平稳时间序列分析 实验报告模版
时间序列分析试验报告

时间序列分析试验报告
一、试验简介
本次试验旨在探索时间序列分析,以分析日期变化的影响与规律。
时
间序列分析是数据分析的一种,目的是预测未来正确的趋势,并且分析既
有趋势的影响及其变化。
二、试验材料
本次试验使用的资料为最近12个月(即2024年1月到2024年12月)的电子商务网站销售数据。
该电子商务网站以每月总销售量、每月总销售
额及每月交易次数三个变量作为试验数据。
三、试验方法
1.首先,收集2024年1月到2024年12月的电子商务销售数据,记
录每月总销售量、总销售额及交易次数。
2.然后,编制时间序列分析图表,反映每月总销售量、总销售额及
交易次数的变化情况。
3.最后,分析每月的变化趋势,比较每月的销售数据,并进行相关
分析推断。
四、实验结果
1.通过时间序列分析图表可以看出,每月总销售量、总销售额及交
易次数均呈现出稳定上升趋势。
2.从图表中可以推断,在2024年底到2024年底,当月的总销售量、总销售额及交易次数均较上月有所增加。
3.从表中可以推断,每月的总销售量、总销售额及交易次数都在逐渐增加,最终在2024年末达到高峰。
五、结论
通过本次实验可以得出结论。
平稳时间序列分析实验报告模版

应用时间序列分析实验报告一、上机练习(就是每章最后一节上机指导部分)一、上机练习(就是每章最后一节上机指导部分)3.6.绘制时序图.绘制时序图data example3_1;input x@@;time=_n_;cards;0.30 -0.45 0.36 0.00 0.17 0.45 2.154.42 3.48 2.99 1.74 2.40 0.11 0.960.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34-1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36-0.50 -1.93 -1.49 -2.35 -2.18 -0.39 -0.52-2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.210.78 0.88 2.07 1.44 1.50 0.29 -0.36-0.97 -0.30 -0.28 0.80 0.91 1.95 1.771.80 0.56 -0.11 0.10 -0.56 -1.34 -2.470.07 -0.69 -1.96 0.04 1.59 0.20 0.391.06 -0.39 -0.162.07 1.35 1.46 1.500.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05;proc gplot data=example3_1;plot x*time=1;=red I I=join=join v v=star;symbol1c=redrun;实验结果:实验结果:实验分析:由时序图显示过去86年中数据围绕在0附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图。
以看成平稳序列,为了稳妥起见,做了如下自相关图。
3.6.1.INENTIFY语句介绍语句介绍data example3_1;input x@@;time=_n_;cards;0.30 -0.45 0.36 0.00 0.17 0.45 2.154.42 3.48 2.99 1.74 2.40 0.11 0.960.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34-1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36-0.50 -1.93 -1.49 -2.35 -2.18 -0.39 -0.52-2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.210.78 0.88 2.07 1.44 1.50 0.29 -0.36-0.97 -0.30 -0.28 0.80 0.91 1.95 1.771.80 0.56 -0.11 0.10 -0.56 -1.34 -2.470.07 -0.69 -1.96 0.04 1.59 0.20 0.391.06 -0.39 -0.162.07 1.35 1.46 1.500.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05;proc arima data=example3_1;identify Var=xnlag=8;=x nlagrun;实验结果:实验结果:图一图一图二图二图三图三实验分析:由图一的白噪声检验显示的序列值彼此之间蕴涵着相关关系,为非白噪序列。
时间序列分析第三章平稳时间序列分析

注:图中,S号代表序列的观察值;连续曲线代表拟合序列曲线;虚线代表拟合序列的95%上下置信限。
所谓预测就是要利用序列以观察到的样本值对序列在未来某个时刻的取值进行估计。
目前对平稳序列最常用的预测方法是线性最小方差预测。
线性是指预测值为观察值序列的线性函数,最小方差是指预测方差达到最小。
在预测图上可以看到,数据围绕一个范围内波动,即说明未来的数值变化时平稳的。
二、课后习题第十七题:根据某城市过去63年中每年降雪量数据(单位:mm)得:(书本P94)程序:data example17_1;input x@@;time=_n_;cards;2579588397 110;proc gplot data=example17_1;plot x*time=1;symbol c=red i=join v=star;run;proc arima data=example17_1;identify var=x nlag=15minic p= (0:5) q=(0:5);run;estimate p=1;run;estimate p=1 noin;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;(1)判断该序列的平稳性与纯随机性该序列的时序图如下(图a)图a由时序图显示过去63年中每年降雪量数据围绕早70mm附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图(图b)图b时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值。
时间序列分析试验3-平稳时间序列分析

第一阶段: 模型的识别
• 平稳性模型识别 首先判定时间序列数据是否为平稳随机数 据, (一)通过时间序列数据趋势图判别。
Sas语句: symbol1 i=join v=star; proc gplot data=seriesg; plot x*date=1/haxis='1jan49'd to '1jan61'd by year; run;
例1 磨轮剖面资料 data li; input x @@; cards; 13.5 4.0 4.0 4.5 3.0 3.0 10.0 10.2 9.0 10.0 8.5 7.0 10.5 7.5 7.0 10.5 9.5 7.0 12.0 13.5 12.5 15.0 13.0 11.0 9.0 10.5 10.5 11.5 10.5 9.0 8.2 8.5 9.2 8.5 10.0 14.5 13.0 2.0 6.0 6.0 11.0 9.5 12.5 13.8 12.0 12.0 12.0 13.0 12.0 14.0 14.5 13.5 12.3 7.0 7.0 7.0 6.5 12.5 15.0 12.5 11.6 11.0 10.0 8.5 3.0 11.5 11.5 11.5 11.0 9.0 2.5 7.0 6.0 6.6 14.0 11.0 9.0 6.5 4.0 6.0 12.0 11.0 12.0 12.5 12.5 13.6 13.0 8.0 6.5 6.8 6.0 7.2 10.2 8.0 7.5 11.0 11.8 11.8 6.5 8.0 9.0 8.0 8.0 9.0 9.5 10.0 9.0 12.0 13.5 13.8 15.0 12.5 11.0 11.5 14.5 11.5 11.8 13.0 15.0 14.5 13.0 9.0 11.0 9.0 10.0 14.0 13.5 3.0 2.2 6.0 8.0 9.0 9.0 9.0 7.0 6.0 6.5 7.0 7.5 8.5 9.0 9.5 10.0 11.5 11.2 12.5 11.6 8.0 7.0 6.0 6.0 6.0 9.0 12.0 13.5 13.0 3.5 1.8 1.6 7.5 8.0 7.9 11.6 12.5 10.5 8.0 9.0 11.6 11.8 12.6 10.2 10.0 5.0 7.0 -1.0 0.0 0.0 3.0 11.0 12.0 12.2 11.0 8.0 7.0 5.5 10.0 11.5 7.0 4.0 7.0 7.0 10.0 9.0 8.0 10.0 13.0 10.0 6.5 11.0 13.0 13.0 14.0 13.0 12.5 12.0 9.0 8.5 7.0 8.5 10.0 8.0 4.0 3.0 10.0 13.0 13.0 13.0 12.0 11.0 11.0 11.0 14.5 14.0 14.0 13.5 10.0 9.5 10.0 12.5 10.0 9.0 9.0 4.0 3.0 6.0 5.0 7.0 6.0 5.0 8.5 10.5 11.1 11.0 10.0 11.2 8.0 2.5 5.0 13.2 14.0; Proc print data=li; run;
实验三平稳时间序列分析

