第五章 定积分及其应用
国防高等数学 第五章 定积分及其应用
![国防高等数学 第五章 定积分及其应用](https://img.taocdn.com/s3/m/abde6d78360cba1aa911da59.png)
第五节 定积分的应用
图5-19
图5-20
第五节 定积分的应用
三 旋转体的体积
一个平面图形绕平面内一条直线旋转一周而成的立体称为旋 转体,该直线称为旋转体的旋转轴。例如,圆柱、圆锥和球体可以 依次看成由矩形、直角三角形和半圆绕相应的旋转轴旋转一周而 成的旋转体。
现在求由连续曲线y=f(x)及直线x=a,x=b,x轴所围成的曲边 梯形,绕x轴旋转一周而成的旋转体的体积,如图5-21所示。类似 地,可以得到由连续曲线x=φ(y)及直线y=c,y=d,y轴所围成的曲边 梯形,绕y轴旋转一周而成的旋转体的体积,如图5-22所示。
定理5-3 若函数f(x)在[a,b]上具有有限个第一类间断点,则f(x) 在[a,b]上可积。
第一节 定积分的概念与性质
四 定积分的几何意义
第一节 定积分的概念与性质
图5-3
图5-4
图5-5
第一节 定积分的概念与性质
五 定积分的性质
第一节 定积分的概念与性质
性质4表明无论点c是区间[a,b]的内分点还是外分点,这 一性质均成立。这个性质只用几何图形加以说明。若c是内分 点,由图5-6可以看出,曲边梯形AabB的面积等于曲边梯形 AacC的面积加曲边梯形CcbB的面积;若c是外分点,由图5-7 可以看出,曲边梯形AabB的面积等于曲边梯形AacC的面积减 去曲边梯形BbcC的面积。
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/
第五章 定积分及其应用
第五节 定积分的应用
图5-21
图5-22
第五节 定积分的应用
事实上,公式(5-7)中的被积表达式πf(x)2dx就是过积 分区间a,b上任一点x处所作垂直于x轴的旋转体的一横截 面面积,这就是说,若已知旋转体的一横截面(垂直于x轴)面 积的表达式,即可写出旋转体体积的定积分表达式。
高等数学第五章定积分及其应用
![高等数学第五章定积分及其应用](https://img.taocdn.com/s3/m/25ba90ea710abb68a98271fe910ef12d2af9a99e.png)
⾼等数学第五章定积分及其应⽤第五章定积分及其应⽤第⼀节定积分概念1、内容分布图⽰★曲边梯形★曲边梯形的⾯积★变速直线运动的路程★变⼒沿直线所作功★定积分的定义★定积分存在定理★定积分的⼏何意义★定积分的物理意义★例1 ★定积分的近似计算★例2★内容⼩结★课堂练习★习题5-1 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1利⽤定积分的定义计算积分01dx x 2?.讲解注意:例2的近似值.⽤矩形法和梯形法计算积分-102dx ex讲解注意:第⼆节定积分的性质1、内容分布图⽰★性质1-4★性质5及其推论★例1★性质6★例2★例3★性质7★例4★函数的平均值★例5★内容⼩结★课堂练习★习题5-2★返回2、讲解注意:例1⽐较积分值dx e x ?-2和dx x ?-2的⼤⼩.讲解注意:例2估计积分dx xπ+03sin 31的值.讲解注意:例3估计积分dx xxππ/2/4sin 的值.讲解注意:例4设)(x f 可导1)(lim =+∞→x f x 求且,,dt t f tt x x x ?++∞→2)(3sin lim .讲解注意:例5计算纯电阻电路中正弦交流电t I i m ωsin =在⼀个周期上的()功率的平均值简称平均功率.讲解注意:第三节微积分基本公式1、内容分布图⽰★引例★积分上限函数★积分上限函数的导数★例1-2★例3★例4★例5★例6★例7-8 ★例9★例10★例11★例12★例13★例14★内容⼩结★课堂练习★习题5-3★返回2、讲解注意:3、重点难点:4、例题选讲:例1?x tdt dxd 02cos 求[].讲解注意:例2dt e dxdx t ?321求[].讲解注意:例3.)()((3);)()((2);)((1).,)(00sin cos )(?-===x x x x t f dt t x f x F dt t xf x F dt e x F x f 试求以下各函数的导数是连续函数设讲解注意:例4求.1cos 02x dte x t x ?-→讲解注意:设)(x f 在),(+∞-∞内连续0)(>x f .证明函数且,??=xxdtt f dtt t x F 00)()()(在),0(+∞内为单调增加函数.f 例5讲解注意:例6],1[)ln 21()(1上的最⼤值与最⼩在求函数e dt t t x I x ?+=.值讲解注意:例7求.dx x ?12讲解注意:例8求.1dxx ?--12讲解注意:例9设求??≤<≤≤=215102)(x x x x f ?2讲解注意:例10.|12|10-dx x 计算讲解注意:.cos 1/3/22?--ππdx x 计算例11讲解注意:例12求.},max{222?-dx x x讲解注意:例13计算由曲线x y sin =在,0π之间及x .轴所围成的图形的⾯积x =x =A讲解注意:例14?,./5.,362了多少距离问从开始刹车到停车刹车汽车以等加速度到某处需要减速停车速度⾏驶汽车以每⼩时s m a km -=汽车驶过设讲解注意:第四节换元法积分法和分部积分法1、内容分布图⽰★定积分换元积分法★例1★例2★例3★例4★定积分的分部积分法★内容⼩结★课堂练习★习题5-4★返回★例5★例6★例7★例16★例17★例182、讲解注意:3、重点难点:4、例题选讲:例1计算.sin cos /25?πxdx x讲解注意:例2?a0dx 计算.0a >)(-2x 2a讲解注意:例3计算.sin sin 053?π-dx x x讲解注意:例4计算定积分dx x x ++412.2?讲解注意:例5当)(x f 在],[a a -上连续,,,)(x f 为偶函数当当有(1)(2)则 ??-=aaadx x f dx x f 0)(2)()(x f 为奇函数有?-=aa dx x f 0)(.;讲解注意:例6.--+dx e x x x 计算讲解注意:例7计算.11cos 21122?--++dx x xx x讲解注意:例8若)(x f 在]1,0[上连续证明,(1)?=00)(cos )(sin dx x f dx x f ;(2)πππ=)(sin 2)(sin dx x f dx x xf ,由此计算?π+02cos 1sin dx x x x ./2π/2π讲解注意:例9计算.arcsin 0?xdx 1/2讲解注意:例10计算.2cos 10+x xdx/4π讲解注意:例11计算.sin 0?xdx /2π2x讲解注意:例12.1dx e x 计算1/2讲解注意:例13.1)1ln(102++dx x x 求定积分讲解注意:例14-22ln e e dx x x求.讲解注意:例15.,612ln 2x e dt xt 求已知?=-π讲解注意:例16).(,)(13)()(1022x f dx x f x x x f x f 求满⾜⽅程已知? --=讲解注意:例17证明定积分公式xdx I n n n 0--?-??--?-=n n n n n n n n n n ,3254231,22143231π为正偶数.为⼤于1的正奇数./2π/2π??讲解注意:例18?π05.2cos dx x 求讲解注意:第五节定积分的⼏何应⽤1、内容分布图⽰★平⾯图形的⾯积A ★例1 ★例2 ★平⾯图形的⾯积B ★例3 ★例4 ★平⾯图形的⾯积C ★例5 ★平⾯图形的⾯积D★例6 ★例7 ★例8 旋转体★圆锥★圆柱★旋转体★旋转体的体积★例9 ★例 10 ★例 11 ★平⾏截⾯⾯积为已知的⽴体的体积★例 12 ★例 13 ★内容⼩结★课堂练习★习题5-5 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1]1,1[]1,0[2之间的⾯积.和轴上⽅在下⽅与分别求曲线-∈∈=x x x x y讲解注意:例2],1[ln 之间的⾯积.轴上⽅在下⽅与求e x x y =讲解注意:例3.1,1,03所围图形⾯积与直线求=-===x x y x y讲解注意:例44,0,042所围图形⾯积.和直线求由曲线===-=x x y x y讲解注意:例5.2所围成平⾯图形的⾯积与求由抛物线x y x y ==讲解注意:例642,2,所围成图形的⾯积.求由三条直线=-=+=y x y x x y422围成图形的⾯积与求+-==x y x y讲解注意:例8.0cos sin 之间所围图与在和求由曲线π====x x x y x y 形的⾯积讲解注意:例9r 圆锥体的直线、h x =及x 轴围直线连接坐标原点O 及点),(r h P 成⼀个直⾓三⾓形.x 轴旋转构成⼀个底半径为计算圆锥体的体积.h ,将它绕⾼为,的讲解注意:例10.12222y x V V y x by a x 和积轴旋转所得的旋转体体轴和分别绕求椭圆=+讲解注意:例112,22轴旋转⽽成的旋转体的体积.轴和所围成的图形分别绕求由曲线y x x y x y -==讲解注意:例12⼀平⾯经过半径为R 的圆柱体的底圆中⼼计算这平⾯截圆柱体所得⽴体的体积.并与底⾯交成,,⾓讲解注意:例13.的正劈锥体的体积的圆为底、求以半径为h R ⾼位平⾏且等于底圆直径的线段为顶、讲解注意:第六节积分在经济分析中的应⽤1、内容分布图⽰★由边际函数求原经济函数★需求函数★例1★总成本函数★例2★总收⼊函数★例3★利润函数★例4由边际函数求最优问题★例5★例6其它经济应⽤★例7⼴告策略★消费者剩余★例8★国民收⼊分配★例9★返回2、讲解注意:3、重点难点:4、例题选讲:例1),80,(80,4) (,==-='q pp qp格的函数关系.时即该商品的最⼤需求量为且边际需求的函数已知对某商品的需求量是价格求需求量与价讲解注意:例2, 90,2)(0.2 ==ceqCq 求总成本函数.固定成本的函数若⼀企业⽣产某产品的边际成本是产量讲解注意:例310,40),/(2100)(个单位时单位时的总收⼊及平均收⼊求⽣产单位元单位时的边际收⼊为已知⽣产某产品-='q q R q 并求再增加⽣产所增加的总收⼊.讲解注意:例45,10,413)(,225)(0==-='-='q c q q C q q R 时的⽑利和纯利.求当固定成本为边际成本已知某产品的边际收⼊讲解注意:例5吨产品时的边际成本为某企业⽣产q )/30501)(吨元q q C +='(?,900试求产量为多少时平均成本最低元且固定成本为讲解注意:例6q q q C q q R ,1(3)?(2);54(1)),/(/44)(),/(9)(+='-='求总成本函数和利润函数.万元已知固定成本为当产量为多少时利润最⼤万台时利润的变化量万台增加到试求当产量由其中产量万台万元成本函数为万台万元假设某产品的边际收⼊函数为以万台为单位.边际讲解注意:例70.02,10%,,100000,130000)(,.10%,1000000t e t 则决如果新增销售额产⽣的利润超过⼴告投资的美元的⼴告活动对于超过按惯例⾏⼀次类似的总成本为以⽉为单位下式的增长曲线⼴告宣传期间⽉销售额的变化率近似服从如根据公司以往的经验平均利润是销售额的美元某出⼝公司每⽉销售额是美元的⼴告活动.试问该公司按惯例是否应该做此⼴告.1000000公司现在需要决定是否举定做⼴告讲解注意:8例.2,318)(-=CS q q D 并已知需求量为如果需求曲线为个单位试求消费者剩余,表⽰某国某年国民收⼊在国民之间分配的劳伦茨曲线可近似地由讲解注意:第七节⼴义积分1、内容分布图⽰★⽆穷限的⼴义积分★⽆穷限的⼴义积分⼏何解释★例1★例2★例3★例4★例5★例6★⽆界函数的⼴义积分例7★例8★例9★例10★例11★例12★例13★内容⼩结★课堂练习★习题5-7★返回★2、讲解注意:3、重点难点:4、例题选讲:例1?∞+-0.dx e x 计算⽆穷积分讲解注意:例2.sin 0的收敛性判断⽆穷积分∞+xdx讲解注意:例312?∞+∞-+x dx计算⼴义积分讲解注意:例4计算⼴义积分.1sin 12∞+dx x x 2/π讲解注意:例5计算⼴义积分∞+-pt dt e 且0>p 时收敛p 是常数,(). t 0讲解注意:例6证明⼴义积分∞+11dxx p当1>p 时收敛当1≤p 时发散.,讲解注意:例7计算⼴义积分).0(022>-?a x a dxa讲解注意:例8证明⼴义积分11dx x q当1""讲解注意:例9计算⼴义积分.ln 21x dx讲解注意:例10计算⼴义积分.30dx1=x 瑕点)1(2/3-x .讲解注意:例11计算⼴义积分?∞+03+x x dx1().讲解注意:例12.)1(arcsin 10-dx x x x计算⼴义积分讲解注意:例13.11105?∞+++x x x dx 计算⼴义积分讲解注意:。
高等数学第05章 定积分及其应用习题详解
![高等数学第05章 定积分及其应用习题详解](https://img.taocdn.com/s3/m/197dfbd3360cba1aa811da16.png)
0
x 1 sin tdt 0dt 1 , 2
b a
f ( x)dx 在 几 何 上 表 示 由 曲 线 y f ( x) , 直 线
x a, x b 及 x 轴所围成平面图形的面积. 若 x a, b时,f ( x) 0, 则 b f ( x)dx 在几何 a
上表示由曲线 y f ( x) ,直线 x a, x b 及 x 轴所围平面图形面积的负值. (1)由下图(1)所示, 1 xdx ( A1 ) A1 0 .
n
2
i
i 1
n
2
1 1 1 1 1 n(n 1)(2n 1) = (1 )(2 ) 3 n 6 6 n n 1 1 2 当 0时 (即 n 时 ) ,由定积分的定义得: x d x = . 0 3
= 5. 利用定积分的估值公式,估计定积分
4 3
1 1
(4 x 4 2 x 3 5) dx 的值.
上任取一点 i 作乘积 f ( i ) xi 的和式:
n
f ( i ) xi c ( xi xi1 ) c(b a) ,
i 1 i 1
n
n
记 max{xi } , 则
1i n
b a
cdx lim f ( i ) xi lim c(b a) c(b a) .
x
0
(t 1)dt ,求 y 的极小值
解: 当 y x 1 0 ,得驻点 x 1 , y '' 1 0. x 1 为极小值点, 极小值 y (1)
( x 1)dx - 2
第5章 定积分及其应用(共132页)
![第5章 定积分及其应用(共132页)](https://img.taocdn.com/s3/m/3e633524b52acfc789ebc9cc.png)
10:31:46
23
课后作业
课前预习
5.2 定积分的计算
书面作业
P128: 2;3;计算
5.2.1 变上限积分 5.2.2 牛顿-莱布尼兹公式 知识回顾与小结
10:31:46
25
5.2.1 变上限积分
设函数 f ( x ) 在闭区间
变上限积分动态演示
上述和式的极限,即得曲边梯形的面积
A lim f ( i ) x i
0
i 1 n
7
变速直线运动的路程
设某物体的运动速度 v v ( t )是时间 t 的连续函数,
T2 ]内所走过的路程 s . 求物体在时间间隔 [ T1 ,
第一步 分割
T2 ]中任意插入 n 1 个分点, 在时间间隔 [ T1 ,
微积分学基本定理
b]上连续, F ( x )是 f ( x ) 设函数 f ( x ) 在闭区间 [a , b] 上的一个原函数, 则 在 [a ,
b a
f ( x )d x F (b) F (a )
称为牛顿-莱布尼兹公式,或称为 N-L 公式.
