计量经济学习题与答案
计量经济学练习和答案
练习一、单项选择题1、计量经济学是__________的一个分支学科。
CA统计学B数学C经济学D数理统计学4、横截面数据是指__________。
AA同一时点上不同统计单位相同统计指标组成的数据B同一时点上相同统计单位相同统计指标组成的数据C同一时点上相同统计单位不同统计指标组成的数据D同一时点上不同统计单位不同统计指标组成的数据5、同一统计指标,同一统计单位按时间顺序记录形成的数据列是__________。
CA时期数据B混合数据C时间序列数据D横截面数据7、描述微观主体经济活动中的变量关系的计量经济模型是__________。
AA 微观计量经济模型B 宏观计量经济模型C 理论计量经济模型D 应用计量经济模型9、下面属于横截面数据的是__________。
DA1991-2003年各年某地区20个乡镇企业的平均工业产值B1991-2003年各年某地区20个乡镇企业各镇的工业产值C某年某地区20个乡镇工业产值的合计数D某年某地区20个乡镇各镇的工业产值10、经济计量分析工作的基本步骤是__________。
AA建立模型、收集样本数据、估计参数、检验模型、应用模型B 设定模型、估计参数、检验模型、应用模型、模型评价C 个体设计、总体设计、估计模型、应用模型、检验模型D 确定模型导向、确定变量及方程式、估计模型、检验模型、应用模型 11、将内生变量的前期值作解释变量,这样的变量称为__________。
D A.虚拟变量 B.控制变量 C.政策变量 D.滞后变量15、同一统计指标按时间顺序记录的数据列称为__________。
BA.横截面数据B.时间序列数据C.修匀数据D.原始数据2、相关关系是指__________。
DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系5、参数β的估计量ˆβ具备有效性是指__________。
B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 7、设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的iˆβ的公式中,错误的是__________。
计量经济学-练习题及答案.
一、解释概念:多重共线性 SRF 解释变量的边际贡献一阶偏相关系数自相关最小方差准则 OLS 偏相关系数 WLS Ut二阶偏相关系数技术方程式零阶偏相关系数经验加权法虚拟变量不完全多重共线性多重可决系数边际贡献的F检验 OLSE PRF 阿尔蒙法 BLUE复相关系数滞后效应异方差性高斯-马尔可夫定理可决系数二.单项选择题:1、计量经济学的研究方法一般分为以下四个步骤()A.确定科学的理论依据、模型设定、模型修定、模型应用B.模型设定、估计参数、模型检验、模型应用C.搜集数据、模型设定、估计参数、预测检验D.模型设定、模型修定、结构分析、模型应用2、简单相关系数矩阵方法主要用于检验()A.异方差性 B.自相关性 C.随机解释变量 D.多重共线性3、在某个结构方程恰好识别的条件下,不适用的估计方法是( )A . 间接最小二乘法 B.工具变量法C. 二阶段最小二乘法D.普通最小二乘法4、在利用月度数据构建计量经济模型时,如果一年里的12个月全部表现出季节模式,则应该引入虚拟变量个数为()A. 4B. 12C. 11D. 65、White 检验可用于检验()A.自相关性 B. 异方差性C.解释变量随机性 D.多重共线性6、如果回归模型违背了无自相关假定,最小二乘估计量是( )A.无偏的,有效的 B. 有偏的,非有效的C.无偏的,非有效的 D. 有偏的,有效的7、已知DW统计量的值接近于2,则样本回归模型残差的一阶自相关系数近似等于( )A. 0B. –1C. 1D. 48、在简单线性回归模型中,认为具有一定概率分布的随机变量是( )A.内生变量B.外生变量C.虚拟变量D.前定变量9、应用DW检验方法时应满足该方法的假定条件,下列不是其假定条件的为()A.解释变量为非随机的B.被解释变量为非随机的C.线性回归模型中不能含有滞后内生变量D.随机误差项服从一阶自回归10、二元回归模型中,经计算有相关系数=0.9985 ,则表明()A.X2和X3间存在完全共线性B. X2和X3间存在不完全共线性C. X2对X3的拟合优度等于 0.9985D.不能说明X2和X3间存在多重共线性11、在DW检验中,存在正自相关的区域是()A. 4-dL <d<4 B. 0<d<dLC. dU <d<4-dUD. dL<d<dU,4-dU<d<4-dL12、库伊克模型不具有如下特点()A. 原始模型为无限分布滞后模型,且滞后系数按某一固定比例递减B.以一个滞后被解释变量Yt-1代替了大量的滞后解释变量Xt-1,Xt-2,…,从而最大限度的保证了自由度C.滞后一期的被解释变量Yt-1与Xt的线性相关程度肯定小于Xt-1,Xt-2,…的相关程度,从而缓解了多重共线性的问题D.由于,因此可使用OLS方法估计参数,参数估计量是一致估计量13、在具体运用加权最小二乘法时,如果变换的结果是, 则Var(ut)是下列形式中的哪一种?( )14、将内生变量的前期值作解释变量,这样的变量称为()A、虚拟变量B、控制变量C、政策变量D、滞后变量15、在异方差的情况下,参数估计值仍是无偏的,其原因是()A.零均值假定不成立B.序列无自相关假定成立C.无多重共线性假定成立D.解释变量与随机误差项不相关假定成立1、经济计量模型是指( )A.投入产出模型B.数学规划模型C.包含随机方程的经济数学模型D.模糊数学模型2、对于回归模型Yt =α+α1Xt+ α2Yt-1+ut,检验随机误差项是否存在自相关的统计量为( )3、下列说法正确的有()A.时序数据和横截面数据没有差异B. 对总体回归模型的显著性检验没有必要C. 总体回归方程与样本回归方程是有区别的D. 判定系数R2不可以用于衡量拟合优度4、在给定的显著性水平之下,若 DW 统计量的下和上临界值分别为 dL和 dU,则当时,可认为随机误差项( )A.存在一阶正自相关B.存在一阶负相关C.不存在序列相关D.存在序列相关与否不能断定5、在线性回归模型中,若解释变量X1i 和X2i 的观测值成比例,即有X1i=k X2i,其中k为非零常数,则表明模型中存在( )A. 异方差B. 多重共线性C. 序列自相关D. 设定误差6、对联立方程组模型估计的方法主要有两类,即()A. 单一方程估计法和系统估计法B. 间接最小二乘法和系统估计法C. 单一方程估计法和二阶段最小二乘法D. 工具变量法和间接最小二乘法7、已知模型的形式为 ,在用实际数据对模型的参数进行估计的时候,测得DW统计量为0.6453,则广义差分变量是( )8、调整后的判定系数与判定系数之间的关系叙述不正确的有()A. 与均非负B.判断多元回归模型拟合优度时,使用C.模型中包含的解释变量个数越多,与R2就相差越大D.只要模型中包括截距项在内的参数的个数大于1,则 < R29、对多元线性回归方程的显著性检验,所用的F统计量可表示为()10、在回归模型中,正确地表达了随机扰动项序列相关的是()A. COV (μi ,μj)≠0,i ≠ j B. COV (μi,μj) = 0,i ≠ jC. COV (Xi ,Xj) =0, i≠j D. COV (Xi,Xj)≠0, i ≠ j11、在DW检验中,存在负自相关的判定区域是()12、下列说法正确的是()A.异方差是样本现象B.异方差的变化与解释变量的变化有关C.异方差是总体现象D.时间序列更易产生异方差13、设x1 ,x2为回归模型的解释变量,则体现完全多重共线性是()14、下列说法不正确的是()A.自相关是一种随机误差现象B.自相关产生的原因有经济变量的惯性作用C.检验自相关的方法有F检验法D.修正自相关的方法有广义差分法15、利用德宾 h 检验自回归模型扰动项的自相关性时,下列命题正确的是()A. 德宾h检验只适用一阶自回归模型B. 德宾h检验适用任意阶的自回归模型C. 德宾h 统计量渐进服从t分布D. 德宾h检验可以用于小样本问题1、以下变量中可以作为解释变量的有()A、外生变量B、滞后内生变量C、虚拟变量D、前定变量E、内生变量2、在简单线性回归模型中,认为具有一定概率分布的随机数是( )A、内生变量B、外生变量C、虚拟变量D、前定变量3、计量经济模型中的内生变量()A.可以分为政策变量和非政策变量B.是可以加以控制的独立变量C.其数值由模型所决定,是模型求解的结果D.和外生变量没有区别4、在下列各种数据中,()不应作为经济计量分析所用的数据。
计量经济学试题与答案
计量经济学试题与答案一、选择题(每题5分,共25分)1. 以下哪个选项是计量经济学的基本任务?A. 建立经济模型B. 进行经济预测C. 分析经济现象的规律性D. 所有以上选项答案:D2. 以下哪个方法不属于计量经济学的研究方法?A. 最小二乘法B. 最大似然法C. 线性规划D. 广义矩估计答案:C3. 在线性回归模型中,以下哪个选项表示随机误差项的方差?A. σ²B. μC. εD. β答案:A4. 在计量经济学模型中,以下哪个选项表示解释变量与被解释变量之间的关系?A. 相关性B. 因果关系C. 联合分布D. 条件分布答案:B5. 在实证研究中,以下哪个选项可以用来检验模型的稳定性?A. 残差分析B. 异方差性检验C. 单位根检验D. 联合检验答案:C二、填空题(每题5分,共25分)1. 计量经济学是一门研究______、______和______的科学。
答案:经济模型、经济数据、经济预测2. 最小二乘法的原理是使______的平方和最小。
答案:回归残差3. 在线性回归模型中,回归系数的估计值是______的线性函数。
答案:解释变量4. 异方差性检验的方法有______检验、______检验和______检验。
答案:Breusch-Pagan检验、White检验、Goldfeld-Quandt检验5. 在实证研究中,单位根检验的目的是检验______。
答案:时间序列数据的平稳性三、计算题(每题20分,共40分)1. 设线性回归模型为:Y = β0 + β1X + ε,其中Y表示被解释变量,X表示解释变量,ε表示随机误差项。
给定以下数据:Y: 2, 3, 4, 5, 6X: 1, 2, 3, 4, 5求:回归系数β0和β1的估计值。
答案:首先,计算X和Y的均值:X̄ = (1 + 2 + 3 + 4 + 5) / 5 = 3Ȳ = (2 + 3 + 4 + 5 + 6) / 5 = 4然后,计算回归系数β1的估计值:β1̄= Σ[(Xi - X̄)(Yi - Ȳ)] / Σ[(Xi - X̄)²]= [(1-3)(2-4) + (2-3)(3-4) + (3-3)(4-4) + (4-3)(5-4) + (5-3)(6-4)] / [(1-3)² + (2-3)² + (3-3)² + (4-3)² + (5-3)²]= 4 / 10= 0.4最后,计算回归系数β0的估计值:β0̄ = Ȳ - β1̄X̄= 4 - 0.4 3= 2.2所以,回归系数β0和β1的估计值分别为2.2和0.4。
计量经济学习题及全部答案
计量经济学习题一一、判断正误1.在研究经济变量之间的非确定性关系时,回归分析是唯一可用的分析方法; 2.最小二乘法进行参数估计的基本原理是使残差平方和最小;3.无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n -1; 4.当我们说估计的回归系数在统计上是显着的,意思是说它显着地异于0; 5.总离差平方和TSS 可分解为残差平方和ESS 与回归平方和RSS 之和,其中残差平方和ESS 表示总离差平方和中可由样本回归直线解释的部分; 6.多元线性回归模型的F 检验和t 检验是一致的;7.当存在严重的多重共线性时,普通最小二乘估计往往会低估参数估计量的方差; 8.如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的自相关;9.在存在异方差的情况下,会对回归模型的正确建立和统计推断带来严重后果; 10...DW 检验只能检验一阶自相关; 二、单选题1.样本回归函数方程的表达式为 ;A .i Y =01i i X u ββ++B .(/)i E Y X =01i X ββ+C .i Y =01ˆˆi i X e ββ++D .ˆi Y =01ˆˆiX ββ+ 2.下图中“{”所指的距离是 ;A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在总体回归方程(/)E Y X =01X ββ+中,1β表示 ;A .当X 增加一个单位时,Y 增加1β个单位B .当X 增加一个单位时,Y 平均增加1β个单位C .当Y 增加一个单位时,X 增加1β个单位D .当Y 增加一个单位时,X 平均增加1β个单位 4.可决系数2R 是指 ;A .剩余平方和占总离差平方和的比重B .总离差平方和占回归平方和的比重C .回归平方和占总离差平方和的比重D .回归平方和占剩余平方和的比重 5.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=800,估计用的样本容量为24,则随机误差项i u 的方差估计量为 ;A .B .40C .D .6.设k 为回归模型中的参数个数不包括截距项,n 为样本容量,ESS 为残差平方和,RSS 为回归平方和;则对总体回归模型进行显着性检验时构造的F 统计量为 ;A .F =RSSTSSB .F =/(1)RSS k ESS n k --C .F =/1(1)RSS k TSS n k --- D .F =ESSTSS7.对于模型i Y =01ˆˆi iX e ββ++,以ρ表示i e 与1i e -之间的线性相关系数2,3,,t n =,则下面明显错误的是 ;A .ρ=,..DW =B .ρ=-,..DW =-C .ρ=0,..DW =2D .ρ=1,..DW =08.在线性回归模型 011...3i i k ki i Y X X u k βββ=++++≥;如果231X X X =-,则表明模型中存在 ;A .异方差B .多重共线性C .自相关D .模型误设定9.根据样本资料建立某消费函数 i Y =01i i X u ββ++,其中Y 为需求量,X 为价格;为了考虑“地区”农村、城市和“季节”春、夏、秋、冬两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为 ;A .2B .4C .5D .610.某商品需求函数为ˆi C =100.5055.350.45i i D X ++,其中C 为消费,X 为收入,虚拟变量10D ⎧=⎨⎩城镇家庭农村家庭,所有参数均检验显着,则城镇家庭的消费函数为 ;A .ˆi C =155.850.45i X +B .ˆiC =100.500.45i X + C .ˆi C =100.5055.35i X +D .ˆiC =100.9555.35i X + 三、多选题1.一元线性回归模型i Y =01i i X u ββ++的基本假定包括 ;A .()i E u =0B .()i Var u =2σ常数C .(,)i j Cov u u =0 ()i j ≠D .(0,1)iu NE .X 为非随机变量,且(,)i i Cov X u =02.由回归直线ˆi Y =01ˆˆi X ββ+估计出来的ˆiY ; A .是一组平均数 B .是实际观测值i Y 的估计值 C .是实际观测值i Y 均值的估计值 D .可能等于实际观测值i Y E .与实际观测值i Y 之差的代数和等于零 3.异方差的检验方法有A .图示检验法B .Glejser 检验C .White 检验D ...DW 检验E .Goldfeld Quandt -检验4.下列哪些非线性模型可以通过变量替换转化为线性模型 ;A .i Y =201i i X u ββ++B .1/i Y =01(1/)i i X u ββ++C .ln i Y =01ln i i X u ββ++D .i Y =iui i AK L e αβE .i Y =1122012iiX X i e e u ββααα+++5.在线性模型中引入虚拟变量,可以反映 ;A .截距项变动B .斜率变动C .斜率与截距项同时变动D .分段回归E .以上都可以 四、简答题1.随机干扰项主要包括哪些因素它和残差之间的区别是什么2.简述为什么要对参数进行显着性检验试说明参数显着性检验的过程;3.简述序列相关性检验方法的共同思路; 五、计算分析题1.下表是某次线性回归的EViews 输出结果,根据所学知识求出被略去部分的值用大写字母标示,并写出过程保留3位小数;Dependent Variable: Y Method: Least Squares Included observations: 132.用Goldfeld Quandt -方法检验下列模型是否存在异方差;模型形式如下:i Y =0112233 i i i i X X X u ββββ++++其中样本容量n =40,按i X 从小到大排序后,去掉中间10个样本,并对余下的样本按i X 的大小等分为两组,分别作回归,得到两个残差平方和1ESS =、2ESS =,写出检验步骤α=;F 分布百分位表α=3.有人用广东省1978—2005年的财政收入AV 作为因变量,用三次产业增加值作为自变量,进行了三元线性回归;第一产业增加值——1VAD ,第二产业增加值——2VAD ,第三产业增加值——3VAD ,结果为:AV =12335.1160.0280.0480.228VAD VAD VAD +-+2R =,F =- ..DW =试简要分析回归结果; 五、证明题求证:一元线性回归模型因变量模拟值ˆi Y 的平均值等于实际观测值i Y 的平均值,即ˆiY =i Y ; 计量经济学习题二一、判断正误正确划“√”,错误划“×” 1.残差剩余项i e 的均值e =()i e n ∑=0;2.所谓OLS 估计量的无偏性,是指参数估计量的数学期望等于各自的真值; 3.样本可决系数高的回归方程一定比样本可决系数低的回归方程更能说明解释变量对被解释变量的解释能力;4.多元线性回归模型中解释变量个数为k ,则对回归参数进行显着性检验的t 统计量的自由度一定是1n k --;5.对应于自变量的每一个观察值,利用样本回归函数可以求出因变量的真实值; 6.若回归模型存在异方差问题,可以使用加权最小二乘法进行修正;7.根据最小二乘估计,我们可以得到总体回归方程;8.当用于检验回归方程显着性的F 统计量与检验单个系数显着性的t 统计量结果矛盾时,可以认为出现了严重的多重共线性9.线性回归模型中的“线性”主要是指回归模型中的参数是线性的,而变量则不一定是线性的;10.一般情况下,用线性回归模型进行预测时,单个值预测与均值预测相等,且置信区间也相同; 二、单选题1.针对同一经济指标在不同时间发生的结果进行记录的数据称为A .面板数据B .截面数据C .时间序列数据D .以上都不是 2.下图中“{”所指的距离是A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在模型i Y =01ln i i X u ββ++中,参数1β的含义是A .X 的绝对量变化,引起Y 的绝对量变化B .Y 关于X 的边际变化C .X 的相对变化,引起Y 的平均值绝对量变化D .Y 关于X 的弹性4.