82.9
84.7
82.9
81.5
83.4
87.7
81.879.685 Nhomakorabea877.9
89.7
85.4
86.3
80.7
83.8
90.5
84.5
82.4
86.7
83
81.8
89.3
79.3
82.7
88
79.6
87.8
83.6
79.5
83.3
88.4
86.6
84.6
79.7
86
84.2
83
84.8
83.6
82.1
81.4
85
85.8
84.2
83.5
86.5
85
80.4
85.7
86.7
86.7
82.3
86.4
82.5
82
79.5
86.7
80.5
91.7
81.6
83.9
85.6
84.8
78.4
89.9
85
86.2
83
85.4
84.4
84.5
86.2
85.6
83.2
85.7
83.5
80.1
82.2
88.6
图2
自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列。
纯随机性检验见下图:(图3)
图3
6阶以内P值显著小于0.05,可以认为这个拟合模型的残差序列不属于白躁声序列
(2)如果序列平稳且非白躁声,选折适当模型拟合序列的发展
时间序列法实验报告

一、实验目的1. 了解时间序列分析方法的基本原理和应用。
2. 学习如何使用时间序列分析方法对实际数据进行预测和分析。
3. 通过实验,提高对时间序列数据处理的实际操作能力。
二、实验内容本次实验选取了一组某城市过去三年的月均降雨量数据,旨在通过时间序列分析方法预测未来一个月的降雨量。
三、实验步骤1. 数据预处理- 读取实验数据,确保数据格式正确。
- 检查数据是否存在缺失值,如有,进行插补处理。
- 对数据进行初步的描述性统计分析,了解数据的分布情况。
2. 时间序列平稳性检验- 对原始数据进行ADF(Augmented Dickey-Fuller)检验,判断时间序列是否平稳。
- 若不平稳,进行差分处理,直至序列平稳。
3. 时间序列建模- 根据平稳时间序列的特点,选择合适的模型进行拟合。
- 本实验选取ARIMA模型进行拟合,其中AR项数为1,MA项数为1,差分次数为1。
4. 模型参数估计- 使用最小二乘法对模型参数进行估计。
5. 模型检验- 对拟合后的模型进行残差分析,检查是否存在自相关或异方差。
- 若存在自相关或异方差,对模型进行修正。
6. 预测- 使用拟合后的模型对未来一个月的降雨量进行预测。
四、实验结果与分析1. 数据预处理- 实验数据共有36个观测值,无缺失值。
- 描述性统计分析结果显示,降雨量数据呈正态分布。
2. 时间序列平稳性检验- 对原始数据进行ADF检验,结果显示P值小于0.05,拒绝原假设,说明原始数据不平稳。
- 对数据进行一阶差分后,再次进行ADF检验,结果显示P值小于0.05,接受原假设,说明一阶差分后的数据平稳。
3. 时间序列建模- 根据平稳时间序列的特点,选择ARIMA(1,1,1)模型进行拟合。
4. 模型参数估计- 使用最小二乘法对模型参数进行估计,得到AR系数为0.8,MA系数为-0.9。
5. 模型检验- 对拟合后的模型进行残差分析,发现残差序列存在自相关,但不存在异方差。
- 对模型进行修正,加入自回归项,得到修正后的ARIMA(1,1,1,1)模型。
统计专业实验-实验05-平稳时间序列建模

解:模型定阶的方法有下列几种:(1)基于自相关系数和偏自相关系数的定阶方法;(2)基于F检验确定阶数;(3)利用信息准则法(即AIC准则和BIC准则)定阶。
实验运行程序、基本步骤及运行结果:
基本操作:
(1)利用SPSS,创建SPSS数据文件,并建立时间变量;
(2)绘数据与时间的关系图,初步识别序列,输入下列命令:Graph->Time Series->Sequence chart;
.
5.697E1
5.697E1
5.697E1
5.697E1
5.697E1
5.697E1
5.697E1
5.697E1
5.697E1
MAE
1.487
.
1.487
1.487
1.487E0
1.487E0
1.487E0
1.487E0
1.487E0
1.487E0
1.487E0
MaxAE
7.509
.
7.509
7.509
Model Description
Model Type
Model ID
工业产值
Model_1
ARIMA(2,0,0)
Model Fit
Fit Statistic
Mean
SE
Minimum
Maximum
Percentile
5
10
25
50
75
90
95
Stationary R-squared
.789
.
.789
MAE
1.493
.
1.493E0
1.493E0
时间序列分析第三章平稳时间序列分析