32
N-L 公式表明:
b ]上的定积分等于它的 一个连续函数在区间 [ a ,
第三步
求和,即
求和
把 n 个子时间段内物体所走过的路程
s v ( i ) t i
i 1 n
第四步
取极限
记 max { t 1 , t2 , , t n } ,取
上述和式的极限,即得变速直线运动的路程
s lim v ( i ) t i
0
与 u x 2 复合
而成的,所以
浙江专升本高数错误解析第五章 定积分及其应用
![浙江专升本高数错误解析第五章 定积分及其应用](https://img.taocdn.com/s3/m/6c7da206ac02de80d4d8d15abe23482fb4da02dc.png)
第五章 定积分及其应用定积分及其应用是微积分的主要内容之一,是微积分的精华,在《高等数学》中占有重要的地位 ,也是各类《高等数学》研究生入学考试的必考的重要内容之一。
复习这部份内容,考生应着重掌握定积分的定义、性质及其计算方法,掌握“微元法”这一定积分应用的重要数学思想方法。
一、知识网络定积分⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧Γ⎪⎩⎪⎨⎧-函数审敛法和计算定义广义各分分步积分法换元积分法莱公式牛积分的计算可变上限的定积分定积分的性质定积分的定义、 定积分的应用⎪⎪⎪⎩⎪⎪⎪⎨⎧)(变力作功等其它弧长体积面积微元法二、典型例题例1 . 求极限 xx dtxt xx 2sin )sin(lim2302⎰→。
[分析] 遇到极限中有可变上限有定积分,一般情况下可考虑应用洛必达法则,但由于现在被积函数中含有变量x ,因此先应将x 从被积函数中分离出来,对此题可用变量代换;另外,在求极限的过程中如能恰当地应用等价无穷小代换,可简化求极限的过程。
[解] 对定积分作变换 xt u =,由于x 2sin 2〜2)2(x ,4sin x 〜4x ,)0(→x ,因此再利用洛必达法则有原式=23020)2(sin 1lim2x x dx u x x x ⎰→=540602024sin 2lim 4sin lim 2x x x x du u x x x →→=⎰ =12112lim440=→x x x例2. 求极限 nn n n n n)2()2)(1(1lim⋅⋅⋅++∞→.[分析] 利用定积分的定义求极限,是一种常见的考研题型,难点在于如何将n x 变型成和式∑=∆ni iixf 1)(ξ。
[解] 令 nn n n n n x )2()2)(1(1⋅⋅⋅++= 则 n n n n n x n ln )]2ln()2ln()1[ln(1ln -+⋅⋅⋅++++==]ln )2ln()2ln()1[ln(1n n n n n n -⋅⋅⋅++++ =)]1ln()21ln()11[ln(1nn n n n ++⋅⋅⋅++++ 因此 ⎰+=∞→1)1ln(ln lim dx x x n n =12ln 2-所以 原式=ee 412ln 2=-例3.设)(x f 在[]b a ,上连续,B b a A <<<,求证 ⎰-=-+→ba h a fb f dx h x f h x f )()()()(lim0.[证明1] ⎰⎰⎰-+=-+b a bab a dx x f h dx h x f h dx h x f h x f )(1)(1)()(′令 u h x =+,则⎰⎰++=+hb ha badu u f dx h x f )()(从而⎰⎰⎰-=-+++babah b h a dx x f h dx x f h dx h x f h x f )(1)(1)()(=⎰⎰++-ha ah b b dx x f h dx x f h )(1)(1 由积分中值定理及)(x f 的2的性知 )()(1lim0b f dx x f h h b b h =⎰+→ )()(1lim 0a f dx x f h ha a h =⎰+→故原题得证.[证明2] 由证明1可知⎰⎰⎰-=-+++→→babahb ha h h hdxx f dx x f dx hx f h x f )()(lim )()(lim 00=)]()([lim 0h a f h b f h +-+→ ( 洛必达法则 ) =)()(a f b f -例4.设)(x f 在[a ,b ]上连续,试证⎰≤≤+∞→=1101)(max ))((lim x f dx x f x ppp[证明] 记A x f x =≤≤)(max 10 ,由连续性可知,存在 ],[0b a x ∈,使 )(x f A =.当0>p 时 ⎰⎰=≥1111)())((A dx A dx x f pp pp对0>∀ε,选取0>δ,使得当 δ<-<00x x 时,有 2)(ε-≥A x f设 且,100≤≤≤≤βαx 0 <βα-<δ则 ⎰⎰≥111))(())((βαppppdx x f dx x f⎰-≥βαεppdx A 1])2([=pA 1))(2(αβε--因为 当 +∞→p 时,1)(1→-pαβ,故当p 充分大时有 ⎰-=--≥112)2())((εεεA A dx x f pp因此当 p 充分大时有 A dx x f A pp≤≤-⎰11))((ε由ε的任意性知 ⎰=+∞→11))((lim A dx x f ppp例5. 计算⎰+-1arctandx xa xa [分析] 本题应用换元积分法,换元时应注意要换限. [解法1] 令 xa xa t +-=arctan则 t a tta x 2cos tan 1tan 122=+-⋅=, 故 原式=⎰04)2cos (πt a td =t at 2cos │04π+dt t a ⎰402cos π=2a [解法2] 令 t x cos = 原式=2cos 2cos 2cos 2020202a dt t a t t a t d t =-⋅=⎰⎰πππ [解法3] 记 xa xa x +-=)(ω ,分部积分得 原式=⎰+-+-aadx x a axx x 0220)(22111)(arctan ωωω =⎰-adx x a x 0222=2a 例6.计算 ⎰+102)1(dx x xe x[分析] 定积分的计算常常需要一定的特殊方法和技巧,这些方法和技巧只有通过平时多做习题并注意体会和积累来掌握.[解法1] 原式=⎰⎰++++-=+-1010101111dx xxe e x xe x dxe x x x x=12210-=+-⎰e dx e e x [解法2] 原式=⎰+-+102)1()11(dx x e x x=⎰⎰+-+10210)1(1dx x e dx x e xx =⎰⎰+-+10102)1(11dx x e de x x x=-+11x e x⎰+102)1(dx x e x +⎰+102)1(dx x e x=12-e例7.证明柯西积分不等式,若)(x f 和)(x g 都在[a ,b ]上可积,则有⎰⎰⎰≤bab abadx x g dx x f dx x g x f ])(][)([])()([2[分析] 这是代数中欧几里德空间中有关内积的柯西不等式的一个应用,证明方法也类似. [证明] 对任意的实数λ有⎰⎰⎰+=+bababadx x g x f dx x gdx x g x f )()(2)()]()([222λλλ+0)(2≥⎰badx x f上式右端是λ的非负的二次三项式,则其判别式非正,即0])(][)([])()([222≤-⎰⎰⎰babab adx x g dx x f dx x g x f故原式得证 例8.设)(x f 和)(x g 都在[a ,b ]上可积,试证212212212])([])([]))()(([⎰⎰⎰+≤+bababadx x g dx x f dx x g x f[证明]⎰+badx x g x f 2)]()([=⎰++ba dx x g x f x g x f )]()()][()([=⎰⎰+++babadx x g x f x g dx x g x f x f )]()()[()]()()[(212212]))()(([])([⎰⎰+⋅≤babadx x g x f dx x f212212]))()(([])([⎰⎰+⋅+babadx x g x f dx x g (柯西不等式)=]))(())([(]))()(([212212212⎰⎰⎰++bababadx x g dx x f dx x g x f故 212212212])([])([]))()(([⎰⎰⎰+≤+bababa dx x g dx x f dx x g x f例9.证明0sin 202>⎰πdx x[证明] 令 u x =2⎰⎰=ππ20202sin 21sin du uudx x ]sin sin [2120⎰⎰+=πππdu uu du u u(第二个积分中令 t u ==π)]sin sin [2100⎰⎰++=πππdt t t du u u⎰+-=ππ0sin )11(21udu u u 当 π<<u 0 时,0sin )11(>+-u u u π故 0sin 202>⎰πdx x例10.设)(x f 在 [0,a ] 上连续,且0)0(=f , )(max 0x f M ax ≤≤= ,证明2)(2Ma dx x f a≤⎰[分析] 应该先建立)(x f 与f ´)(x 之间的关系,然后再“放大”估值,拉格朗日微分中值定理和牛顿—莱布尼茨公式都可以建立两者之间的关系. [证明1] 由0)0(=f 和微分中值定理有f f x f +=)0()(´f x =)(ξ´x )(ξ, ),0(x ∈ξ. 故22)()()(a M xdx M xdx f xdx f dx x f aa aa=≤≤'=⎰⎰⎰⎰ξξ [证明2] 由0)0(=f 和牛顿—莱布尼茨公式有)()0()()(0x f f x f dt t f a=-='⎰,于是 Mx Mdt dt t f dt t f x f xx x=≤'≤'=⎰⎰⎰)()()(,故 22)()(a M Mxdx dx x f dx x f aaa=≤≤⎰⎰⎰.例11. 设函数)(x f 在 [0, π]上上连续,且0)(0=⎰πdx x f ,0cos )(0=⎰πxdx x f 。
定积分及其应用
![定积分及其应用](https://img.taocdn.com/s3/m/780e360216fc700abb68fc30.png)
第5章 定积分及其应用学习目标理解定积分的概念,掌握定积分的基本性质. 掌握变上限定积分的导数的计算方法.熟练应用牛顿-莱布尼兹公式计算定积分,熟练掌握定积分的换元积分法和分部积分法. 了解定积分在经济管理中的应用,会利用定积分计算平面图形的面积.定积分和不定积分是积分学中密切相关的两个基本概念,定积分在自然科学和实际问题中有着广泛的应用.本章将从实例出发介绍定积分的概念、性质和微积分基本定理,最后讨论定积分在几何、物理上的一些简单应用.5.1 定积分的概念与性质定积分无论在理论上还是实际应用上,都有着十分重要的意义,它是整个高等数学最重要的内容之一.5.1.1实例分析1.曲边梯形的面积在初等数学中,我们已经学会计算多边形和圆的面积,至于任意曲边所围成的平面图形的面积,只有依赖于曲边梯形并利用极限的方法才能得到比较完满的解决.所谓曲边梯形,就是在直角坐标系中,由直线0,,===y b x a x 及曲线)(x f y =所围成的图形,如图5.1(a),(b),(c)都是曲边梯形.现在求0)(≥x f 时,在连续区间],[b a 上围成的曲边梯形的面积A (如图5.1(a),(b)所示),用以往的知识没有办法解决.为了求得它的面积,我们按下述步骤来计算:(1)分割——将曲边梯形分割成小曲边梯形在区间],[b a 内任意插入1-n 个分点:b x x x x x a n n =<<⋅⋅⋅<<<=-1210,把区间(a)],[b a 分成n 个小区间:],[,],[],,[],,[1,12110n n i i x x x x x x x x -- ,第i 个小区间的长度为),,1(1n i x x x i i i ⋅⋅⋅=-=∆-,过每个分点作垂直于x 轴的直线段,它们把曲边梯形分成n 个小曲边梯形(图5.2),小曲边梯形的面积记为),2,1(n i A i ⋅⋅⋅=∆.(2)近似——用小矩形面积近似代替小曲边梯形面积在小区间],[1i i x x -上任取一点),,2,1(n i i ⋅⋅⋅=ξ,作以],[1i i x x -为底,)(i f ξ为高的小矩形,用小矩形的面积近似代替小曲边梯形的面积,则),,2,1()(n i x f A i i i ⋅⋅⋅=∆≈∆ξ.(3)求和——求n 个小矩形面积之和n 个小矩形面积之和近似等于曲边梯形之和A ,即n A A A A ∆+⋅⋅⋅+∆+∆=21n n x f x f x f ∆+⋅⋅⋅+∆+∆≈)()()(2211ξξξi ni i x f ∆=∑=)(1ξ.(4)取极限令{}i ni x ∆=≤≤1max λ,当分点n 无限增多且0→λ时,和式ini ix f ∆∑=)(1ξ的极限便是曲边梯形的面积A ,即i ni i x f A ∆=∑=→)(lim 1ξλ.2.变速直线运动的路程设一物体作变速直线运动,其速度是时间t 的连续函数)(t v v =,求物体在时刻1T t =到2T t =间所经过的路程S .我们知道,匀速直线运动的路程公式是:vt S =,现设物体运动的速度v 是随时间的变化而连续变化的,不能直接用此公式计算路程,而采用以下方法计算:(1)分割——把整个运动时间分成n 个时间段图5.2在时间间隔],[21T T 内任意插入1-n 个分点:21101T t t t t T n n =<<⋅⋅⋅<<=-,把],[21T T 分成n 个小区间:],[,],[],,[],,[1,12110n n i i t t t t t t t t --⋅⋅⋅⋅⋅⋅,第i 个小区间的长度为),,2,1(1n i t t t i i i ⋅⋅⋅=-=∆-第i 个时间段内对应的路程记作),2,1(n i S i ⋅⋅⋅=∆.(2)近似——在每个小区间上以匀速直线运动的路程近似代替变速直线运动的路程 在小区间],[1i i t t -上任取一点),2,1(n i i ⋅⋅⋅=ξ,用速度)(i v ξ近似代替物体在时间],[1i i t t -上各个时刻的速度,则有),,2,1()(n i t v S i i i ⋅⋅⋅=∆≈∆ξ.(3)求和——求n 个小时间段路程之和将所有这些近似值求和,得到总路程的近似值,即n S S S S ∆+⋅⋅⋅+∆+∆=21n i t v t v t v ∆+⋅⋅⋅+∆+∆≈)()()(2211ξξξi ni i t v ∆=∑=)(1ξ.(4)取极限令{}i ni t ∆=≤≤1max λ,当分点的个数n 无限增多且0→λ时,和式ini it v ∆∑=)(1ξ的极限便是所求的路程S .即i ni i t v S ∆=∑=→)(lim 1ξλ从上面两个实例可以看出,虽然二者的实际意义不同,但是解决问题的方法却是相同的,即采用“分割-近似-求和-取极限”的方法,最后都归结为同一种结构的和式极限问题.类似这样的实际问题还有很多,我们抛开实际问题的具体意义,抓住它们在数量关系上共同的本质特征,从数学的结构加以研究,就引出了定积分的概念.5.1.2定积分的概念定义5.1 设函数)(x f 在区间],[b a 上有定义,任取分点b x x x x x a n n =<<⋅⋅⋅<<<=-1210 把区间],[b a 任意分割成n 个小区间],[1i i x x -,第i 个小区间的长度为),,1(1n i x x x i i i ⋅⋅⋅=-=∆-,记{}i ni x ∆=≤≤1max λ.在每个小区间],[1i i x x -上任取一点),,2,1(n i i ⋅⋅⋅=ξ作和式ini ix f ∆∑=)(1ξ,当0→λ时,若极限ini ix f ∆∑=→)(lim1ξλ存在(这个极限值与区间],[b a 的分法及点iξ的取法无关),则称函数)(x f 在],[b a 上可积,并称这个极限为函数)(x f 在区间],[b a 上的定积分,记作⎰b adx x f )(,即⎰b adx x f )(i ni i x f ∆=∑=→)(lim 1ξλ .其中,“)(x f ”称为被积函数,“dx x f )(”称为被积表达式,x 称为积分变量,a 称为积分下限,b 称为积分上限,],[b a 称为积分区间.根据定积分的定义,前面所讨论的两个实例可分别叙述为: ①曲边梯形的面积A 是曲线)(x f y =在区间],[b a 上的定积分.⎰=badx x f A )((0)(≥x f ).②变速直线运动的物体所走过的路程S 等于速度函数)(t v v =在时间间隔],[21T T 上的定积分.⎰=21)(T T dt t v S .关于定积分的定义作以下几点说明:⑴闭区间上的连续函数是可积的;闭区间上只有有限个间断点的有界函数也是可积的. ⑵定积分是一个确定的常数,它取决于被积函数)(x f 和积分区间],[b a ,而与积分变量使用的字母的选取无关,即有⎰⎰=bab adt t f dx x f )()(.⑶在定积分的定义中,有b a <,为了今后计算方便,我们规定:⎰⎰-=baa bdx x f dx x f )()(.容易得到0)(=⎰a adx x f .5.1.3定积分的几何意义设)(x f 是[]b a ,上的连续函数,由曲线)(x f y =及直线0,,===y b x a x 所围成的 曲边梯形的面积记为A .由定积分的定义及5.1.1实例1,容易知道定积分有如下几何意义:(1)当0)(≥x f 时,A dx x f b a =⎰)( (2)当0)(≤x f 时,A dx x f b a-=⎰)((3)如果)(x f 在[]b a ,上有时取正值,有时取负值时,那么以[]b a ,为底边,以曲线)(x f y =为曲边的曲边梯形可分成几个部分,使得每一部分都位于x 轴的上方或下方.这时定积分在几何上表示上述这些部分曲边梯形面积的代数和,如图5.3所示,有321)(A A A dx x f b a+-=⎰其中321,,A A A 分别是图5.3中三部分曲边梯形的面积,它们都是正数.例5.1.1 利用定积分的几何意义,证明21112π=-⎰-dx x .证 令]1,1[,12-∈-=x x y ,显然0≥y , 则由21x y -=和直线1,1=-=x x ,0=y 所围成的曲边梯形是单位圆位于x 轴上方的半圆. 如图5.4所示.因为单位圆的面积π=A ,所以 半圆的面积为2π. 由定积分的几何意义知:21112π=-⎰-dx x .5.1.4定积分的性质由定积分的定义,直接求定积分的值,往往比较复杂,但易推证定积分具有下述性质,其中所涉及的函数在讨论的区间上都是可积的.性质5.1.1 被积表达式中的常数因子可以提到积分号前,即⎰⎰=bab adx x f k dx x kf )()(.性质5.1.2 两个函数代数和的定积分等于各函数定积分的代数和,即[]⎰⎰⎰±=±bab abadx x g dx x f dx x g x f )()()()(.这一结论可以推广到任意有限多个函数代数和的情形. 性质5.1.3(积分的可加性)对任意的点c ,有⎰⎰⎰+=bcc ab adx x f dx x f dx x f )()()(.注意 c 的任意性意味着不论c 是在],[b a 之内,还是c 在],[b a 之外,这一性质均成立.性质5.1.4如果被积函数c c x f (,)(=为常数),则⎰-=b aa b c cdx )(.特别地,当1=c 时,有⎰-=b aa b dx .性质5.1.5(积分的保序性)如果在区间],[b a 上,恒有)()(x g x f ≥,则⎰⎰≥b abadx x g dx x f )()(.性质5.1.6(积分估值定理)如果函数)(x f 在区间],[b a 上有最大值M 和最小值m ,则).()()(a b M dx x f a b m ba-≤≤-⎰性质 5.1.7 (积分中值定理) 如果函数)(x f 在区间],[b a 上连续,则在),(b a 内至少有一点ξ,使得⎰-=b aa b f dx x f ))(()(ξ ),(b a ∈ξ.证 因)(x f 在],[b a 内连续,所以)(x f 在],[b a 内有最大值M 和最小值m , 由性质5.1.6知: ).