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=90,估计用的样本容量为19,则随机误差项i u 方差的估计量为A .B .6C .D .55.已知某一线性回归方程的样本可决系数为,则解释变量与被解释变量间的相关系数为A .B .0.8C .D .6.用一组有20个观测值的样本估计模型i Y =01i i X u ββ++,在的显着性水平下对1β的显着性作t 检验,则1β显着异于零的条件是对应t 统计量的取值大于 A .0.05(20)t B .0.025(20)t C .0.05(18)t D .0.025(18)t7.对于模型i Y =01122ˆˆˆˆi ik ki iX X X e ββββ+++++,统计量22ˆ()/ˆ()/(1)ii i Y Y kY Y n k ----∑∑服从A .()t n k -B .(1)t n k --C .(1,)F k n k --D .(,1)F k n k --8.如果样本回归模型残差的一阶自相关系数ρ为零,那么..DW 统计量的值近似等于 ;A .1B .2C .4D .9.根据样本资料建立某消费函数如下i Y =01i i X u ββ++,其中Y 为需求量,X 为价格;为了考虑“地区”农村、城市和“季节”春、夏、秋、冬两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为A .2B .4C .5D .610.设消费函数为i C =012i i i i X D X u βββ+++,其中C 为消费,X 为收入,虚拟变量10D ⎧=⎨⎩城镇家庭农村家庭,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭具有同样的消费行为A .1β=0,2β=0B .1β=0,2β≠0C .1β≠0,2β=0D .1β≠0,2β≠0 三、多选题1.以i Y 表示实际观测值,ˆiY 表示用OLS 法回归后的模拟值,i e 表示残差,则回归直线满足A .通过样本均值点(,)X YB .2ˆ()i iY Y -∑=0 C .(,)i i Cov X e =0 D .i Y ∑=ˆiY ∑ E .i i e X ∑=0 2.对满足所有假定条件的模型i Y =01122i i i X X u βββ+++进行总体显着性检验,如果检验结果显示总体线性关系显着,则可能出现的情况包括A .1β=2β=0B .10β≠,2β=0C .10β≠,20β≠D .1β=0,20β≠E .1β=2β≠0 3.下列选项中,哪些方法可以用来检验多重共线性 ;A .Glejser 检验B .两个解释变量间的相关性检验C .参数估计值的经济检验D .参数估计值的统计检验E ...DW 检验 4.线性回归模型存在异方差时,对于回归参数的估计与检验正确的表述包括A .OLS 参数估计量仍具有线性性B .OLS 参数估计量仍具有无偏性C .OLS 参数估计量不再具有效性即不再具有最小方差D .一定会低估参数估计值的方差5.关于虚拟变量设置原则,下列表述正确的有A .当定性因素有m 个类型时,引入1m -个虚拟变量B.当定性因素有m个类型时,引入m个虚拟变量会产生多重共线性问题C.虚拟变量的值只能取0和1D.在虚拟变量的设置中,基础类别一般取值为0E.以上说法都正确四、简答题1.简述计量经济学研究问题的方法;2.简述异方差性检验方法的共同思路;3.简述多重共线性的危害;五、计算分析题1.下表是某次线性回归的EViews输出结果,被略去部分数值用大写字母标示,根据所学知识解答下列各题计算过程保留3位小数;本题12分Dependent Variable: YMethod: Least SquaresIncluded observations: 181求出A 、B 的值;2求TSS2.有人用美国1960-1995年36年间个人实际可支配收入X 和个人实际消费支出Y 的数据单位:百亿美元建立收入—消费模型 i Y =01i i X u ββ++,估计结果如下:ˆiY =9.4290.936i X -+ t :2R = ,F = ,..DW =1检验收入—消费模型的自相关状况5%显着水平; 2用适当的方法消除模型中存在的问题; 五、证明题证明:用于多元线性回归方程显着性检验的F 统计量与可决系数2R 满足如下关系: 计量经济学习题三 一、判断对错1、在研究经济变量之间的非确定性关系时,回归分析是惟一可用的分析方法;2、对应于自变量的每一个观察值,利用样本回归函数可以求出因变量的真实值;DW 检验临界值表α=3、OLS 回归方法的基本准则是使残差平方和最小;4、在存在异方差的情况下,OLS 法总是高估了估计量的标准差;5、无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n -1;6、线性回归分析中的“线性”主要是指回归模型中的参数是线性的,而变量则不一定是线性的;7、当我们说估计的回归系数在统计上是显着的,意思是说它显着异于0; 8、总离差平方和TSS 可分解为残差平方ESS 和与回归平方和RSS,其中残差平方ESS 表示总离差平方和可由样本回归直线解释的部分;9、所谓OLS 估计量的无偏性,是指回归参数的估计值与真实值相等; 10、当模型中解释变量均为确定性变量时,则可以用DW 统计量来检验模型的随机误差项所有形式的自相关性;二、单项选择1、回归直线t ^Y =0ˆβ+1ˆβX t 必然会通过点 A 、0,0; B 、_X ,_Y ;C 、_X ,0;D 、0,_Y ;2、针对经济指标在同一时间所发生结果进行记录的数据列,称为 A 、面板数据;B 、截面数据;C 、时间序列数据;D 、时间数据;3、如果样本回归模型残差的一阶自相关系数ρ接近于0,那么DW 统计量的值近似等于 A 、0 B 、1 C 、2 D 、44、若回归模型的随机误差项存在自相关,则参数的OLS 估计量A 、无偏且有效B 、有偏且非有效C 、有偏但有效D 、无偏但非有效 5、下列哪一种检验方法不能用于异方差检验A、戈德菲尔德-夸特检验;B、DW检验;C、White检验;D、戈里瑟检验;6、当多元回归模型中的解释变量存在完全多重共线性时,下列哪一种情况会发生A、OLS估计量仍然满足无偏性和有效性;B、OLS估计量是无偏的,但非有效;C、OLS估计量有偏且非有效;D、无法求出OLS估计量;7、DW检验法适用于的检验A、一阶自相关B、高阶自相关C、多重共线性 D都不是8、在随机误差项的一阶自相关检验中,若DW=,给定显着性水平下的临界值d L=,d U=,则由此可以判断随机误差项A、存在正自相关B、存在负自相关C、不存在自相关D、无法判断9、在多元线性线性回归模型中,解释变量的个数越多,则可决系数R2A、越大;B、越小;C、不会变化;D、无法确定10、在某线性回归方程的估计结果中,若残差平方和为10,回归平方和为40,则回归方程的拟合优度为A、 B、 C、 D、无法计算;三、简答与计算1、多元线性回归模型的基本假设有哪些2、计量经济模型中的随机误差项主要包含哪些因素3、简答经典单方程计量模型的异方差性概念、后果以及修正方法;4、简述方程显着性检验F检验与变量显着性检验t检验的区别;5、对于一个三元线性回归模型,已知可决系数R2=,方差分析表的部份结果如下:1样本容量是多少2总离差平方和TSS为多少3残差平方和ESS为多少4回归平方和RSS和残差平方和ESS的自由度各为多少5求方程总体显着性检验的F统计量;四、案例分析下表是中国某地人均可支配收入INCOME与储蓄SAVE之间的回归分析结果单位:元:Dependent Variable: SAVEMethod: Least SquaresSample: 1 31Included observations: 31Variable CoefficientStd.Errort-Statistic Prob.CINCOME――――R-squared Mean dependent var AdjustedR-squared. dependent var. of regression Akaike info criterionSum squared resid1778097Schwarz criterion.Log likelihood F-statisticDurbin-Watsonstat ProbF-statistic1、请写出样本回归方程表达式,然后分析自变量回归系数的经济含义2、解释样本可决系数的含义3、写出t检验的含义和步骤,并在5%的显着性水平下对自变量的回归系数进行t 检验临界值: 29=;4、下表给出了White异方差检验结果,试在5%的显着性水平下判断随机误差项是否存在异方差;5、下表给出LM序列相关检验结果滞后1期,试在5%的显着性水平下判断随机误差项是否存在一阶自相关;计量经济学习题四一、判断对错1、一般情况下,在用线性回归模型进行预测时,个值预测与均值预测结果相等,且它们的置信区间也相同;2、对于模型Yi =β+β1X1i+β2X2i+……+βkXki+μi,i=1,2, ……,n;如果X2=X5+X6, 则模型必然存在解释变量的多重共线性问题;3、OLS回归方法的基本准则是使残差项之和最小;4、在随机误差项存在正自相关的情况下,OLS法总是低估了估计量的标准差;5、无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n-1;6、一元线性回归模型的F检验和t检验是一致的;7、如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的序列相关;8、在近似多重共线性下,只要模型满足OLS的基本假定,则回归系数的最小二乘估计量仍然是一BLUE估计量;9、所谓参数估计量的线性性,是指参数估计量是解释变量的线性组合;10、拟合优度的测量指标是可决系数R2或调整过的可决系数,R2越大,说明回归方程对样本的拟合程度越高;二、单项选择1.在多元线性回归模型中,若两个自变量之间的相关系数接近于1,则在回归分析中需要注意模型的问题;A、自相关;B、异方差;C、模型设定偏误;D、多重共线性;2、在异方差的众多检验方法中,既能判断随机误差项是否存在异方差,又能给出异方差具体存在形式的检验方法是A、图式检验法;B、DW检验;C、戈里瑟检验;D、White检验;3、如果样本回归模型残差的一阶自相关系数ρ接近于1,那么DW统计量的值近似等于A、0B、1C、2D、44、若回归模型的随机误差项存在异方差,则参数的OLS估计量A、无偏且有效B、无偏但非有效C、有偏但有效D、有偏且非有效5、下列哪一个方法是用于补救随机误差项自相关问题的A、OLS;B、ILS;C、WLS;D、GLS;6、计量经济学的应用不包括:A、预测未来;B、政策评价;C、创建经济理论;D、结构分析;7、LM检验法适用于的检验A、异方差;B、自相关;C、多重共线性; D都不是8、在随机误差项的一阶自相关检验中,若DW=,给定显着性水平下的临界值d L=,d U=,则由此可以判断随机误差项A、存在正自相关B、存在负自相关C、不存在自相关D、无法判断9、在多元线性线性回归模型中,解释变量的个数越多,则调整可决系数2RA、越大;B、越小;C、不会变化;D、无法确定10、在某线性回归方程的估计结果中,若残差平方和为10,总离差平方和为100,则回归方程的拟合优度为A、;B、;C、;D、无法计算;三、简答与计算1、多元线性回归模型的基本假设有哪些2、简述计量经济研究的基本步骤3、简答经典单方程计量模型自相关概念、后果以及修正方法;4、简述对多元回归模型01122...i i i k ki i Y X X X u ββββ=+++++进行显着性检验F 检验的基本步骤5、对于一个五元线性回归模型,已知可决系数R 2=,方差分析表的部份结果如下:1样本容量是多少2回归平方和RSS 为多少3残差平方和ESS 为多少 4回归平方和RSS 和总离差平方和TSS 的自由度各为多少 5求方程总体显着性检验的F 统计量;四、实验下表是某国1967-1985年间GDP 与出口额EXPORT 之间的回归分析结果单位:亿美元:Dependent Variable: EXPORT Method: Least Squares Sample: 1967 1985Included observations: 19VariableCoefficientStd. Errort-Statist icProb. CGDP――――R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike infocriterionSum squared residSchwarz criterion Log likelihoodF-statisticDurbin-Watson statProbF-statistic1、请写出样本回归方程表达式,然后分析自变量回归系数的经济含义2、解释样本可决系数的含义3、写出t 检验的含义和步骤,并在5%的显着性水平下对自变量的回归系数进行t 检验临界值: 17=;4、下表给出了White 异方差检验结果,试在5%的显着性水平下判断随机误差项是否存在异方差;5、下表给出LM 序列相关检验结果滞后1期,试在5%的显着性水平下判断随机误差项是否存在一阶自相关;计量经济学习题五一、判断正误正确划“√”,错误划“x ”1、最小二乘法进行参数估计的基本原理是使残差平方和最小;2、一般情况下,用线性回归模型进行预测时,个值预测与均值预测相等,且置信区间也相同;3、如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的序列相关;4、若回归模型存在异方差问题,应使用加权最小二乘法进行修正;5、多元线性回归模型的F 检验和t 检验是一致的;6、DW 检验只能检验随机误差项是否存在一阶自相关;7、总离差平方和TSS 可分解为残差平方RSS 和与回归平方和ESS,其中残差平方RSS 表示总离差平方和可由样本回归直线解释的部分;8、拟合优度用于检验回归方程对样本数据的拟合程度,其测量指标是可决系数或调整后的可决系数;9、对于模型011... 1,2,...,i i n ni i Y X X u i n βββ=++++=;如果231X X X =-,则模型必然存在解释变量的多重共线性问题;10、所谓OLS 估计量的无偏性,是指参数估计量的数学期望等于各自真值; 二、单项选择1、回归直线01ˆˆˆi iY X ββ=+必然会通过点A、0,0B、_X,_YC、_X,0D、0,_Y2、某线性回归方程的估计的结果,残差平方和为20,回归平方和为80,则回归方程的拟合优度为A、 B、C、 D、无法计算3、针对经济指标在同一时间所发生结果进行记录的数据列,称为A、面板数据B、截面数据C、时间序列数据D、时间数据4、对回归方程总体线性关系进行显着性检验的方法是A、Z检验B、t检验C、F检验D、预测检验5、如果DW统计量等于2,那么样本回归模型残差的一阶自相关系数ρ近似等于A、0B、-1C、1D、6、若随机误差项存在异方差,则参数的普通最小二乘估计量A、无偏且有效B、有偏且非有效C、有偏但有效D、无偏但非有效7、下列哪一种方法是用于补救随机误差项的异方差问题的A、OLS;B、ILS;C、WLSD、GLS8、如果某一线性回归方程需要考虑四个季度的变化情况,那么为此设置虚拟变量的个数为A、1B、2C、3D、49、样本可决系数R2越大,表示它对样本数据拟合得A、越好B、越差C、不能确定D、均有可能10、多元线性回归模型中,解释变量的个数越多,可决系数R2A、越大;B、越小;C、不会变化;D、无法确定三、简答题1、简述计量经济学的定义;2、多元线性回归模型的基本假设有哪些3、简答异方差概念、后果以及修正方法;4、简述t检验的目的及基本步骤;四、计算对于一个三元线性回归模型,已知可决系数20.8R ,方差分析表的部份结果如下:变差来源平方和自由度源于回归ESS 200源于残差RSS总变差TSS 221样本容量是多少2总变差TSS为多少3残差平方和RSS为多少4ESS和RSS的自由度各为多少5求方程总体显着性检验的F统计量值;计量经济学习题六-案例题一、根据美国各航空公司航班正点到达的比率X%和每10万名乘客投诉的次数Y 进行回归,EViews输出结果如下:Dependent Variable: YMethod: Least SquaresSample: 1 9Included observations: 91对以上结果进行简要分析包括方程显着性检验、参数显着性检验、DW值的评价、对斜率的解释等,显着性水平均取;2按标准书写格式写出回归结果;二、以下是某次线性回归的EViews输出结果,部分数值已略去用大写字母标示,但它们和表中其它特定数值有必然联系,分别据此求出这些数值,并写出过程;保留3位小数Dependent Variable: YMethod: Least SquaresSample: 1 13Included observations: 131求A 的值; 2求B 的值; 3求C 的值;三、用1970-1994年间日本工薪家庭实际消费支出Y 与实际可支配收入X 单位:103日元数据估计线性模型Y =01X u ββ++,然后用得到的残差序列t e 绘制以下图形; 1试根据图形分析随机误差项之间是否存在自相关若存在,是正自相关还是负自相关答:图形显示,随机误差项之间存在着相关性,且为正的自相关; 2此模型的估计结果为 试用DW 检验法检验随机误差项之间是否存在自相关;四、用一组截面数据估计消费Y —收入X 方程Y =01X u ββ++的结果为1根据回归的残差序列et 图分析本模型是否存在异方差注:abset 表示et 的绝对值;2其次,用White 法进行检验;EViews 输出结果见下表:附表:DW 检验临界值表α=White Heteroskedasticity Test:Dependent Variable: RESID^2 Method: Least Squares Sample: 1 60Included observations: 60若给定显着水平0.05α=,以上结果能否说明该模型存在异方差查卡方分布临界值的自由度是多少五、下图描述了残差序列{}t e 与其滞后一期值1{}t e -之间的散点图,试据此判断随机误差项之间是否存在自相关若存在,则是正自相关还是负自相关六、在一多元线性回归模型中,为检验解释变量之间是否存在多重共线性问题,以解释变量1x 作为被解释变量,对其余解释变量进行辅助回归,得到可决系数20.95R =;试计算变量1x 的方差扩大因子1VIF ,并根据经验判断解释变量间是否存在多重共线性问题七、下表是中国某地人均可支配收入INCOME 与储蓄SAVE 之间的回归分析结果单位:元:Sample: 1 31Included observations: 31VariableCoefficientStd. Errort-Statist ic Prob.CINCOME--R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike infocriterionSum squared resid 1778097. Schwarz criterion Log likelihoodF-statisticDurbin-Watson statProbF-statistic1、请写出样本回归方程表达式,然后分析自变量INCOME 回归系数的经济含义2、解释可决系数的含义3、若给定显着性水平5%α=,试对自变量INCOME 的回归系数进行显着性检验已知0.025(29) 2.045t =4、在5%α=的显着性水平下,查31n =的DW 临界值表得 1.363L d =, 1.496U d =,试根据回归结果判断随机误差项是否存在一阶自相关5、下表为上述回归的White 检验结果,在5%α=的显着性水平下,试根据P 值检验判断随机误差项是否存在异方差 White Heteroskedasticity Test:F-statisticProbabilityObsR-squaredProbability计量经济学习题一答案一、判断正误1. × 2. √ 3. √ 4. √ 5. × 6. × 7. ×8. × 9. √ 10. √ 二、单选题每小题分,共15分1. D ;2. B ;3. B ;4. C ;5. B ; 6. B ;7. B ;8. B ;9. B ;10. A ; 三、多选题1. ABCE 2. BCDE 3. ABCE 4. ABCD 5. ABCDE ; 四、简答题1.