应用时间序列分析实验报告实验名称第三章平稳时间序列分析一、上机练习data example3_1;input x;time=_n_;cards;;proc gplot data=example3_1;plot xtime=1;symbol c=red i=join v=star;run;建立该数据集,绘制该序列时序图得:根据所得图像,对序列进行平稳性检验;时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;从图上可以看出,数值围绕在0附近随机波动,没有明显或周期,其本可以视为平稳序列,时序图显示该序列波动平稳;proc arima data=example3_1;identify var=x nlag=8;run;图一图二样本自相关图图三样本逆自相关图图四样本偏自相关图图五纯随机检验图实验结果分析:1由图一我们可以知道序列样本的序列均值为,标准差为,观察值个数为84个;2根据图二序列样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟3阶之后,自相关系数都落入2倍标准差范围以内,而且自相关系数向衰减的速度非常快,延迟5阶之后自相关系数即在值附近波动;这是一个短期相关的样本自相关图;所以根据样本自相关图的相关性质,可以认为该序列平稳;3根据图五的检验结果我们知道,在各阶延迟下LB检验统计量的P值都非常小<,所以我们可以以很大的把握置信水平>%断定该序列样本属于非白噪声序列;proc arima data=example3_1;identify var=x nlag=8minic p= 0:5q=0:5;run;IDENTIFY命令输出的最小信息量结果某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:A:求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;B:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;C:估计模型中未知参数的值;D:检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;E:模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;F:利用拟合模型,预测序列的将来走势;为了尽量避免因个人经验不足导致的模型识别问题,SAS系统还提供了相对最优模型识别;最后一条信息显示,在自相关延迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMRp,q模型中,BIC信息量相对最小的是ARMR0,4模型,即MA4模型;需要注意的是,MINIC只给出一定范围内SBC最小的模型定阶结果,但该模型的参数未必都能通过参数检验,即经常会出现MINIC给出的模型阶数依然偏高的情况;estimate q=4;run;本例参数估计输出结果显示均值MU不显著t的检验统计量的P值为,其他参数均显著t检验统计量的P值均小于,所以选择NOINT选项,除去常数项,再次估计未知参数的结果,即可输入第二条ESTIMATE 命令:estimate q=4 noint;run;参数估计部分输出结果如图六所示:图六ESTIMATE命令消除常数项之后的输出结果显然四个未知参数均显著;拟合统计量的值这部分输出五个统计量的值,由上到下分别是方差估计值、标准差估计值、AIC信息量、SBC信息量及残差个数,如图七所示:图七ESTIMATE命令输出的拟合统计量的值系数相关阵这部分输出各参数估计值的相关阵,如图八所示:图八ESTIMATE命令输出的系数相关阵残差自相关检验结果这部分的输出格式图九和序列自相关系数白噪声检验部分的输出结果一样;本例中由于延迟各阶的LB统计量的P值均显著大于aa=,所以该拟合模型显著成立;图九ESTIMATE命令输出的残差自相关检验结果拟合模型的具体形式ESTIMA TE命令输出的拟合模型的形式序列预测forecast lead=5id=time out=results;run;其中,lead是指定预测期数;id是指定时间变量标识;out是指定预测后的结果存入某个数据集;该命令运行后输出结果如下:FORECAST命令输出的预测结果该输出结果从左到右分别为序列值的序号、预测值、预测值的标准差、95%的置信下限、95%的置信上限;利用存储在临时数据集RESULTS里的数据,我们还可以绘制漂亮的拟合预测图,相关命令如下:proc gplot data=results;plot xtime=1 forecasttime=2 l95time=3 u95time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;输出图像如下:拟合效果图注:图中,S号代表序列的观察值;连续曲线代表拟合序列曲线;虚线代表拟合序列的95%上下置信限;所谓预测就是要利用序列以观察到的样本值对序列在未来某个时刻的取值进行估计;目前对平稳序列最常用的预测方法是线性最小方差预测;线性是指预测值为观察值序列的线性函数,最小方差是指预测方差达到最小;在预测图上可以看到,数据围绕一个范围内波动,即说明未来的数值变化时平稳的;二、课后习题第十七题:根据某城市过去63年中每年降雪量数据单位:mm得:书本P94程序:data example17_1;input x;time=_n_;cards;2579588397 110;proc gplot data=example17_1;plot xtime=1;symbol c=red i=join v=star;run;proc arima data=example17_1;identify var=x nlag=15minic p= 0:5q=0:5;run;estimate p=1;run;estimate p=1 noin;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot xtime=1 forecasttime=2 l95time=3 u95time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;1判断该序列的平稳性与纯随机性该序列的时序图如下图a图a由时序图显示过去63年中每年降雪量数据围绕早70mm附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图图b图b时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟2阶之后,自相关系数都落入2倍标准差范围以内, 自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列;纯随机性检验见下图:图c图c根据图c的检验结果我们知道,在6阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握置信水平>95%断定这个拟合模型的残差序列属于非白噪声序列;2如果序列平稳且非白躁声,选择适当模型拟合该序列的发展;模型识别如下图图d图d假如某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:1:求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;2:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;3:估计模型中未知参数的值;4:检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;5:模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;6:利用拟合模型,预测序列的将来走势;最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMAp,q模型中,BIC信息量相对最小的是ARMA1,0模型,既AR1模型;它们的自相关系数都呈现出拖尾性和呈指数衰减到零值附近的性质;自相关系数是按负指数单调收敛到零;利用拟合模型,预测该城市未来5年的降雪量.由2可以知道该模型是AR1模型;预测结果如下图图e由图得未来564-68年的降雪量分别为、、、、;18. 某地区连续74年的谷物产量单位:千吨data example18_1;input x;time=_n_;cards;;proc gplot data=example18_1;plot xtime=1;symbol c=red i=join v=star;run;proc arima data=example18_1;identify var=x nlag=18minic p= 0:5q=0:5;run;estimate q=1;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot xtime=1 forecasttime=2 l95time=3 u95time=3/overlay; symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;1判断该序列的平稳性与纯随机性该序列的时序图如下图f图f时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;由时序图显示过去74年中每年谷物产量数据围绕早千吨附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图图g图g样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟2阶之后,自相关系数都落入2倍标准差范围以内,自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列;纯随机性检验见下图:图h图h根据图h的检验结果我们知道,在各阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握置信水平>95%断定这个拟合模型的残差序列属于非白噪声序列;选择适当模型拟合该序列的发展;如果序列平稳且非白躁声,选折适当模型拟合序列的发展模型识别如下图图i图i假如某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:A:求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;B:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;C:估计模型中未知参数的值;D:检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;E:模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;F:利用拟合模型,预测序列的将来走势;最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMAp,q模型中,BIC信息量相对最小的是ARMA1,0模型,既AR1模型;它们的自相关系数都呈现出拖尾性和呈指数衰减到零值附近的性质;自相关系数是按负指数单调收敛到零;利用拟合模型,预测该地区未来5年的谷物产量,预测结果如下图图j 由2可知,该模型为AR1模型;图j未来5年的谷物产量一次为,,,;19. 现有201个连续的生产记录data example19_1;input x;time=_n_;cards;图l时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟1阶之后,自相关系数都落入2倍标准差范围以内, 自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列;纯随机性检验见下图:图m根据图m的检验结果我们知道,在各阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握置信水平>95%断定这个拟合模型的残差序列属于非白噪声序列;2如果序列平稳且非白躁声,选折适当模型拟合序列的发展模型识别如下图图n某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:1、求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;2、根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;3、估计模型中未知参数的值;4、检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;5、模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;6、利用拟合模型,预测序列的将来走势;最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMAp,q模型中,BIC信息量相对最小的是ARMA0,1模型,即MA1模型;利用拟合模型,预测该城市下一时刻95%的置信区间;由2可得,该模型为MA1模型;下一时刻95%的置信区间,;实验小结:给定一个序列,我们首先应该判断平稳性,如果平稳,再检查是否是纯随机序列,如果序列平稳且非白躁声,选折适当模型拟合序列的发展,选择AR,MA,或ARMA模型,然后可以对该序列进行预测;三、实验体会通过本次实验使我掌握了一些对时间序列的处理,运用不同的语句对一个样本序列的平稳性检验和随机性检验,这对我们处理数据有很大的帮助;在生活中我们往往会遇到这样的现象,当我们所得到的样本信息太少,并且没有其他的辅助信息时,通常这种数据结构式没法进行分析的,但是序列平稳性的概念的提。
平稳性检验报告模板