()()(a b M dx x f a b m b a-≤≤-⎰从而有 .)(1M dx x f a b m b a≤-≤⎰这就说:⎰-b adx x f a b )(1是介于m 与M 之间的一个实数. 由连续函数的介值定理1.10知:至少存在一点),(b a ∈ξ,使得)()(1ξf dx x f ab b a =-⎰.即⎰-=b aa b f dx x f ))(()(ξ ),(b a ∈ξ.注 性质5.1.7的几何意义是:由曲线)(x f y =,直线b x a x ==,和x 轴所围成曲边梯形的面积等于区间],[b a 上某个矩形的面积,这个矩形的底是区间],[b a ,矩形的 高为区间],[b a 内某一点ξ处的函数值)(ξf , 如图5.5所示.显然,由性质5.1.7可得⎰-=b a dx x f ab f )(1)(ξ,)(ξf 称为函数)(x f 在区间],[b a 上的平均值.这是求有限个数的平均值的拓广.性质5.1.8(对称区间上奇偶函数的积分性质) 设)(x f 在对称区间],[a a -上连续,则有 ①如果)(x f 为奇函数,则⎰-=a a dx x f 0)(; ②如果)(x f 为偶函数,则⎰⎰-=a aadx x f dx x f 0)(2)(.例5.1.2 估计定积分dx ex ⎰--112的值.解 设2)(x e x f -=,22)('x xe x f --=,令0)('=x f ,得驻点0=x ,比较0=x 及区间端点1±=x 的函数值,有1)0(0==e f ,ee f 1)1(1==±-.显然2)(x e x f -=在区间]1,1[-上连续,则)(x f 在]1,1[-上的最小值为em 1=,最大值为1=M ,由定积分的估值性质,得22112≤≤⎰--dx e ex . 例5.1.3 比较定积分dx x ⎰102与dx x ⎰13的大小.解 因为在区间]1,0[上,有32x x ≥,由定积分保序性质,得dx x ⎰12dx x ⎰≥13.定积分定积分的原始思想可以追溯到古希腊.古希腊人在丈量形状不规则的土地的面积时,先尽可能地用规则图形(例如矩形和三角形)把要丈量的土地分割成若干小块,并且忽略那些边边角角的不规则的小块.计算出每一小块规则图形的面积,然后将它们相加,就得到土地面积的近似值.后来看来,古希腊人丈量土地面积的方法就是面积思想的萌芽.在十七世纪之前,数学家们没有重视古希腊人的伟大思想,当时流行的方法是不可分量法.这种方法认为面积和体积可以看作是由不可分量的运动产生出来的.这种方法没有包含极限概念,也没有采用代数与算数的方法.因此,不可分量的思想没有取得成功.虽然积分概念未能很好得建立起来,然而,到牛顿那个年代,数学家们已经能够计算许多简单的函数的积分.虽然十三世纪就出现了利用分割区间作和式并计算面积的朦胧思想(奥雷姆,法国数学家).但是建立黎曼积分(即定积分)的严格定义的努力基本上由柯西开始.他比较早地用函数值的和式的极限定义积分(他还定义了广义积分).但是柯西对于积分的定义仅限于连续函数.1854年,黎曼指出了积分的函数不一定是连续的或者分段连续的,从而把柯西建立的积分进行了推广.他把可积函数类从连续函数扩大到在有限区间中具有无穷多个间断点的函数.黎曼给出关于黎曼可积的两个充分必要条件.其中一个是考察函数)(x f 的振幅;另一个充分必要条件就是对于区间],[b a 的每一个划分b x x x a n =≤≤≤= 10,构造积分上和与积分下和:S=i ni ix M∆⋅∑=1s=i ni i x m ∆⋅∑=1其中M i 和m i 分别是函数)(x f 在每个子区间上的最大值和最小值.)(x f 在],[b a 黎曼可积的充分必要条件就是0)(lim 0max =-→∆s S x至今,这个定理仍然经常出现在微积分和数学分析的教科书中.达布(法国数学家)对于黎曼的积分的定义作了推广.他严格地证明了不连续函数,甚至有无穷多个间断点的函数,只要间断点可以被包含在长度可以任意小的有限个区间之内就是可积分的.在牛顿和莱布尼兹之前,微分和积分作为两种数学运算、两种数学问题,是分别加以研究的.虽然有不少数学家已经开始考虑微分和积分之间的联系,然而只有莱布尼兹和牛顿(各自独立地)将微分和积分真正沟通起来,明确地找到了两者之间内在的直接的联系,指出微分和积分是互逆的两种运算.而这正是建立微积分的关键所在.牛顿在1666年发表的著作《流数简论》中,从确定面积率的变化入手,通过反微分计算面积,把面积计算看作是求切线的逆.从而得到了微积分基本定理.在1675年,莱布尼兹就认识到,作为求和过程的积分是微分的逆.他于1675—1676年给出了微积分基本定理)()(a f b f dx dx dfba-=⎰ 并于1693年给出了这个定理的证明.简单直观并且便于应用,是黎曼积分的优点.黎曼积分的缺点主要是理论方面的.一方面,黎曼积分的可积函数类太小.基本上是“分段连续函数”构成的函数类.另一方面,黎曼积分在处理诸如函数级数的逐项积分、重积分的交换积分顺序以及函数空间的完备性这样一些重要的理论问题时,存在许多不可克服的障碍于.是在上一世纪末到本世纪初,一种新的积分理论—勒贝格积分应运而生.它是黎曼积分的推广,勒贝格积分的建立是积分学领域的重大发展.它在很大程度上克服了黎曼积分在理论上遇到的上述困难.勒贝格积分是近代分析数学发展的重要动力和基础.习题5.11.用定积分表示由曲线322+-=x x y 与直线4,1==x x 及x 轴所围成的曲边梯形的面积.2.利用定积分的几何意义,作图证明:(1)⎰=1012xdx (2)20224R x R Rπ=-⎰3.不计算定积分,比较下列各组积分值的大小. (1)dx x ⎰10,dx x ⎰12 (2)dx e x ⎰1,dx e x ⎰-12(3)⎰43ln xdx ,xdx ⎰432ln (4)⎰40cos πxdx , ⎰40sin πxdx4.利用定积分估值性质,估计下列积分值所在的范围. (1)dx e x ⎰10 (2)⎰-2)2(dx x x(3)dx x x⎰+2121 (4)dx x x ⎰--20295 5.试用积分中值定理证明0sin lim 1=⎰++∞→dx xxn n n .5.2 定积分的基本公式定积分就是一种特定形式的极限,直接利用定义计算定积分是十分繁杂的,有时甚至无法计算.本节将介绍定积分计算的有力工具——牛顿—莱布尼兹公式.5.2.1变上限定积分定义5.2 设函数)(x f 在区间],[b a 上连续,对于任意],[b a x ∈,)(x f 在区间],[x a 上也连续,所以函数)(x f 在],[x a 上也可积.显然对于],[b a 上的每一个x 的取值,都有唯一对应的定积分⎰x adt t f )(和x 对应,因此⎰xadt t f )(是定义在],[b a 上的函数.记为⎰=Φxadt t f x )()(,],[b a x ∈.称)(x Φ叫做变上限定积分,有时又称为变上限积分函数.变上限积分函数的几何意义是: 如果0)(>x f ,对][b a ,上任意x ,都对应唯一一个曲边梯形的面积)(x Φ, 如图5.6中的阴影部分.因此变上限 积分函数有时又称为面积函数.函数)(x Φ具有如下重要性质.定理 5.1 如果函数)(x f 在区间],[b a 上连续,则⎰=Φx adt t f x )()(在],[b a 上可导,且)()()()(b x a x f dt t f dxd x xa ≤≤==Φ'⎰.证 给定函数)(x Φ的自变量x 的改变量x ∆,函数)(x Φ有相应的改变量∆Φ.则⎰⎰⎰∆+∆+=-=Φ-∆+Φ=∆Φx x xx ax x adt t f dt t f dt t f x x x )()()()()(.由定积分的中值定理,存在),(),(x x x x x x ∆+∆+∈或ξ,使x f dt t f x x x∆=⎰∆+)()(ξ成立.所以)()(lim )(lim )(lim lim)()(000x f f f xxf x x x f x x x x 连续ξξξξ→→∆→∆→∆==∆∆=∆∆Φ=Φ'.由定理 5.1可知,如果函数)(x f 在区间],[b a 上连续,则函数⎰=Φx adt t f x )()(就是)(x f 在区间],[b a 上的一个原函数.由定理5.1我们有下面的结论.定理5.2(原函数存在定理) 如果)(x f 在区间],[b a 上连续,则它的原函数一定存在,且其中的一个原函数为⎰=Φxadt t f x )()(.注 这个定理一方面肯定了闭区间],[b a 上连续函数)(x f 的一定有原函数(解决了第四章第一节留下的原函数存在问题),另一方面初步地揭示积分学中的定积分与原函数之间的联系.为下一步研究微积分基本公式奠定基础.例5.2.1 计算tdt e dx d x tsin 0⎰-. 解 tdt e dx d x t sin 0⎰-=]sin [0'⎰-tdt e x t =x e xsin -. 例5.2.2 求⎰+→xx dt t x020)1ln(1lim .解 当0→x 时,此极限为00型不定式,两次利用洛必塔法则有⎰+→x x dt t x20)1ln(1lim =2)1ln(limx dt t x x ⎰+→ =xx x 2)1ln(lim0+→=211lim 0x x +→=21例5.2.3 求dt t dx d x )1(212+⎰. 解 注意,此处的变上限积分的上限是2x ,若记2x u =,则函数dt t x )1(212+⎰可以看成是由dt t y u)1(12+=⎰与2x u =复合而成,根据复合函数的求导法则得dt t dx d x )1(212+⎰=dxdu dt t du d u ])1([12+⎰=x u 2)1(2+ =x x 2)1(4+=x x 225+.一般地有,如果)(x g 可导,则)()]([])([])([)()(x g x g f dt t f dt t f dxd x x g a x g a '='=⎰⎰. 上式可作为公式直接使用.例5.2.4 求极限402sin limx tdt x x ⎰→.解 因为0lim 4=→x x ,⎰⎰==→20000sin sin limx x tdt tdt ,所以这个极限是0型的未定式,利用洛必塔法则得42sin limx tdt x x ⎰→=32042sin lim x x x x ⋅→=2202sin lim x x x → =220sin lim 21xx x → =21.5.2.2微积分基本公式定理5.3 如果函数)(x f 在区间],[b a 上连续,且)(x F 是)(x f 的任意一个原函数,那么⎰-=b aa Fb F dx x f )()()(.证 由定理5.2知,⎰=Φx adt t f x )()(是)(x f 在区间],[b a 的一个原函数,则)(x Φ与)(x F 相差一个常数C ,即C x F dt t f x a+=⎰)()(.又因为C a F dt t f a a+==⎰)()(0,所以)(a F C -=.于是有)()()(a F x F dt t f x a -=⎰. 所以⎰-=b aa Fb F dx x f )()()(成立.为方便起见,通常把)()(a F b F -简记为ba x F )(或b a x F )]([,所以公式可改写为)()()()(a F b F x F dx x f b a b a-==⎰上述公式称为牛顿—莱布尼兹(Newton-Leibniz )公式,又称为微积分基本公式. 定理5.3揭示了定积分与被积函数的原函数之间的内在联系,它把求定积分的问题转化为求原函数的问题.确切地说,要求连续函数)(x f 在],[b a 上的定积分,只需要求出)(x f 在区间],[b a 上的一个原函数)(x F ,然后计算)()(a F b F -就可以了.例5.2.5 计算dx x ⎰102.解 因为C x dx x +=⎰3231,所以 dx x ⎰12=10331x =33031131⨯-⨯=31. 例5.2.6 求dx e e xx⎰-+111. 解 dx e e xx ⎰-+111=⎰-++111)1(x xe e d =11)1ln(-+x e =)1ln()1ln(1-+-+e e =1.例5.2.7 求dx x ⎰--312.解 根据定积分性质5.1.3,得dx x ⎰--312=⎰⎰⎰⎰---+-=-+-21322132)2()2(|2||2|dx x dx x dx x dx x=322212)221()212(x x x x -+--=2129+=5.例5.2.8 求极限.)321(lim 4333nn n ++++∞→ 解 根据定积分定义,得.4141)(1lim )321(lim 14110334333====++++∑⎰=∞→∞→x dx x n i n n n n i n n牛顿与莱布尼兹牛顿(Newton ,Isaac ,1643~1727)英国物理学家,数学家,天文学家.经典物理学理论体系的建立者.莱布尼兹(Gottfriend Wilhelm Leibniz,1646-1716)是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才.他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献.微积分创立的优先权,数学上曾掀起了一场激烈的争论.实际上,牛顿在微积分方面的研究虽早于莱布尼兹,但莱布尼兹成果的发表则早于牛顿.莱布尼兹在1684年10月发表的《教师学报》上的论文,“一种求极大极小的奇妙类型的计算”,在数学史上被认为是最早发表的微积分文献.牛顿在1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:“十年前在我和最杰出的几何学家G 、W 莱布尼兹的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法.他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外.”(但在第三版及以后再版时,这段话被删掉了.)因此,后来人们公认牛顿和莱布尼兹是各自独立地创建微积分的.牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼兹.莱布尼兹则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的.莱布尼兹认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一.因此,他发明了一套适用的符号系统,如,引入dx 表示x 的微分,∫表示积分,等等.这些符号进一步促进了微积分学的发展.1713年,莱布尼兹发表了《微积分的历史和起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性.你知道为什么称为牛顿---莱布尼兹公式了吧!习题5.21.求下列函数的导数: (1)dt t x F x ⎰+=021)( (2)dt ttx F x a⎰=2sin )( (3) dt e t x F xt⎰-=12)( (4)tdt x F x x⎰-=22cos )(2.求下列函数的极限:(1)xtdt x x ⎰→020cos lim(2)211)1()1(lim--⎰→x dtt t x x(3)2arctan limxtdt x x ⎰→ (4)2)11(limxdtt t x x ⎰--+→3.求函数⎰-=xdt t t x F 0)2()(在区间]3,1[-上的最大值和最小值.4.求由曲线x x y 22+-=与直线2,0==x x 及x 轴所围成的曲边梯形的面积. 5.求下列定积分的值: (1)dx x x )1(212-+⎰(2)dx x x )2(21+⎰(3)dx x x⎰+2021 (4)dx x ⎰211(5)dx x ⎰πcos (6)dx e x⎰225.3 定积分的积分法在第四章我们学习了用换元积分法和分部积分法求已知函数的原函数.把它们稍微改动就是定积分的换元积分法和分部积分法.但最终的计算总是离不开牛顿-莱布尼兹公式.5.3.1定积分的换元积分法定理5.4 设函数)(x f 在区间],[b a 上连续,并且满足下列条件: (1))(t x ϕ=,且)(αϕ=a ,)(βϕ=b ;(2))(t ϕ在区间],[βα上单调且有连续的导数)(t ϕ'; (3)当t 从α变到β时,)(t ϕ从a 单调地变到b . 则有⎰⎰'=b adt t t f dx x f βαϕϕ)()]([)(上述公式称为定积分的换元积分公式.在应用该公式计算定积分时需要注意以下两点: ①从左到右应用公式,相当于不定积分的第二换元法.计算时,用)(t x ϕ=把原积分变量x 换成新变量)(t ϕ,积分限也必须由原来的积分限a 和b 相应地换为新变量t 的积分限α和β,而不必代回原来的变量x ,这与不定积分的第二换元法是完全不同的.②从右到左应用公式,相当于不定积分的第一换元法(即凑微分法).一般不用设出新的积分变量,这时,原积分的上、下限不需改变,只要求出被积函数的一个原函数,就可以直接应用牛顿—莱布尼兹公式求出定积分的值.例5.3.1 求dx xx ⎰+301.解 令t x =+1,则12-=t x ,tdt dx 2=,当0=x 时,1=t ,当3=x 时,2=t ,于是dx xx ⎰+301=tdt t t 21212⋅-⎰=dt t ⎰-212)1(2=213]31[2t t -=38 例5.3.2 求xdx x sin cos 203⎰π.解法一设x t cos =,则xdx dt sin -=,当0=x 时,1=t ;当2π=x 时,0=t ,于是xdx x sin cos 203⎰π=)(013dt t -⋅⎰=dt t ⎰103=104]41[t =41. 解法二xdx x sin cos 203⎰π=x xd cos cos 203⎰-π=204]cos 41[πx -=41. 解法一是变量替换法,上下限要改变;解法二是凑微分法,上下限不改变. 例5.3.3 求dx e x ⎰-2ln 01.解 令t e x =-1,则)1l n (2t x +=,dt t tdx 212+=,当0=x 时,0=t ;当2ln =x 时,1=t ,于是dx e x⎰-2ln 01=dt t t t ⎰+⋅10212=dt t t ⎰+102212=dt t )111(2102⎰+- =10]arctan [2t t -=22π-.例5.3.4 设)(x f 在区间],[a a -上连续,证明: (1)如果)(x f 为奇函数,则⎰-=a a dx x f 0)(; (2)如果)(x f 为偶函数,则⎰⎰-=a aadx x f dx x f 0)(2)(.这结论是定积分的性质5.1.8,下面我们给出严格的证明.证 由定积分的可加性知x d x f x d x f x d x f aaaa⎰⎰⎰+=--00)()()(,对于定积分⎰-0)(adx x f ,作代换t x -=,得⎰-0)(a dx x f =⎰--0)(adt t f =⎰-adt t f 0)(=⎰-adx x f 0)(, 所以⎰⎰⎰-+-=aaaadx x f dx x f dx x f 0)()()(=⎰-+adx x f x f 0)]()([(1)如果)(x f 为奇函数,即)()(x f x f -=-,则0)()()()(=-=-+x f x f x f x f , 于是⎰-=aadx x f 0)(.(2)如果)(x f 为偶函数,即)()(x f x f =-,则)(2)()()()(x f x f x f x f x f =+=-+,于是⎰⎰-=aaadx x f dx x f 0)(2)(.例5.3.5 求下列定积分: (1)dx xx x ⎰-+33421sin (2)dx x x 22224-⎰- 解 (1)因为被积函数421sin )(x xx x f +=是奇函数,且积分区间]3,3[-是对称区间,所以dx x xx ⎰-+33421sin =0.