随机干扰项主要包括哪些因素它和残差之间的区别是什么答:随机干扰项包括的主要因素有:1众多细小因素的影响;2未知因素的影响;3数据测量误差或残缺;4模型形式不完善;5变量的内在随机性;随机误差项羽残差不同,残差是样本观测值与模拟值的差,即i e =ˆi iY Y -;残差项是随机误差项的估计;2.简述为什么要对参数进行显着性检验试说明参数显着性检验的过程;答:最小二乘法得到的回归直线是对因变量与自变量关系的一种描述,但它是不是恰当的描述呢一般会用与样本点的接近程度来判别这种描述的优劣,而当获得以上问题的肯定判断之后,还需要确定每一个参数的可靠程度,即参数本身以及对应的变量该不该保留在方程里,这就有必要进行参数的显着性检验;这种检验是确定各个参数是否显着地不等于零;检验分为三个步骤:①提出假设:原假设0:0i H β=;备择假设1:0i H β≠ ②在原假设成立的前提下构造统计量:()ˆ~(1)ˆiit t n k Se ββ=--③给定显着性水平α,查t 分布表求得临界值/2(1)t n k α--,把根据样本数据计算出的t 统计量值t *与/2(1)t n k α--比较:若/2(1)t t n k α*>--,则拒绝原假设0H ,即在给定显着性水平下,解释变量i X 对因变量有显着影响;若/2(1)t t n k α*<--,则不能拒绝原假设0H ,即在给定显着性水平下,解释变量i X 对因变量没有显着影响.3.简述序列相关性检验方法的共同思路;答:由于自相关性,使得相对于不同的样本点,随机干扰项之间存在相关关系,那么检验自相关性,首先根据OLS 法估计残差,将残差作为随机干扰项的近似估计值,然后检验这些近似估计值之间的相关性以判定随机干扰项是否存在序列相关;各种检验方法就是在这个思路下发展起来的;五、计算分析题1.下表是某次线性回归的EViews 输出结果,根据所学知识求出被略去部分的值用大写字母标示,Dependent Variable: Y Method: Least Squares Included observations: 13解:A=ˆ()Se β=ˆt β=7.10604.3903=;B=2R =211(1)1n R n k -----=1311(10.8728)1321-----=由公式2ˆσ=21ien k --∑,得C=2ie ∑=2ˆ(1)n k σ--=21.1886(1321)--=; 2.用Goldfeld Quandt -方法检验下列模型是否存在异方差;模型形式如下:i Y =0112233 i i i i X X X u ββββ++++其中样本容量n =40,按i X 从小到大排序后,去掉中间10个样本,并对余下的样本按i X 的大小等分为两组,分别作回归,得到两个残差平方和1ESS =、2ESS =,写出检验步骤α=;α。
计量经济学习题含答案
计量经济学习题含答案第1章绪论习题一、单项选择题1.把反映某一总体特征的同一指标的数据,按一定的时间顺序和时间间隔排列起来,这样的数据称为( B )A. 横截面数据B. 时间序列数据C. 面板数据D. 原始数据2.同一时间、不同单位按同一统计指标排列的观测数据称为(B )A.原始数据 B.截面数据C.时间序列数据 D.面板数据3.用计量经济学研究问题可分为以下四个阶段(B)A.确定科学的理论依据、建立模型、模型修定、模型应用B.建立模型、估计参数、检验模型、经济预测C.搜集数据、建立模型、估计参数、预测检验D.建立模型、模型修定、结构分析、模型应用4.下列哪一个模型是计量经济模型( C )A.投入产出模型B.数学规划模型C.包含随机变量的经济数学模型D.模糊数学模型二、问答题1.计量经济学的定义2.计量经济学的研究目的3.计量经济学的研究内容1.答:计量经济学是统计学、经济学、数学相结合的一门综合性学科,是一门从数量上研究物质资料生产、交换、分配、消费等经济关系和经济活动规律及其应用的科学2.答:计量经济学的研究目的主要有三个:(1)结构分析。
指应用计量经济模型对经济变量之间的关系作出定量的度量。
(2)预测未来。
指应用已建立的计量经济模型求因变量未来一段时期的预测值。
(3)政策评价。
指通过计量经济模型仿真各种政策的执行效果,对不同的政策进行比较和选择。
3.答:计量经济学在长期的发展过程中逐步形成了两个分支:理论计量经济学和应用计量经济学。
理论计量经济学主要研究计量经济学的理论和方法。
应用计量经济学将计量经济学方法应用于经济理论的特殊分支,即应用理论计量经济学的方法分析经济现象和预测经济变量。
2一元线性回归模型习题一、单项选择题1.最小二乘法是指(D)A. 使达到最小值B. 使达到最小值C. 使达到最小值D. 使达到最小值2.在一元线性回归模型中,样本回归方程可表示为(C )A. B.C. D.3.线设OLS法得到的样本回归直线为,以下说法不正确的是(B ) A. B.C.D.在回归直线上4.对样本的相关系数,以下结论错误的是(A)A.越接近0,与之间线性相关程度高B.越接近1,与之间线性相关程度高C.D、,则与相互独立二、多项选择题1.最小二乘估计量的统计性质有( ABC )A. 无偏性B. 线性性C. 最小方差性D. 不一致性E. 有偏性2.利用普通最小二乘法求得的样本回归直线的特点(ACD)A. 必然通过点B. 可能通过点C. 残差的均值为常数D.的平均值与的平均值相等E. 残差与解释变量之间有一定的相关性3.随机变量(随机误差项)中一般包括那些因素(ABCDE )A回归模型中省略的变量B人们的随机行为C建立的数学模型的形式不够完善。
计量经济学习题题库(完整版)及答案
计量经济学习题题库完整版分)一、单项选择题(每小题1分)1.计量经济学是下列哪门学科的分支学科(C)。
A.统计学.经济学 D.数理统计学.数理统计学.数学 C.经济学.统计学 B.数学2.计量经济学成为一门独立学科的标志是(B)。
A.1930年世界计量经济学会成立年《计量经济学》会刊出版年世界计量经济学会成立 B.1933年《计量经济学》会刊出版C.1969年诺贝尔经济学奖设立)一词构造出来 年诺贝尔经济学奖设立 D.1926年计量经济学(Economics)一词构造出来3.外生变量和滞后变量统称为(D)。
A.控制变量.前定变量.被解释变量 D.前定变量.解释变量 C.被解释变量.控制变量 B.解释变量4.横截面数据是指(A)。
A.同一时点上不同统计单位相同统计指标组成的数据B.同一时点上相同统计单位相同统计指标组成的数据C.同一时点上相同统计单位不同统计指标组成的数据D.同一时点上不同统计单位不同统计指标组成的数据5.同一统计指标,同一统计单位按时间顺序记录形成的数据列是(C)。
A.时期数据.横截面数据.时间序列数据 D.横截面数据.时期数据 B.混合数据.混合数据 C.时间序列数据6.在计量经济模型中,由模型系统内部因素决定,表现为具有一定的概率分布的随机变量,其数值受模型中其他变量影响的变量是( D )。
模型中其他变量影响的变量是(A.内生变量.前定变量.滞后变量 D.前定变量.外生变量 C.滞后变量.内生变量 B.外生变量7.描述微观主体经济活动中的变量关系的计量经济模型是(A )。
A.微观计量经济模型.理论计量经济模型 D.应用计量.宏观计量经济模型 C.理论计量经济模型.微观计量经济模型 B.宏观计量经济模型经济模型经济模型8.经济计量模型的被解释变量一定是(C )。
A.控制变量.外生变量.内生变量 D.外生变量.政策变量 C.内生变量.控制变量 B.政策变量9.下面属于横截面数据的是(.下面属于横截面数据的是( D )。
计量经济学习题集及详解答案
第一章绪论一、填空题:1.计量经济学是以揭示经济活动中客观存在的__________为内容的分支学科,挪威经济学家弗里希,将计量经济学定义为__________、__________、__________三者的结合。
2.数理经济模型揭示经济活动中各个因素之间的__________关系,用__________性的数学方程加以描述,计量经济模型揭示经济活动中各因素之间__________的关系,用__________性的数学方程加以描述。
3.经济数学模型是用__________描述经济活动。
4.计量经济学根据研究对象和内容侧重面不同,可以分为__________计量经济学和__________计量经济学。
5.计量经济学模型包括__________和__________两大类。
6.建模过程中理论模型的设计主要包括三部分工作,即__________、____________________、____________________。
7.确定理论模型中所包含的变量,主要指确定__________。
8.可以作为解释变量的几类变量有__________变量、__________变量、__________变量和__________变量。
9.选择模型数学形式的主要依据是__________。
10.研究经济问题时,一般要处理三种类型的数据:__________数据、__________数据和__________数据。
11.样本数据的质量包括四个方面__________、__________、__________、__________。
12.模型参数的估计包括__________、__________和软件的应用等内容。
13.计量经济学模型用于预测前必须通过的检验分别是__________检验、__________检验、__________检验和__________检验。
14.计量经济模型的计量经济检验通常包括随机误差项的__________检验、__________检验、解释变量的__________检验。
计量经济学习题及答案
习题讲解(一)一、选择题1、样本回归函数(方程)的表达式为( D )A.i i i X Y μββ++=10B.i i X X Y E 10)(ββ+=C.i i i e X Y ++=10ˆˆββD.ii X Y 10ˆˆˆββ+= 2、反映由模型中解释变量所解释的那部分离差大小的是( B )A.总离差平方和B.回归平方和C.残差平方和D.都不是3、设k 为回归模型中的参数个数(不包括常数项),n 为样本容量,RSS 为残差平方和,ESS 为回归平方和,则对总体回归模型进行显着性检验时构造的F 统计量为( B ) A.TSSESS F = B.)1(--=k n RSS k ESS F C.)1(1---=k n TSS k ESS F D.TSSRSS F = 4、对于某样本回归模型,已求得DW 的值为l ,则模型残差的自相关系数∧ρ近似等于( C ).0 C5、下列哪种方法不能用来检验异方差( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验 检验6、根据一个n =30的样本估计tt t e X Y ++=10ˆˆββ后计算得.=,已知在5%的显着水平下,35.1=L d ,49.1=U d ,则认为原模型( C )。
A.不存在一阶序列相关B.不能判断是否存在一阶序列相关C.存在正的一阶序列相关D.存在负的一阶序列相关7、某商品需求函数模型为i i i X Y μββ++=10,其中Y 为需求量,X 为价格。
为了考虑“地区”(农村、城市)和“季节”(春、夏、秋、冬)两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为( B ).4 C8、可以用于联立方程计量模型方程间误差传递性检验的统计量是( C )A.均方百分比误差 检验统计量C.均方根误差D.滚动预测检验9、下列属于有限分布滞后模型的是( D )A. t t t t X X Y μβββ++++=-Λ1210B. t t t t t Y Y X Y μββββ++++=--231210C. t t t t Y Y Y μβββ++++=-Λ1210D. t k t k t t t X X X Y μββββ+++++=+--11210Λ10、估计模型Y t =β0+β1X t +β2Y t-1+μt (其中μt 满足线性模型的全部假设)参数的适当方法是( D )A.二阶段最小二乘法B.间接最小二乘法C.广义差分法D.工具变量法11、考察某地区农作物种植面积与农作物产值的关系,建立一元线性回归模型i i i X Y μββ++=10(X 表示农作物种植面积、Y 表示农作物产值),采用30个样本,根据OLS 方法得54.0ˆ1=β,对应标准差045.01ˆ=βS ,那么,1β对应的统计量t 为( ) B.0.0243 C. 、一无线性回归模型 的最小二乘回归结果显示,残差平方和RSS=,样本容量为25,则回归模型的标准差 为( B )B.1.324C. 、k 表示模型系统中先决变量的个数(含常数项),i k 表示第i 个方程中先决变量的个数(含常数项),i g 表示第i 个方程中内生变量的个数,识别的阶条件为1-<-i i g k k ,表示( B )A.第i 个方程恰好识别B.第i 个方程不可识别C.第i 个方程过度识别D.第i 个方程具有唯一的统计形式14、当随机误差项存在序列相关时,单位根检验采用的是( B )。
计量经济学习题及答案
第一章绪论一、填空题:1 .计量经济学是以揭示经济活动中客观存在的为内容的分支学科,挪威经济学家弗里希, 将计量经济学定义为??三者的结合.2 .数理经济模型揭示经济活动中各个因素之间的________ 关系,用性的数学方程加以描述,计量经济模型揭示经济活动中各因素之间的关系,用_________________________ 性的数学方程加以描述.3 .经济数学模型是用_______ 描述经济活动.4 .计量经济学根据研究对象和内容侧重面不同,可以分为计量经济学和计量经济学.5 .计量经济学模型包括 ?口________________ 网大类.6 .建模过程中理论模型的设计主要包括三局部工作,即、:7 .确定理论模型中所包含的变量,主要指确定.8 .可以作为解释变量的几类变量有■变量、变量、变量和变量.9 .选择模型数学形式的主要依据是.10 .研究经济问题时,一般要处理三种类型的数据:____________ 数据、 __________ 数据和数据.11 .样本数据的质量包括四个方面: ?.12 .模型参数的估计包括?___________________ 和软件的应用等内容.13 .计量经济学模型用于预测前必须通过的检验分别是_________ 检当 ____________ 检当检验和__________ 检验014 .计量经济模型的计量经济检验通常包括随机误差项的_________ 检当泉_________ 检验、解释变量的__________ 检验.15 .计量经济学模型的应用可以概括为四个方面, 即?::.16 .结构分析所采用的主要方法是 ?口.二、单项选择题:1 .计量经济学是一门〔〕学科.A.数学B. 经济C.统计D. 测量2 .狭义计量经济模型是指〔〕oA.投入产出模型B. 数学规划模型C,包含随机方程的经济数学模型D.模糊数学模型3 .计量经济模型分为单方程模型和〔〕.A.随机方程模型B. 行为方程模型C.联立方程模型D. 非随机方程模型4 .经济计量分析的工作程序〔〕A.设定模型,检验模型,估计模型,改良模型B.设定模型,估计参数,检验模型,应用模型C.估计模型,应用模型,检验模型,改良模型D.搜集资料,设定模型,估计参数,应用模型5 .同一统计指标按时间顺序记录的数据列称为〔〕A.横截面数据B. 时间序列数据C.修匀数据D. 平行数据6 .样本数据的质量问题,可以概括为完整性、准确性、可比性和〔〕.A.时效性B. 一致性C.广泛性D. 系统性7 .有人采用全国大中型煤炭企业的截面数据,估计生产函数模型,然后用该模型预测未来煤炭行业的产出量,这是违反了数据的〔〕原那么.A.一致性B. 准确性C.可比性D. 完整性8 .判断模型参数估计量的符号、大小、相互之间关系的合理性属于〔〕准那么.A.经济计量准那么B. 经济理论准那么C.统计准那么D. 统计准那么和经济理论准那么9 .对以下模型进行经济意义检验,哪一个模型通常被认为没有实际价值的〔〕.A,〔消费〕5.0 °8[〔收入〕B.Q 〔商品需求〕10 OH 〔收入〕°加〔价格〕C.Q si 〔商品供应〕20 °.75P〔价格〕D.Yi〔产出量〕065K「6〔资本〕L:4〔劳动〕第二章单方程计量经济学模型理论与方法〔上〕一、填空题:1 .与数学中的函数关系相比,计量经济模型的显著特点是引入随机误差项u , u包含了丰富的内容,主要包括五方面、、、___________________ 02 .计量经济模型普通最小二乘法的古典假定有? ? ?o_________________________ 03 .被解释变量的观测值Y i与其回归理论值E〔Y〕之间的偏差,称为;被解释变量的观测值Y i与其回归估计值Y?之间的偏差,称为.4 .对线性回归模型Y° i X进行最小二乘估计,最小二乘准那么是o5 .高斯一马尔可夫定理证实在总体参数的各种无偏估计中,普通最小二乘估计量具有________________ 的特性,并由此才使最小二乘法在数理统计学和计量经济学中获得了最广泛的应用.6 .普通最小二乘法得到的参数估计量具有? ? _________ 统计性质.7 .对于Y? 2 ax% ?2X2i,在给定置信水平下,减小?2的置信区间的途径主要有 .> o8 .对包含常数项的季节〔春、夏、秋、冬〕变量模型运用最小二乘法时,如果模型中需要引入季节虚拟变量,一般引入虚拟变量的个数为_______________ o9 .对计量经济学模型作统计检验包括_________ 检验、___________ 检验、__________ 检验.10 .总体平方和TSS反映 _________________________ 之离差的平方和;回归平方和ESS反映了_____________________ 之离差的平方和;残差平方和RSS反映了 ___________________ 之差的平方和.11 .方程显著性检验的检验对象是___________________________________________14 .将非线性回归模型转换为线性回归模型,常用的数学处理方法有、>_________________________ OX15 .在计量经济建模时,对非线性模型的处理方法之一是线性化,模型Y 线性化的变量变换形X式为 变换后的用K 型形式为 C16 .在计量经济建模时,对非线性模型的处理方法之一是线性化,模型 A变换后的模型形式为二、单项选择题: 17 回归分析中定义的〔〕A.解释变量和被解释变量都是随机变量B.解释变量为非随机变量,被解释变量为随机变量C.