平稳性检验报告模板1. 引言平稳性检验是时间序列分析中的一项重要内容,用于检验数据序列的平稳性。
平稳性是指时间序列的统计特性在不同时间段内保持不变的性质。
在时间序列分析中,平稳性是进行模型建立、预测及统计推断的前提条件。
本报告将通过对数据序列进行平稳性检验,评估数据序列的平稳性程度。
2. 数据集描述本次平稳性检验使用的数据集为某公司某产品在过去五年内每天的销售量。
数据包含了从2016年1月1日至2021年12月31日期间的365 * 5 = 1825个观测值,以时间序列的形式记录。
3. 平稳性检验方法常见的平稳性检验方法主要有以下几种:- 观察法:通过观察数据序列的均值和方差是否随时间变化而发生明显的趋势,来判断数据序列的平稳性。
- 自相关图:通过绘制数据序列的自相关图,观察自相关系数随滞后阶数的变化情况,判断数据序列的平稳性。
- 单位根检验:通过对数据序列进行单位根检验,检验数据序列中是否存在单位根,进而判断数据序列的平稳性。
- 单位根检验的统计方法包括ADF检验(Augmented Dickey-Fuller Test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin Test)等。
4. 平稳性检验结果4.1 观察法通过观察数据序列的均值和方差的变化趋势,判断数据序列的平稳性。
对于本次数据集,在观察数据序列的均值和方差图形时,未发现明显的趋势,说明数据序列可能具有平稳性。
4.2 自相关图自相关图是分析时间序列数据的常用方法,通过绘制数据序列的自相关图,来观察自相关系数随滞后阶数的变化情况。
对于本次数据集,绘制的自相关图显示了自相关系数在滞后阶数为1-3时较为显著,而随着滞后阶数的增加,自相关系数逐渐衰减。
这表明数据序列存在一定的相关性,但在滞后阶数较大时可以忽略。
因此,在较大滞后阶数情况下,数据序列可能具有平稳性。
4.3 单位根检验为了进一步验证数据序列的平稳性,我们进行了ADF检验和KPSS检验。
时序分析实验报告

时间序列分析实验报告1、实验内容1.1问题描述用Eviews软件确定该序列的平稳性,根据数据的性质特征对其进行分析并适当模型拟合该序列的发展,最后利用所选取的拟合模型预测1939-1945年英国绵羊的数量。
2、判别原数据的平稳性2.1.画时序图在Eviews中建立workfile为1867-1938年的年度数据,通过file→ import 把数据导入Eviews中。
变量名命名为x。
在workfile中打开数据x,点击series:x窗口中的view→graph→line,则会出x的现时序图1。
时序图1从时序图1中可以看出数据为非平稳的,且大致呈现下降趋势。
因此为经一步说明该数据的平稳性,做相关分析。
2.2.自相关分析继续在该时序图窗口中点击view→correlogram,在弹出的correlogram Specification 的对话框中的lags to include中输入12,点击OK。
则x的自相关图2如下。
自相关图2从自相关图的autocorrelation的一栏可以看出自相大部分都关超出了(至少第三个自相关值要落入两倍的标准差中则为平稳的)两倍的标准差。
则可以进一步认为该数据为非平稳的。
为作出最终的判断,对数进行单位根检验。
2.3.单位根检验同样在自相关图2的窗口中点击view→unit root test在弹出的unit root test 的对话空中的automatic selection的下拉框中选择Schwarz Info,并在Include in test equation中选择intercept点击ok则有如下结果输出单位根表3。
单位根表3从表3中以看所有的ADF值没有都小于值临界值,因此结合时序图和自相关图可以判断出该数据为非平稳的。
3、对数据进行平稳化3.1.对数据做一阶差分在代码窗口中输入genr dx=d(x)并按回车键则在workfile窗体中新生成变量为dx的数据该数据即为x的一阶差分。
时间序列分析实验报告

时间序列分析实验报告一、实验目的时间序列分析是一种用于处理和分析随时间变化的数据的统计方法。
本次实验的主要目的是通过对给定的时间序列数据进行分析,掌握时间序列分析的基本方法和技术,包括数据预处理、模型选择、参数估计和预测,并评估模型的性能和准确性。
二、实验数据本次实验使用了一组某商品的月销售量数据,数据涵盖了过去两年的时间范围,共 24 个观测值。
数据的具体形式为一个时间序列,其中每个观测值表示该商品在相应月份的销售量。
三、实验方法1、数据预处理首先,对数据进行了可视化,绘制了时间序列图,以便直观地观察数据的趋势、季节性和随机性。
然后,对数据进行了平稳性检验。
采用了 ADF(Augmented DickeyFuller)检验来判断数据是否平稳。
如果数据不平稳,则需要进行差分处理,使其达到平稳状态。
2、模型选择根据数据的特点和可视化结果,考虑了几种常见的时间序列模型,如 ARIMA(AutoRegressive Integrated Moving Average)模型、SARIMA(Seasonal AutoRegressive Integrated Moving Average)模型和HoltWinters 模型。
通过对不同模型的参数进行估计,并比较它们在训练数据上的拟合效果和预测误差,选择了最适合的模型。
3、参数估计对于选定的模型,使用最大似然估计或最小二乘法等方法来估计模型的参数。
通过对参数的估计值进行分析,判断模型的合理性和稳定性。
4、预测使用估计得到的模型参数,对未来一段时间内的销售量进行预测。
为了评估预测的准确性,采用了均方根误差(RMSE)、平均绝对误差(MAE)等指标来衡量预测值与实际值之间的差异。
四、实验过程1、数据可视化通过绘制时间序列图,发现数据呈现出明显的季节性和上升趋势。
同时,数据的波动范围也较大,存在一定的随机性。
2、平稳性检验对原始数据进行 ADF 检验,结果表明数据是非平稳的。
实验报告关于时间序列(3篇)

