函数,则m=______________.2、二次函数y=-x2-2x的对称轴是x=_____________3、函数s=2t-t2,当t=___________时有最大值,最大值是__________.4、已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c=__________.5、抛物线y=-3(x+2)2的顶点坐标是_____,若将它旋转180º后得新的抛物线,其解析式为_________.6、抛物线y=5x-5x2+m的顶点在x轴上,则m=_____________________.7已知抛物线y=ax2+bx+c的图象与x轴有两个交点,那么一元二次方程ax2+bx+c=0的根的情况是___________________.8、已知二次函数y=x2-2x-3的图象与x轴交于A,B两点,在x轴上方的抛物线上有一点C,且△ABC的面积等于10,则点C的坐标为________.9、把抛物线y=2(x+1)2向下平移____单位后,所得抛物线在x轴上截得的线段长为5.10、如果二次函数y=x2-3x-2k,不论x取任何实数,都有y>0,则k的取值范围是________11、已知二次函数y=kx2+(2k-1)x-1与x轴交点的横坐标为x1,x2(x1<x2),则对于下列结论:(1) 当x= -2时,y=1;(2) 当x> x2时,y>0;(3)方程kx2+(2k-1)x-1=0有两个不相等的实数根x1,x2;(4) x1<-1,x2>-1;(5) x2 -x1=,其中正确的结论有:_ __ _(只需填写序号)12、已知二次函数y=x2-2(m-1)x-1-m的图象与x轴交于A(x1,0),B(x2,0), x1<0<x2,与y轴交于点C, 且满足OC(OB-OA)=2OA·OB,则该二次函数的解析式为______ _ ___二.选择题13.抛物线y=(x-1)2+1的顶点坐标是( )(A) (1,1) (B) (-1,1) (C) (1,-1) (D) (-1,-1)14.抛物线y=-x2+x+7与坐标轴的交点个数为( )(A) 3个(B) 2个(C) 1个(D) 0个15.把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有( )(A) b=3,c=7 (B) b=-9,c=-15 (C) b=3,c=3 (D) b=-9,c=2116.若二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为()(A) a+c (B) a-c (C) -c (D) c17.当a,b为实数,二次函数y=a(x-1)2+b的最小值为-1时有( )(A) a<b (B) a=b (C) a>b (D) a≥b18.已知函数y=3x2-6x+k(k为常数)的图象经过点A(0.85,y1),B(1.1,y2),C(2,y3),则有( )(A) y1<y2<y3(B) y1>y2>y3(C) y3>y1>y2(D) y1>y3>y219如果二次函数y=ax2+bx+c的顶点在y=2x2-x-1的图象的对称轴上,那么一定有( ) (A) a=2或-2 (B) a=2b (C) a=-2b (D) a=2,b= -1,c=-120抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0.以下结论(1)a+b>0;(2)a+c>0;(3)-a+b+c>0;(4)b2-2ac>5a2其中正确的个数有( )(A) 1个(B) 2个(C) 3个(D) 4个三解答题:21.已知函数的图象经过点(3,2)(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数系数的意义讲义一.【知识点拨】(1)a,b,,c 符号判别二次函数y=ax 2+bx+c (a ≠0) 中a 、b 、c 的符号判别:①a 的符号判别由开口方向确定:当开口向上时,a >0;当开口向下时,a <0;②c 的符号判别由与Y 轴的交点来确定:若交点在X 轴的上方,则c >0;若交点在X 轴的下方,则C <0;③b 的符号由对称轴来确定:对称轴在Y 轴的左侧,则a 、b 同号;若对称轴在Y 轴的右侧,则a 、b 异号;(2)抛物线与x 轴交点个数①Δ= b 2-4ac >0时,抛物线与x 轴有2个交点。
这两点间的距离:()()a a ac b ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121②Δ= b 2-4ac=0时,抛物线与x 轴有1个交点。
顶点在x 轴上。
③Δ= b 2-4ac <0时,抛物线与x 轴没有交点。
(3)二次函数图像的特殊情况:①二次函数y=ax 2+bx+c (a ≠0)与X 轴只有一个交点或二次函数的顶点在X 轴上,则Δ=b 2-4ac=0;②二次函数y=ax 2+bx+c (a ≠0)的顶点在Y 轴上或二次函数的图象关于Y 轴对称,则b=0;③二次函数y=ax 2+bx+c (a ≠0)经过原点,则c=0; (4)平移、平移步骤:①将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; 教师寄语:钉子有两个长处:一个是“挤”劲,一个是“钻”劲。
我们在学习上,也要提倡这种“钉子”精神,善于挤和钻。
②左加右减,上加下减(5)用待定系数法求二次函数的解析式①一般式:c bx ax y ++=2。
已知图像上三点或三对x 、y 的值,通常选择一般式。
②顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式。
③交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=。
(6)应注意的特殊值:x=1 ☞ y=a+b+c; x=-1 ☞ y=a-b+c. X=2 ☞ y=4a+2b+c; x=-2 ☞ y=4a-2b+c X=3 ☞ y=9a+3b+c; x=-3 ☞ y=9a-3b+c二【知识点分类精练】考点1:通过抛物线的位置判断∆,,,c b a 的符号.(1)a 决定抛物线的开口方向:⇔>0a ; ⇔<0a . (2)C 决定抛物线与y 轴交点的位置, 0>c ⇔抛物线交y 轴于 ;0<c ⇔抛物线交y 轴于 ; 0=c ⇔ .(3)ab 决定抛物线对称轴的位置,当b a ,同号时⇔对称轴在y 轴 ;0=b ⇔对称轴为 ;b a ,异号⇔对称轴在y 轴 ,简称为 .(4)b 2-4ac 决定抛物线与x 轴交点的个数,当042>-ac b 时,抛物线与x 轴有交点;当042=-ac b 时,抛物线与x 轴有 交点;当042<-ac b 时,抛物线与x 轴有 交点. 例1.看图填空(1)a +b +c_______0 (2)a -b +c_______0 (3)2a -b _______0(4)4a+2b+c_______0例2.