(2)被积函数224)(x x x f -=是偶函数,积分区间]2,2[-是对称区间,所以dx x x 22224-⎰-=dx x x 22242-⎰,令t x sin 2=,则tdt dx cos 2=,t x cos 242=-, 当0=x 时,0=t ;当2=x 时,2π=t ,于是dx x x22224-⎰-=tdt t ⎰2022cos sin 162π=tdt 2sin 8202⎰π=dt t ⎰-20)4cos 1(4π=20)4sin 4(πt t -=π2. 2.分部积分法定理5.5 设函数)(x u u =和)(x v v =在区间],[b a 上有连续的导数,则有)()()]()([)()(x du x v x v x u x dv x u bab aba⎰⎰-=.上述公式称为定积分的分部积分公式.选取)(x u 的方式、方法与不定积分的分部积分法完全一样.例5.3.6 求⎰21ln xdx x .解⎰21ln xdx x =⎰212)(ln 21x xd =)(ln 21ln 21212212x d x x x ⎰-=⎰-21212ln 2xdx =212412ln 2x -=432ln 2-.例5.3.7 求⎰πsin xdx x .解⎰πsin xdx x =⎰-πcos x xd =⎰+-ππ0cos cos xdx x x=ππ0sin x +=π.例5.3.8 求dx e x ⎰10.解 令t x =,则2t x =,tdt dx 2=,当0=x 时,0=t ;当1=x 时,1=t .于是dx e x⎰10=dt te t⎰12=⎰12ttde =dt e tet t ⎰-11022=1022t ee -=222+-e e =2.此题先利用换元积分法,然后应用分部积分法.习题 5.31.求下列定积分的值: (1)dx x xe ⎰+1ln 1 (2)dx x x ⎰-1021(3)dx e x x12121⎰ (4)⎰++3011x dx (5)⎰+6413xx dx (6)dx xx ⎰-1011(7)dx e x x 2202⎰ (8)⎰1arctan xdx(9)⎰-+10)1ln(e dx x (10)xdx e x cos 202⎰π2.求下列定积分:(1)dx x x x x )cos sin 3(2112++⎰- (2)dx x x xx ⎰-++11242312sin (3)dx ax x a a⎰-+222 (4)dx xx ⎰--+1121sin 15.4 定积分的应用由于定积分的概念和理论是在解决实际问题的过程中产生和发展起来的,因而它的应用非常广泛.问题1 在机械制造中,某凸轮横截面的轮廓线是由极坐标方程)cos 1(θ+=a r)0(>a 确定的,要计算该凸轮的面积和体积.问题2 修建一道梯形闸门,它的两条底边各长6m 和4m ,高为6m,较长的底边与水面平齐,要计算闸门一侧所受水的压力.为了解决这些问题,下面先介绍运用定积分解决实际问题的常用方法——微元法,然后讨论定积分在几何和物理上的一些简单应用.读者通过这部分内容的学习,不仅要掌握一些具体应用的计算公式,而且还要学会用定积分解决实际问题的思想方法.5.4.1定积分应用的微元法为了说明定积分的微元法,我们先回顾求曲边梯形面积A 的方法和步骤:(1)将区间],[b a 分成n 个小区间,相应得到n 个小曲边梯形,小曲边梯形的面积记为i A ∆),2,1(n i =;(2)计算i A ∆的近似值,即i i i x f A ∆≈∆)(ξ(其中],[,11i i i i i i x x x x x --∈-=∆ξ);(3)求和得A 的近似值,即ini ix f A ∆≈∑=1)(ξ;(4)对和取极限得⎰∑=∆==→b aini idx x f x f A )()(lim1ξλ.下面对上述四个步骤进行具体分析:第(1)步指明了所求量(面积A )具有的特性:即A 在区间],[b a 上具有可分割性和可加性.第(2)步是关键,这一步确定的i i i x f A ∆≈∆)(ξ是被积表达式dx x f )(的雏形.这可以从以下过程来理解:由于分割的任意性,在实际应用中,为了简便起见,对i i i x f A ∆≈∆)(ξ省略下标,得x f A ∆≈∆)(ξ,用],[dx x x +表示],[b a 内的任一小区间,并取小区间的左端点x 为ξ,则A ∆的近似值就是以dx 为底,)(x f 为高的小矩形的面积(如图5.7阴影部分),即dx x f A )(≈∆.通常称dx x f )(为面积元素,记为dx x f dA )(=.将(3),(4)两步合并,即将这些面积元素在],[b a 上“无限累加”,就得到面积A .即⎰=badx x f A )(.一般说来,用定积分解决实际问题时,通常按以下步骤来进行:图5.7(1)确定积分变量x ,并求出相应的积分区间],[b a ;(2)在区间],[b a 上任取一个小区间],[dx x x +,并在小区间上找出所求量F 的微元dx x f dF )(=;(3)写出所求量F 的积分表达式⎰=b adx x f F )(,然后计算它的值.利用定积分按上述步骤解决实际问题的方法叫做定积分的微元法. 注 能够用微元法求出结果的量F 一般应满足以下两个条件: ①F 是与变量x 的变化范围],[b a 有关的量;②F 对于],[b a 具有可加性,即如果把区间],[b a 分成若干个部分区间,则F 相应地分成若干个分量.5.4.2定积分求平面图形的面积1.直角坐标系下面积的计算(1)由曲线)(x f y =和直线0,,===y b x a x 所围成曲边梯形的面积的求法前面已经介绍,此处不再叙述.(2)求由两条曲线)(),(x g y x f y ==,))()((x g x f ≥及直线b x a x ==,所围成平面的面积A (如图5.8所示).下面用微元法求面积A . ①取x 为积分变量,],[b a x ∈.②在区间],[b a 上任取一小区间],[dx x x +,该区间上小曲边梯形的面积dA 可以用高)()(x g x f -,底边为dx 的小矩形的面积近似代替,从而得面积元素dx x g x f dA )]()([-=.③写出积分表达式,即⎰-=badx x g x f A )]()([.⑶求由两条曲线)(),(y x y x ϕψ==,))()((y y ϕψ≤及直线d y c y ==,所围成平 面图形(如图5.9)的面积.这里取y 为积分变量,],[d c y ∈, 用类似 (2)的方法可以推出:⎰-=dcdy y y A )]()([ψϕ.例5.4.1 求由曲线2x y =与22x x y -= 所围图形的面积.解 先画出所围的图形(如图5.10)由方程组⎩⎨⎧-==222xx y x y ,得两条曲线的交点为图5.8图5.9)1,1(),0,0(A O ,取x 为积分变量,]1,0[∈x .由公式得dx x x x A )2(122⎰--=1032]32[x x -=31=.例5.4.2 求曲线x y 22=与4-=x y 所围图形的面积. 解 画出所围的图形(如图5.11).由方程组⎩⎨⎧-==422x y xy 得两条曲线的交点坐标为)4,8(),2,2(B A -,取y 为积分变量,]4,2[-∈y .将两曲线方程分别改写为4212+==y x y x 及得所求面积为 dy y y A ⎰--+=422)214(4232)61421(--+=y y y 18=. 注 本题若以x 为积分变量,由于图形在]8,2[]2,0[和两个区间上的构成情况不同,因此需要分成两部分来计算,其结果应为:⎰⎰--+=8220)]4(2[22dx x x dx x A82223223]421322[324x x x x+-+=18=.显然,对于例5.4.2选取x 作为积分变量,不如选取y 作为积分变量计算简便.可见适当选取积分变量,可使计算简化.例5.4.3 求曲线x y x y sin cos ==与在区间],0[π上所围平面图形的面积.解 如图5.12所示,曲线x y x y sin cos ==与的交点坐标为)22,4(π,选取x 作为 积分变量,][π,0∈x ,于是,所求面积为2x x -图5.104-=x。
第5章定积分及其应用
![第5章定积分及其应用](https://img.taocdn.com/s3/m/eee81f2d7cd184254a353527.png)
第5章 定积分及其应用§5.1 定积分的概念习 题 5-11.填空题:(1)函数()f x 在区间[,]a b 上的定积分是积分和的极限,即()baf x dx ⎰=( ).(2)定积分的值只与( )及( )有关,而与( )的记法无关. (3)区间[,]a b 的长度的定积分的表示是( ). (4)被积函数()f x 在区间[,]a b 上连续是定积分()baf x dx ⎰存在的( ).(5)定积分的几何意义( ). 2.利用定积分的定义计算下列积分: (1)2baxdx ⎰; (2)1x e dx ⎰.3.利用定积分的定义计算由抛物线21y x =+,直线x a =、x b =(b a >)及x 轴所围成的图形的面积.4.利用定积分的几何意义,证明下列等式: (1)1310x -=⎰; (2)sin 0xdx ππ-=⎰;(3)4π=⎰; (4)11arctan 0xdx -=⎰;(5)11124x dx xdx -=⎰⎰ ; (6)2202cos 2cos xdx xdx πππ-=⎰⎰.5.利用定积分的几何意义求a⎰(0)b >的值.6. 将下列极限表示成定积分: (1)()201lim3nii i i x λξξ→=-∆∑,λ是[]7,5-上的分割;(2)01limni i x λ→=,λ是[]0,1上的分割.7.将下列和式的极限表示成定积分:(1)111lim 12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (2)112lim p p p p n n n +→∞+++(0p >);(3))221limn n n →∞+; (4)n .8.有一河,宽为200米,从一岸到正对岸每隔20米测量一次水深,测得数据如下(图5-1-8).试用梯形公式求此河横截面积的近似值.图5-1-8§5.2 定积分的性质习 题 5-21. 证明定积分的性质: (1)()()bb aakf x dx k f x dx =⎰⎰ (k 为常数); (2)1b baadx dx b a ⋅==-⎰⎰. 2. 估计下列积分值:(1)421(2)x dx +⎰; (2)3244(1sin )x dx ππ+⎰; (3)arctan x xdx ;(4)21x edx ⎰; (5)2211x dx x +⎰; (6)20sin x dx x π⎰. 3. 设()f x 及()g x 在[],a b 上连续,证明: (1) 若在[],a b 上,()0f x ≥,且()0baf x dx =⎰,则在[],a b 上,()0f x ≡;(2)若在[],a b 上,()0f x ≥,且()f x 不恒等于零,则()0baf x dx >⎰;(3)若在[],a b 上,()()f x g x ≤,且()()bbaaf x dxg x dx =⎰⎰,则在[],a b 上,()()f x g x ≡.4. 根据定积分性质及第3题的结论,比较下列每组积分的大小:(1)320sin xdx π⎰,220sin xdx π⎰; (2)221x dx ⎰,231x dx ⎰;(3)21ln xdx ⎰,221(ln )x dx ⎰; (4)10x e dx ⎰,21x e dx ⎰;(5)1xe dx ⎰,()101x dx +⎰; (6)20xdx π⎰,20sin xdx π⎰;(7)20sin xdx π⎰,02sin xdx π-⎰; (8)2cos xdx π-⎰,20cos xdx π⎰;(9)10xdx ⎰,()01ln 1x dx +⎰ (10)()01ln 1x dx +⎰,011xdx x+⎰;. 5. 利用积分中值定理求下列极限: (1)sin limn pnn x dx x+→∞⎰; (2)120lim 1nn x dx x →∞+⎰; (3)10lim 1n xx n x e dx e →∞+⎰.6. 设()f x 在[],a b 上连续,()0baf x dx =⎰.证明:()f x 在[],a b 上在[],a b 内至少存在一个零点.7. 设()f x 在[]0,1上连续,在()0,1内可导,且1233()(0)f x dx f =⎰.证明:在()0,1内至少存在一点ξ,使得()0f ξ'=.8. 设()f x 在[],a b 上连续,在(),a b 内可导,且存在(),c a b ∈,使得()()()caf x dx f b c a =-⎰.证明:在(),a b 内至少存在一点ξ,使得()0f ξ'=.§5.3 微积分基本公式习 题 5-31. 设0()cos xx t tdt ϕ=⎰,求(0)ϕ',4πϕ⎛⎫' ⎪⎝⎭. 2.求下列函数的一阶导数: (1)0()sin xtx e dt ϕ=⎰; (2)223()t xx e dt ϕ-=⎰;(3)2()x x ϕ=⎰; (4)2x y =;(5)32x xy =⎰; (6)()cos 2sin ()cos xxx t dt ϕπ=⎰;(7)22x txy t e dt -=⎰; (8)2()xe xy f t dt =⎰.3. 求下列函数的二阶导数:(1)()330sin xy t x tdt =-⎰; (2)258sin ()xy t f x dt dy t ⎛⎫= ⎪⎝⎭⎰⎰.4. 利用洛必达法则,求下列极限:(1)20cos limxx t dt x→⎰; (2)201lim arctan xx tdt x+→⎰;(3)202limsin 2x t x x e dt x x→-⎰; (4)()2202002sin limln 1x x xt dtt t dt→⎡⎤+⎣⎦⎰⎰;(5)121ln 1lim (1)xx tdtt x →-⎰+; (6)232lim(sin )x x x t dtt t t dt→-⎰⎰;(7)22201lim ()x t x x t t edt x -→+∞+⎰; (8)()222020lim xt xx t e dt te dt→⎰⎰.5. 设函数()y y x =由方程00cos 0y xte dt tdt +=⎰⎰所确定,求dydx. 6. 设函数()y y x =由方程20cos y x x y tdt -+=⎰所确定,求dy dx.7. 设0sin t x udu =⎰,0cos t y udu =⎰,求dydx.8.设20()(1)xt f x t t e dt -=-⎰,问x 为何值时,()f x 有极值?9. 求函数0()(4)xF x t t dt =-⎰在[1,5]-上的最大值与最小值.10. 计算下列各定积分: (1)24211()x dx x+⎰; (2)()13213x x dx --⎰; (3)332(21)x dx --⎰; (4)1(21)xe dx +⎰; (5)12111dx x -+⎰; (6)240tan xdx π⎰;(7)10⎰; (8)21201x dx x +⎰; (9)20cos 2x dx π⎛⎫ ⎪⎝⎭⎰; (10)41dx ⎰; (11)420213311x x dx x -+++⎰; (12)211e dx x ---+⎰; (13)20sin x dx π⎰; (14)设21,01()1,10x x f x x x ⎧+ ≤≤=⎨+ -≤<⎩,求11()f x dx -⎰. 11. 设()f x 连续,若()f x 满足1()()x f xt dt f x xe =+⎰,求()f x .12. 设13201()()1f x x f x dx x =++⎰,求()f x 与10()f x dx ⎰. 13. 设0ln(1)()(0)xt f x dt x t+=>⎰,求1()f x f x ⎛⎫+ ⎪⎝⎭. 14. 设1sin ,0()20,0x x f x x x ππ⎧ ≤≤⎪=⎨⎪ <>⎩或,求0()()x x f t dt ϕ=⎰在(,)-∞+∞内的表达式.§5.4 定积分的换元积分法与分部积分法习 题 5-41. 用换元积分法求下列定积分: (1)122(115)dxx --+⎰; (2)101xx e dx e +⎰; (3)220sin cos x xdx π⎰; (4)022122dx x x -⎰++; (5)1⎰; (6)2120t te dx -⎰; (7)1221xe dx x ⎰; (8)35201x dx x +⎰; (9)2502353x x dx x +-+⎰;(10)6e e⎰; (11)21e ⎰; (12)320sin cos d πθθθ⎰;(13)1(14);(15)ax ⎰;(16)3⎰(17)⎰;(18)0;(19) 0⎰; (20); (21)3122(1)xdx -+⎰;(22)1;(23)41⎰;(24)1⎰-;(25)⎰; (26)2⎰; (27)-⎰; (28)()223min 2,x dx -⎰(29)2sin sin cos xdx x xπ+⎰;(30)0π⎰. 2. 用分部积分法求下列定积分: (1)ln 2x xe dx ⎰; (2)1ln e x xdx ⎰;(3)41⎰; (4)1arctan x xdx ⎰; (5)220sin x xdx π⎰; (6)324sin xdx xππ⎰; (7)220cos x xdx π⎰; (8)1530ln x xdx ⎰ ;(9)230x e dx ;(10)22(1)x - ; (11)220cos x e xdx π⎰; (12)1sin(ln )ex dx ⎰ ;(13)22ln (1)e exdx x -⎰; (14)12(1)ln (1)e x x dx -++⎰;(15)221log x xdx ⎰;(16)20sin x x dx π⎰; (17)1ln eex dx ⎰ ; (18)()242sec 1tan x xdx x π+⎰;(19)161⎰; (20)122(1)m xdx -⎰(m 为自然数).3. 利用积分区间的对称性以及函数的奇偶性,计算下列定积分:(1)22sin cos 2x xdx ππ-⎰;(2)22ππ-⎰;(3)6sin x xdx ππ-⎰;(4)1⎰; (5)x dx ; (6)221cos xdx x ππ-+⎰;(7)522cos xdx ππ-⎰; (8)325425sin 21x xdx x x -+⎰+; (9))sin x x dx ππ-⎰+.(10)244cos 1x xdx e ππ--+⎰.4.已知()f x 是连续函数,证明 (1)1()()[()]baf x dx b a f a b a x dx =-+-⎰⎰;(2)200()[()(2)]aaf x dx f x f a x dx =+-⎰⎰;(3)()2321()2aa x f x dx xf x dx =⎰⎰(0a >).5. 设()f x 是连续函数,证明 (1) 当()f x 是偶函数时,则0()()xx f t dt ϕ=⎰为奇函数;(2)当()f x 是奇函数时,则0()()xx f t dt ϕ=⎰为偶函数.6. 证明:220()2()aaax dx x dx ϕϕ-=⎰⎰,其中()x ϕ为连续函数.7. 证明:110(1)(1)m n n m x x dx x x dx ϕϕ-=-⎰⎰.8. 证明:20sin 2sin nn xdx xdx ππ=⎰⎰.9. 证明:112211111xx dx dx x x =++⎰⎰(0x >). 10. 设31sin ()x t f x dt t =⎰,求120()x f x dx ⎰.若1sin ()n x t f x dt t=⎰,求110()n x f x dx -⎰.11. 若()f x ''在[0,]π连续,(0)2f =,()1f π=,证明:[()()]sin 3f x f x xdx π''+=⎰.12. 当0x >时,()f x 可导,且满足方程11()1()xf x f t dt x=+⎰, 求()f x .§5.5 广义积分习 题 5-51 计算下列瑕积分.