解释变量和被解释变量都为非随机变量D.解释变量为随机变量,被解释变量为非随机变量18 最小二乘准那么是指使〔〕到达最小值的原那么确定样本回归方程.19 参数估计量.是丫的线性函数称为参数估计量具有〔〕的性质.XY ——X 线性化的变量变换1 e形式为A. nY t Y?t 1 B.Y Y tC. max Y t Y?D.;XA.随机误差项B.C. Yi的离差D.Y?的离差4.最大或然准那么是从模型总体抽取该 n 组样本观测值的〔〕最大的准那么确定样本回归方程.A.离差平方和B.均值 C.概率D.万差3.以下图中A.线性B. 无偏性C.有效性D. 一致性20 参数的估计量?具备有效性是指〔〕A.Var〔?〕0B. Var〔?〕为最小C. ? 0D. 〔?〕为最小21 要使模型能够得出参数估计量,所要求的最小样本容量为〔〕A.n >k+1B.n <k+1C.n>30D.n >3〔k+1〕222 含有截距项的三元线性回归模型估计的残差平方和为e t 800,估计用样本容量为n24,那么随机误差项u t的方差估计量为〔〕.A.33.33B.40C.38.09D.36.3623 最常用的统计检验准那么包括拟合优度检验、变量的显著性检验和〔〕 .A.方程的显著性检验B. 多重共线性检验C.异方差性检验D. 预测检验24 .反映由模型中解释变量所解释的那局部离差大小的是〔〕.A.总体平方和B. 回归平方和C. 残差平方和25 .总体平方和TSS残差平方和RSSt回归平方和ES口者的关系是〔〕.A.RSS=TSS+ESSB.TSS=RSS+ESSC.ESS=RSS-TSSD.ESS=TSS+RSS26 .下面哪一个必定是错误的〔〕.Y? 30 0.2X i 反丫0.8A.Y? 75 1.5X i r XY0.91B.Y? 5 2.1X i % 0.78C.Y? 12 3.5X i r XY0.96D.27 .产量〔X,台〕与单位产品本钱〔Y,元/台〕之间的回归方程为Y? 356 1.5X ,这说明〔〕A.产量每增加一台,单位产品本钱增加 356元B.产量每增加一台,单位产品本钱减少 1.5元C.产量每增加一台,单位产品本钱平均增加 356元D.产量每增加一台,单位产品本钱平均减少 1.5元14 .回归模型Y io iX [ i, i = i ,…,25中,总体方差未知,检验H .: i 0时,所用的检验?统计量」一^艮从〔〕.S?i2A. 〔n 2〕B. t 〔n 1〕C. 2〔n 1〕D.t 〔n 2〕15 .设k 为回归模型中的参数个数〔包括截距项〕,n 为样本容量,ES 效残差平方和,RS 效回归平方和 那么对总体回归模型进行显著性检验时构造的 F 统计量为〔〕C.F 一+0017 .线性回归模型的参数估计量 ?是随机变量丫的函数,即? X 'X 1X ,Y 0所以?是〔〕A.随机变量B. 非随机变量C.确定性变量D.常量18 .由Y . X .?可以得到被解释变量的估计值,由于模型中参数估计量的不确定性及随机误差项的影 响,可知Y .是〔〕.A.确定性变量B.C.随机变量D.19 .下面哪一表述是正确的〔〕oA.线性回归模型丫 o 1X iB.对模型Y i1X 1i 2X2i i进行方程显著性检验〔即F 检验〕,检验的零假设是FA. RSS/(k 1) ESS/(n k)B.RSS/(k 1)ESS/(n k) RSS F C. ESSD.ESS FRSS16.根据可决系数R 2与F 统计量的关系可知, 当R 2=1时有〔〕oA.F=1B.F= -1D.F=01 n i 的零均值假设是指ni 1 iH 0:0 1 2 0C.相关系数较大意味着两个变量存在较强的因果关系D.当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系20 .在双对数线性模型lnY0 11n x中,参数1的含义是〔〕0A.Y关于X的增长量B.Y 关于X的开展速度C.Y关于X的边际倾向D.Y 关于X的弹性21 .根据样本资料已估计得出人均消费支出Y对人均收入X的回归方程为lnY 2.00 0.75lnX ,这说明人均收入每增加1 % ,人均消费支出将增加〔〕A.2%B.0.2%C.0.75%D.7.5%22 .半对数模型Y 0 11nx中,参数1的含义是〔〕0A. X的绝对量变化,引起Y的绝对量变化B. Y关于X的边际变化C. X的相对变化,引起Y的期望值绝对量变化D. Y关于X的弹性23 .半对数模型1nY0 1X 中,参数1的含义是〔〕oA.X的绝对量发生一定变动时,引起因变量Y的相对变化率B.Y关于X的弹性C.X的相对变化,引起Y的期望值绝对量变化D.Y关于X的边际变化24.双对数模型1nY0 11nx中,参数1的含义是〔〕0A.X的相对变化,引起Y的期望值绝对量变化B.Y关于X的边际变化C.X的绝对量发生一定变动时,引起因变量Y的相对变化率D.Y关于X的弹性第二章单方程计量经济学模型理论与方法〔下〕一、填空题:1 .在多元线性回归模型中,解释变量间呈现线性关系的现象称为____________ 问题,给计量经济建模带来不利影响,因此需检验和处理它.2 .检验样本是否存在多重共线性的常见方法有:____________ 和逐步回归法.3 .处理多重共线性的方法主要有两大类:f口4 .普通最小二乘法、加权最小二乘法都是 __________ 的特例.5 .随机解释变量〞与随机误差项相关,可表示为.6 .工具变量法并没有改变原模型,只是在原模型的参数估计过程中用工具变量“替代〞.7 .对于模型丫0 i X ii 2X2i k X ki i, i=i,2,…,n,假设用工具变量Z代替其中的随机解释变量X2,那么采用工具变量法所得新的正规方程组仅仅是将原正规方程组中的方程丫X2i ? ?X1i ?2X2i N X ki X2i用方程________________________ 代替,而其他方程那么保持不变.8 .狭义工具变量法参数估计量的统计性质是小样本下 ,大样本下.9 .对于线性回归模型丫0 i X ii 2X2i k X ki i, i=1,2,…,n,其矩阵表示为Y XB N.假设用工具变量Z代替其中的随机解释变量X2 ,那么采用工具变量法所得参数估计量的矩阵表示为 , 其中Z被称为.10 .以截面数据为样本建立起来的计量经济模型中的随机误差项往往存在.11 .以时间序列数据为样本建立起来的计量经济模型中的随机误差项往往存在.二、单项选择题:i .在线性回归模型中,假设解释变量X i和X2的观测值成比例,既有X ii kX2i ,其中k为非零常数,那么说明模型中存在〔〕.A.方差非齐性CJ予列相关2.在多元线性回归模型中,A.多重共线性CJ予列相关B. 多重共线性D. 设定误差假设某个解释变量对其余解释变量的判定系数接近于1,那么说明模型中存在〔〕B. 异方差性3.戈德菲尔德一匡特检验法可用于检验〔〕27,对于模型Y 0iI II III IV V VI VII VIII IX Xi i,如果在异方差检验中发现Var 〔 i 〕 XI ,那么用权最小二乘法估计模型参数时,权数应为〔〕I C. Xi 8.假设回归模型中的随机误差项存在一阶自回归形式的序列相关,那么估计模型参数应采用〔〕A.普通最小二乘法B. 加权最小二乘法C.广义差分法D. 工具变量法 9.用于检验序列相关的DW 疏计量的取值范围是〔〕.A.00DW 1B. -KDVW1C.-2<DW2D.0 <DW410.DW 疏计量的值接近于2,那么样本回归模型残差的一阶自相关系数 ?近似等于〔〕A.0B.-1C.1D.0.5A.异方差性B. 多重共线性C.序列相关D.设定误差4 .假设回归模型中的随机误差项存在异方差性,那么估计模型参数应采用〔〕 .A.普通最小二乘法B. 加权最小二乘法C.广义差分法D.工具变量法5 .如果回归模型中的随机误差项存在异方差,那么模型参数的普通最小二乘估计量〔〕B. 无偏但非有效D. 有偏且非有效2、/i U i ,其中Var 〔U i 〕 X i ,那么 的最有效估计量为〔〕? n XY X Y・2 2B.n X 〔X 〕? 1 YA.C.有偏但有效6.设回归模型为Y iA.XYX 7? Y C. XA. X iB.X iD.9 zx, ' 1 1 ' 115 .用矩阵形式表示的广义最小二乘参数估计量为 ? 〔X X 〕 X Y ,此估计量为〔〕A.有偏、有效的估计量B. 有偏、无效的估计量C.无偏、无效的估计量D.无偏、有效的估计量16 .采用广义最小二乘法关键的一步是得到随机误差项的方差一协方差矩阵Q ,这就需要对原模型YX N 首先采用〔〕以求得随机误差项的近似估计量,从而构成矩阵.的估计量.A.一阶差分法B. 广义差分法C.普通最小二乘法17 .如果模型中出现随机解释变量并且与随机误差项相关时,最常用的估计方法是〔〕A.普通最小二乘法B.加权最小二乘法11.样本回归模型残差的一阶自相关系数接近于 -1 ,那么DW统计量近似等于〔〕A.0B.1C.2D.412 .在给定的显著性水平之下, 假设 DW^计量的下和上临界值分别为 &和d u ,那么当d L <DW<u 耐,可认为随 机误差项〔〕.A.存在一阶正自相关B. 存在一阶负相关C.不存在序列相关D.存在序列相关与否不能断定13 .某企业的生产决策是由模型 S tt描述〔其中S t 为产量,P t 为价格〕,又知:如果该企业在t 1期生产过剩,决策者会削减t 期的产量 由此判断上述模型存在〔〕 A.异方差问题 B. 序列相关问题 C.多重共线性问题D.随机解释变量问题14 .对于模型YX ,假设存在序列相关,同时存在异方差,即有E 〔N 〕 0, Cov(NN )E(NN 那么广义最小二乘法随机误差项方差一协方差矩阵可表示为W 11W 12W 1nW n1 W n2 W nn这个矩阵是一个 ()A.退化矩阵B. 单位矩阵C.长方形矩阵D.正方形矩阵18 .在以下图a 、b 、c 、d 、e 中,X 为解释变量,e 为相对应的残差.图形〔〕说明随机误差项的方差随 着解释变量的增加而呈U 性变化.三、多项选择题:19 针对存在异方差现象的模型进行估计,下面哪些方法可能是适用的〔〕A.加权最小二乘法B.C.广义差分法D.E.普通最小二乘法 20 异方差性的检验方法有〔〕.A.图小检验法B.C.回归检验法D.DW21 序列相关性的检验方法有〔〕oA.戈里瑟检验B.LMC.回归检验D.DW22 序列相关性的后果有〔〕.A.参数估计量非有效B.变量的显著性检验失去意义C.模型的预测失效C.差分法D.工具变量法工具变量法 广义最小二乘法戈里瑟检验 检验检验 检验D.参数估计量线性无偏23 DW 险验是用于以下哪些情况的序列相关检验()A.高阶线性自相关形式的序列相关B. 一阶非线性自回归形式的序列相关C.正的一阶线性自回归形式的序列相关D.负的一阶线性自回归形式的序列相关 6.检验多重共线性的方法有().A.等级相关系数法B.C.工具变量法D.E.差分法F.五、简做题:1 .简述多重共线性的含义.2 .简述多重共线性的后果 (4)变量的显著性检验失去意义 (5)模型的预测功能失效3 .列举多重共线性的检验方法.4 .列举多重共线性的解决方法.5 .简述异方差性的含义.6 .简述异方差性的后果.7 .列举异方差性的检验方法.8 .简述异方差性检验方法的共同思路. 9 .列举异方差的解决方法. 10 .简述序列相关性的含义. 11 .简述序列相关性的后果. 12 .列举序列相关性的检验方法. 13 .DW 佥验的局限性主要有哪些? 14 .简述序列相关性检验方法的共同思路. 15 .列举序列相关性解决方法.16 .选择作为工具变量的变量必须满足哪些条件?戈德菲尔德一匡特检验法法 判定系数检验法 逐步回归法17 .什么是虚假序列相关?如何防止虚假序列相关问题.18 .根据我国19852001年城镇居民人均可支配收入和人均消费性支出资料, 根据凯恩斯绝对收入假说建立的消费函数计量经济模型为:城镇居民人均137.422 0.772 城镇居民人均消费性支出=(5.875) (127.09)可支配收入2R2 0.999;S.E 51.9; DW 1.205; F 16151451.9 0.871城镇居民人均e t =( 0.283) (5.103)可支配收入R2 0.634508 - S.E 3540- DW 1.91- F 26.040617 7 7(1)解释模型中137.422和0.772的意义;(2)简述什么是模型的异方差性;(3)检验该模型是否存在异方差性;19.根据我国1978——2000年的财政收入Y和国内生产总值X的统计资料,可建立如下的计量经济模型:Y 556.6477 0.1198 X(2.5199) (22.7229)R2= 0.9609, S.E =731.2086, F =516.3338, DW =0.3474请答复以下问题:(1)何谓计量经济模型的自相关性?(2)试检验该模型是否存在一阶自相关及相关方向,为什么?(3)自相关会给建立的计量经济模型产生哪些影响?(HW® dL 124 , dU 1.43)综合练习题一、单项选择1 . “计量经济学〞一词是以下哪位经济学家在1926年仿照“生物计量学〞提出来的().A.费歇尔(Fisher)B.C.希尔(H - Theil)D.2 .计量经济学是一门( )学科.A.测量B. 经济C.匡特(R • E • Quandt)弗里希(R - Frisch) 统计 D. 数学4 .参数的估计量具备有效性是指〔〕. A. Var 〔 7〕 0 B. Var 〔?〕为最小 1 . ? 0 D. 〔?〕为最小5 .以下模型中,正确的选项是〔 〕A. Y t X tB. Y t X t tC. Y?tX t D. Y t? ?X t t6 .以下样本模型中,哪一个模型通常是无效的 ?〔〕A.Ci 〔消费〕=500-0.8Ii 〔 收入〕B.QDi 〔商品需求〕=10+0.8Ii 〔收入〕-0.9Pi 〔价格〕C.Qsi 〔商品供应〕=20+0.75Pi 〔价格〕D.Yi 〔产出量〕=0.65* Ki A 0.6 *Li A 0.4 〔 其中,Ki 表示资本,Li 表示劳动〕7 .同一统计指标按时间顺序记录的数据列称为〔〕. .A.横截面数据 B. 时间序列数据 C.虚变量数据 D. 混和〔平行〕数据 8 .以下哪一个性质不属于估计量的小样本性质〔〕 A.无偏性 B. 有效性 C. 线性性 D. 一致性9 .对于TSS,ESS,RSS,下关系正确的选项是〔 〕A. TSS=ESS+RSSB. RSS=ESS+TSSC . TSS 2=ES S+RS SD . 上面各式都不正确10 .调整的多重可决系数R 2与多重可决系数R 2之间的关系是〔〕 22n 1 2 2n 1A. R 1 (1 R )B. R 1 R -n k 1 n k 1C. R 2 1 (1 R 2) n 1D .R 2 1 (1 R 2) n 1n k 1n k 111 .由于引入虚拟变量,回归模型的截距不变,斜率发生变化,那么这种模型称为〔〕 重合模型 相异模型12 .如果一个回归模型不含截距项,对一个有m 个属性水平的定性因素,要引入的虚拟 变量数目为〔 〕 A.m B.m-1 C.m-2 D.m+1A.平行模型 C.集合模型B. D.14.在总体回归直线E 〔Y/X 〕 01X 中,1表示〔〕A.当X 增加一个单位时,Y 增加1个单位B.当X 增加一个单位时,Y 平均增加1个单位C.当Y 增加一个单位时,X 增加1个单位D.当Y 增加一个单位时,X 平均增加1个单位 15 .某商品需求模型为Y tX t t ,其中Y 为需求量,X 为价格.为了考虑“地区〞〔农村、城市〕和“季节〞〔春、夏、秋、冬〕两个因素的影响,拟引入虚拟变量,那么应引入的虚拟个数为〔 〕A. 1B.2C.4D.516 .要使模型能够得出参数估计量,所要求的最小样本容量为〔 〕A. n>k+1 B , n<k+1 C . n>30 D . n>3 〔k+1〕 17 .容易产生异方差的数据是〔 A.时间序列数据 B C.横截面数据 D18 .以下哪种方法可以用来检验序列相关性〔A.戈德菲尔德-匡特检验B.VIFC.戈里瑟检验D.D-W19 .在联立方程模型中既能作被解释变量又能作解释变量的变量是 〔〕A.内生变量B. 外生变量C.先决变量D. 滞后变量二、判断1 .只要解释变量个数大于 1,调整的样本可决系数的值一定比未调整的样本可决系数 小,而且可能为负值.〔〕2 .总体回归函数给出了对应于每一个自变量的因变量的值〔 〕3 .含有随机解释变量的线性回归模型,其 OLS 古计量一定是有偏的〔 〕4 .当模型中没有截距项时,就不能用 D-W 来检验模型的自相关性.〔〕5 .假设引入虚拟变量为了反映截距项的变动,那么应以加法方式引入虚拟变量. 〔〕6 .联立方程中,外生变量不能作为被解释变量. 〔 〕7 .在线性回归模型中,解释变量是原因,被解释变量是结果〔 〕8 .回归系数的显著性检验是用来检验解释变量对被解释变量有无显著解释水平的检验 〔〕9 .如果回归模型中的随机误差项存在异方差,那么模型参数的 OLS 估计量是有偏、非有 效估计量.〔〕10 .工具变量替代解释变量后,实际上是工具变量变为了解释变量 11 . OLS&不适用于估计联立方程模型中的结构方程.〔〕 12 .虚拟变量系数显著性的检验与其他数量变量是一样的. 〔.虚变量数据 .年度数据检验检验三、名词解释13 自相关14 横截面数据15 内生变量16 异方差17 •时间序列数据18 外生变量四、简答1、经典的多元线性回归模型〔CLRM的根本假定有哪些?19 虚拟变量的引入方式有哪些?设置虚拟变量的原那么是什么?20 以二元回归模型为例,说明怀特检验的根本步骤是什么?21 下表给出了二元回归模型的结果.答复以下各问〔要求写出简要过程〕.〔1〕样本容量是多少?〔2〕求RSS(3)E SS?口RSS的自由度各是多少?(4)F统计量是多少?5、经典的一元线性回归模型〔CLRIM的根本假定有哪些?6、简述建立计量经济学模型的根本步骤和要点是什么?7、自相关的后果是什么?8、异方差的后果是什么?9、多重共线性的后果是什么?10、随机扰动项包括哪些因素?五、实验某市独立核算工业企业净产值均余Y,职工人数L,固定资产净值K1,流动资产年平额K2,样本数据如表1所示. 回归结果如下:Dependent Variable: LOG(Y) Method: Least SquaresDate: 06/06/10 Time: 21:26Sample: 1981 1992Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.C0.5024710.337330 1.4895530.1747 LOG(K1)A0.161937 5.2021440.0008LOG(K2)-0.166266B1-1.1664430.2770LOG(L)0.1263130.089395C0.1954 R-squared0.992067Mean dependent var 4.565180Adjusted R-squared D S.D.dependent var0.322659S.E. of regression E Akaike info criterion-3.681530Sum squared resid0.009085Schwarz criterion-3.519894Log likelihood26.08918Hannan-Quinn criter.