第1篇一、实验目的1. 了解时间序列的基本概念和特性;2. 掌握时间序列的常用分析方法;3. 学会运用时间序列分析方法解决实际问题。
二、实验内容1. 时间序列数据收集2. 时间序列描述性分析3. 时间序列平稳性检验4. 时间序列模型构建5. 时间序列预测三、实验方法1. 时间序列数据收集:通过查阅相关文献、统计数据网站等方式获取实验所需的时间序列数据。
2. 时间序列描述性分析:对时间序列数据进行统计分析,包括均值、标准差、偏度、峰度等。
3. 时间序列平稳性检验:运用单位根检验(ADF检验)判断时间序列的平稳性。
4. 时间序列模型构建:根据时间序列的平稳性,选择合适的模型进行构建,如ARIMA模型、季节性分解模型等。
5. 时间序列预测:利用构建好的时间序列模型进行预测,并评估预测结果的准确性。
四、实验步骤1. 数据收集:选取我国某地区近十年的GDP数据作为实验数据。
2. 描述性分析:计算GDP数据的均值、标准差、偏度、峰度等统计量。
3. 平稳性检验:对GDP数据进行ADF检验,判断其平稳性。
4. 模型构建:根据ADF检验结果,选择合适的模型进行构建。
5. 预测:利用构建好的模型对GDP数据进行预测,并评估预测结果的准确性。
五、实验结果与分析1. 数据收集:获取我国某地区近十年的GDP数据,数据如下:年份 GDP(亿元)2010 200002011 230002012 260002013 290002014 320002015 350002016 380002017 410002018 440002019 470002. 描述性分析:计算GDP数据的均值、标准差、偏度、峰度等统计量,结果如下:均值:39600亿元标准差:4900亿元偏度:-0.2峰度:-1.83. 平稳性检验:对GDP数据进行ADF检验,结果显示ADF统计量在1%的显著性水平下拒绝原假设,说明GDP数据是非平稳的。
4. 模型构建:由于GDP数据是非平稳的,我们可以对其进行差分处理,使其变为平稳序列。
SAS讲义第四十课平稳时间序列分析报告报告材料

第四十课 平稳时间序列分析对时间序列数据的分析,首先要对它的平稳性和纯随机性进行检验。
根据检验的结果可以将序列分为不同的类型,对不同类型的序列将会采用不同的分析方法。
如果一个时间序列被识别为平稳非白噪声序列,那就说明该序列是一个蕴涵着相关信息的平稳序列。
在统计上,我们通常是建立一个线性模型来拟合该序列的发展,借此提取该序列中被蕴涵着有用信息。
目前,最常用的拟合平稳序列的模型是ARMA (Auto Regression Moving Average )模型。
一、 平稳性检验1. 严平稳和宽平稳平稳时间序列有两种定义,根据限制条件的严格程度,分为:● 严平稳时间序列(strictly stationary )—指序列所有的统计性质都不会随着时间的推移而发生变化。
● 宽平稳时间序列(week stationary )—指序列的统计性质只要保证序列的二阶矩平稳就能保证序列的主要性质近似稳定。
如果在任取时间t 、s 和k 时,时间序列t X 满足如下三个条件:∞<2t EX(40.1) μ=t EX(40.2) ))(())((t s k t s k k k s s t t X X E X X E -+-+--=--μμμμ(40.3)则称为宽平稳时间序列。
也称为弱平稳或二阶平稳。
对于正态随机序列而言,由于联合概率分布仅由均值向量和协方差阵决定,即只要二阶矩平稳,就等于分布平稳了。
2. 平稳时间序列的统计性质根据平稳时间序列的定义,可以推断出两个重要的统计性质: ● 常数均值。
即式(40.2)的条件。
● 自协方差只依赖于时间的平均长度。
即式(40.3)的条件。
如果定义自协方方差函数(autocovariance function )为:))((),(s s t t X X E s t μμγ--=(40.4)那么它可由二维函数简化为一维函数)(t s -γ,由此引出延迟k 自协方差函数:),()(k t t k +=γγ(40.5)容易推断出平稳时间序列一定具有常数方差:)0(),()(2γγμ==-=t t X E Dx t t t(40.6)如果定义时间序列自相关函数(autocorrelation function ),简记为ACF :st s s t t DX DX X X E s t ⋅--=))((),(μμρ(40.7)由延迟k 自协方差函数的概念可以等价得到延迟k 自相关函数的概念:)0()()0()0()())(()(r k r k DX DX X X E k kt t k t k t t t ==⋅--=+++γγγμμρ (40.8)容易验证自相关函数具有几个基本性质: ● 1)0(=ρ; ●)()(k k ρρ=-;● 自相关阵为对称非负定阵; ● 非惟一性。
时间序列实验报告

一、实验目的本次实验旨在通过时间序列分析方法,对一组实际数据进行建模、分析和预测。
通过学习时间序列分析的基本理论和方法,提高对实际问题的分析和解决能力。
二、实验内容1. 数据来源及预处理本次实验所使用的数据集为某地区近十年的年度GDP数据。
数据来源于国家统计局,共包含10年的数据。
2. 数据可视化首先,我们将使用Excel软件绘制年度GDP的时序图,观察数据的基本趋势和周期性特征。
3. 平稳性检验根据时序图,我们可以初步判断数据可能存在非平稳性。
为了进一步验证,我们将使用ADF(Augmented Dickey-Fuller)检验对数据进行平稳性检验。
4. 模型选择由于数据存在非平稳性,我们需要对数据进行差分处理,使其变为平稳序列。
然后,根据自相关函数(ACF)和偏自相关函数(PACF)图,选择合适的模型。
5. 模型参数估计使用最大似然估计法(MLE)对所选模型进行参数估计。
6. 模型拟合与检验将估计出的模型参数代入模型,对数据进行拟合,并计算残差序列。
接着,使用Ljung-Box检验对残差序列进行白噪声检验,以验证模型的有效性。
7. 预测利用拟合后的模型,对未来几年的GDP进行预测。
三、实验过程及结果1. 数据可视化通过Excel绘制年度GDP时序图,发现数据呈现明显的上升趋势,但同时也存在一定的波动性。
2. 平稳性检验对数据进行一阶差分后,使用ADF检验进行平稳性检验。
结果显示,差分后的序列在5%的显著性水平下拒绝原假设,说明序列是平稳的。
3. 模型选择根据ACF和PACF图,选择ARIMA(1,1,1)模型。
4. 模型参数估计使用MLE法对ARIMA(1,1,1)模型进行参数估计,得到参数值:- AR系数:-0.864- MA系数:-0.652- 常数项:392.4765. 模型拟合与检验将估计出的模型参数代入模型,对数据进行拟合,并计算残差序列。
使用Ljung-Box检验对残差序列进行白噪声检验,结果显示在5%的显著性水平下拒绝原假设,说明模型拟合效果较好。
实验一:时间序列平稳性检验实验报告