(1)41dx x +∞⎰; (2)0e +∞⎰; (3)2122dx x x +∞-∞++⎰; (4)211(1)dx x x +∞+⎰; (5)1+∞⎰; (6) 0sin px e xdx ω+∞-⎰(0,0p ω>>);(7)21arctan xdx x+∞⎰;(8) 1⎰(9)1e⎰(10)10⎰;(11)21⎰;(12)()22011dx x -⎰.2. 求当k 为何值时,瑕积分()21ln kdx x x +∞⎰收敛?当k 为何值时,该瑕积分发散?又当k 为何值时,该瑕积分取得最小值?3. 计算瑕积分0n x n I x e dx +∞-=⎰(n 为自然数).4. 求c 为何值时,使2lim xc tx x c te dt x c -∞→+∞+⎛⎫= ⎪-⎝⎭⎰. 5.求2+∞⎰.6. 计算下列式子:(1)(7)2(4)(3)ΓΓΓ; (2)3(3)()29()2ΓΓΓ; (3)40x x e dx +∞-⎰; (4)2220x x e dx +∞-⎰. 7. 用Γ函数表示下列积分,并指出积分的收敛范围.(1)nxe dx +∞-⎰(0n >); (2)101ln pdx x ⎛⎫⎪⎝⎭⎰; (3)22x dx +∞--∞⎰;(4)mn x x edx +∞-⎰; (5)10⎰; (6)311dx x +∞+⎰. §5.6 定积分的几何应用习题5-61. 求由下列各组曲线所围成平面图形的面积:(1)1xy =,y x =,2x =; (2)x y e =,xy e -=,1x =; (3)2y x =,2x y +=; (4)3y x =,1y =,2y =,0x =;(5)0y =,1y =,ln y x =,0x =; (6)22x y =,228x y +=;(7) ln y x =,y 轴,ln y a =,ln y b =( 0b a >>);(8) 23y x =+,2y x =. 2. 直线x k =平分由2y x =,0y =,1x =所围之面积,求k 之值. 3. 求抛物线243y x x =-+-及在点(0,3)-和(3,0)处切线所围成图形的面积. 4. 求抛物线22y px =及其在点,2p p ⎛⎫⎪⎝⎭处的法线所围成的图形的面积. 5. 求曲线33cos ,sin x a t y a t ==,).0(>a 所围成图形的面积. 6. 求曲线2cos r a θ=).0(>a 所围成图形的面积.7. 求曲线2(2cos r a θ=+)).0(>a 所围成图形的面积. 8. 求对数螺线r ae θ=(0a >,πθπ-≤≤)及射线θπ=所围成图形的面积.9. 计算阿基米德螺线r a θ= (0a >)上相应于θ从0到2π的一段弧与极轴所围成的图形(如图5-6-22)的面积.图5-6-22 图5-6-2310.求由下列各曲线所围成图形的公共部分的面积. (1) 3cos r θ=及1cos r θ=+;(2) r θ=及2cos 2r θ=.11. 圆1r =被心形线1cos r θ=+分割成两部分,求这两部分的面积. 12.设sin y x =,02x π≤≤.问:为t 何值,图5-6-23中阴影部分的面积1s 与2s 之和最小?最大?13.求由下列已知曲线围成的平面图形绕指定的轴旋转而成的旋转体的体积.(1)2xy a =,0y =,x a =,2x a =(0a >),绕x 轴. (2)22(2)1x y +-=,绕x 轴.(3)ln y x =,0y =,x e =,绕x 轴和y 轴. (4)224x y +=,24(1)x y =--,0y >,绕x 轴. (5)5xy =,6x y +=,绕x 轴.(6)cos y x =,0x =,x π=,x 轴,绕y 轴.14. 求摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩(02t π≤≤,0a >)的一拱与0y =所围成的图形绕直线2y a =旋转而成的旋转体的体积.15. 由心形线4(1cos )ρθ=+和直线0θ=及2πθ=所围成图形绕极轴旋转而成的旋转体的体积.16. 一个棱锥体的底面是长为2a 的正方形,高为h ,求此棱锥体的体积 (如图5-6-24).图5-6-24 图5-6-2517.设直线y ax b =+(0a >,0b >)与直线0x =,1x =及0y =所围成的梯形面积等于A ,试求a 、b ,使这个梯形绕x 轴旋转所得旋转体的体积最小.18.在由椭圆域2214y x +≤绕y 轴旋转而成的椭球体上,以y 轴为中心轴打一个圆孔,使剩下的部分的体积恰好等于椭球体体积的一半,求圆孔的直径.19.设有一锥体,其高为h ,上、下底都为椭圆,椭圆的轴长分别为2a 、2b 与2A 、2B ,求这锥体的体积.20.作半径为r 的球的外切正圆锥,问此圆锥的高h 为何值时,其体积V 最小?求出此最小值(如图5-6-25).21.把星形线232323x y a +=所围成的图形绕x 轴旋转(图5-6-26),计算所得旋转体的体积.图5-6-26 图5-6-27 22.用积分的方法证明图5-6-27所示球缺的体积为2()3H V H R π=-. 23.求圆盘222x y a +≤绕x b =-(0b a >>)旋转而成的旋转体的体积.24.证明:由平面图形x a =,x b =,0a b ≤<,0()y f x ≤≤绕y 轴旋转而成的旋转体的体积为2()baV xf x dx π=⎰.25.利用24题的结论,计算sin y x =(0x π≤≤)和x 轴所围成的图形绕y 轴旋转所成的旋转体的体积.习题5-71. 已知边际成本'2()25309C q q q =+-,固定成本为55,试求总成本()C q ,平均成本与变动成本.2. 已知边际收入为'()30.2R q q =-,q 为销售量,求总收入函数()R q ,并确定最高 收入的大小.3. 某产品生产q 个单位是总收入R 的变化率为'()200100qR q =-,求: (1)生产50个单位时的总收入;(2)在生产100个单位的基础上,再生产100个单位时总收入的增量.4. 已知某商品每周生产q 个单位时,总成本变化率为'()0.412C q q =-(元/单位),固 定成本500,求总成本()C q . 如果这种商品的销售单价是20元,求总利润()L q ,并问每周生产多少单位时才能获得最大利润?图5-7-56. 设某城市人口总数为F ,已知F 关于时间t (年)的变化率为dF dt =,假设在计算的初始时间(0)t =,城市人口数为100(万),试求t 年中该城市人口总数.7. 若边际消费倾向在收入为Y 时为1232Y -,且当收入为零时总消费支出070c =.(1)求消费函数()c Y ;(2)求收入由100增加到196时消费支出的增加数.8. 设储蓄边际倾向(即储蓄额S 的变化率)是收入y 的函数 '()0.3S y =, 求收入从100元增加到900元时储蓄的增加额.9. 如果需求曲线为2()500.025D q q =-,并已知需求量为20个单位,试求消费者剩余CS .10. 假设某国某年洛伦兹曲线近似地由3y x =(01x ≤≤)表示,试求该国的基尼系数.11. 某投资项目的成本为100万元,在10年中每年可收益25万元,投资率为5%,试 求这10年中该项投资的纯收入的贴现值.12. 一位居民准备购买一栋别墅,现价为300万元,如果以分期付款的方式,要求每年 付款21万元,且20年付清,而银行贷款的年利率为4%,按连续复利计息,请你帮这位购5. 某新产品的销售率由下式给出()10090x f x e -=-,式中x 是产品上市的天数,前四天的销售总数是曲线()y f x =与x 轴在之间的面积(如图5-7-5),求前四天总的销售量.房者作一决定:是采用一次付款合算还是分期付款合算?总习题五1.求下列极限:(1) limnn k →∞=. (2) 21lim inni n i nen ne→∞=+∑;(3)11lim n n i n →∞= (4)112lim p p p p n n n +→∞+++(0p >); (5)lim n →∞2.利用积分中值定理求下列极限: (1)sin lim0n pnn xdx x +→∞=⎰; (2)222lim n x n n x dx e+→∞⎰.3.求下列极限:(1)101lim (1sin 2)xtx t dt x →+⎰; (2)lim ()x a x a x f t dt x a →-⎰(其中()f x 连续);(3)()2arctan lim xx t dt→+ (4) ()2210limxt t x e dt→+∞⎰.4.(已知[]02()1()1xf t dt f x -=-⎰,求(0)f '.5. 已知()2021,0()0,x t e dtx f x x x ⎧-⎪≠=⎨⎪=0⎩⎰,求(0)f '. 6.设()f t 在0t ≤≤+∞上连续,若220()(1)x f t dt x x =+⎰,求(2)f .7. 求函数0()(3)xF x t t dt =-⎰在[1,5]-上的最大值与最小值.8. 证明:111ln(1)11ln 23n n n+=++++<+. 9. 设()f x 、()g x 在区间[,]a b 上均连续,证明:(1)()222()()()()bbbaaaf xg x dxf x dxg x dx ≤⋅⎰⎰⎰(柯西-施瓦茨不等式);(2)[]()()()111222222()()()()bbba aaf xg x dxf x dxg x dx +≤+⎰⎰⎰(闵可夫斯基不等式).10. 设函数()f x 在区间[,]a b 上连续,且()0f x >,证明:11ln ()ln ()b b a a f x dx f x dx b a b a ⎡⎤≥⎢⎥--⎣⎦⎰⎰. 11. 设()f x 在[0,]a (0a >)上有连续导数,且(0)0f =,证明:2()2aMa f x dx ≤⎰,其中0max ()x aM f x ≤≤'=.12. 设()f x 在[0,1]上连续且单调减少,试证:对任何(0,1)a ∈,有1()()af x dx a f x dx ≥⎰⎰.13. 设()x ϕ在[,]a b 上连续,()()()xaf x x b t dt ϕ=-⎰,证明:必存在(,)a b ξ∈,使得()f ξ'=0.14.设()f x 在区间[,]a b 上连续,()g x 在区间[,]a b 上连续且不变号.证明至少存在一点[,]a b ξ∈,使下式成立()()()()bbaaf xg x dx f g x dx ξ=⎰⎰(积分第一中值定理).15. 计算下列定积分:(1)3(1sin )x dx π-⎰; (2)e ;(3)⎰; (4)0ax ⎰ (0a >);(5)20sin 1cos x xdx xπ++⎰; (6)40ln(1tan )x dx π+⎰;(7)a⎰(0a >); (8);(9)121(21)x x dx -++⎰; (10)sin )x x dx ππ-⎰(11)42213||||1x x dx x -⎛⎫-+ ⎪+⎝⎭⎰; (12)设2,01()2,12x x f x x x ⎧ ≤≤=⎨-<<⎩,求20()f x dx ⎰.16.利用函数的奇偶性计算定积分121(x dx -+⎰. 17. 利用函数的周期性计算定积分2(sin 2)(tan 1)a ax x dx π++⎰.18. 设函数()f x 在(,)-∞+∞内连续,并满足条件()sin xu f x u e du x -=⎰,求()f x .19. 计算下列各题: (1)设(5)2f =,5()3f x dx =⎰,求5()xf x dx '⎰.(2)已知2()tan f x x =,求40()()f x f x dx π'''⎰.20. 证明()[()()]aaaf x dx f x f x dx -=+-⎰⎰,并求下列定积分:(1)441sin dx x ππ-+⎰; (2)244sin 1x x dx e ππ--+⎰; (3)244cos 1nxx dx e ππ--+⎰(n 为正整数). 21. 设()f x 在区间[,]a b 上连续,且()f x 关于2a bx +=对称的点处取相同的值.证明: 2()2()a b baaf x dx f x dx +=⎰⎰.22. 证明:112211111xx dt dt t t =++⎰⎰(0x >). 23. 判断下列瑕积分的敛散性:(1)1+∞⎰;(2)2+∞⎰;(3)2cos ln xdx x+∞⎰;(4) 0+∞⎰;(5)3(1)(2)dxx x x +∞--⎰;(6)1+∞⎰;(7)120ln 1xdx x -⎰; (8)1ln 11eex dx x --⎰.24. 已知sin 2x dx x π+∞=⎰,求220sin x dx x+∞⎰. 25. 求介于直线0x =,2x π=之间由曲线sin y x =和cos y x =所围成的平面图形的面积.26. 求椭圆22113x y +=和22113x y +=的公共部分的面积. 27. 求曲线x y e =及该曲线的过原点的切线和x 轴的负半轴所围成的平面图形的面积. 28. 设曲线21:1L y x =-(01)x ≤≤、及x 轴和y 轴所围成的区域被曲线21:L y ax =分为面积相等两部分,其中a 是大于零的常数,试确定a 的值.29. 求由柱体222x y a +≤与222x z a +≤(0a >)的公共部分所围成图形的体积.30.将曲线r =绕x 轴旋转而成的旋转体的体积. 31. 将抛物线2y x ax =-在横坐标0与c (0c a >>)之间的弧段绕x 轴旋转,问c 为 何值时,所得旋转体体积V 等于弦OP (P 为抛物线与x c =的交点)绕x 轴旋转所得锥体体积.32. 设抛物线2y ax bx c =++通过点(0,0),且当[0,1]x ∈时,0y ≥.试确定a b c 、、 的值,使得该抛物线与直线1x =,0y =所围成图形的面积为13,且使该图形绕x 轴旋转而成的旋转体的体积最小.33.一位居民准备购买一栋别墅价值为300万元,若首付为50万元,以后分期付款,每年付款数目相同,10年付清,而银行贷款的年利率为6%,按连续复利计息,每年应付款多少?(0.60.5448e-≈)34. 某公司投资2000万建成一条生产线,投产后,在t 时刻的追加成本和追加收益分别为23()52g t t =+ (百万/年)23()17t t ϕ=- (百万/年)试确定该生产线在何时停产可获得最大利润?最大利润是多少?.35.生产某种产品的固定成本为50万元,边际成本与边际收益分别为216100=-+(万元/单位产品)MC Q Q=-(万元/单位产品)MR Q894试确定工厂应将产量定为多少个单位时,才能获得最大利润?并求最大利润.。
5-5第五章 定积分及其应用(2017-09-04 12_32_22)
![5-5第五章 定积分及其应用(2017-09-04 12_32_22)](https://img.taocdn.com/s3/m/e107766b5fbfc77da369b193.png)
每一个取定的 x 值,定积分有一个对应值,所以
它在[a,b] 上定义了一个函数,
记
(x)
x
a
f
(t)dt.
积分上限函数
定理1 如果 f (x) 在[a,b] 上连续,则积分上限的函
x
数 (x) a f (t)dt 在[a,b] 上具有导数,且它的导数是
(x) d
x
f (t)dt f (x)
故当
p 1
时,广义积分
1
0
1 xp
dx
ቤተ መጻሕፍቲ ባይዱ收敛于
1
1
p
.
故当 p 1 时,广义积分
1 1
0 xp
dx
发散.
例6
计算广义积分
3 dx
0
2. (x 1) 3
x 1瑕点
解:
3 dx
0
2. (x 1) 3
(
1 0
3 dx
1
)
(x
2
1) 3
1 dx
0
2
(x 1) 3
lim 0
1 0
dx
2
(x 1) 3
b
b
f (x)dx lim f (t)dt
a
xa x
定理2 函数 f (x) 在区间[a, b)连续、无界,则
b
x
f (x)dx lim f (t)dt
a
xb a
定理3 函数 f (x) 在区间[a,c)和(c,b]连续、无界,则
b
c
b
a f (x)dx a f (x)dx c f (x)dx
du dx
du
dx
(3u2 1) cos x (3sin2 x 1) cos x
高数第五章 定积分的应用
![高数第五章 定积分的应用](https://img.taocdn.com/s3/m/d82299650b1c59eef8c7b413.png)
第五章 定积分的应用在本章中,我们将利用学过的定积分理论来解决一些实际问题.首先介绍建立定积分数学模型的方法——微分元素法;再利用这一方法求一些几何量(如面积、体积、弧长等)和一些物理量(如功、液体静压力、引力等);并介绍定积分在经济学中的简单应用.第一节 微分元素法实际问题中,哪些量可用定积分计算?如何建立这些量的定积分表达式?本节中我们将回答这两个问题.由定积分定义知,若()f x 在区间,a b ⎡⎤⎣⎦上可积,则对于,a b ⎡⎤⎣⎦的任一划分:1<<<0n a x x x b == ,及1,i i x x -⎡⎤⎣⎦中任意点i ξ,有d Δ01()lim()nb i i aλi f x x f ξx →==∑⎰,(5-1-1)这里()-=-= 11,2,,i i i Δx x x i n ,}{≤≤=1m ax i i nλΔx . (5-1-1)式表明定积分的本质是一类特定和式的极限,此极限值与,a b ⎡⎤⎣⎦的分法及点i ξ的取法无关,只与区间,a b ⎡⎤⎣⎦及函数()f x 有关.基于此,我们可以将一些实际问题中有关量的计算归结为定积分来计算.例如,曲边梯形的面积、变速直线运动的位移等均可用定积分来表达.由上一章中分析曲边梯形面积用定积分来表示的过程,我们可概括地将此过程描述为“划分找近似,求和取极限”.也就是说,将所求量整体转化为部分之和,利用整体上变化的量在局部近似于不变这一辩证关系,局部上以“不变”代替“变”,这是利用定积分解决实际问题的基本思想.根据定积分的定义,如果某一实际问题中所求量U 符合下列条件:(1)建立适当的坐标系和选择与U 有关的变量x 后,U 是一个与定义在某一区间,a b ⎡⎤⎣⎦上的可积函数()u x 有关的量; (2)U 对区间,a b ⎡⎤⎣⎦具有可加性,即如果把,a b ⎡⎤⎣⎦任意划分成n 个小区间()-=-= 11,2,,i i i Δx x x i n ,则U 相应地分成n 个部分量i ΔU ,且1nii U U Δ==∑;(3) 部分量i ΔU 可近似地表示成()()1,i i i i i u ξΔx ξx x -∈⎡⎤⎣⎦,且i ΔU 与()i i u ξΔx 之差是iΔx 的高阶无穷小,即()()i i i i ΔU u ξΔx o Δx -=,那么,我们可得到所求量U 的定积分数学模型d ()b au x U x =⎰. (5-1-2)在实际建模过程中,为简便起见,通常将具有代表性的第i 个小区间1,i i x x -⎡⎤⎣⎦的下标略去,记为[,d ]x x x +,称其为典型小区间,相应于此小区间的所求量的部分量记作ΔU .因此,建立实际问题的定积分模型可按以下步骤进行:(1) 建立坐标系,根据所求量U 确定一个积分变量x 及其变化范围,a b ⎡⎤⎣⎦;(2) 考虑典型小区间[,d ]x x x +,求出U 相应于这一小区间的部分量ΔU ,将ΔU 近似地表示成,a b ⎡⎤⎣⎦上的某个可积函数()ux 在x 处的取值与小区间长度d Δx x =的积,即 d (d )()ΔU u x x o x =+, (5-1-3)我们称d ()u x x 为所求量U 的微分元素(简称微元或元素),记作d d ()U u x x=;(3) 计算所求量U ,即d =d ()b b aau x U x =⎰⎰U .上述建立定积分数学模型的方法称为微分元素法,这一方法的关键是步骤(2)中微分元素d U 的取得.第二节 平面图形的面积在上一章开头讨论过由连续曲线()()()0y =f x f x ≥,以及直线()x=a ,x =b a <b 和x 轴所围成的曲边梯形的面积()d baA f x x =⎰.如果()f x 在,a b ⎡⎤⎣⎦上不都是非负的,由定积分对区间的可加性,则所围图形的面积为()d b aA f x x =⎰.