-3.741373F-statistic333.4890Durbin-Watson stat 1.970198Prob(F-statistic)0.000000(一)、建立如下模式的回归模型(5%)LOG(Y) 0 1 LOG(K1) 2 LOG(K2) 3 LOG(L) (1)(1)计算ABCD的值.(2)对模型(1)估计以后,写出参数估计结果(3)对有关参数经济意义进行检验(假设有不合理者,不剔除)(4)对LOG (K I)进行显著性检验(5)对估计的样本回归模型进行方程的显著性检验(6)对估计的样本回归模型进行拉格朗日乘数(LM的2价序列相关性检验Breusch-Godfrey Serial Correlation LM Test:F-statistic 0.740307 Prob. F(2,6) 0.5160Obs*R-squared 2.375121 Prob. Chi-Square(2) 0.3050(7)对估计的样本回归模型进行White异方差检验Heteroskedasticity Test: White2.我国1950— 1972年国家进出口贸易总额 Y (单位亿元)与社会总产值 X (单位亿元)的数据如表1所示,回归模型白理论形式如下(5%).LOG(Y) 01LOG(X) (1)回归结果如下:Dependent Variable: Y Method: Least Squares Date: 06/06/10 Time: 21:28 Sample: 1950 1972Included observations: 23VariableCoefficientStd. Error t-Statistic Prob. C 58.14536 9.193266 6.324777 0.0000 X0.0199130.0037315.3373450.0000 R-squared0.575648 Mean dependent var 103.0130 Adjusted R-squared 0.555441 S.D.dependent var 26.76766 S.E. of regression 17.84740 Akaike info criterion 8.684534 Sum squared resid 6689.126 Schwarz criterion 8.783273 Log likelihood -97.87215 Hannan-Quinn criter. 8.709367 F-statistic28.48725 Durbin-Watson stat0.514286Prob(F-statistic) 0.000027要求:(1)对模型(1)回归以后,写出参数 .、1的估计值(2)对所估模型进行经济意义检验(3)对所估模型中LOG(X)进行显著性检验 (4)对所估模型进行White 异方差检验Heteroskedasticity Test: WhiteF-statistic0.070307 Prob. F(2,20)0.9323 Obs*R-squared0.160576 Prob. Chi-Square(2)0.9229(5)对所估模型利用拉朗日乘数(LM)检验进行1价序列相关检验 Breusch-Godfrey Serial Correlation LM Test:F-statisticObs*R-squared0.591182 Prob. F(9,2)12.721596 Prob. Chi-Square(9) 0.7621 0.04634F-statistic16.80850Prob. F(1,20)0.0006 Obs*R-squared10.50289Prob. Chi-Square(1)0.0012分章练习题参考答案第一章绪论、填空题:1 .数量关系,经济理论,统计学,数学2 .理论,确定,定量,随机3 .数学方法4 .理论,应用5 .单方程模型,联立方程模型6 .选择变量,确定变量之间的数学关系,拟定模型中待估计参数的数值范围7 .解释变量8 .外生经济,外生条件,外生政策,滞后被解释9 .经济理论10 •时间序列,截面,面板11 .完整性,准确性,可比性,一致性12 .对模型进行识别,估计方法的选择13 .经济意义,统计,计量经济学,预测14 .序列相关,异方差性,多重共线性15 .结构分析,经济预测,政策评价,检验和开展经济理论16 .弹性分析、乘数分析与比拟静力分析二、单项选择题:1. B2. C3. C4. B5. B6. B7. A8. B9. B第二章单方程计量经济学模型理论与方法(上)一、填空题:1 .在解释变量中被忽略掉的因素的影响,变量观测值的观测误差的影响,模型关系的设定误差的影响, 其他随机因素的影响2 .零均值,同方差,无自相关,解释变量与随机误差项相互独立(或者解释变量为非随机变量)3 .随机误差项,残差4 . min e min (Y 必2min (Y ?0Z X)25 .有效性或者方差最小性6 .线性,无偏性,有效性7 .提升样本观测值的分散度,增大样本容量,提升模型的拟合优度8 .3个9 .拟合优度检验、方程的显著性检验、变量的显著性检验10 .被解释变量观测值与其均值,被解释变量估计值与其均值,被解释变量观测值与其估计值11 .模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立14 .直接置换法、对数变换法和级数展开法.15 .Y*=1/Y X *=1/X , Y=a + 0乂16 .Y*=ln(Y/(1-Y)) , V=a + 0X二、单项选择题:1. B2. D3. B4. C5. A6. B7. A8. B9. A10. B11. B12. C13. D14. D15. A16. C17. A18. C19. D20. D21. C22. C23. A24. D第二章单方程计量经济学模型理论与方法〔下〕一、填空题:1 .多重共线性2 .判定系数检验法3 .排除引起共线性的变量,差分法4 .广义最小二乘法5 . E(X i ) 06 .随机解释变量7 . YZ i Z ZX ii ?2X2i NX ki Z i8 .有偏,渐近无偏9 . B? ZX 1ZY,工具变量矩阵10 .异方差11 .序列相关二、单项选择题:1. B2. A3. A4. B5. B6. C7. D8. C9. D10. A11. D12. D13. B14. D15. D16. C17. D-——: ----- —----------------4b"k 用F;・..■J' « . ’屋士—h>!. -. --r, " ■ - q i —i■■,>■' ■ ।* ■ ■v ।■1 r•1,■___________ ,__3 H ______ _______4 a三、多项选择题:1. AD2. AB3. BCD4. ABC5. CD6. DF7. ACD8. BD五、简做题:1.答:对于模型Y i 0 1X 1i 2 X 2i k 其根本假设之一是解释变量X1, X2性,那么称为多重共线性.如果存在c1X1i c2X 2i c k X ki 0z.小cj■■,1>■« ■ .—4- KX ki i i=1,2, …,n,,X k是互相独立的.如果某两个或多个解释变量之间出现了相关)i=1,2, …,n其中c不全为0,即某一个解释变量可以用其它解释变量的线性组合表示,那么称为完全共线性.2 .答:(1)完全共线性下参数估计量不存在(2) 一般共线性下普通最小二乘法参数估计量无偏,但方差较大.(3)参数估计量经济含义不合理.参数并不反映各自与被解释变量之间的结构关系,而是反映它们对被解释变量的共同影响.3 .答:主要有判定系数检验法和逐步回归检验法.4 .答:主要有两类排除引起共线性的变量,差分法.5 .答:对于模型Y i 0 1X 1i 2 X 2i k X ki i i = 1>2> …,n同方差性假设为:Var( i) 2常数i=1,2, …,n如果出现2 2Var( i) i2 2f (X i) i=1,2, …,n即对于不同的样本点,随机误差项的方差不再是常数,而互不相同,那么认为出现了异方差性.6 .答:(1)参数估计量仍然具有无偏性,但非有效,在大样本情况下仍不具有一致性.(2)变量的显著性检验失去意义.(3)模型的预测失效.7 .答:主要有图示检验法、等级相关系数法、戈里瑟检验、WHITE佥验、戈德菲尔特一夸特检验等.8 .答:由于异方差性,相对于不同的样本点,也就是相对于不同的解释变量观测值, 随机误差项具有不同的方差,那么检验异方差性,也就是检验随机误差项的方差与解释变量观测值之间的相关性. 各种检验方法就是在这个思路下开展起来的.9 .答:加权最小二乘法.。
计量经济学习题及参考答案
计量经济学各章习题第一章绪论1.1试列出计量经济分析地主要步骤.1.2计量经济模型中为何要包括扰动项?1.3什么是时间序列和横截面数据? 试举例说明二者地区别1.4估计量和估计值有何区别?第二章计量经济分析地统计学基础2.1名词解释随机变量概率密度函数抽样分布样本均值样本方差协方差相关系数标准差标准误差显著性水平置信区间无偏性有效性一致估计量接受域拒绝域第I 类错误2.2请用例 2.2中地数据求北京男生平均身高地99%置信区间.2.325 个雇员地随机样本地平均周薪为130元,试问此样本是否取自一个均值为120 元、标准差为10 元地正态总体?文档收集自网络,仅用于个人学习2.4某月对零售商店地调查结果表明,市郊食品店地月平均销售额为2500 元,在下一个月份中,取出16 个这种食品店地一个样本,其月平均销售额为2600 元,销售额地标准差为480 元.试问能否得出结论,从上次调查以来,平均月销售额已经发生了变化?文档收集自网络,仅用于个人学习第三章双变量线性回归模型3.1判断题(判断对错;如果错误,说明理由)(1)OLS 法是使残差平方和最小化地估计方法.(2)计算OLS 估计值无需古典线性回归模型地基本假定.(3)若线性回归模型满足假设条件(1)~(4),但扰动项不服从正态分布,则尽管OLS 估计量不再是BLUE ,但仍为无偏估计量.文档收集自网络,仅用于个人学习(4)最小二乘斜率系数地假设检验所依据地是t 分布,要求地抽样分布是正态分布.2(5)R2=TSS/ESS.(6)若回归模型中无截距项,则.(7)若原假设未被拒绝,则它为真.(8)在双变量回归中,地值越大,斜率系数地方差越大.3.2设和分别表示Y 对X 和X 对Y 地OLS 回归中地斜率,证明r 为X 和Y 地相关系数.3.3证明:(1)Y 地真实值与OLS 拟合值有共同地均值,即;(2)OLS 残差与拟合值不相关,即.3.4证明本章中( 3.18)和( 3.19)两式:(1)(2)3.5考虑下列双变量模型:模型1:模型2:(1)1 和1地OLS 估计量相同吗?它们地方差相等吗?(2)2 和2地OLS 估计量相同吗?它们地方差相等吗?3.6有人使用1980-1994 年度数据,研究汇率和相对价格地关系,得到如下结果:其中,Y=马克对美元地汇率X=美、德两国消费者价格指数(CPI)之比,代表两国地相对价格(1)请解释回归系数地含义;(2)X t 地系数为负值有经济意义吗?(3)如果我们重新定义X 为德国CPI与美国CPI之比,X 地符号会变化吗?为什么?3.7随机调查200 位男性地身高和体重,并用体重对身高进行回归,结果如下:其中Weight 地单位是磅(lb ),Height 地单位是厘米(cm).(1)当身高分别为177.67cm、164.98cm、187.82cm 时,对应地体重地拟合值为多少?(2)假设在一年中某人身高增高了 3.81cm,此人体重增加了多少?3.8设有10 名工人地数据如下:X 10 7 10 5 8 8 6 7 9 10Y 11 10 12 6 10 7 9 10 11 10 其中X= 劳动工时,Y= 产量(1)试估计Y=α+βX + u(要求列出计算表格);(2)提供回归结果(按标准格式)并适当说明;(3)检验原假设β=1.0.3.9用12 对观测值估计出地消费函数为Y=10.0+0.90X ,且已知=0.01,=200,=4000,试预测当X=250 时Y 地值,并求Y 地95%置信区间.文档收集自网络,仅用于个人学习3.10设有某变量(Y)和变量(X)1995—1999 年地数据如下:(3)试预测X=10 时Y 地值,并求Y 地95%置信区间.3.11根据上题地数据及回归结果,现有一对新观测值X =20,Y=7.62,试问它们是否可能来自产生样本数据地同一总体?文档收集自网络,仅用于个人学习3.12有人估计消费函数,得到如下结果(括号中数字为t 值):=15 + 0.81 =0.98(2.7)(6.5)n=19(1)检验原假设:=0(取显著性水平为5%)(2)计算参数估计值地标准误差;(3)求地95%置信区间,这个区间包括0 吗?3.13试用中国1985—2003 年实际数据估计消费函数:=α+β + u t其中:C代表消费,Y 代表收入.原始数据如下表所示,表中:Cr=农村居民人均消费支出(元)Cu=城镇居民人均消费支出(元)Y =国内居民家庭人均纯收入(元) Yr =农村居民家庭人均纯收入(元) Yu=城镇居民家庭人均可支配收入(元) Rpop=农村人口比重(%) pop=历年年底我国人口总数(亿人)P=居民消费价格指数(1985=100)Pr=农村居民消费价格指数(1985=100)Pu=城镇居民消费价格指数(1985=100)数据来源:《中国统计年鉴2004》使用计量经济软件,用国内居民人均消费、农村居民人均消费和城镇居民人均消费分别对各自地人均收入进行回归,给出标准格式回归结果;并由回归结果分析我国城乡居民消费行为有何不同.文档收集自网络,仅用于个人学习第四章多元线性回归模型4.1某经济学家试图解释某一变量Y 地变动.他收集了Y 和 5 个可能地解释变量~地观测值(共10 组),然后分别作三个回归,结果如下(括号中数字为t 统计量):文档收集自网络,仅用于个人学习( 1) = 51.5 + 3.21 R=0.63(3.45) (5.21)2) 33.43 + 3.67 + 4.62 + 1.21 R=0.75 文档收集自网络,仅用于个人学(3.61 )(2.56)(0.81) (0.22)3) 23.21 + 3.82 + 2.32 + 0.82 + 4.10 + 1.21(2.21 )(2.83)(0.62) (0.12) (2.10) (1.11)文档收集自网络,仅用于个人学习R=0.80 你认为应采用哪一个结果?为什么?4.2为研究旅馆地投资问题,我们收集了某地地1987-1995 年地数据来估计收益生产函数R=ALKe ,其中R=旅馆年净收益(万年) ,L=土地投入,K=资金投入, e 为自然对数地底.设回归结果如下(括号内数字为标准误差) :文档收集自网络,仅用于个人学习= -0.9175 + 0.273lnL + 0.733lnK R=0.94(0.212) (0.135) (0.125)(1)请对回归结果作必要说明;( 2)分别检验α和β 地显著性;( 3)检验原假设:α =β = 0;4.3我们有某地1970-1987 年间人均储蓄和收入地数据,用以研究1970-1978 和1978 年以后储蓄和收入之间地关系是否发生显著变化. 引入虚拟变量后,估计结果如下(括号内数据为标准差) :文档收集自网络,仅用于个人学习= -1.7502 + 1.4839D + 0.1504 - 0.1034D·R=0.9425 文档收集自网络,仅用于个人学习(0.3319) (0.4704) (0.0163) (0.0332)其中:Y=人均储蓄,X=人均收入,D= 请检验两时期是否有显著地结构性变化.4.4说明下列模型中变量是否呈线性,系数是否呈线性,并将能线性化地模型线性化.(1)(2)(3)4.5有学者根据某国19年地数据得到下面地回归结果:其中:Y=进口量(百万美元),X1 =个人消费支出(百万美元),X2 =进口价格/国内价格.(1)解释截距项以及X1和X2系数地意义;(2)Y 地总变差中被回归方程解释地部分、未被回归方程解释地部分各是多少?(3)进行回归方程地显著性检验,并解释检验结果;(4)对“斜率”系数进行显著性检验,并解释检验结果.4.6由美国46个州1992年地数据,Baltagi 得到如下回归结果:其中,C=香烟消费(包/人年),P=每包香烟地实际价格Y=人均实际可支配收入(1)香烟需求地价格弹性是多少?它是否统计上显著?若是,它是否统计上异于-1?(2)香烟需求地收入弹性是多少?它是否统计上显著?若不显著,原因是什么?(3)求出.4.7有学者从209 个公司地样本,得到如下回归结果(括号中数字为标准误差):其中,Salary=CEO 地薪金Sales=公司年销售额roe=股本收益率(%)ros=公司股票收益请分析回归结果.4.8为了研究某国1970-1992 期间地人口增长率,某研究小组估计了下列模型:其中:Pop=人口(百万人),t=趋势变量,.(1)在模型 1 中,样本期该地地人口增长率是多少?(2)人口增长率在1978 年前后是否显著不同?如果不同,那么1972-1977和1978-1992 两时期中,人口增长率各是多少?文档收集自网络,仅用于个人学习4.9设回归方程为Y= β0+β1X1+β2X2+β3X3+ u, 试说明你将如何检验联合假设:β1= β2 和β3 = 1 .文档收集自网络,仅用于个人学习4.10下列情况应引入几个虚拟变量,如何表示?(1)企业规模:大型企业、中型企业、小型企业;(2)学历:小学、初中、高中、大学、研究生.4.11在经济发展发生转折时期,可以通过引入虚拟变量来表示这种变化.例如,研究进口消费品地数量Y 与国民收入X 地关系时,数据散点图显示1979 年前后明显不同.请写出引入虚拟变量地进口消费品线性回归方程.文档收集自网络,仅用于个人学习4.12柯布-道格拉斯生产函数其中:GDP=地区国内生产总值(亿元)K=资本形成总额(亿元)L= 就业人数(万人)P=商品零售价格指数(上年=100)试根据中国2003 年各省数据估计此函数并分析结果.数据如下表所示第五章模型地建立与估计中地问题及对策5.1判断题(判断对错;如果错误,说明理由)(1)尽管存在严重多重共线性,普通最小二乘估计量仍然是最佳线性无偏估计量(BLUE ).(2)如果分析地目地仅仅是为了预测,则多重共线性并无妨碍. (3)如果解释变量两两之间地相关系数都低,则一定不存在多重共线性. (4)如果存在异方差性,通常用地t 检验和 F 检验是无效地. (5)当存在自相关时,OLS 估计量既不是无偏地,又不是有效地.(6)消除一阶自相关地一阶差分变换法假定自相关系数必须等于 1. (7)模型中包含无关地解释变量,参数估计量会有偏,并且会增大估计量地方差,即增大误差.(8)多元回归中,如果全部“斜率”系数各自经t 检验都不显著,则R2值也高不了.(9)存在异方差地情况下,OLS 法总是高估系数估计量地标准误差.(10)如果一个具有非常数方差地解释变量被(不正确地)忽略了,那么OLS 残差将呈异方差性.5.2考虑带有随机扰动项地复利增长模型:Y 表示GDP,Y0是Y 地基期值,r 是样本期内地年均增长率,t 表示年份,t=1978,⋯,2003.文档收集自网络,仅用于个人学习试问应如何估计GDP 在样本期内地年均增长率?5.3 检验下列情况下是否存在扰动项地自相关 .(1) DW=0.81,n=21,k=3(2)DW=2.25,n=15,k=2(3)DW=1.56,n=30,k=55.4有人建立了一个回归模型来研究我国县一级地教育支出:Y= β0+β1X1+β 2X2+β3X3+u其中:Y,X1,X2 和X3分别为所研究县份地教育支出、居民人均收入、学龄儿童人数和可以利用地各级政府教育拨款.