根据二次函数y=ax2+bx+c的图象,判断a、b、c、b2-4ac的符号y【熟能生巧】:1、(2011•重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A、a>0B、b<0C、B、c<0 D、a+b+c>02、(2011•雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤3、(2011•孝感)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、44、(2011•山西)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A、ac>0B、方程ax2+bx+c=0的两根是x1=-1,x2=3C 、2a-b=0D 、当x >0时,y 随x 的增大而减小5、(2011•泸州)已知二次函数y=ax 2+bx+c (a ,b ,c 为常数,a ≠0)的图象如图所示,有下列结论:①abc >0,②b2-4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是( ) A 、1 B 、2 C 、3 D 、4考点2:通过∆,,,c b a 的符号判断抛物线的位置:例1.若0,0,0<><c b a ,则抛物线y 2的大致图象为( )例2.若0,0,0,0>∆>>>c b a ,那么抛物线c bx ax y ++=2经过 象限. 例3.已知二次函数c bx ax y ++=2且0,0>+-<c b a a ;则一定有ac b 42- 0【课堂练习】1.若抛物线c bx ax y ++=2开口向上,则直线3+=ax y 经过 象限. 2.二次函数c bx ax y ++=2的图象如图所示,则下列条件不正确的是( ) A 、0,0,0<><c b a B 、042<-ac b C 、0<++c b a D 、0>+-c b a3.二次函数c bx ax y ++=2的图象如图,则点⎪⎭⎫⎝⎛-+b ac ac b b a ,42在.( ) O y xAOyxBO y xO yxDOxyA 、第一象限B 第二象限C 、第三象限D 、第四象限4.二次函数c bx ax y ++=2与一次函数c ax y +=在同一坐标系中的图象大致是( )5.二次函数c bx ax y ++=2()0≠a 的图象,如图,下列结论①0<c ②0>b ③024>++c b a ④()22b c a <+其中正确的有( )A 、1个B 、2个C 、3个D 、4个考点3:二次函数的图像的平移二次函数的平移大致分为两类,即为上下平移和左右平移。
(1) 上下平移若原函数为c bx ax y ++=2⎩⎨⎧-++=+++=m c bx ax y m mc bx ax y m 22为个单位,则平移后函数向下平移为个单位,则平移后函数向上平移 简称为:上加下减,或者上正下负。
(2) 左右平移若原函数为c bx ax y ++=2,左右平移一般第一步先将函数的一般式化为顶点式k h x a y +-=2)(然后再进行相应的变形⎩⎨⎧+--=++-=k n h x a y n kn h x a y n 22)()(数为个单位,则平移后的函若向右平移了数为个单位,则平移后的函若向左平移了 简称为:左加右减,或者左正右负。
xBCD例:(2010年兰州) 抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为 ( ) A . b=2,c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3,c=2【小试牛刀】:1.二次函数1)3(22-+-=x y 由1)1(22+--=x y 向_____平移_______个单位,再向_____平移_______个单位得到。
2、抛物线3)2(32-+=x y 可由抛物线2)2(32++=x y 向 平移 个单位得到. 3、将抛物线5)3(532+-=x y 向右平移3个单位,再向上平移2个单位,得到的抛物线是 4.把抛物线y =ax 2+bx+c 的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y =x 2-3x+5,则a+b+c=__________5、抛物线y =x 2-5x+4的图像向右平移三个单位,在向下平移三个单位的解析式6、在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为A .222-=x yB .222+=x y C .2)2(2-=x y D .2)2(2+=x y7、将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .22(1)y x =+ B .22(1)y x =-C .221y x =+D .221y x =-8、将函数2y x x =+的图象向右平移a (0)a >个单位,得到函数232y x x =-+的图象,则a 的值为 A .1B .2C .3D .49、把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+D .2(1)3y x =-++考点4:二次函数解析式的求法根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.【轻车熟路】:1.已知抛物线与X 轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式;2.已知抛物线通过三点(1,0),(0,-2),(2,3)求此抛物线的解析式3.抛物线经过点(4,-3),且当x=3时,y 最大值=4,求此抛物线的解析式;三【过关检测】1.(2011•兰州)如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有()A、2个B、3个C、4个D、1个2.(2011•鸡西)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2-4ac >0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个3.(2010•梧州)已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()A、ac<0B、a-b+c>0C、b=-4aD、关于x的方程ax2+bx+c=0的根是x1=-1,x2=54.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;21>a ③;④b <1.其中正确的结论是( ) A .①② B .②③ C .②④ D .③④5.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y =a (x -m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为-3,则点D 的横坐标最大值为( )A .-3B .1C .5D .86.若抛物线y =x 2-bx +9的顶点在x 轴上,则b 的值为______若抛物线y =x 2-bx +9的顶点在y 轴上,则b 的值为______ 7.如图所示的抛物线是二次函数的图象,那么的值是_________.8.二次函数y =ax 2+bx +c (a ≠0)的图象开口向上,图象经过点(-1,2 )和(1,0 ),且与y 轴负半轴交于一点,给出以下结论①abc <0;②2a +b >0;③a +c =1;④a >1.其中正确的结论 有___ ______.9.已知一个二次函数的图象是由抛物线22x y =沿y 轴方向平移得到的,当1-=x 时,4=y 。