本节将讨论一般平面图形的问题,如果其边界曲线是由两条连续曲线()1y f x =, ()2y f x =()()21f x f x ⎡⎤≥⎣⎦及直线x =a ,x =b 所围成的平面图形,其面积便可用定积分来计算.下面我们运用定积分的微分元素法,建立不同坐标系下平面图形的面积计算公式.一、 直角坐标情形设一平面图形由曲线()()12,y f x y f x ==及直线x =a 和()x =b a b <围成(见图5-1).图5-1为求其面积A ,我们在,a b ⎡⎤⎣⎦上取典型小区间[,d ]x x x +,相应于该小区间的平面图形面积ΔA 近似地等于高为()()12f x f x -、宽为d x 的窄矩形的面积,从而得到面积微元()()d d 12A f x f xx =-.所以,此平面图形的面积为()()d 12b aA f x f xx =-⎰. (5-2-1)类似地,若平面图形由12(),()x φy x φy ==及直线y c =和()y d d c =>围成(见图5-2),则其面积为()()d 12d cA φy φy y =-⎰. (5-2-2)图5-2例1 计算由抛物线21y x =-+与2y x =所围图形的面积A . 解 解方程组221y x y x⎧=-+⎪⎨=⎪⎩得两抛物线的交点为122⎛⎫ ⎪⎝⎭和122⎫⎪⎝⎭,于是图形位于2x =-与2x =之间,如图5-3所示,取x 为积分变量,由(5-2-1)式得d 22222)A xxx x=--=-32022()3x x =-=图5-3例2 计算由直线4y x =-和抛物线22y x =所围平面图形的面积A . 解 解方程组224y xy x ⎧=⎪⎨=-⎪⎩得两线的交点为(2,-2)和(8,4),平面图形,如图5-4所示,位于直线2y =-和4y =之间,于是取y 为积分变量,由(5-2-2)式得d 24242yA y y -=+-⎰3242(4)26yyy -=+-18=.图5-4注意:若在例1中取y 为积分变量,在例2中取x 为积分变量,则所求面积的计算会较为复杂.例如在例2中,若选x 为积分变量,则积分区间是[0,8].当(,2)0x ∈时,典型小区间(,d )x x x +所对应的面积微元是(d d A x=⎤⎦;而当(2,8)x ∈时,典型小区间所对应的面积微元是()d d 4A x x ⎤-⎦=. 故所求面积为(()d d 28024A x x x⎤⎤+-⎦=⎦⎰⎰.显然,上述做法较例2中的解法要复杂.因此,在求平面图形的面积时,恰当地选择积分变量可使计算简便.当曲边梯形的曲边为连续曲线,其方程由参数方程(),(),x φt y ψt =⎧⎨=⎩12t t t ≤≤ 给出时,若其底边位于x 轴上,()φt 在12[,]t t 上可导,则其面积微元为 ()()d d d A y x ψt φt t ==' d (0)t >. 从而面积为()()d 21t t A ψt φt t ='⎰. (5-2-3)同理,若其底边位于y 轴上,且()ψt 在12[,]t t 上可导,则其面积微元为 ()()d d d A x y φt ψt t ==' d (0)t > 从而面积为()()d 21t t A φt ψt t ='⎰. (5-2-4)例3 设椭圆方程为12222y x ab+= (,a b 为正的常数),求其面积A .解 椭圆的参数方程为cos ,sin ,x a t y b t =⎧⎨=⎩20t π≤≤. 由对称性知d 204sin (cos )A b t a t tπ'=⋅⎰d d 22201cos 24sin 42ta b t t a b t ππ-==⎰⎰a b=π.二、 极坐标情形设一平面图形,在极坐标系下由连续曲线()r r θ=及射线,θαθβ==所围成(称为曲边扇形,如图5-5所示.)为求其面积,我们在θ的变化区间[,]αβ上取一典型小区间[,d ]θθθ+,相应于此区间上的面积近似地等于中心角为d θ、半径为()r θ的扇形面积,从而得到面积微元()d d 212A r θθ=, 所以d 21()2βαA r θθ=⎰. (5-2-5)图5-5例4 计算阿基米德(Archimedes)螺线(>)0r a θa =上相应于θ从0到2π的一段弧与极轴所围成图形如图5-6所示的面积.解 由式(5-2-5)得d 22232302114()2630A a θθa θa ππ⎛⎫===π ⎪⎝⎭⎰.图5-6 图5-7例5 求由双纽线()()2222222x y a x y +=-所围成,且在半径为a 的圆内部的图形如图5-7所示的面积.解 由对称性,所求面积应等于第一象限部分面积的4倍,极坐标下双纽线在第一象限部分的方程为222co 2r a s θ=, 04θ≤≤π.圆的方程为r a =. 由 222cos 2r a θr a ⎧=⎪⎨=⎪⎩解得两曲线在第一象限交点为6,a ⎛⎫⎪⎝⎭π,由式(5-2-5)得所求面积d cos d 2264061142222A a θa θθπππ⎡⎤=+⎢⎥⎣⎦⎰⎰42262sin 23a a θπππ=+2(23aπ=+-.第三节 几何体的体积一、 平行截面面积为已知的立体体积考虑介于垂直于x 轴的两平行平面x a =与x b =之间的立体如图5-8所示,若对任意的[,]x a b ∈,立体在此处垂直于x 轴的截面面积可以用x 的连续函数()A x 来表示,则此立体的体积可用定积分表示.图5-8在[,]a b 内取典型小区间[,d ]x x x +,对应于此小区间的体积近似地等于以底面积为()Ax ,高为d x 的柱体的体积,故体积元素为()d d V A x x =, 从而d ()b aA x V x =⎰. (5-3-1)例1 一平面经过半径为R 的圆柱体的底圆中心,并与底面交成角α,如图5-9所示,计算此平面截圆柱体所得楔形体的体积V .解法1 建立坐标系如图5-9,则底面圆方程为222x y R +=.对任意的[,]x R R ∈-,过点x 且垂直于x 轴的截面是一个直角三角形,两直角边的长度分别为y =和tan y αα=,故截面面积为()()tan 2212x R x A α-=.于是立体体积为tan d 221()2R RV R x αx -=-⎰tan d tan 22302()3RαR x x R α=-=⎰.图5-9 图5-10解法2 在楔形体中过点y 且垂直于y 轴的截面是一个矩形如图5-10所示,其长为2x =tan y α,故其面积为()2A yy α=.从而,楔形体的体积为()d tan 322222an 3R R V αy αR y==--⎰tan 323R α=. 二、旋转体的体积由一平面图形绕这平面内一条定直线旋转一周而成的立体称为旋转体. 设一旋转体是由连续曲线()y f x =,直线x a =和x b =及x 轴所围成的曲边梯形绕x 轴旋转一周而形成的(图5-11),则对任意的[,]x a b ∈,相应于x 处垂直于x 轴的截面是一个圆盘,其面积为2()πf x ,于是旋转体的体积为 ()d 2ba V f x x =π⎰. (5-3-2)图5-11例2 计算由椭圆22221y x ab+=(,a b 为正的常数)所围图形绕x 轴旋转而成的旋转体(称之为旋转椭球体,见图5-12)的体积.图5-12解 这个旋转体实际上就是半个椭圆y =及x 轴所围曲边梯形绕x 轴旋转一周而成的立体,于是由式(5-3-2)得()2222a ab V axa-=π-⎰()d 22222a b axxa=π-⎰2322230ab x a x a ⎛⎫=π⋅- ⎪⎝⎭243a b =π.特别地,当a b =时便得到球的体积343πa .例3 求圆域222()()x b a y b a +-≤>绕x 轴旋转而成的圆环体的体积如图5-13所示.图5-13解 如图5-13,上半圆周的方程为2y b +=1y b -=对应于典型区间[,d ]x x x +上的体积微元为d d 2221()V y y x =π-πd 22((b b x ⎡⎤=π+--⎢⎥⎣⎦4x =π.所以4a aV x -=π⎰8b x =π⎰284ab π=π⋅22a b =2π.第四节 曲线的弧长和旋转体的侧面积一、 平面曲线的弧长首先,我们建立平面曲线弧长的概念.设有平面曲线 A B ,在其上任取分点:11,,,,0n n A M M M M B -== ,连接相邻的两个分点得到n 条线段1i i MM-,1,2,,i n = .以()1,i i iρρM M-=表示线段1i i M M -的长度(见图5-14),记1m ax{}i i nρλ≤≤=,若极限01lim niλi ρ→=∑存在,则定义此极限值为曲线 A B 的长度(即弧长),并称曲线 AB 是可求长的.图5-14下面用微分元素法来推导弧长的计算公式.设 A B 的方程为()y f x =,[,]x a b ∈,且()f x 在[,]a b 上有一阶连续导数.考虑[,]a b 内的典型小区间[,]x x Δx +,相应于此区间的弧长记为Δs ,Δs 近似地等于弦长,即22222()()()()[()()]Δs Δx Δy Δx f x Δx f x ≈+=++-.由微分中值定理,得,222()()[()]),(Δs ξx x Δx Δx f ξΔx ∈'+≈++,此处>0Δx ,故得弧长的微分元素(简称弧微分)为d s ==x =. (5-4-1)从而, AB 的长为as x =⎰. (5-4-2)若曲线弧 AB 的方程由参数方程 (),(),x φt y ψt =⎧⎨=⎩ αt β≤≤,给出,设()(),φt ψt 在[,]αβ上具有连续导数,由于()()d d d d ,x φt t y ψt t ='=',因此对于任意的[,]t αβ∈,典型小区间d []t t t +,上相应弧长元素为d s t =. (5-4-3)所以,曲线弧 AB 的弧长为αs t =⎰. (5-4-4)式(5-4-1)和(5-4-3)即为弧微分公式,这和第二章第五节所推导的弧微分公式是一致的.例1 两端固定于空中的线缆,由于其自身的重量而下垂成曲线形,称之为悬链线.设一悬链线的方程为e +e ()2sh xxa a y a x a a -== (a为正的常数),求其在[,]0a 上一段的长.解 d ds x x == =e +e d 1()2xxa a x -,故 e +e d e+e ee 101()()()2x xxx a a a aaas x a a ---===⎰-. 例2 如图5-15所示,计算摆线(sin ),(1cos ),x a t t y a t =-⎧⎨=-⎩()0a > 的一拱(20t π≤≤)的长度.图5-15解 由于d s t =t=d 2sin2ta t =, 所以d d 2202sin2sin22tts a t a t ππ==⎰⎰22(2cos )820t a a π=-=.如果曲线方程由极坐标方程()()r r θαθβ=≤≤给出,且()r θ存在一阶连续导数,则由 ()cos ,()sin ,x r θθy r θθ=⎧⎨=⎩()αθβ≤≤ 可得()[()cos ]()cos ()sin ,φθr θθr θθr θθ'''==- ()[()sin ]()sin ()cos ,ψθr θθr θθr θθ'''==+从而 ()()()()2222φθψθrθr θ'+'=+'. 所以αs θ=⎰. (5-4-5)例3 求心形线1 (cos )(0)r a θa =+>的全长(见图5-16).图5-16解 由(5-4-5)式有d s θ=θ=θ=.由对称性知02s θπ=⎰d 022cos2θa θπ=⎰ 8sin820θa a π==. *二、 旋转体的侧面积设一旋转体的侧面由一段曲线()()y f x a x b =≤≤绕x 轴旋转一周而得(图5-17).为求其面积A ,我们在[,]a b 上取典型小区间[,d ]x x x +,相应于此区间上的窄带形侧面(图5-17中的阴影部分)可近似地看成弧微分d s 绕x 轴旋转一周而成.于是这一窄带形侧面可以用一个半径为()f x ,高为d s 的圆柱面来近似代替,从而得侧面积的微分元素()(d πd π22A f xs f x x ==.所以2(b aA f x x =π⎰.此处假设()f x 在[,]a b 上可导.图5-17例4 求半径为R 的球的表面积.解 以球心为原点建立一平面直角坐标系,则该球是平面上半圆盘0y ≤≤绕x 轴旋转一周而成的旋转体,其表面积为π2R RA x-=⎰πd π244R Rx -==⎰R R .第五节 定积分在物理学中的应用一、 变力沿直线所做的功由物理学知,若一个大小和方向都不变的恒力F 作用于一物体,使其沿力的方向作直线运动,移动了一段距离s ,则F 所做的功为·W F s =.下面用微分元素法来讨论变力做功问题.设有大小随物体位置改变而连续变化的力()F F x =作用于一物体上,使其沿x 轴作直线运动,力F 的方向与物体运动的方向一致,从x a =移至至>x b a = (见图5-18).在[,]a b 上任一点x 处取一微小位移d x ,当物体从x 移到d x x +时,()F x 所做的功近似等于d ()F x x ,即功元素d d ()W F x x =,于是d ()b aW F x x =⎰. (5-5-1)图5-18例1 一汽缸如图5-19所示,直径为0.20m ,长为1.00m ,其中充满了气体,压强为5981.0⨯Pa.若温度保持不变,求推动活塞前进0.5m 使气体压缩所作的功.图5-19解 根据波义耳(Boyle )定律,在恒温条件下,气体压强p 与体积V 的乘积是常数,即p V k =.由于压缩前气体压强为5981.0⨯Pa ,所以ππ52981198.00000k =⨯⋅⋅=.建立坐标系如图5-19所示,活塞位置用x 表示,当活塞处于x 处时汽缸中气体体积π211()(0.)V x =-,于是压强为2()(1)(0.1)k p x x =-π,从而活塞上的压力为()1k F x p S x==-.故推动活塞所作功为d 05ln 10.50.9800980010W x x π==-π(-)-⎰x 980000ln2 2.13104(J )=π≈⨯.例2 从地面垂直向上发射一质量为m 的火箭,求将火箭发射至离地面高H 处所作的功.解 发射火箭需要克服地球引力做功,设地球半径为R ,质量为M ,则由万有引力定律知地球对火箭的引力为2GM m F =r,其中r 为地心到火箭的距离,G 为引力常数.当火箭在地面时,r R =,引力为2G M m R.另一方面,火箭在地面时,所受引力应为m g ,其中g 为重力加速度,因此2m g =GM m R, 故有 2=gR G M,于是22=m gR F r.从而,将火箭从r R =发射至r R H =+处所做功为d 111222R H RW r RR H +⎛⎫==- ⎪+⎝⎭⎰m gRm gR r .例3 地面上有一截面面积为20A =m 2,深为4 m 的长方体水池盛满水,用抽水泵把这池水全部抽到离池顶3m 高的地方去,问需做多少功?图5-20解 建立坐标系如图5-20所示.设想把池中的水分成很多薄层,则把池中全部水抽出所做的功W 等于把每一薄层水抽出所做的功的总和.在[0,4]上取小区间[x ,x +d x ],相应于此小区间的那一薄层水的体积为2d 0x m 3,设水的密度1310ρ=⨯kg ·m -3,故这层水重为d 4210g x ⨯ kg ,将它抽到距池顶3m 高处克服重力所做功为d d 4210(3)x g x W ⨯⋅⋅=+.从而,将全部水抽到离池顶3m 高处所做的功为4023 1.9632424510()d 10x W x g x x ⎛⎫=⨯⋅+⋅=⨯⋅⨯+ ⎪⎝⎭⎰639210J .()=⨯ (其中-29.8m s g =⋅)二、液体静压力由帕斯卡(Pascal )定律,在液面下深度为h 的地方,液体重量产生的压强为p ρg h =,其中ρ为液体密度,g 为重力加速度.即液面下的物体受液体的压强与深度成正比,同一深度处各方向上的压强相等.面积为A 的平板水平置于水深为h 处,平板一侧的压力为p ρg h A =. 下面考虑一块与液面垂直没入液体内的平面薄板,我们来求它的一面所受的压力.设薄板为一曲边梯形,其曲边的方程为,()()y f x a x b =≤≤,建立坐标系如图5-21所示,x 轴铅直向下,y轴与液面相齐.当薄板被设想分成许多水平的窄条时,相应于典型小区间d [,]x x x +的小窄条上深度变化不大,从而压强变化也不大,可近似地取为ρg x ,同时小窄条的面积用矩形面积来近似,即为d ()f x x ,故小窄条一面所受压力近似地为d d ()p ρg x f x x=⋅.图5-21从而d ()b ap ρgx f x x =⎰. (5-5-2)例4 一横放的圆柱形水桶,桶内盛有半桶水,桶端面半径为0.6m ,计算桶的一个端面上所受的压力.图5-22解 建立坐标系如图5-22所示,桶的端面圆的方程为22360.x y +=.相应于[,d ]x x x +的小窄条上的压力微元d 2p ρg xx =,所以桶的一个端面上所受的压力为060.p x xx =⎰20633(.)ρg =314110N .≈⨯()其中3110ρ=⨯kg·m -3,98-2m s .g ⋅=. 三、引力由物理学知,质量分别为12,m m ,相距为r 的两质点间的引力的大小为122m m F Gr=,其中G 为引力系数,引力的方向沿着两质点的连线方向.对于不能视为质点的两物体之间的引力,我们不能直接利用质点间的引力公式,而是采用微元法,下面举例说明.例5 一根长为l 的均匀直棒,其线密度为ρ,在它的一端垂线上距直棒a 处有质量为m 的质点,求棒对质点的引力.图5-23解 建立坐标系如图5-23所示,对任意的[,0)x l ∈,考虑直棒上相应于d [,]x x x +的一段对质点的引力,由于d x 很小,故此一小段对质点的引力可视为两质点的引力,其大小为d d G 22m ρx F a x=+,其方向是沿着两点,(0)a 与(),0x 的连线的,当x 在(),0l 之间变化时,d F 的方向是不断变化的.故将引力微元d F 在水平方向和铅直方向进行分解,分别记为d ,d x y F F ,则d 32G d 22()x m ρxF F x x a ==+,d 32G d 22()y m ρa F F x xa =-=-+.于是,直棒对质点的水平方向引力为32d 022()l x x F G m ρx xa =+⎰32d 2222()()2l G m ρa x a x -=++⎰1222()0l G m ρa x -=-+1(G m ρa=-.铅直方向引力为d 30222()l y x F G m ρa a x =-+⎰12l G m ρa -=-G m ρl =.注意 此例如果将直棒的线密度改为()ρρx =,即直棒是非均匀的,当()ρx 为已知时,直棒对质点的引力仍可按上述方法求得. 四、平均值我们知道,n 个数值12,,,n y y y 的算术平均值为121()n y y y y n=+++ . 在许多实际问题中,需考连续函数在一个区间上所取值的平均值,如一昼夜间的平均温度等.下面将讨论如何规定和计算连续函数()f x 在[,]a b 上的平均值. 先将区间[,]a b n 等分,分点为1<<<0n a x x x b == ,每个小区间的长度为Δx b an=-,()f x 在各分点处的函数值记为1,2,,()()i i y f x i n == .当Δx 很小(即n 充分大)时,在每个小区间上函数值视为相等,故可以用12,,,n y y y 的平均值121()n y y y n+++ 来近似表达()f x 在[,]a b 上的所有取值的平均值.因此,称极限值121lim()n n y y y y n→∞=+++为函数()f x 在[,]a b 上的平均值.由于12lim n n y y y b ay b a n →∞+++-=-120limnx y y y x b a∆→+++=∆-011lim ()ni x i f x x b a ∆→==∆-∑,故1()d bay f x x b a =-⎰.(5-5-3)式(5-5-3)就是连续函数()f x 在[,]a b 上的平均值的计算公式.