文档收集自网络,仅用于个人学习他打算用遍布我国各省、市、自治区地100 个县地数据来估计上述模型.(1)所用数据是什么类型地数据?(2)能否采用OLS 法进行估计?为什么?(3)如不能采用OLS 法,你认为应采用什么方法?5.5试从下列回归结果分析存在问题及解决方法:(1)= 24.7747 + 0.9415 - 0.0424 R=0.9635SE:(6.7525)(0.8229)(0.0807)其中:Y=消费,X2=收入,X3=财产,且n=5000 (2)= 0.4529 - 0.0041t R=0.5284t:(-3.9606) DW=0.8252其中Y= 劳动在增加值中地份额,t=时间该估计结果是使用1949-1964 年度数据得到地.5.6工资模型:wi=b0+b1Si+b2Ei+b3Ai+b4Ui+ui其中Wi=工资,Si=学校教育年限,Ei=工作年限,Ai=年龄,Ui=是否参加工会.在估计上述模型时,你觉得会出现什么问题?如何解决?5.7你想研究某行业中公司地销售量与其广告宣传费用之间地关系.你很清楚地知道该行业中有一半地公司比另一半公司大,你关心地是这种情况下,什么估计方法比较合理.假定大公司地扰动项方差是小公司扰动项方差地两倍.文档收集自网络,仅用于个人学习(1)若采用普通最小二乘法估计销售量对广告宣传费用地回归方程(假设广告宣传费是与误差项不相关地自变量),系数地估计量会是无偏地吗?是一致地吗?是有效地吗?文档收集自网络,仅用于个人学习(2)你会怎样修改你地估计方法以解决你地问题?(3)能否对原扰动项方差假设地正确性进行检验?5.8考虑下面地模型其中GNP=国民生产总值,M =货币供给. (1)假设你有估计此模型地数据,你能成功地估计出模型地所有系数吗?说明理由.(2)如果不能,哪些系数可以估计?(3)如果从模型中去掉这一项,你对(1)中问题地答案会改变吗?(4)如果从模型中去掉这一项,你对(1)中问题地答案会改变吗?5.9采用美国制造业1899-1922年数据,Dougherty得到如下两个回归结果:(1)(2)其中:Y=实际产出指数,K=实际资本投入指数,L =实际劳动力投入指数,t=时间趋势(1)回归式(1)中是否存在多重共线性?你是如何得知地?(2)回归式(1)中,logK 系数地预期符号是什么?回归结果符合先验预期吗?为什么会这样?(3)回归式(1)中,趋势变量在其中起什么作用?(4)估计回归式(2)背后地逻辑是什么?(5)如果(1)中存在多重共线性,那么(2)式是否减轻这个问题?你如何得知?(6)两个回归地R2可比吗?说明理由.5.10有人估计了下面地模型:其中:C=私人消费支出,GNP=国民生产总值,D=国防支出假定,将(1)式转换成下式:使用1946-1975数据估计(1)、(2)两式,得到如下回归结果(括号中数字为标准误差):1)关于异方差,模型估计者做出了什么样地假定?你认为他地依据是什么?2)比较两个回归结果.模型转换是否改进了结果?也就是说,是否减小了估计标准误差?说明理由.5.11设有下列数据:RSS1=55,K =4,n1=30RSS3=140,K =4,n3=30 请依据上述数据,用戈德佛尔德-匡特检验法进行异方差性检验(5%显著性水平).5.12考虑模型(1)也就是说,扰动项服从AR (2)模式,其中是白噪声.请概述估计此模型所要采取地步骤.5.13对第 3 章练习题 3.13 所建立地三个消费模型地结果进行分析:是否存在序列相关问题?如果有,应如何解决?5.14为了研究中国农业总产值与有效灌溉面积、化肥施用量、农作物总播种面积、受灾面积地相互关系,选31 个省市2003 年地数据资料,如下表所示:文档收集自网络,仅用于个人学习表中:Y=农业总产值(亿元,不包括林牧渔)X1=有效灌溉面积(千公顷)X2=化肥施用量(万吨)X23=化肥施用量(公斤/亩)X3=农作物总播种面积(千公顷)X4=受灾面积(千公顷)(1)回归并根据计算机输出结果写出标准格式地回归结果;(2)模型是否存在问题?如果存在问题,是什么问题?如何解决?第六章动态经济模型:自回归模型和分布滞后模型6.1判断题(判断对错;如果错误,说明理由)(1)所有计量经济模型实质上都是动态模型.(2)如果分布滞后系数中,有地为正有地为负,则科克模型将没有多大用处. (3)若适应预期模型用OLS 估计,则估计量将有偏,但一致. (4)对于小样本,部分调整模型地OLS 估计量是有偏地.(5)若回归方程中既包含随机解释变量,扰动项又自相关,则采用工具变量法,将产生无偏且一致地估计量.(6)解释变量中包括滞后因变量地情况下,用德宾-沃森d 统计量来检测自相关是没有实际用处地.6.2用OLS 对科克模型、部分调整模型和适应预期模型分别进行回归时,得到地OLS 估计量会有什么样地性质?文档收集自网络,仅用于个人学习6.3简述科克分布和阿尔蒙多项式分布地区别.6.4考虑模型假设相关.要解决这个问题,我们采用以下工具变量法:首先用对和回归,得到地估计值,然后回归其中是第一步回归(对和回归)中得到地.(1)这个方法如何消除原模型中地相关?(2)与利维顿采用地方法相比,此方法有何优点?6.5设其中:M=对实际现金余额地需求,Y*=预期实际收入,R*=预期通货膨胀率假设这些预期服从适应预期机制:其中和是调整系数,均位于0和1之间.(1)请将M t 用可观测量表示;(2)你预计会有什么估计问题?6.6考虑分布滞后模型假设可用二阶多项式表示诸如下:若施加约束==0,你将如何估计诸系数(,i=0,1, (4)6.7为了研究设备利用对于通货膨胀地影响,T. A.吉延斯根据1971年到1988年地美国数据获得如下回归结果:文档收集自网络,仅用于个人学习其中:Y=通货膨胀率(根据GNP 平减指数计算)X t=制造业设备利用率X t-1 =滞后一年地设备利用率1)设备利用对于通货膨胀地短期影响是什么?长期影响又是什么?(2)每个斜率系数是统计显著地吗?(3)你是否会拒绝两个斜率系数同时为零地原假设?将利用何种检验?6.8考虑下面地模型:Y t = α+β(W0X t+ W1X t-1 + W2X t-2 + W3X t-3)+u t 请说明如何用阿尔蒙滞后方法来估计上述模型(设用二次多项式来近似) .6.9下面地模型是一个将部分调整和适应预期假说结合在一起地模型:Y t*= βX t+1eY t-Y t-1 = δ(Y t*- Y t-1) + u tX t+1e- X t e= (1-λ)( X t - X t e);t=1,2,⋯, n式中Y t*是理想值,X t+1e和X t e是预期值.试推导出一个只包含可观测变量地方程,并说明该方程参数估计方面地问题.文档收集自网络,仅用于个人学习第七章时间序列分析7.1单项选择题(1)某一时间序列经一次差分变换成平稳时间序列,此时间序列称为()地.A.1 阶单整B.2阶单整C.K 阶单整D.以上答案均不正确文档收集自网络,仅用于个人学习(2)如果两个变量都是一阶单整地,则().A .这两个变量一定存在协整关系B.这两个变量一定不存在协整关系C.相应地误差修正模型一定成立D.还需对误差项进行检验文档收集自网络,仅用于个人学习(3)如果同阶单整地线性组合是平稳时间序列,则这些变量之间关系是() .A. 伪回归关系B.协整关系C.短期均衡关系D. 短期非均衡关系(4).若一个时间序列呈上升趋势,则这个时间序列是().A .平稳时间序列B.非平稳时间序列C.一阶单整序列 D. 一阶协整序列7.2请说出平稳时间序列和非平稳时间序列地区别,并解释为什么在实证分析中确定经济时间序列地性质是十分必要地.文档收集自网络,仅用于个人学习7.3什么是单位根?7.4Dickey-Fuller(DF)检验和Engle-Granger(EG)检验是检验什么地?文档收集自网络,仅用于个人学习7.5什么是伪回归?在回归中使用非均衡时间序列时是否必定会造成伪回归?7.6由1948-1984 英国私人部门住宅开工数(X)数据,某学者得到下列回归结果:注:5%临界值值为-2.95,10%临界值值为-2.60. (1)根据这一结果,检验住宅开工数时间序列是否平稳.(2)如果你打算使用t 检验,则观测地t 值是否统计显著?据此你是否得出该序列平稳地结论?(3)现考虑下面地回归结果:请判断住宅开工数地平稳性.7.7由1971-I 到1988-IV 加拿大地数据,得到如下回归结果;A.B.C.其中,M1=货币供给,GDP=国内生产总值,e t=残差(回归A)(1)你怀疑回归 A 是伪回归吗?为什么?(2)回归 B 是伪回归吗?请说明理由.(3)从回归 C 地结果,你是否改变(1)中地结论,为什么?(4)现考虑以下回归:这个回归结果告诉你什么?这个结果是否对你决定回归 A 是否伪回归有帮助?7.8 检验我国人口时间序列地平稳性,数据区间为1949-2003 年.单位:万人7.9对中国进出口贸易进行协整分析,如果存在协整关系,则建立E CM 模型.1951-2003 年中国进口(im )、出口(ex)和物价指数(pt,商品零售物价指数)时间序列数据见下表.因为该期间物价变化大,特别是改革开放以后变化更为激烈,所以物价指数也作为一个解释变量加入模型中.为消除物价变动对进出口数据地影响以及消除进出口数据中存在地异方差,定义三个变量如下:文档收集自网络,仅用于个人学习第八章联立方程模型8.1判断题(判断对错;如果错误,说明理由)(1)OLS 法适用于估计联立方程模型中地结构方程.(2)2SLS 法不能用于不可识别方程.(3)估计联立方程模型地2SLS 法和其它方法只有在大样本地情况下,才能具有我们期望地统计性质 .(4) 联立方程模型作为一个整体,不存在类似 R 2这样地拟合优度测度 .(5) 如果要估计地方程扰动项自相关或存在跨方程地相关, 则 2SLS 法和其它估 计结构方程地方法都不能用 .(6) 如果一个方程恰好识别,则 ILS 和 2SLS 给出相同结果 .8.2 单项选择题1) 结构式模型中地方程称为结构方程 .在结构方程中, 解释变量可以是前定变3) 如果联立方程模型中某个结构方程包含了模型中所有地变量,则这个方程5)当一个结构式方程为恰好识别时,这个方程中内生解释变量地个数( A .与被排除在外地前定变量个数正好相等 B .小于被排除在外地前定变量个数 C .大于被排除在外地前定变量个数D .以上三种情况都有可能发生 文档收集自网络,仅用于个人学习6) 简化式模型就是把结构式模型中地内生变量表示为 ( ).A. 外生变量和内生变量地函数关系B.前定变量和随机误差项地模型C.滞后变量和随机误差项地模型 D.外生变量和随机误差项地模量,也可以是 ( ).文档收集自网络,仅用于个人学习 A. 外生变量 B.滞后变量2)前定变量是 ( )地合称 .A.外生变量和滞后内生变量C.内生变量D. 外生变量和内生变量 C.外生变量和虚拟变量 D. 解释变量和被解释变量( ).A. 恰好识别B.不可识别 (4) 下面说法正确地是( ).A.内生变量是非随机变量 C.外生变量是随机变量 C.过度识别 D.不确定B. 前定变量是随机变量个人收集整理勿做商业用途型7) 对联立方程模型进行参数估计地方法可以分两类,即:( ).A.间接最小二乘法和系统估计方法B.单方程估计法和系统估计方法个人收集整理勿做商业用途C.单方程估计法和二阶段最小二乘法D.工具变量法和间接最小二乘法(8)在某个结构方程过度识别地条件下,不适用地估计方法是().A. 间接最小二乘法B.工具变量法C.二阶段最小二乘法D.有限信息极大似然估计法8.3行为方程和恒等式有什么区别?8.4如何确定模型中地外生变量和内生变量?8.5考虑下述模型:C t = α + β D t +u t I t = γ + δD t-1 + νt D t = C t +I t + Z t ;t=1 ,2,⋯,n其中 C = 消费支出,D= 收入,I = 投资,Z = 自发支出. C、I 和D是内生变量.试写出消费支出地简化型方程,并研究各方程地识别问题.8.6考虑下述模型:Y t = C t + I t +G t +X tC t = β 0 + β 1D t + β2C t-1 + u tD t = Y t –T tI t = α0 + α1Y t + α2R t-1 +νt 模型中各方程是正规化方程,u t、νt为扰动项.(1)请指出模型中地内生变量、外生变量和前定变量.(2)写出用2SLS法进行估计时,每个阶段中要估计地方程.8.7下面是一个简单地美国宏观经济模型(1960-1999)其中C=实际私人消费,I= 实际私人总投资,G=实际政府支出,Y =实际GDP,M= 当年价M2,R=长期利率;P=消费价格指数.内生变量:C,I,R,Y 前定变量:C t-1,I t-1,M t-1,P t,R t-1 和G t.(1)应用识别地阶条件,决定各方程地识别状态;(2)你打算用什么方法来估计可识别行为方程?8.8假设有如下计量经济模型:其中,Y=国民收入,I=净资本形成,C=个人消费,Q =利润,P=生活费用指数,R= 工业劳动生产率1)写出模型地内生变量、外生变量和前定变量;个人收集整理勿做商业用途(2)用识别地阶条件确定各方程地识别状态;(3)此模型中是否有可以用ILS 法估计地方程?如有,请指出;(4)写出用2SLS 法进行估计时,每个阶段中要估计地方程. 8.9考虑下述模型:消费方程:C t=α0 +α 1Y t +α2C t-1 +u①投资方程:I t=β0 +β1Y t +β2I t –1+u2t②进口方程:M t = 0 + 1Y t + u3t ③Y t = C t+ I t + G t + X t - M t模型中各方程是正规化方程,u 1t, ⋯u3t为扰动项.(1)请指出模型中地内生变量、外生变量和前定变量.(2)利用阶条件识别各行为方程.(3)写出用3SLS 进行估计时地步骤.8.10考察下述国民经济地简单模型式中,C为消费,Y 为国民收入,I 为投资,R为利率.设样本容量n 为20,已算得中间结果为:(1)判别模型中消费方程地识别状态;(2)用间接最小二乘法求消费方程结构式系数;(3)将采用哪种方法估计投资方程?为什么?(不必计算)8.11由联立方程模型;得到其简化式如下:(1)两结构方程可识别吗?(2)如果知道,识别情况有何变化?(3)若对简化式进行估计,结果如下:个人收集整理勿做商业用途试求出结构参数地值,并说明如何检验原假设个人收集整理勿做商业用途版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。
计量经济学题库(超完整版)及标准答案
2.已知一模型的最小二乘的回归结果如下:i iˆY =101.4-4.78X 标准差 (45.2) (1.53) n=30 R 2=0.31其中,Y :政府债券价格(百美元),X :利率(%)。
回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是iˆY 而不是i Y ; (3)在此模型中是否漏了误差项i u ;(4)该模型参数的经济意义是什么。
13.假设某国的货币供给量Y 与国民收入X 的历史如系下表。
某国的货币供给量X 与国民收入Y 的历史数据年份 X Y 年份 X Y 年份 X Y 1985 2.0 5.0 1989 3.3 7.2 1993 4.8 9.7 1986 2.5 5.5 1990 4.0 7.7 1994 5.0 10.0 1987 3.2 6 1991 4.2 8.4 1995 5.2 11.2 19883.6719924.6919965.812.4根据以上数据估计货币供给量Y 对国民收入X 的回归方程,利用Eivews 软件输出结果为:Dependent Variable: Y Variable Coefficient Std. Error t-Statistic Prob. X 1.968085 0.135252 14.55127 0.0000 C 0.353191 0.5629090.6274400.5444 R-squared0.954902 Mean dependent var 8.258333 Adjusted R-squared 0.950392 S.D. dependent var 2.292858 S.E. of regression 0.510684 F-statistic 211.7394 Sum squared resid2.607979Prob(F-statistic)0.000000问:(1)写出回归模型的方程形式,并说明回归系数的显著性(0.05α=)。
计量经济学习题及答案
计量经济学习题一、名词解释1、普通最小二乘法:为使被解释变量的估计值与观测值在总体上最为接近使Q= 最小,从而求出参数估计量的方法,即之;2、总平方和、回归平方和、残差平方和的定义:TSS度量Y自身的差异程度,称为总平方和;TSS除以自由度n-1=因变量的方差,度量因变量自身的变化;RSS度量因变量Y的拟合值自身的差异程度,称为回归平方和,RSS除以自由度自变量个数-1=回归方差,度量由自变量的变化引起的因变量变化部分;ESS度量实际值与拟合值之间的差异程度,称为残差平方和;RSS除以自由度n-自变量个数-1=残差误差方差,度量由非自变量的变化引起的因变量变化部分;3、计量经济学:计量经济学是以经济理论为指导,以事实为依据,以数学和统计学为方法,以电脑技术为工具,从事经济关系与经济活动数量规律的研究,并以建立和应用经济计量模型为核心的一门经济学科;而且必须指出,这些经济计量模型是具有随机性特征的;4、最小样本容量:即从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限;即样本容量必须不少于模型中解释变量的数目包扩常数项,即之;5、序列相关性:模型的随机误差项违背了相互独立的基本假设的情况;6、多重共线性:在线性回归模型中,如果某两个或多个解释变量之间出现了相关性,则称为多重共线性;7、工具变量法:在模型估计过程中被作为工具使用,以替代模型中与随机误差项相关的随机解释变量;这种估计方法称为工具变量法;8、时间序列数据:按照时间先后排列的统计数据;9、截面数据:发生在同一时间截面上的调查数据;10、相关系数:指两个以上的变量的样本观测值序列之间表现出来的随机数学关系;11、异方差:对于线性回归模型提出了若干基本假设,其中包括随机误差项具有同方差;如果对于不同样本点,随机误差项的方差不再是常数,而互不相同,则认为出现了异方差性;12、外生变量:外生变量是模型以外决定的变量,作为自变量影响内生变量,外生变量决定内生变量,其参数不是模型系统的元素;因此,外生变量本身不能在模型体系内得到说明;外生变量一般是确定性变量,或者是具有临界概率分布的随机变量;外生变量影响系统,但本身并不受系统的影响;外生变量一般是经济变量、条件变量、政策变量、虚变量;一般情况下,外生变量与随机项不相关;二、填空题1、计量经济学中, 经济学提供理论基础, 统计学提供资料依据, 数学提供研究方法.2、研究经济问题时,一般要处理三种类型的数据:1 截面数据;2 时间序列数据;和3 虚拟变量数据;3、 OLS参数估计量具有如下统计性质,即线性、无偏性、有效性 ;4、时间序列数据与横截面数据的最大区别在于数据的顺序性 _;5、在模型中引入多个虚拟变量时,虚拟变量的个数应按下列原则确定:如果有M个互斥的属性类型,则在模型中引入 M-1 个虚拟变量;6、在现实经济活动中往往存在一个被解释变量受到多个解释变量的影响的现象,表现为在线性回归模型中有多个解释变量,这样的模型被称为多元线性回归模型;7、在多元线性回归模型中,参数的最小二乘估计量具线性性、无偏性、最小方差性,同时多元线性回归模型满足经典假定,所以此时的最小二乘估计量是最优的线性无偏估计量,又称BLUE估计量;8、计量经济学的核心内容是建立和应用计量经济模型;9、R2 是一个回归直线与样本观测值拟合优度的数量指标,其值越大,拟合优度越好,其值越小,拟合优度就越差;10、自相关就是指总体回归方程的误差项u i之间存在着相关,即:按时间或空间排序的观察值序列的个成员之间存在的相关;三、单项选择题1.