课程论文
(2016 / 2017学年第 1 学期)
课程名称应用时间序列分析
指导单位经济学院
指导教师易莹莹
学生姓名班级学号
学院(系) 经济学院专业经济统计学
实验一时间序列数据平稳性检验实验指导
一、实验目的:
理解经济时间序列存在的不平稳性,掌握对时间序列平稳性检验的步骤和各种方法,认识利用不平稳的序列进行建模所造成的影响。
二、基本概念:
如果一个随机过程的均值和方差在时间过程上都是常数,并且在任何两时期的协方差值仅依赖于该两个时期间的间隔,而不依赖于计算这个协方差的实际时间,就称它是宽平稳的。
时序图
ADF检验
PP检验
三、实验任务:
1、实验内容:
用Eviews来分析1964年到1999年中国纱产量的时间序列,主要内容:
(1)通过时序图看时间序列的平稳性,这个方法很直观,但比较粗糙;
(2)通过计算序列的自相关和偏自相关系数,根据平稳时间序列的性质观察其平稳性;(3)进行纯随机性检验;
(4)平稳性的ADF检验;
(5)平稳性的PP检验。
2、实验要求:
(1)理解不平稳的含义和影响;
(2)熟悉对序列平稳化处理的各种方法;
(2)对相应过程会熟练软件操作,对软件分析结果进行分析。
四、实验要求:
实验过程描述(包括变量定义、分析过程、分析结果及其解释、实验过程遇到的问题及体会)。
实验题:试对1964-1999年中国纱年产量序列(单位:万吨)来判断其是否平稳。
时间序列_实验报告

一、实验目的1. 了解时间序列分析的基本原理和方法;2. 掌握时间序列数据的平稳性检验、模型识别和参数估计等基本操作;3. 通过实例,学习使用ARIMA模型进行时间序列预测。
二、实验环境1. 操作系统:Windows 102. 软件环境:EViews 9.0、R3.6.1三、实验数据1. 数据来源:某城市1980年1月至2020年12月每月的GDP数据;2. 数据格式:Excel表格。
四、实验步骤1. 数据预处理(1)导入数据:将Excel表格中的GDP数据导入EViews软件;(2)观察数据:绘制GDP时间序列图,观察数据的趋势、季节性和周期性;(3)平稳性检验:使用ADF检验判断GDP序列是否平稳。
2. 模型识别(1)自相关函数(ACF)和偏自相关函数(PACF)图:观察ACF和PACF图,初步确定ARIMA模型的阶数;(2)模型选择:根据ACF和PACF图,选择合适的ARIMA模型。
3. 模型估计(1)模型估计:使用EViews软件中的ARIMA过程,对选择的模型进行参数估计;(2)模型检验:对估计出的模型进行残差检验,包括残差的平稳性检验、白噪声检验等。
4. 时间序列预测(1)预测:使用估计出的ARIMA模型,对2021年1月至2025年12月的GDP进行预测;(2)预测结果分析:对预测结果进行分析,评估预测的准确性。
五、实验结果与分析1. 数据预处理(1)导入数据:将Excel表格中的GDP数据导入EViews软件;(2)观察数据:绘制GDP时间序列图,发现GDP序列存在明显的上升趋势和季节性;(3)平稳性检验:使用ADF检验,发现GDP序列在5%的显著性水平下拒绝原假设,序列是平稳的。
2. 模型识别(1)自相关函数(ACF)和偏自相关函数(PACF)图:根据ACF和PACF图,初步确定ARIMA模型的阶数为(1,1,1);(2)模型选择:根据ACF和PACF图,选择ARIMA(1,1,1)模型。
时间序列实训报告

一、实训基本情况(一)实训时间:20xx年x月x日至20xx年x月x日(二)实训单位:XX大学经济与管理学院(三)实训目的:通过本次时间序列实训,使学生掌握时间序列分析的基本原理和方法,提高学生运用时间序列模型解决实际问题的能力。
二、实训内容1. 时间序列的基本概念和性质2. 时间序列的平稳性检验3. 时间序列的分解4. 时间序列的预测方法5. 时间序列模型的应用三、实训过程1. 时间序列的基本概念和性质实训过程中,我们学习了时间序列的定义、分类、性质等基本概念,了解了时间序列在统计学、经济学、气象学等领域的重要应用。
2. 时间序列的平稳性检验我们学习了如何对时间序列进行平稳性检验,包括ADF检验、KPSS检验等,以及如何处理非平稳时间序列。
3. 时间序列的分解我们学习了时间序列分解的基本方法,包括趋势分解、季节分解、周期分解等,并运用这些方法对实际数据进行分解。
4. 时间序列的预测方法我们学习了时间序列预测的基本方法,包括指数平滑法、ARIMA模型、季节性ARIMA模型等,并运用这些方法对实际数据进行预测。
5. 时间序列模型的应用我们选取了实际数据,运用所学的时间序列模型进行预测,并分析了预测结果。
四、实训心得1. 理论与实践相结合通过本次实训,我深刻认识到理论联系实际的重要性。
在实训过程中,我们不仅学习了时间序列分析的基本原理和方法,还运用所学知识解决实际问题,提高了自己的实际操作能力。
2. 团队合作与沟通在实训过程中,我们分组进行讨论和协作,共同完成实训任务。
这使我意识到团队合作和沟通在解决问题中的重要性。
3. 严谨的科研态度在实训过程中,我们对待数据和分析结果都要严谨,力求准确。
这使我明白了科研工作中严谨态度的重要性。
4. 拓宽知识面本次实训让我了解了时间序列分析在其他领域的应用,拓宽了我的知识面。
五、实训总结通过本次时间序列实训,我掌握了时间序列分析的基本原理和方法,提高了运用时间序列模型解决实际问题的能力。
平稳时间序列分析报告报告材料实验报告材料模版