例6 计算纯电阻电路中正弦交流电sin m i I ωt =在一个周期π2T =ω上的功率的平均值(简称平均功率).解 设电阻为R ,则电路中的电压为m U iR I R tω==sin ,功率为2sin 2m N Ui t I R ω==.一个周期上的平均功率为d d 2221sin sin 2T ωI R ωN R ωt t ωt I t Tπ==π⎰⎰22m md()0220sin 2(1cos 2)442ωωR R ωt ωt ωt ωt I I ππ⎡⎤=-=-⎢⎥ππ⎣⎦⎰22m m22mU I R I ==2m m ,其中m m U I R =表示最大电压,也称为电压峰值,即纯电阻电路中正弦交流电的平均功率等于电流与电压的峰值的乘积的一半.通常交流电器上标明的功率就是平均功率,而交流电器上标明的电流值都是另一种特定的平均值,常称为有效值.一般地,周期性非恒定电流i 的有效值是这样规定的:当电流()i t 在一个周期T 内在负载电阻R 上消耗的平均功率等于取固定值I 的恒定电流在R 上消耗的功率时,称这个固定值为()i t 的有效值.电流()i t 在电阻R 上消耗的功率为()()()()N t U t i t i t R =⋅=2.它在[0,T )上的平均值为d d 221()()T T R N i t R t i t tTT==⎰⎰.而固定值为I 的电流在R 上消耗的功率为2N I R =,因此d 22()T R I R i t t T =⎰, 即I =.例7 求正弦电流s (n )i m i I t t ω=的有效值.解12221s i n 2ωI ωt ωπ⎛⎫ ⎪=⎪π ⎪⎝⎭⎰2m I122sin 242ωωt ωt π⎡⎤⎡⎤⎢⎥=-⎢⎥π⎣⎦⎢⎥⎣⎦2mI=.叫做函数()f x 在[,]a b 上的均方根.第六节 定积分在经济学中的应用一、 最大利润问题设利润函数()()()πx =R x C x -,其中x 为产量,()R x 是收益函数,()C x 是成本函数,若()π,(),()x R x C x 均可导,则使()πx取得最大值的产量x 应满足()()()π0x R x C x '='-'=,即()().R x C x '='因此总利润的最大值在边际收入等于边际成本时取得.例1 设某公司产品生产的边际成本2181()00C x x x '=-+,边际收益为23()00R x x '=-,试求公司的最大利润.解 由于d ππd ()()()()x x R x C x x'''==-223181(00)(00)x x x =---+215100x x=-+,故利润微分元素为d πd 2151()(00)x x xx =-+.产量为0x 时,利润为πd 0200()(15100)x x x xx =-+⎰.另一方面,令π()0x '=,得21525x ±==(负值舍去). 又当20x =时,()π152<0x x "=-,故20x =时,利润取得最大值,最大利润为πd 202(20)(15100)x xx =-+⎰322015(100)230x xx =-+ 23333.≈.二、资金流的现值与终值1. 连续复利概念设有一笔数量为0A 元的资金存入银行,若年利率为r ,按复利方式每年计息一次,则该笔资金t 年后的本利和为0(1)(1,2,)tt A A r t =+= .如果每年分n 次计息,每期利率为r n,则t 年后的本利和为*01(1,2,)n tt r A A t n ⎛⎫=+= ⎪⎝⎭ .当n 无限增大时,由于e lim (1)n r n r n→∞+=,故e *00lim lim (1)n t r t t n n r A A A n→∞→∞=+=.称公式e 0r tt A A = (5-6-1)为0A 元的现值(即现在价值)在连续复利方式下折算为t 年后的终值(将来价值)的计算公式.公式(5-6-1)可变形为e0r tt A A -= (5-6-2)称(5-6-2)式为t 年末的t A 元的资金在连续复利方式下折算为现值的计算公式.建立资金的现值和终值概念,是为了对不同时点的资金进行比较,以便进行投资决策. 2. 资金流的现值与终值.将流出企业的资金(如成本、投资等)视为随时间连续变化,称之为支出流.类似地,将流入企业的资金(如收益等)视为随时间连续变化,称之为收入流.资金的净流量为收入流与支出流之差.企业单位时间内,资金的净流量称为收益率.设某企业在时段[]0T ,内的t 时刻的收益率为连续函数()f t ,下面我们按连续复利(年利率为r )方式来求该时段内的收益总现值和总终值. 在[]0T ,上取典型小区间[,d ]t t t +,该时段内收益近似为d ()f t t ,其t 时刻现值为 ed ()r tf t t -.这就是收益总现值的微分元素,故收益总现值为ed 0()T r tP f t t -=⎰. (5-6-3)又由于[,d ]t t t +时段内收益d ()f t t 折算为t T =时刻的终值为 ed ()()T t rf t t -,故收益总终值为ed ()0()T T t rF f t t -=⎰. (5-6-4)当收益率()f t k =(k 为常数)时,该资金流称为稳定资金流或均匀流.例2 某公司投资100万元建成1条生产线,并于1年后取得经济效益,年收入为30万元,设银行年利率为10%,问公司多少年后收回投资.解 设T 年后可收回投资,投资回收期应是总收入的现值等于总投资的现值的时间长度,因此有ed 0.1030100T tt -=⎰,即 0.1300(1e )100t --=. 解得455.0T =,即在投资后的4.055年内可收回投资.习 题 五1.求下列各曲线所围图形的面积:(1)212y x =与228x y += (两部分都要计算); (2)1y x=与直线y x =及2x =;(3)e e ,x x y y -==与直线1x =;(4)ln y x =,y 轴与直线()ln ,ln 0y a y b b a ==>>; (5)抛物线2y x =和22y x =-+;(6)sin ,cos y x y x ==及直线,44x x ππ=9=;(7)抛物线243y x x =-+-及其在3(0,)-和3,(0)处的切线;(8)摆线sin 1cos (),()x a t t y a t =-=-的一拱2(0)t π≤≤与x 轴; (9)极坐标曲线3ρa si n φ=; (10)极坐标曲线2cos ρa φ=.2.求下列各曲线所围成图形的公共部分的面积: (1)()1cos r a θ=+及2cos r a θ=;(2)r θ=及22in r θ=.3.已知曲线2()f x x x =-与()g x ax =围成的图形面积等于29,求常数a .4.设有一截锥体,其高为h ,上、下底均为椭圆,椭圆的轴长分别为2a ,2b 和2A ,2B 求这截锥体的体积.5.计算底面是半径为R 的圆,而垂直于底面一固定直径的所有截面都是等边三角形的立体体积.6.求下列旋转体的体积:(1)由2y x =与23y x =围成的平面图形绕x 轴旋转;(2)由3,2,0y x x y ===所围图形分别绕x 轴及y 轴旋转; (3)星形线222333x y a +=绕x 轴旋转. 7.求下列曲线段的弧长: (1)22,20y x x =≤≤;(2)ln ,y x x =≤≤(3)2,22x y t x π-π-≤=≤π⎰, . 8.设星形线的参数方程为33,,cos sin 0x a t y a t a ==>,求(1)星形线所围面积;(2)绕x 轴旋转所得旋转体的体积; (3)星形线的全长.9.求对数螺线e a θr =相应于0θ=到θφ=的一段弧长.10.求半径为R ,高为h 的球冠的表面积.11.求曲线段31(0)y x x =≤≤绕x 轴旋转一周所得旋转曲面的面积:12.把长为10m ,宽为6m ,高为5m 的储水池内盛满的水全部抽出,需做多少功? 13.有一等腰梯形闸门,它的两条底边各长10m 和6m ,高为20m ,较长的底边与水面相齐,计算闸门的一侧所受的水压力.14.半径为R 的球沉入水中,球的顶部与水面相切,球的密度与水相同,现将球从水中取离水面,问做功多少.15.设有一半径为R ,中心角为φ的圆弧形细棒,其线密度为常数ρ,在圆心处有一质量为m 的质点,试求细棒对该质点的引力.16.求下列函数在[,]a a -上的平均值.(1)()f x =(2)()2f x x =. 17.求正弦交流电sin 0i I ωt =经过半波整流后得到电流00sin 0.I ωt t ωi t ωωπ⎧≤≤⎪=⎨π2π⎪≤≤⎩,,, 的平均值和有效值.18.已知电压3sin2()u t t =,求(1)()u t 在02π⎡⎤⎢⎥⎣⎦,上的平均值; (2)电压的均方根值.19.设某企业固定成本为50,边际成本和边际收入分别为2()14111,()1002C x x x R x x ''=-+=-.试求最大利润.20.设某工厂生产某种产品的固定成本为零,生产x (百台)的边际成本为2()C x '=(万元/百台),边际收入为72()R x x '=-(万元/百台)):(1)求生产量为多少时总利润最大?(2)在总利润最大的基础上再生产100台,总利润减少多少?21.某企业投资800万元,年利率为5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期.22.某父母打算连续存钱为孩子攒学费,设银行连续复利为5%(每年),若打算10年后攒够5万元,问每年应以均匀流方式存入多少钱.。
定积分及其应用(高数) PPT课件
![定积分及其应用(高数) PPT课件](https://img.taocdn.com/s3/m/3f218d7e941ea76e59fa045b.png)
定理2 设 u( x),v( x)在区间[a,b]上有连续的导数,
则
aabbuuddvvu[uvvba]ba
bb
vvdduu
aa
定积分的分部积分公式
由不定积分的分部积分法 及N--L公式.
类似于不定积分的分部积分法:“反、对、幂、指、三”
(3)重要公式
奇、偶函数在对称区间上的定积分性质 三角函数的定积分公式 周期函数的定积分公式
方的面积取正号; 在 x 轴下方的面积取负号.
A1 A2
A3 A4
b
a f ( x)dx
A1 A2
A3
A4
2.定积分的性质
性质1
b
a [
f
(
x)
g(
x)]dx
b
a
f
(
x)dx
b
a g(
x)dx
性质2
b
a kf
(
x)dx
k
b
a
f
(
x)dx
( k 为常数)
性质3 (区间可加性)
b
c
b
a f ( x)dx a f ( x)dx c f ( x)dx
区间上的定积分都相等.
例1 设
f
(
x)
2 5
x
0
x
1
,
求
1 x2
2
0
f
( x)dx.
解
2
0
f
( x)dx
1 0
f
( x)dx
2
1
f
( x)dx
1
2xdx
2
5dx
6.
0
1
例2 求
高数第五章定积分及其应用(第129-163页,共35页张勇)
![高数第五章定积分及其应用(第129-163页,共35页张勇)](https://img.taocdn.com/s3/m/1c4d978f3186bceb19e8bbe4.png)
129第五章 定积分及其应用§5.1 学习的要求1. 理解定积分的概念及几何意义,了解可积的条件.2. 掌握定积分的基本性质.3. 理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法.4. 熟练掌握牛顿—莱布尼茨公式.5. 掌握定积分的换元积分法和分部积分法6. 理解无穷区间的广义积分,掌握其计算方法.7. 熟练掌握定积分求平面图形面积和掌握平面图形绕坐标轴旋转所成的旋转体体积 8. 会用定积分求变力直线做功和不均匀细棒的质量.§5.2内容提要一、 定积分的概念 (一)定积分的概念定义 设函数)(x f y =在区间],[b a 上有定义,用任一组分点: 01....a x x =<<,i n x x b <<<=把区间],[b a 分成n 个小区间),...3,2,1](,[1n i x x i i =-在每个小区],[1i i x x -上任意取一点i ξi i i x x ≤≤-ξ1() 用函数值)(i f ξ与该区间的长度1--=∆i i i x x x 相乘,作和式i ni i x f ∑=∆1)(ξ 如果不论对区间],[b a 采取何种分法及i ξ如何选取,当 {}0(max (1)i x x x i n ∆→∆=∆≤≤)时,和式的极限存在,则称函数)(x f 在],[b a 上可积,此极限称为函数在区间],[b a 上的定积分(简称积分).记为dx x f ba)(⎰,即1()()limnbiiai x f x dx f x ξ=∆→=∆∑⎰,其中变量x 称为积分变量,)(x f 称为被积函数,dx x f )(称为被积表达式b a ,分别称为积分下限和积分上限, ],[b a 称为积分区间.⎰badx x f )( 是 一个常量(b a ,为常数),其值只与被积函数和积分上下限有关,与积分变量用什么字母无关.(二).几何意义 1. 若)(x f ≥0,定积分⎰ba dx x f )(表示曲线)(x f y =,直线x =a 和x =b 以及x 轴所围成的曲边梯形的面积. 2. 若)(x f ≤0,定积分⎰badx x f )(表示相应曲边梯形面积的负值.(三) 定积分存在定理定理 如果函数)(x f 在区间],[b a 上连续,则)(x f 在],[b a 上的定积分必定存在. 二 、定积分的性质130 性质1 若],,[b a x ∈恒有)(x f =1,则有⎰⎰-==⋅bab aa b dx dx 1.性质2 ⎰ba dx x f )(=-⎰abdx x f )(.性质3 ⎰=badx x kf )(⎰badx x f k )( (k 是常数)性质4⎰⎰⎰±=±b ab abadx x f dx x f dx x f x f )()()]()([2121推论1 112[()()]()()()bb bbn n aaaaf x f x dx f x dx f x dx f x dx ±±=±±±⎰⎰⎰⎰性质5 ],[b a c ∈∀,则⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )(推论2 c b a ,,为任意的常数⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )(.性质6(积分中值定理) 若函数)(x f 在],[b a 上连续,则至少存在一点ξ()b a ,(∈ξ),使⎰badx x f )(=))((a b f -ξ三 、牛顿—莱布尼茨公式 (一) 积分上限函数1. 定义 设)(x f 在],[b a 上连续,],,[b a x ∈则)(t f 在],[x a 上可积 , 即⎰xadt t f )(存在,因此⎰xadt t f )(是上限x 的函数,记为()x φ=⎰xadt t f )(,称)(x φ为积分上限函数(或变上限积分) .2.积分上限函数的导数设)(x f 在],[b a 上连续, )(x φ在],[b a 上可导,则⎰∈==xa b a x x f dt t f dxd x ].,[),()()('φ )(x φ就是)(x f 在],[b a 上的一个原函数.(二)牛顿—莱布尼茨公式定理 如果函数()F x 是连续函数)(x f 在区间],[b a 上的任一原函数, 则)()()(a F b F dx x f ba-=⎰,这个公式称为牛顿—莱布尼茨公式,也称为微积分学基本定理. 公式表明:一个连续函数在区间],[b a 上的定积分等于它的任一原函数在区间],[b a 上的增量.四. 定积分的换元法和分部积分法 (一) 定积分的换元法设函数)(x f 在区间],[b a 上连续,令)(t x φ=,如果 (1) )(t φ在[βα,]上连续,当],[βα∈t 时, )(t φ的值不超出],[b a ,且有连续导函数)('t φ;(2) b a ==)(,)(βφαφ, 则⎰badx x f )(=⎰βαφφdx t t f )('))((.用)(t x φ=进行变换时,积分限也要随之换成新变量t 的积分限,不必像不定积分那样将变量还原.131(二)定积分的分部积分法设函数),(x u )(x v 在],[b a 上具有连续的一阶导数 ),('),('x v x u 则''bb aaba uv dx u vdx uv =-⎰⎰;或bbaaba udv vdu uv =-⎰⎰ .(三)偶,奇函数在对称区间],[a a -上的积分(1)当)(x f 是],[a a -上连续的偶函数时,⎰⎰-=aaadx x f dx x f 0)(2)(;(2)当)(x f 是],[a a -上连续的奇函数时,⎰-=aadx x f 0)(.五.广义积分(反常积分)(一) 无穷区间上的积分(无穷积分)定义 设)(x f 在区间[,)a +∞上连续,取b a >,若极限lim ()bab f x dx →∞⎰,则称此极限值为 )(x f 在),[+∞a 上的广义积分,记作 ⎰+∞adx x f )(=lim ()bab f x dx →∞⎰;(1)类似地,可以定义如下反常积分⎰∞-bdx x f )(=lim()baa f x dx →-∞⎰; (2)⎰-∞∞-dx x f )(=⎰∞-cdx x f )(+⎰+∞cdx x f )(lim()caa f x dx →-∞=⎰+lim()bcb f x dx →+∞⎰, (3)其中c 为任何实数;当(1)(2)(3)式右端极限存在时,反常积分收敛,否则是发散的. (二) 无界函数的积分定义 设)(x f 在],(b a 上连续,且lim ()x af x +→=∞,取0>ε若极限0lim ()ba f x dxεε+→⎰存在,则称此极限为无界函数)(x f 在],[b a 上的广义积分,记作⎰badx x f )(=0lim ()ba f x dx εε++→⎰.类似地,可定义在x b =附近无界函数()f x 的反常积分⎰b adx x f )(=0lim ()b af x dx εε-→⎰,以及在(a ,b )内一点x c =附近无界函数()f x 的反常积分⎰badx x f )(=⎰c adx x f )(+⎰bcdx x f )(=0lim ()c af x dx εε-→⎰+0lim ()bc f x dx εε++→⎰.六 定积分的应用(二) 定积分的元素法.(1) 任取],[b a 上的代表性的小区间[,]x x dx + ,作出欲求量Q 在此小区间上增量Q ∆的近似值即微元: dx x f dQ )(= .(2)求积分,Q =⎰badx x f )(.注:关键是找出微元,例如求面积要找出“面积微元”,求体积要找出“体积微元”等. (三)定积分的几何应用1)平面图形的面积(1)直角坐标系下的面积公式①由曲线(),()(()())y f x y g x f x g x ==≥与)(,b a b x a x <==所围成的图形面积132 S=⎰-badx x g x f )]()([;②由曲线 (),()(()())x y x y y y φϕφϕ==≥与)(,d c d y c y <==所围成的图形面积[()()]dcs y y dy φϕ=-⎰.(2)极坐标系下的面积,求立体的体积由曲线],,[),(βαθθ∈=r r 与两条射线βθαθ==, 所围成的曲边扇形的面积 21()2s r d βαθθ=⎰. 2)已知平行截面的面积,求立体的体积设某立体由一曲面和垂直于x 轴的两个平面 b x a x ==,围成,用垂直于x 轴的平面去截这个立体,若截面面积()A x (b x a ≤≤)是已知的连续函数,则该立体体积()baV A x dx =⎰.3)旋转体的体积①连续曲线))((b x a x f y ≤≤=与b x a x =-,及x 轴所围成的图形绕x 轴旋转一周所得的旋转体体积⎰=bax dx x f V )(2π②连续曲线))((d y c y x ≤≤=φ与d y c y ==,及y 轴所围成的图形绕y 轴旋转一周所得的旋转体体积⎰=dcy dy y V )(2φπ.