经济计量模型是指CA.投入产出模型B.数学规划模型C.包含随机方程的经济数学模型D.模糊数学模型2.回归分析中定义的BA.解释变量和被解释变量都是随机变量B.解释变量为非随机变量,被解释变量为随机变量C.解释变量和被解释变量都为非随机变量D.解释变量为随机变量,被解释变量为非随机变量3.设k 为回归模型中的参数个数,n 为样本容量;则对总体回归模型进行显着性检验F 检验时构造的F 统计量为 A A.)k n /(RSS )1k /(ESS F --=B. )k n /(RSS )1k /(ESS 1F ---=C. RSS ESS F =D. ESSRSSF = 4. D-W 检验,即杜宾-瓦尔森检验,用于检验时间序列回归模型的误差项中的一阶序列相关的统计量,DW 统计量以OLS 残差为基础:=∑∑==--nt tnt t tee e1221~)~~(,如果值越接近于2,则 CA.则表明存在着正的自相关B.则表明存在着负的自相关C.则表明无自相关D.无法表明任何意义5.容易产生异方差的数据为C A.时序数据 B.修匀数据 C.横截面数据 D.年度数据6、计量经济模型分为单方程模型和 C ;A.随机方程模型B.行为方程模型C.联立方程模型D.非随机方程模型 7、同一统计指标按时间顺序记录的数据列称为 B A.横截面数据 B.时间序列数据 C.修匀数据 D.平行数据8、样本数据的质量问题,可以概括为完整性、准确性、可比性和 B ; A.时效性 B.一致性 C.广泛性 D.系统性9、有人采用全国大中型煤炭企业的截面数据,估计生产函数模型,然后用该模型预测未来煤炭行业的产出量,这是违反了数据的 A 原则; A.一致性 B.准确性 C.可比性 D.完整性10、对下列模型进行经济意义检验,哪一个模型通常被认为没有实际价值的 B ;A. i C 消费i I 8.0500+=收入B. di Q 商品需求i I 8.010+=收入i P 9.0价格C. si Q 商品供给i P 75.020+=价格D. i Y 产出量6.065.0i K =资本4.0iL 劳动 四、多项选择题1、不满足OLS 基本假定的情况,主要包括: ABCD ; A.随机序列项不是同方差,而是异方差 B.随机序列项序列相关,即存在自相关 C.解释变量是随机变量,且与随机扰动项相关 D.解释变量之间相关,存在多重共线性 E.因变量是随机变量,即存在误差2、随机扰动项产生的原因大致包括如下几个方面,它们是 ABCD ; A.客观现象的随机性人的行为、社会环境与自然影响的随机性 B.模型省略变量被省略的具有随机性的变量归入随机扰动项 C.测量与归并误差估计时测量和归并误差都归入随机扰动项 D.数学模型函数的形式的误定E.从根本上看是由于经济活动是人类参与的活动 3、内生变量 ABDE ;A.在联立方程模型中,内生变量由系统内方程决定,同时又对模型系统产生影响;既作为被解释变量,又可以在不同的方程中作为解释变量;B.一般情况下,内生变量与随机项相关;C.内生变量决定外生变量D.内生变量一般都是经济变量E.内生变量Y 一般满足: CovY i ,i μ≠0,即EY i i μ≠0; 4、影响预测精度的因素包括 ACD ;A.样本容量愈大,预测的方差愈小,预测的精度愈大B.样本中解释变量的离均差的和愈大,预测的方差愈小,预测的精度愈大C.内插预测的精度比较有把握,外推预测的能力显着下降,预测精度难以把握D.当其样本容量n 相当大,而预测点的取值X0接近于X 的平均值时,预测的方差最小,预测的精度最大E.残差标准差的估计值愈小,回归预测的精度愈精确,所以常常把残差标准差的估计值作为预测精度的标志5. 下列哪些变量属于前定变量CD ; A.内生变量 B.随机变量 C.滞后变量 D.外生变量 E.工具变量 五、判断题1、通常把由方程组内决定的变量称为内生变量,而不能由方程组内直接决定的变量为前定变量,又称为先决变量;√2、前定先决变量既能作为解释变量,也能作为被解释变量;×3、D-W 检验,即杜宾-瓦尔森检验,=∑∑==--nt tnt t tee e1221~)~~(,其最大优点为简单易行;如果值接近于零,则说明越倾向于无自相关;×4、截面数据是一批发生在同一时间截面上的调查数据;例如,在给定的某个时点上对个人、家户、企业、城市、地区、国家或一系列其它单位采集的样本所构成的数据集;√5、内生变量是理论或模型所要解释的变量,即因变量,它是为理论或模型以外的因素所影响的变量,是具有某种概率分布的随机变量;√6、违背基本假设的计量经济学模型是不可估计的;×7、只有满足基本假设的计量经济学模型的普通最小二乘参数估计量才具有无偏性和有效性;√8、要使得计量经济学模型拟合得好,就必须增加解释变量;×9、在拟合优度检验中,拟合优度高,则解释变量对被解释变量的解释程度就高,可以推测模型总体线性关系成立;反之亦然;×10、样本容量N 越小,残差平方和RSS 就越小,模型拟合优度越好;×11、当计量经济学模型出现异方差性,其普通最小二乘法参数估计量仍具有无偏性,但不具有有效性;√12、实际问题中的多重共线性不是自变量之间存在理论上或实际上的线性关系造成的,而是由于所收集的数据之间存在近似的线性关系所致;√13、模型的拟合优度不是判断模型质量的唯一标准,为了追求模型的经济意义,可以牺牲一点拟合优度;√14、如果给定解释变量值,根据模型就可以得到被解释变量的预测值;×15、异方差问题中,随机误差项的方差与解释变量观测值之间都是有规律可循的;× 16、计量经济学模型解释经济活动中各因素之间的理论关系,用确定性的数学方程加以描述;×17、计量经济学根据研究对象和内容侧重面不同,可以分为广义计量经济学和狭义计量经济学;√18、计量经济学是一门经济学科,而不是数学或其他;√19、样本数据的收集是计量经济学的核心内容;×20、方法,主要包括模型方法和计算方法,是计量经济学研究的基础;×21、具有因果关系的变量之间一定有数学上的相关关系,具有相关关系的变量之间一定具有因果关系;×22、乘数是变量的变化率之比;×23、单方程计量经济学模型是以多个经济现象为研究对象,是应用最为普遍的计量经济学模型;×24、对于最小二乘法最合理的参数估计量应该使得从模型中抽取n组样本观测值的概率最大;×25、总体平方和由残差平方和和回归平方和组成;√26、校正的判定系数和非校正的判定系数仅当非校正判定系数为1时才相等;√27、判定所有解释变量是否对应变量有显着影响的方法是看是否每个解释变量都是显着的t统计量;如果不是,则解释变量整体是统计不显着的;×28、当R2=1, F= 0 ;当R2= 0 ,F=∞;×29、在模型Yi =B1+B2X2i+B3X3i+ui中,如果X2和X3负相关且B3>0,则从模型中略去解释变量X3将使b12的值减小也即,Eb12<B2;其中b12是Y仅对X2的回归方程中的斜率系数;√30、当我们说估计的回归系数在统计上是显着的,意思是说它显着不为1;×31、要计算t临界值,仅仅需知道自由度;×32、整个多元回归模型在统计上是显着的意味着模型中任何一个单独的变量均是统计显着的;×33、就估计和假设检验而言,单方程回归与多元回归没有什么区别;√34、无论模型中包括多少个解释变量,总离差平方和的自由度总为n-1;√35、双对数模型的斜率和弹性系数相同;√36、对于变量之间是线性的模型而言,斜率系数是一个常数,弹性系数是一个变量;但双对数模型的弹性系数是一个常数,而斜率是一个变量;√37、双对数模型的R2值可以与对数-线性模型的相比较,但不能与线性-对数模型的相比较;√38、线性-对数模型的R2值可以与线性模型相比较,但不能与双对数模型或对数线性模型的相比较;√39、模型A:lnY=+;r2= ;模型B:Y=+;r2=模型A更好一些,因为它的r2大;×40、在存在异方差情况下,普通最小二乘估计是有偏的和无效的;×41、如果存在异方差,通常使用的t检验和F检验是无效的;√42、在存在异方差情况下,常用的OLS估计总是高估了估计量的标准差;×43、当存在序列相关时,OLS估计量是有偏的并且也是无效的;×44、消除序列相关的广义差分变换假定自相关系数必须等于1;√45、两个模型,一个是一阶差分形式,一个是水平形式,这两个模型的R 2是不可以直接比较的;√46、存在多重共线性时,模型参数无法估计;×47、尽管存在着完全多重共线性,普通最小二乘估计量仍然是最优线性无偏估计量;× 48、在存在高度多重共线性的情况下,无法估计一个或多个偏回归系数的显着性;√ 49、一旦模型中的解释变量是随机变量,则违背了基本假设,使得模型的OLS 估计量有偏且不一致;× 六、简答1、随机扰动项产生的原因答:1客观现象的随机性;引入e 的根本原因,乃是经济活动是人类参与的,因此不可能像科学实验那样精确;2此外还有社会环境和自然环境的随机性;3模型省略了变量;被省略的变量包含在随机扰动项e 中;4测量与归并误差;测量误差致使观察值不等于实际值,汇总也存在误差;5数学模型形式设定造成的误差;由于认识不足或者简化,将非线性设定成线性模型; 经济计量模型的随机性,正是为什么要采用数理统计方法的原因;2、采用普通最小二乘法,已经保证了模型最好地拟合样本观测值,为何还要进行拟合优度检验答:普通最小二乘法所保证的最好拟合,是同一个问题内部的比较,拟合优度检验结果所表示的优劣是不同问题之间的比较;两个同样满足最小二乘原则的模型,对样本观测值的拟合程度不一定相同;3、针对普通最小二乘法,线性回归摸型的基本假设 答:1解释变量是确定性变量,而且解释变量之间不相关;2随机误差项具有0均值且同方差;3随机误差项在不同样本点之间独立,不存在序列相关; 4随机误差项与解释变量之间不相关;5随机误差项服从0均值且同方差的正态分布; 七、综合题1、某人试图建立我国煤炭行业生产方程,以煤炭产量为被解释变量,经过理论和经验分析,确定以固定资产原值、职工人数和电力消耗量变量作为解释变量,变量的选择是正确的;于是建立了如下形式的理论模型:煤炭产量=αα01+固定资产原值+α2职工人数+α3电力消耗量+μ选择2000年全国60个大型国有煤炭企业的数据为样本观测值;固定资产原值用资产形成年当年价计算的价值量,其它采用实物量单位;采用OLS 方法估计参数;指出该计量经济学问题中可能存在的主要错误,并简单说明理由;答:⑴模型关系错误;直接线性模型表示投入要素之间完全可以替代,与实际生产活动不符;⑵估计方法错误;该问题存在明显的序列相关性,不能采用OLS方法估计;⑶样本选择违反一致性;行业生产方程不能选择企业作为样本;⑷样本数据违反可比性;固定资产原值用资产形成年当年价计算的价值量,不具备可比性;2、材料:为证明刻卜勒行星运行第三定律,把地球与太阳的距离定为1个单位;地球绕太阳公转一周的时间为1个单位年;那么太阳系9个行星与太阳的距离D和绕太阳各公转一周所需时间T的数据如下:obs水星金星地球火星木星土星天王星海王星冥王星DISTANCE1Time184165248D3170782727161630T2170562722561504用上述数据建立计量模型并使用EVIEWS计算输出结果如下问题:根据EVIEWS计算输出结果回答下列问题1EVIEWS计算选用的解释变量是____________________2EVIEWS计算选用的被解释变量是____________________3建立的回归模型方程是____________________4回归模型的拟合优度为____________________5回归函数的标准差为____________________6回归参数估计值的样本标准差为____________________7回归参数估计值的t统计量值为____________________8残差平方和为____________________9被解释变量的平均数为____________________10被解释变量的标准差为____________________答案如下:1Logdistance 2Logtime 3Logdistance= Logtime+u4 5 6 78 9 103、中国国内生产总值与投资及货物和服务净出口单位:亿元用上述数据建立计量模型并使用EVIEWS 计算输出结果如下Dependent Variable: Y Method: Least SquaresDate: 10/19/09 Time: 21:40 Sample: 1991 2003Included observations: 13VariableCoefficientStd. Errort-StatisticProb.C X1 X2R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid +08 Schwarz criterion Log likelihood F-statistic Durbin-Watson stat ProbF-statistic1建立投资与净出口与国民生产总值的二元线性回归方程并进行估计,并解释斜率系数的经济意义;解:建立Y 与X 、X 之间的线性回归模型:Y = 0ˆβ + 1ˆβ X 1 + 2ˆβX 2+ e i 根据普通最小二乘法参数估计有故所求回归方程为Y = + X 1 +X 1的系数β1=表明,如果其他变量保持不变,为使国民生产总值增加一亿元投资需增加亿元,净出口增加亿元也能使国民生产总值增加一亿元;2对偏回归系数及所建立的回归模型进行检验,显着性水平α=;2281.2)10(025.0=t 解:假设H 0 : 0=i β,H 1 : 0≠i β;在H 0 成立的条件下检验统计量)ˆ(ˆ)ˆ(ˆ111111βββββS S t =-=~t n-k )ˆ(ˆ)ˆ(ˆ112222βββββS S t =-=~t n-k =-==∑112111ˆ)ˆ(C kn e C S iσβ =-==∑222222ˆ)ˆ(C kn e C S iσβ其中C ii 是1)(-X X T 对角线的值;22)ˆ(i i i Y Y e -=∑∑,为残差平方和; 所以:120692.0177916.2)ˆ(ˆ111==ββS t = 282402.1051980.4)ˆ(ˆ222==ββS t = 给定α=. {}{}2281.2)10()(025.02≥=≥=⎭⎬⎫⎩⎨⎧-≥=t t t k n t t w α;从上面结果看出t 、t 的绝对值均大于,故拒绝H 0,认为1、2 均显着不等于0,X 1、X 2对Y 的影响均显着;3估计可决系数,以显着性水平α=对方程整体显着性进行检验,并估计校正可决系数,说明其含义;39.9)10,2(05.0=F 解: R 2=∑-'-=-2)(11Y Y ee TSS RSS i= 假设H 0:1 =2 =0;H 1:1 、2 不全为0;检验统计量F==---=-∑∑kn Y Y k Y Y kn RSSkESSii22)ˆ()ˆ(给定α=. {}{}{}39.9)10,2(),(05.0≥=≥=-≥=F F F k n k F F w α,F 远大于 2,10,故拒绝H 0,认为总体参数1、2 不全为等于0,资本形成额X 1和货物和服务净出口X 2对国民生产总值Y 的影响显着;4、假设要求你建立一个计量经济模型来说明在学校跑道上慢跑一英里或一英里以上的人数,以便决定是否修建第二条跑道以满足所有的锻炼者;你通过整个学年收集数据,得到两个可能的解释性方程:方程A :3215.10.10.150.125ˆX X X Y +--= 75.02=R方程B :4217.35.50.140.123ˆX X X Y -+-= 73.02=R 其中:Y —某天慢跑者的人数;1X —该天降雨的英寸数;2X —该天日照的小时数;3X —该天的最高温度按华氏温度;4X —第二天需交学期论文的班级数; 请回答下列问题:1这两个方程你认为哪个更合理些,为什么2为什么用相同的数据去估计相同变量的系数得到不同的符号 答案:1方程B 更合理些;原因是:方程B 中的参数估计值的符号与现实更接近些,如与日照的小时数同向变化,天长则慢跑的人会多些;与第二天需交学期论文的班级数成反向变化,这一点在学校的跑道模型中是一个合理的解释变量;2解释变量的系数表明该变量的单位变化在方程中其他解释变量不变的条件下对被解释变量的影响,在方程A 和方程B 中由于选择了不同的解释变量,如方程A 选择的是“该天的最高温度”而方程B 选择的是“第二天需交学期论文的班级数”,由此造成2X 与这两个变量之间的关系不同,所以用相同的数据估计相同的变量得到不同的符号; 5、收集1978-2001年的消费额XF 亿元,国内生产总值GDP 亿元资料,建立消费函数,Eviews 结果如下:Dependent Variable: LOGXFMethod: Least Squares Date: 10/21/09 Time: 20:16 Sample: 1978 2001 Included observations: 24CoefficientStd. Error t-StatisticProb.C t 1= LOGGDPt 2=R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood Hannan-Quinn criter. F-statistic Durbin-Watson statProbF-statistic要求:1把表中缺失的数据补上;5分2把回归分析结果报告出来;5分3进行经济意义、统计学意义和经济计量学意义检验;6分 4解释系数经济含义;4分 6、根据广东省数据,把财政支出 CZ 作为因变量,财政收入CS 作为解释变量进行一元回归分析后,得到回归残差平方的对数对logCS 的回归结果如下:Dependent Variable: LOGRESID^2 Method: Least Squares Date: 5/22/09 Time: 20:24 Sample: 1978 2003Included observations: 26Variable Coefficient Std. Error t-StatisticProb.LOGCS CR-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared residSchwarz criterion要求:1写出异方差表达式σi 2=10分2进行同方差变换,证实变换后的模型不存在异方差;10分 已知:t t t u CS CZ ++=10ββ其中:为常数)其中22()()(σσt t CS f u Var =,其中 1.522024 (CSi))(=t CS f 模型两边同时除以)(t CS f 进行变换,得:3分其中:)(t tt CS f u =υ,可以证明误差项t υ是同方差的;证明如下:4分 已知:)(t t t CS f u =υ,)(22t tt CS f u =υ,222))(()(συ==t t tCS f u E E 根据已知条件2σ为常数,证得变换后的误差项是同方差的;。
计量经济学试题及答案
计量经济学试题及答案一、选择题1. 计量经济学是研究经济现象的一种方法,其特点是()。
A. 历史性B. 科学性C. 主观性D. 人文性答案:B. 科学性2. 下列哪个属于计量经济学的基本假设()。