input x@@;time=_n_;cards;0.30 -0.45 0.36 0.00 0.17 0.45 2.15 4.42 3.48 2.99 1.74 2.40 0.11 0.96 0.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34 -1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36 -0.50 -1.93 -1.49 -2.35 -2.18 -0.39 -0.52 -2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.21 0.78 0.88 2.07 1.44 1.50 0.29 -0.36 -0.97 -0.30 -0.28 0.80 0.91 1.95 1.77 1.80 0.56 -0.11 0.10 -0.56 -1.34 -2.470.07 -0.69 -1.96 0.04 1.59 0.20 0.391.06 -0.39 -0.162.07 1.35 1.46 1.50 0.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05 ;proc arima data=example3_1;identify Var=x nlag=8;estimate q=4;run;实验结果:图六图七图八图九实验分析:在图六中我们可以得到五个统计量的值,由上到下分别是方差估计值、标准差估计值、AIC性息量、SBC信息量及残差个数。
在图七中输出了各参数估计值的相关阵。
在图八中,这部分输出的格式和序列自相关系数百噪声检验部分的输出结果一样。
在本题中由于延迟各阶的LB统计量的p值均显著大于a(a=0.05),所以该拟合模型显著成立。
根据图九的拟合模型形式的信息,我们可以写出该形式等价于proc arima data=example3_1;identify Var=x nlag=8;estimate q=4 noint;forecast lead=5id=time out=results;run;实验结果:图十实验分析:模型拟好后,还可以利用该模型对序列进行短期预测,再该程序中,lead是指预测期数,id是指定时间变量标识,out是指定预测后的结果存入某个数据集。
时间序列实验报告

第三章平稳时间序列分析选择合适的模型拟合1950-2008年我国邮路及农村投递线路每年新增里程数序列,见表1:表1 1950-2008年我国邮路及农村投递线路每年新增里程数序列单位:万公里一、时间序列预处理(一)时间序列平稳性检验1.时序图检验(1)工作文件的创建。
打开EViews6.0软件,在主菜单中选择File/New/Workfile, 在弹出的对话框中,在Workfile structure type中选择Dated-regular frequency(时间序列数据),在Date specification下的Frequency中选择Annual(年度数),在Start date中输入“1950”(表示起始年份为1950年),在End date中输入“2008”(表示样本数据的结束年份为2008年),然后单击“OK”,完成工作文件的创建。
(2)样本数据的录入。
选择菜单中的Quick/Empty group(Edit Series)命令,在弹出的Group对话框中,直接将数据录入,并分别命名为year(表示年份),X(表示新增里程数)。
(3)时序图。
选择菜单中的Quick/graph…,在弹出的Series List中输入“year x”,然后单击“确定”,在Graph Options中的Specifi中选择“XYLine”,然后按“确定”,出现时序图,如图1所示:图1 我国邮路及农村投递线路每年新增里程数序列时序图从图1中可以看出,该序列始终在一个常数值附近随机波动,而且波动的范围有界,因而可以初步认定序列是平稳的。
为了进一步确认序列的平稳性,还需要分析其自相关图。
2.自相关图检验选择菜单中的Quick/Series Statistics/Correlogram...,在Series Name中输入x(表示作x序列的自相关图),点击OK,在Correlogram Specification 中的Correlogram of 中选择Level,在Lags to include中输入24,点击OK,得到图2:图2 我国邮路及农村投递线路每年新增里程数序列自相关图和偏自相关图从图2可以看出,序列的自相关系数一直都比较小,除滞后1阶和3阶的自相关系数落在2倍标准差范围以外,其他始终控制在2倍的标准差范围以内,可以认为该序列自始至终都在零轴附近波动,因而认定序列是平稳的。
时间序列检验实验报告(3篇)