A. 完全竞争市场假设B. 政府干预市场假设C. 供需平衡假设D. 多元线性回归假设答案:D. 多元线性回归假设3. 计量经济学的数据分析方法一般可以分为()。
A. 定性分析和定量分析B. 统计分析和经济分析C. 单元根分析和平稳性分析D. 截面数据分析和时间序列分析答案:D. 截面数据分析和时间序列分析二、填空题1. 计量经济学的核心方法之一是()。
答案:回归分析2. 计量经济学中的“OLS”缩写代表()。
答案:最小二乘法3. 计量经济学中用来衡量变量之间关系强度的指标是()。
答案:相关系数三、简答题1. 请简要解释计量经济学中的“异方差性”问题,并提供解决方法。
答案:异方差性是指随着解释变量的变化,误差项的方差也会发生变化。
解决异方差性问题的方法包括加权最小二乘法、异方差稳健标准误差、变量转换等。
2. 请阐述计量经济学中的“内生性”问题及其影响。
答案:内生性是指解释变量与误差项之间存在相关性,会导致回归结果的系数估计具有偏误。
内生性问题的存在会使得回归结果失去解释力,并产生错误的推断结论。
四、论述题1. 计量经济学中,时间序列分析的应用范围及方法。
答案:时间序列分析适用于研究同一经济变量随时间变化的规律和趋势。
时间序列分析的方法包括平稳性检验、单位根检验、阶梯回归模型等。
2. 多元线性回归模型的基本原理和步骤。
答案:多元线性回归模型是通过建立多个解释变量与一个被解释变量之间的线性关系来描述经济现象。
步骤包括选择适当的解释变量、估计回归方程、检验回归方程的显著性、解释回归方程及进行诊断检验等。
这篇文章介绍了计量经济学的一些基本概念和方法。
通过选择题、填空题、简答题和论述题的形式给出了一些试题及相应的答案。
《计量经济学》习题及答案
《计量经济学》习题及答案(解答仅供参考)第一套一、名词解释:1. 计量经济学:计量经济学是经济学的一个分支,它使用数学和统计学的方法,对经济现象进行量化分析,建立经济模型,预测和解释经济行为和现象。
2. 异方差性:在回归分析中,如果误差项的方差随自变量的变化而变化,这种现象称为异方差性。
3. 自相关性:在时间序列分析中,如果一个变量的当前值与它的过去值存在相关性,这种现象称为自相关性。
4. 多重共线性:在多元回归分析中,如果两个或多个自变量之间高度相关,这种现象称为多重共线性。
5. 随机抽样:随机抽样是一种统计抽样方法,每个样本单位都有一定的概率被选入样本,且各个样本单位之间的选择是独立的。
二、填空题:1. 在线性回归模型中,参数估计的常用方法是______最小二乘法______。
2. 如果一个变量的分布是对称的,那么它的偏态系数应该接近于______0______。
3. 在时间序列分析中,______平稳性______是进行预测的前提条件之一。
4. ______工具变量法______是处理内生性问题的一种常用方法。
5. 如果一个经济变量的变化完全由其他经济变量的变化所决定,那么这个变量被称为______外生变量______。
三、单项选择题:1. 下列哪种情况可能导致异方差性?(B)A. 自变量和因变量之间存在非线性关系B. 自变量的某些组合导致误差项的方差增大C. 因变量和误差项之间存在相关性D. 样本容量过小2. 在进行回归分析时,如果发现数据存在多重共线性,以下哪种方法可以解决这个问题?(C)A. 增加样本容量B. 使用非线性模型C. 删除相关性较强的自变量D. 对自变量进行标准化3. 下列哪种情况可能会导致自相关性?(A)A. 时间序列数据中存在滞后效应B. 因变量和某个自变量之间存在非线性关系C. 样本容量过小D. 自变量之间存在多重共线性四、多项选择题:1. 下列哪些是计量经济学的基本假设?(ABCD)A. 线性关系假设B. 零均值假设C. 同方差性假设D. 无自相关性假设E. 正态性假设2. 下列哪些是处理内生性问题的方法?(ACD)A. 工具变量法B. 加权最小二乘法C. 两阶段最小二乘法D. 广义矩估计法E.岭回归法五、判断题:1. 在进行回归分析时,如果自变量和因变量之间不存在线性关系,那么回归结果将没有任何意义。
计量经济学习题和答案
计量经济学习题和答案(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--期中练习题1、回归分析中使用的距离是点到直线的垂直坐标距离。
最小二乘准则是指( )A .使∑=-n t tt Y Y 1)ˆ(达到最小值 B.使∑=-nt t t Y Y 1达到最小值 C. 使∑=-n t t t Y Y 12)(达到最小值 D.使∑=-nt t t Y Y 12)ˆ(达到最小值 2、根据样本资料估计得出人均消费支出 Y 对人均收入 X 的回归模型为ˆln 2.00.75ln i iY X =+,这表明人均收入每增加 1%,人均消费支出将增加 ( )A. B. % C. 2 D. %3、设k 为回归模型中的参数个数,n 为样本容量。
则对总体回归模型进行显著性检验的F 统计量与可决系数2R 之间的关系为( ) A.)1/()1()/(R 22---=k R k n F B. )/(1)-(k )R 1/(R 22k n F --= C. )/()1(22k n R R F --= D. )1()1/(22R k R F --= 6、二元线性回归分析中 TSS=RSS+ESS 。
则 RSS 的自由度为( )9、已知五个解释变量线形回归模型估计的残差平方和为8002=∑t e ,样本容量为46,则随机误差项μ的方差估计量2ˆσ为( ) D. 201、经典线性回归模型运用普通最小二乘法估计参数时,下列哪些假定是正确的( )A.0)E(u i =B. 2i )Var(u i σ=C. 0)u E(u j i ≠D.随机解释变量X 与随机误差i u 不相关E. i u ~),0(2i N σ2、对于二元样本回归模型ii i i e X X Y +++=2211ˆˆˆββα,下列各式成立的有( ) A.0=∑i e B. 01=∑i i X e C. 02=∑i i X e D.0=∑i i Y e E. 021=∑i i X X 4、能够检验多重共线性的方法有( )A.简单相关系数矩阵法B. t 检验与F 检验综合判断法C. DW 检验法 检验法E.辅助回归法计算题1、为了研究我国经济发展状况,建立投资(1X ,亿元)与净出口(2X ,亿元)与国民生产总值(Y ,亿元)的线性回归方程并用13年的数据进行估计,结果如下:i i iX X Y 21051980.4177916.2805.3871ˆ++= =2R = F=582 n=13问题如下:①从经济意义上考察模型估计的合理性;(3分) ②估计修正可决系数2R ,并对2R 作解释;(3分)③在5%的显著性水平上,分别检验参数的显著性;在5%显著性水平上,检验模型的整体显著性。
计量经济学习题及参考答案详细版
计量经济学习题及参考答案详细版(总25页)-本页仅作为预览文档封面,使用时请删除本页-计量经济学(第四版)习题参考答案潘省初第一章 绪论试列出计量经济分析的主要步骤。
一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 计量经济模型中为何要包括扰动项为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
什么是时间序列和横截面数据 试举例说明二者的区别。
时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
估计量和估计值有何区别估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y 就是一个估计量,1nii YY n==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章 计量经济分析的统计学基础略,参考教材。
请用例中的数据求北京男生平均身高的99%置信区间N SS x ==45= 用=,N-1=15个自由度查表得005.0t =,故99%置信限为x S t X 005.0± =174±×=174±也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在至厘米之间。
25个雇员的随机样本的平均周薪为130元,试问此样本是否取自一个均值为120元、标准差为10元的正态总体 原假设 120:0=μH备择假设 120:1≠μH 检验统计量()10/2510/25XX μσ-Z ====查表96.1025.0=Z 因为Z= 5 >96.1025.0=Z ,故拒绝原假设, 即 此样本不是取自一个均值为120元、标准差为10元的正态总体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1-14.计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。
答:由于客观经济现象的复杂性,以至于人们目前仍难以完全地透彻地了解它的全貌。
对于某一种经济现象而言,往往受到很多因素的影响,而人们在认识这种经济现象的时候,只能从影响它的很多因素中选择一种或若干种来说明。
这样就会有许多因素未被选上,这些未被选上的因素必然也会影响所研究的经济现象。
因此,由被选因素构成的数学模型与由全部因素构成的数学模型去描述同一经济现象,必然会有出入。
为使模型更加确切地说明客观经济现象,所以有必要引入随机误差项。
随机误差项形成的原因:①在解释变量中被忽略的因素;②变量观测值的观测误差;③模型的关系误差或设定误差;④其他随机因素的影响。
第二章 一元线性回归模型例1、令kids 表示一名妇女生育孩子的数目,educ 表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为μββ++=educ kids 10(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
解答:(1)收入、年龄、家庭状况、政府的相关政策等也是影响生育率的重要的因素,在上述简单回归模型中,它们被包含在了随机扰动项之中。
有些因素可能与增长率水平相关,如收入水平与教育水平往往呈正相关、年龄大小与教育水平呈负相关等。
(2)当归结在随机扰动项中的重要影响因素与模型中的教育水平educ 相关时,上述回归模型不能够揭示教育对生育率在其他条件不变下的影响,因为这时出现解释变量与随机扰动项相关的情形,基本假设4不满足。
例2.已知回归模型μβα++=N E ,式中E 为某类公司一名新员工的起始薪金(元),N 为所受教育水平(年)。
随机扰动项μ的分布未知,其他所有假设都满足。
(1)从直观及经济角度解释α和β。
(2)OLS 估计量αˆ和βˆ满足线性性、无偏性及有效性吗?简单陈述理由。
(3)对参数的假设检验还能进行吗?简单陈述理由。
解答:(1)N βα+为接受过N 年教育的员工的总体平均起始薪金。
当N 为零时,平均薪金为α,因此α表示没有接受过教育员工的平均起始薪金。
β是每单位N 变化所引起的E 的变化,即表示每多接受一年学校教育所对应的薪金增加值。
(2)OLS 估计量αˆ和仍βˆ满足线性性、无偏性及有效性,因为这些性质的的成立无需随机扰动项μ的正态分布假设。
(3)如果t μ的分布未知,则所有的假设检验都是无效的。
因为t 检验与F 检验是建立在μ的正态分布假设之上的。
例6.对于人均存款与人均收入之间的关系式t t t Y S μβα++=使用美国36年的年度数据得如下估计模型,括号内为标准差:)011.0()105.151(067.0105.384ˆtt Y S +=2R =0.538 023.199ˆ=σ(1)β的经济解释是什么?(2)α和β的符号是什么?为什么?实际的符号与你的直觉一致吗?如果有冲突的话,你可以给出可能的原因吗?(3)对于拟合优度你有什么看法吗?(4)检验是否每一个回归系数都与零显著不同(在1%水平下)。
同时对零假设和备择假设、检验统计值、其分布和自由度以及拒绝零假设的标准进行陈述。
你的结论是什么?解答:(1)β为收入的边际储蓄倾向,表示人均收入每增加1美元时人均储蓄的预期平均变化量。
(2)由于收入为零时,家庭仍会有支出,可预期零收入时的平均储蓄为负,因此α符号应为负。
储蓄是收入的一部分,且会随着收入的增加而增加,因此预期β的符号为正。
实际的回归式中,β的符号为正,与预期的一致。
但截距项为负,与预期不符。
这可能与由于模型的错误设定形造成的。
如家庭的人口数可能影响家庭的储蓄形为,省略该变量将对截距项的估计产生影响;另一种可能就是线性设定可能不正确。
(3)拟合优度刻画解释变量对被解释变量变化的解释能力。
模型中53.8%的拟合优度,表明收入的变化可以解释储蓄中53.8 %的变动。
(4)检验单个参数采用t 检验,零假设为参数为零,备择假设为参数不为零。
双变量情形下在零假设下t 分布的自由度为n-2=36-2=34。
由t 分布表知,双侧1%下的临界值位于2.750与2.704之间。
斜率项计算的t 值为0.067/0.011=6.09,截距项计算的t 值为384.105/151.105=2.54。
可见斜率项计算的t 值大于临界值,截距项小于临界值,因此拒绝斜率项为零的假设,但不拒绝截距项为零的假设。
2-22.假设王先生估计消费函数(用模型i i i u bY a C ++=表示),并获得下列结果:i i Y C 81.015+=∧,n=19(3.1) (18.7) R 2=0.98 这里括号里的数字表示相应参数的T 比率值。
要求:(1)利用T 比率值检验假设:b=0(取显著水平为5%);(2)确定参数估计量的标准方差;(3)构造b的95%的置信区间,这个区间包括0吗?解:⑴这是一个横截面序列回归。
(图略)⑵截距2.6911表示咖啡零售价在t时刻为每磅0美元时,美国平均消费量为每天每人2.6911杯,这个数字没有经济意义;斜率-0.4795表示咖啡零售价与消费量负相关,在t时刻,价格上升1美元/磅,则平均每天每人消费量减少0.4795杯;⑶不能;⑷不能;在同一条需求曲线上不同点的价格弹性不同,若要求出,须给出具体的X值及与之对应的Y 值。
第三章、多元线性回归模型例1.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为fedumedusibsedu210.0131.0094.036.10++-=R2=0.214式中,edu为劳动力受教育年数,sibs为该劳动力家庭中兄弟姐妹的个数,medu与fedu分别为母亲与父亲受到教育的年数。
问(1)sibs是否具有预期的影响?为什么?若medu与fedu保持不变,为了使预测的受教育水平减少一年,需要sibs增加多少?(2)请对medu的系数给予适当的解释。
(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数为12年,另一个的父母受教育的年数为16年,则两人受教育的年数预期相差多少?解答:(1)预期sibs对劳动者受教育的年数有影响。
因此在收入及支出预算约束一定的条件下,子女越多的家庭,每个孩子接受教育的时间会越短。
根据多元回归模型偏回归系数的含义,sibs前的参数估计值-0.094表明,在其他条件不变的情况下,每增加1个兄弟姐妹,受教育年数会减少0.094年,因此,要减少1年受教育的时间,兄弟姐妹需增加1/0.094=10.6个。
(2)medu的系数表示当兄弟姐妹数与父亲受教育的年数保持不变时,母亲每增加1年受教育的机会,其子女作为劳动者就会预期增加0.131年的教育机会。
(3)首先计算两人受教育的年数分别为10.36+0.131⨯12+0.210⨯12=14.45210.36+0.131⨯16+0.210⨯16=15.816因此,两人的受教育年限的差别为15.816-14.452=1.364例2.以企业研发支出(R&D)占销售额的比重为被解释变量(Y),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个有32容量的样本企业的估计结果如下:099 .0)046.0()22.0()37.1(05.0)log(32.0472.022 1=++ =RX XY其中括号中为系数估计值的标准差。
(1)解释log(X1)的系数。
如果X1增加10%,估计Y会变化多少个百分点?这在经济上是一个很大的影响吗?(2)针对R&D 强度随销售额的增加而提高这一备择假设,检验它不虽X1而变化的假设。
分别在5%和10%的显著性水平上进行这个检验。
(3)利润占销售额的比重X2对R&D 强度Y 是否在统计上有显著的影响? 解答:(1)log(x1)的系数表明在其他条件不变时,log(x1)变化1个单位,Y 变化的单位数,即∆Y=0.32∆log(X1)≈0.32(∆X1/X1)=0.32⨯100%,换言之,当企业销售X1增长100%时,企业研发支出占销售额的比重Y 会增加0.32个百分点。
由此,如果X1增加10%,Y 会增加0.032个百分点。
这在经济上不是一个较大的影响。
(2)针对备择假设H1:01>β,检验原假设H0:01=β。
易知计算的t 统计量的值为t=0.32/0.22=1.468。
在5%的显著性水平下,自由度为32-3=29的t 分布的临界值为1.699(单侧),计算的t 值小于该临界值,所以不拒绝原假设。
意味着R&D 强度不随销售额的增加而变化。
在10%的显著性水平下,t 分布的临界值为1.311,计算的t 值小于该值,拒绝原假设,意味着R&D 强度随销售额的增加而增加。
(3)对X2,参数估计值的t 统计值为0.05/0.46=1.087,它比在10%的显著性水平下的临界值还小,因此可以认为它对Y 在统计上没有显著的影响。
例3.下表为有关经批准的私人住房单位及其决定因素的4个模型的估计量和相关统计值(括号内为p-值)(如果某项为空,则意味着模型中没有此变量)。
数据为美国40个城市的数据。
模型如下:μββββββββ++++++++=statetax localtax unemp popchangincome value density g hou 76543210sin式中housing ——实际颁发的建筑许可证数量,density ——每平方英里的人口密度,value ——自由房屋的均值(单位:百美元),income ——平均家庭的收入(单位:千美元),popchang ——1980~1992年的人口增长百分比,unemp ——失业率,localtax ——人均交纳的地方税,statetax ——人均缴纳的州税(1)检验模型A 中的每一个回归系数在10%水平下是否为零(括号中的值为双边备择p-值)。
根据检验结果,你认为应该把变量保留在模型中还是去掉? (2)在模型A 中,在10%水平下检验联合假设H 0:βi =0(i=1,5,6,7)。
说明被择假设,计算检验统计值,说明其在零假设条件下的分布,拒绝或接受零假设的标准。
说明你的结论。
(3)哪个模型是“最优的”?解释你的选择标准。
(4)说明最优模型中有哪些系数的符号是“错误的”。
说明你的预期符号并解释原因。
确认其是否为正确符号。
解答:(1)直接给出了P-值,所以没有必要计算t-统计值以及查t 分布表。
根据题意,如果p-值<0.10,则我们拒绝参数为零的原假设。
由于表中所有参数的p-值都超过了10%,所以没有系数是显著不为零的。
但由此去掉所有解释变量,则会得到非常奇怪的结果。