第1篇一、实验目的本实验旨在通过实际操作,理解和掌握时间序列数据平稳性检验的方法和步骤,学习如何利用ADF检验(Augmented Dickey-Fuller test)等统计方法判断时间序列的平稳性,并在此基础上进行时间序列的建模和分析。
二、实验背景时间序列数据在经济学、金融学、气象学等领域有着广泛的应用。
然而,在实际研究中,很多时间序列数据都存在非平稳性,这会影响到模型的估计和预测效果。
因此,对时间序列进行平稳性检验是时间序列分析的重要步骤。
三、实验内容1. 数据准备本实验选取某城市1980年1月至2020年12月每月的气温数据作为研究对象。
2. 平稳性检验(1)图检验法首先,我们绘制气温数据的时序图,观察数据的波动情况。
从时序图中可以看出,气温数据呈现出明显的季节性波动,且数据的均值和方差随时间变化,初步判断该时间序列是非平稳的。
(2)ADF检验接下来,我们使用ADF检验对气温数据进行平稳性检验。
ADF检验的基本原理是,通过检验时间序列是否存在单位根,来判断其是否平稳。
具体操作如下:1. 引入库和函数说明```pythonfrom statsmodels.tsa.stattools import adfuller```2. 进行ADF检验```pythondef adf_test(timeseries):增加滞后阶数dftest = adfuller(timeseries, autolag='AIC')output = pd.Series(dftest[0:4], index=['ADF Statistic', 'p-value', ' Lags Used', 'Number of Observations Used'])for key, value in dftest[4].items():output[f'Critical Value ({key})'] = valuereturn outputadf_result = adf_test(data)print(adf_result)```3. 结果分析从ADF检验结果可以看出,气温数据的ADF统计量小于5%的临界值,p值大于0.05,拒绝原假设,即气温数据是非平稳的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的性质,我可以初步确定拟合模型为MA(4)模型。
3.6.1.2.相对最优定阶data example3_1;input x@@;time=_n_;cards;0.30 -0.45 0.36 0.00 0.17 0.45 2.154.42 3.48 2.99 1.74 2.40 0.11 0.960.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34-1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36-0.50 -1.93 -1.49 -2.35 -2.18 -0.39 -0.52-2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.210.78 0.88 2.07 1.44 1.50 0.29 -0.36-0.97 -0.30 -0.28 0.80 0.91 1.95 1.771.80 0.56 -0.11 0.10 -0.56 -1.34 -2.470.07 -0.69 -1.96 0.04 1.59 0.20 0.391.06 -0.39 -0.162.07 1.35 1.46 1.500.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05;proc arima data=example3_1;identify Var=x nlag=8minic p=(0: 5) q=(0: 5);run;实验结果:图四实验分析:在该程序中MINIC选项是指定SAS系统输出所有自相关延迟阶数小于等于5,移动平均延迟阶数小于等于5的ARMA(p,q)模型的BIC信息量。
在图四中,根据最后一条信息显示,在自相关延迟阶数小于等于5,移动平均延迟阶数小于等于5的所有ARMA(p,q)模型中,BIC信息量相对最小的是ARMA(0,4)模型,即MA(4)模型,需要注意的是,MIBIC只给出一定范围内SBC最小的模型定阶结果,但该模型的参数未必都能通过参数检验,即经常出现MINIC给出的模型阶数依然偏高的情况。
所以MINIC的输出结果只能作为定阶参考,MINIC定价未必比经验定价准确。
3.6.2.参数估计data example3_1;input x@@;time=_n_;cards;0.30 -0.45 0.36 0.00 0.17 0.45 2.154.42 3.48 2.99 1.74 2.40 0.11 0.960.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34-1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36-0.50 -1.93 -1.49 -2.35 -2.18 -0.39 -0.52-2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.210.78 0.88 2.07 1.44 1.50 0.29 -0.36-0.97 -0.30 -0.28 0.80 0.91 1.95 1.771.80 0.56 -0.11 0.10 -0.56 -1.34 -2.470.07 -0.69 -1.96 0.04 1.59 0.20 0.391.06 -0.39 -0.162.07 1.35 1.46 1.500.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05;proc arima data=example3_1;identify Var=x nlag=8;estimate q=4;run;实验结果:实验分析:本例中参数估计输出结果显示均值MU不显著(t检验统计量的P值为0.9968),其他参数均显著,所以选择NOINT选项,除去常数项,再次估计未知量参数的结果,具体程序见下。
data example3_1;input x@@;time=_n_;cards;0.30 -0.45 0.36 0.00 0.17 0.45 2.154.42 3.48 2.99 1.74 2.40 0.11 0.960.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34-1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36-0.50 -1.93 -1.49 -2.35 -2.18 -0.39 -0.52-2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.210.78 0.88 2.07 1.44 1.50 0.29 -0.36-0.97 -0.30 -0.28 0.80 0.91 1.95 1.771.80 0.56 -0.11 0.10 -0.56 -1.34 -2.470.07 -0.69 -1.96 0.04 1.59 0.20 0.391.06 -0.39 -0.162.07 1.35 1.46 1.500.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05;proc arima data=example3_1;identify Var=x nlag=8;estimate q=4 noint;run;实验结果:图五实验分析:在图五中可以看出,四个未知参数均显著(t检验统计量的p值均小于0.0001)。
3.6.2.拟合统计量的值,系数相关阵,残差自相关检验结果,拟合模型的具体形式data example3_1;input x@@;time=_n_;cards;0.30 -0.45 0.36 0.00 0.17 0.45 2.154.42 3.48 2.99 1.74 2.40 0.11 0.960.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34-1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36-0.50 -1.93 -1.49 -2.35 -2.18 -0.39 -0.52-2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.210.78 0.88 2.07 1.44 1.50 0.29 -0.36-0.97 -0.30 -0.28 0.80 0.91 1.95 1.771.80 0.56 -0.11 0.10 -0.56 -1.34 -2.47AIC性息量、SBC信息量及残差个数。
在图七中输出了各参数估计值的相关阵。
在图八中,这部分输出的格式和序列自相关系数百噪声检验部分的输出结果一样。
在本题中由于延迟各阶的LB统计量的p值均显著大于a(a=0.05),所以该拟合模型显著成立。
根据图九的拟合模型形式的信息,我们可以写出该形式等价于X=(1+0.9178B+0.83198B^2+0.59789B^3+0.62314B^4)ξ,本例中没有参数项也没有自相关因子,假定一个ARMA模型即含有常数项υ,又含有自相关因子φ(B)与移动平均因子θ(B),该模型应该表示为x=υ+(θ(B)÷φ(B))ξ。
3.6.3.序列预测data example3_1;input x@@;time=_n_;cards;0.30 -0.45 0.36 0.00 0.17 0.45 2.154.42 3.48 2.99 1.74 2.40 0.11 0.960.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34-1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36-0.50 -1.93 -1.49 -2.35 -2.18 -0.39 -0.52-2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.210.78 0.88 2.07 1.44 1.50 0.29 -0.36-0.97 -0.30 -0.28 0.80 0.91 1.95 1.771.80 0.56 -0.11 0.10 -0.56 -1.34 -2.470.07 -0.69 -1.96 0.04 1.59 0.20 0.391.06 -0.39 -0.162.07 1.35 1.46 1.500.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05;proc arima data=example3_1;identify Var=x nlag=8;estimate q=4 noint;forecast lead=5id=time out=results;run;实验结果:图十实验分析:模型拟好后,还可以利用该模型对序列进行短期预测,再该程序中,lead是指预测期数,id是指定时间变量标识,out是指定预测后的结果存入某个数据集。
并从该输出结果(图十)中从左到右分别为序列值的序号、预测值、预测值的标准差、95%的置信下限,95%的置信上限。
利用存储在临时数据集RESULTS里的数据,我们还可以绘制漂亮的拟合预测图,命令程序如下:data example3_1;input x@@;time=_n_;cards;0.30 -0.45 0.36 0.00 0.17 0.45 2.154.42 3.48 2.99 1.74 2.40 0.11 0.960.21 -0.10 -1.27 -1.45 -1.19 -1.47 -1.34-1.02 -0.27 0.14 -0.07 0.10 -0.15 -0.36-0.50 -1.93 -1.49 -2.35 -2.18 -0.39 -0.52-2.24 -3.46 -3.97 -4.60 -3.09 -2.19 -1.210.78 0.88 2.07 1.44 1.50 0.29 -0.36-0.97 -0.30 -0.28 0.80 0.91 1.95 1.771.80 0.56 -0.11 0.10 -0.56 -1.34 -2.470.07 -0.69 -1.96 0.04 1.59 0.20 0.391.06 -0.39 -0.162.07 1.35 1.46 1.500.94 -0.08 -0.66 -0.21 -0.77 -0.52 0.05;proc arima data=example3_1;identify Var=x nlag=8;estimate q=4 noint;forecast lead=5id=time out=results;proc gplot data=results;plot x*time=1 forecast*time=2 l95 *time=3 u95*time=3/overlay;symbol1c=black i=none v=star;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;实验结果:时序图(17.1)自相关图(17.3)实验结果:图(17.5)实验分析:最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMA(p,q)模型中,BIC信息量相对最小的是ARMA(1,0)模型,既AR(1)模型。