(三)定积分在物理上的应用 1.变力沿直线作功变力)(x f 作用于物体,使物体由点a x =移动到b x =,)(x f 在],[b a 上连续,由微元法,任取],[b a 上的小区间[,],x x dx +其上的变力)(x f 近似看着常数,得功元素dx x f dw )(=,以a 到b 求定积分,得所求的功 w =⎰badx x f )(.2.非均匀直线细棒的质量.直线细棒的线密度为∈=x x ),(ρρ],[b a ,在],[b a 上由微元法,任取],[b a 上的小区间[,],x x dx +其上的密度近似看着常数,得质量元素 dx x dm )(ρ=,从a 到b 求定积分,得到所求的直线细棒的质量m =⎰badx x )(ρ.3. 非均匀细棒的转动惯量细棒AB 的方程为,b kx y +=密度∈=x x ),(ρρ],[b a ,任取],[b a 上的小区间],[dx x x +,视该小区间上密度与],[dx x x +对应的细棒段CD 到转轴x 轴的距离y 为常数,得转动惯量微元dx x b kx k dx x k ydI x )()(1)(12222ρρ++=+=转动惯量为 ⎰++=bax dx x b kx k I )()(122ρ§5.3基本例题及分析133例1.比较下列积分的大小关系.(1)⎰21sin dx x x 与⎰212)sin (dx x x ; (2)⎰⎰++1010)1ln(1dx x dx xx 与. 分析 在积分上下限都相同的情况下,积分大小由被积函数的大小决定. 比较两个函数的大小可以根据函数本身的图形关系、利用单调函数的定义等方法来判断.解 (1)当0x >时sin x x <,当1<x <2时,有1sin >x x ,即有 ,sin )sin (2xx x x > 则⎰⎰<21212)sin (sin dx x x dx x x . (2) 令0)0(),1ln(1)(=+-+=F x x xx F ,,)1(11)1(1)('22x xx x x F +-=+-+= 当0x >时,0)('<x F 时,()F x 单调下降,0)0()(,0=<>F x F x ,即)1l n (1x xx+<+, 则⎰⎰+<+1010)1ln(11dx x dx x .例2.估计积分1214xe ⎰的值.解 当]21,41[∈x 时, x y =单增, x y arcsin=单增, u e y =是单增,所以x xe x f y arcsin )(==在]21,41[也是单增的,因此)21()()41(f x f f <<,由641111(),()4422f e f e ππ==,得 6411()42e f x e ππ<<,同时积分得42141681)(161ππe dx x f e <<⎰. 例3.设)(x f 在a x =处连续,求极限ax dt t f xaax -⎰→)(lim.分析 x a →时,分子趋向()aaf t dt ⎰(=0),所以是型极限,一般对变上限积分很常用“(())()xaf t dt f x '=⎰”这种运算方式,所以很自然想到用洛必达法则求解.解 这是型未定式,用洛必达法则求解. 原式=)(1)(lim)'())((lim'a af x xf a x dt t tf ax xa ax ==-→→⎰.134 例 4. 设)(x f 在 ],[b a 上连续,且)(x f >0,证明:方程⎰⎰=+xaxbdt t f dt t f 0)(1)( 在区间),(b a 内恰有一个根.分析 证明根的存在可以考虑零点定理:连续函数的端点函数值符号相反则函数至少有一个零点(即函数值为0的点),如果函数是单调函数,则只能有一次穿过x 轴.本例中出现变上限积分,一般要用到它的导数,注意变上限积分函数的自变量由变上限确定.证 设 )(x F =⎰⎰+xaxbdt t f dt t f )(1)(,由于)(x f 连续, )(x f >0,则)(1x f 连续,所以)(x F 在],[b a 上也连续.又因为11()0,()()0()()ab b b a a F a dt dt F b f t dt f t f t ==-<=>⎰⎰⎰,由零点定理可知, )(x F =0在),(b a 内至少有一个根.又.0)(1)()('>+=x f x f x F 则)(x F 在],[b a 上单增,()0F x =在 ],[b a 上最多有一个根,由上述证明可知:)(x F 在),(b a 内恰好有一个根.例5. 计算下列积分 (1)⎰94sin dx xx ; (2)⎰2052sin cos πxdx x ;(3)⎰-adx x a x222(a >0); (4) ⎰---1221x x dx ;(5)⎰-+1)1ln(e dx x ; (6)⎰-+223)cos (sin ππdx x x .分析 (1)题出现了复合函数和其中间变量的导数,比较明显是用凑微分法;另外也项,可以尝试第二换元法.(2)题先用倍角公式化简后明显是用凑微分法的情形.(32xdx -的组成,所以用第二换元法的三角代换法.(4)题同(3)题,另外注意到和(arcsin )x '=.(5)题是幂函数乘对数函数的积分,显然用分部积分.(6)题的上下限是对称区间,根据奇偶函数在对称区间的积分来做.解:(1)法一:,21x d dx x=⎰⎰-=-==949494)3cos 2(cos 2cos 2sin 2sin xx d x dx xx .法二:(用第二换元法). 令,2,,2tdt dx t x x t === 当x =4时, t =2;当x =9时t =3,则93332422sin 22sin 2cos 2(cos 2cos3)t tdt tdt tt ===-=-⎰⎰⎰.(2)原式=2⎰⎰=-=-=2020276672cos 72cos cos 2sin cos πππx x xd xdx x .135(3)令tdt a dx t t a x cos ),20(,sin =≤≤=π,当x =0时, t =0;当x =a 时, t =2π,则22422220(sin )(cos )(cos )sin cos axa t a t a t dt at tdt ππ==⎰⎰⎰4422201cos 4sin 2442a a t tdt dt ππ-==⎰⎰4420sin 4()8416a t a t ππ=-=.(4)法一:用第二换元积分法,令sec ,sec tan x t dx t tdt ==,当2-=x 时,π32=t ;当1-=x 时, t =π,则⎰⎰⎰---=-=-=-12323223)1()tan (sec tan sec 1πππππdt dt t t t t x x dx . 法二:运用恒等变形和凑微分法. 当[2,1],x ∈--x =-1()x'==,令1u x =,则1121/----=⎰⎰11/2arcsin ()263u πππ--==---=-. (5)1111ln(1)ln(1)(1)[(1)ln(1)](1)ln(1)e e e e x dx x d x x x x d x ----+=++=++-++⎰⎰⎰11001(1)11e e e x dx e x x --=-+=-=+⎰ . (6)积分区间关于点对称, x 3sin 是奇函数,x 3cos 是偶函数.原式=/2/232/2/2sin cos 02cos 2xdx xdx xdx πππππ--+=+=⎰⎰⎰.例6.求证(sin )(sin )2xf x dx f x dx πππ=⎰⎰.分析 等式两边被积函数均含有)(sin x f ,注意到sin()sin t t π-=,如果t x -=π,其上下限互换了,并注意到定积分与积分变量用什么符号无关.证 令t x -=π,,dt dx -=,当0=x 时, t =π;当x =π时, t =0.00(sin )()(sin())()()(sin )xf x dx t f t dt t f t dt ππππππ=---=--⎰⎰⎰=()(sin )(sin )(sin )t f t dt f t dt tf t dt πππππ-=-⎰⎰⎰,而定积分与积分变量无关,得⎰⎰=ππ00)(sin )(sin dx x xf dt t tf ,整理得⎰⎰=πππ)(sin 2)(sin dx x f dx x xf .例7.计算⎰∞-0sin xdx e x .136 分析 被积函数的指数函数乘正弦函数,两次同型的分部积分就可以解出原函数.本题是广义积分,其实就是先求定积分,然后取上限或下限的极限.解:由不定积分⎰⎰---+-=xdxe x e xdx e x x x cos sin sin =dx x e x e x e xx x )sin (cos sin -+-----⎰,则⎰++-=--c x x e dx ex x)cos (sin 21sin ,⎰⎰∞-∞→-=00sin lim sin b xb x xdx e xdx e . 则 0lim[(/2)(sin cos )]x bb e x x -→∞-+=2/1)2/12cos sin (lim =++-∞→b b eb b 则⎰∞-0sin xdx e x 收敛,其值为1/2.例8.求曲线24x y -=与直线x =4, x 轴, y 轴在区间[0,4]上围成图形的面积S . 解S =42424222330224(4)(4)(4(34)16x dx x dx x dx x x x x -=-+-=-+-=⎰⎰⎰.例9.求由曲线θ2cos 22=r 所围成图形在r =1内的面积.分析 本题没有明确指出极坐标下θ的变化范围,那么肯定要根据已知条件找出来,注意2r >0. 题意是求两个图形围成的图形面积,而r =1是一个半径为1的圆,它和曲线一定要相交,所以首先要求出交点,从而确定积分的限.解 由 θ2cos 22=r 0≥ ,则 cos20θ≥,2,2244ππππθθ-≤≤-≤≤.令 {22cos21r r θ==,得6πθ±= ,交点(1,6π±).由于对称性,先计算第一象限内的部分.当6/0πθ<<时, r =1 ,阴影部分面积⎰⎰===660211212121πππθθd d r A ;当46πθπ<<时,,2cos 22θ=r 阴影部分的面积为2442661112cos 2(1222A r d d ππππθθθ===⎰⎰323)(421-+=+=πA A A .例10.求由曲线22x y -=与直线0),0(=≥=x x x y . 围成的平面图形绕x 轴旋转而成的旋转体体积.分析 两曲线围成图形的旋转体体积可以看成大的旋转体去掉小的旋转体,曲线绕x 轴旋转,任意点x 处的截面半径是()r y f x ==,旋转体体积微元是22()y dx f x dx ππ=.解 解方程组{22y xy x ==-且x 0≥,得x =1.则所求旋转体的体积为111222240(2)(45)x V x dx x dx x x dx πππ=--=-+⎰⎰⎰137=π513058(4)23515x x x π-+=例11.自地面垂直向上发射火箭,火箭质量为m , 试计算将火箭发射到距离地面高度为h 处所做的功.解:设地球质量M ,半径为R ,坐标原点在地心,地球对于r 点处火箭的引力大小为2rMmGf = (r 是地心到火箭的距离) . 火箭从r 处到dr r +处. 引力近似看成不变,为2)(rMmG r f =, 则功元素为dr r f dW )(=,2111()()()R R R R RRRRhhhhMm W dW f r dr Gdr GMm GMm r rR R h++++====-=-+⎰⎰⎰.§5.4 教材习题选解习题 5-11、判断题(1)定积分⎰ba x f )(由被积函数)(x f 与积分区间],[b a 确定. (√)(2)定积分⎰b a dx x f )(是x 的函数. (×) (3)若⎰=b adx x f 0)(,则0)(=x f . (×)(4)定积分⎰badx x f )(在几何上表示相应曲边梯形面积的代数和. (√)2、选择题(根据右图(见教材P122图)写出答案): (1)⎰=bdx x f 0)((B );(A )21A A +; (B )21A A -; (C )12A A +; (D )231A A A -+. (2)⎰=dcC dx x f )()(;(A )32A A +; (B )32A A -; (C )23A A -; (D )213A A A -+. (3)⎰=d dx x f 0)((C ).(A )321A A A ++;(B )321A A A -+;(C )321A A A +-;(D )213A A A +-.习题 5-21、判断题 (1)⎰⎰=2112)()(dx x f dx x f ;(×)138 (2)当c x f =)(时,⎰⎰+=11)()(a adx x f dx x f ;(√)(3)⎰⎰=babadx x f k dx x kf )()(只对非零常数k 成立;(×)(4)⎰⎰⎰±=±bababadx x f k dx x f k dx x f k x f k )()()]()([22112211;(√)(5)⎰⎰⎰--+=ππππππ2339929sin sin sin xdx xdx xdx . (√)2、已知⎰=10341dx x ,⎰=10231dx x ,⎰=1021xdx ,⎰=201cos πxdx ,⎰=201sin πxdx ,求定积分:(1)130(421)x x dx ++⎰;(2)120(2)x dx +⎰;(3)11(3)3x dx +⎰; (4)130(1)x dx +⎰; (5)220sin 2x dx π⎰; (6)20(sin cos )a x b x dx π+⎰.解 (1)⎰⎰⎰⎰=+⨯+⨯=++=++101010103331212414124)124(dx xdx dx x dx x x ;(2)⎰⎰⎰⎰⎰=+⨯+=++=++=+1010*******2231642143144)44()2(dx xdx dx x dx x x dx x ; (3)⎰⎰⎰=+=⨯+⨯=+=+101010611629131213313)313(dx xdx dx x ;(4)⎰⎰⎰⎰⎰⎰+++=+++=+10101010123231333)133()1(dx xdx dx x dx x dx x x x dx x419121331341=+⨯+⨯+=; (5)2222200001cos 11111sin cos (2)22222224x x dx dx dx xdx ππππππ-==-=⨯-=-⎰⎰⎰⎰; (6)⎰⎰⎰+=⨯+⨯=+=+2020211cos sin )cos sin (πππb a b a xdx b xdx a dx x b x a .3、设)(x f 和)(x g 在],[b a 上连续,且)()(0x g x f ≤≤试用定积分的几何意义说明⎰⎰≤babadx x g dx x f )()(.解 令)()()(x f x g x h -=,则在],[b a 上,≥)(x h 0,()0b ah x dx ∴≥⎰,即⎰⎰⎰≥-=-b a b a badx x f dx x g dx x f x g 0)()())()((,()()bbaaf x dxg x dx ≤⎰⎰.4、用第3题的结论比较定积分的大小: (1)⎰21xdx 与⎰212dx x ;(2)⎰43ln xdx 与⎰432)(ln dx x ;(3)⎰20πxdx 与⎰20sin πxdx ;(4)⎰10sin xdx 与⎰12sin xdx .139解(1) 在[1,2]上,x x >2,⎰⎰<∴21212dx x xdx .(2) 在[3,4]上,ln 1x >,知2ln (ln )x x <∴⎰43ln xdx <⎰432)(ln dx x .(3) 在]20[π,上,x x x f sin )(-=,'()1cos 0f x x =-≥,即()f x 在]2,0[π是增函数,显然在]20[π,上,当0=x 时,)(x f 取到最小值0,即在]20[π,上0sin )(≥-=x x x f ,有sin x x ≤,则220sin xdx xdx ππ>⎰⎰.(4) 在[0,1]上,0sin 1x <<,2sin sin x x >⎰⎰>∴1012sin sin xdx xdx .习题 5-31、判断题 (1)当⎰=Φxadt t f x )()(时,)()('x f x =Φ;(√)(2)对任意函数)(x f 有⎰-=baa Fb F dx x f )()()(;(×)(3)⎰=--122)11(πdx x;(×)(4)0sin 20=⎰kxdx π. (√)2、计算定积分(2))0()13(211>+-⎰+a dx x x x a ;(3)⎰+2142)1(dx xx ;(4)4dx +⎰; (5)⎰+33121x dx ; (6)⎰--212121xdx ; (7)⎰>+a a x a dx 3022)0(; (8)⎰-4221x dx; (9)⎰-1024xdx ; (10)⎰-+++11241133dx x x x ; (11)⎰23sin πxdx ; (12)dx x |sin |20⎰π;(13)⎩⎨⎧>-≤=1,121,)(2x x x x x f ,求⎰20)(dx x f ; (14)⎰+π0)cos 3sin 2(dx x x ; (15)⎰402tan πxdx ;(16)⎰++212123dx xx x ; (17)⎰+π02)2cos (dx xe x .140 解(2)1211(3)a x x dx x +-+⎰1123|)|ln 2(++-=a x x x0211)1ln(2)1()1(23-+-+++-+=a a a)1ln(22523++++=a a a a .(3) ⎰+2142)1(dx x x 8212463)3131(3183138)3131(2133==--⨯-=-=-x x .(4) ⎰⎰+=+=+94942232194)2132()()1(x x dx x x dx x x)1621832()81212732(⨯+⨯-⨯+⨯= 6145621110)8316()28118(=+=+-⨯=.(5) ⎰+33121xdx663arctan 331πππ=-==x .(6)⎰--212121x dx 3)6(6arcsin 2121πππ=--==-x. (7)220dx a x +aa a xaa 3031arctan130ππ=-⋅==. (8)⎰-4221x dx 5ln 213ln 31ln 2153ln 21|11|ln 2142-=-=+-=x x . (9) ⎰-1024xdx60arcsin 21arcsin 2arcsin 10π=-==x . (10) ⎰-+++11241133dx x x x ⎰-++++-+=112222143)1(3)1(3dx x x x x x ⎰⎰⎰--+++++=1111222141)1(23x dx x x d dx 1111211113arctan 4)1ln(233----++-=x x x x 2604[()]2444πππ=-++--=-.(11)⎰23sin πxdx⎰=---=-=-=2020203232)10()10(31cos cos 31)(cos )1(cos πππx x x d x .141(12)dx x |sin |20⎰π⎰⎰+-=-=ππππππ0202cos cos sin sin xx xdx xdx4)11()11(=+++=.(13) ⎰⎰⎰=-+=-+=-+=21212121032312)02(31)(3)12()(x x x dx x dx x dx x f .(14)⎰+π)cos 3sin 2(dx x x ⎰⎰+-=+=ππππ0sin 3cos 2cos 3sin 2x x xdx xdx4)00(3)11(2=-++=(15)⎰402tan πxdx ⎰-=-=-=4040241)(tan )1(sec οππx x dx x .(16)⎰++212123dx xxx 42121)2t t t dt =++)13253(2)222322453(2)3253(22135++-+⋅+⋅=++=t t t1568215142-=. (17) ⎰+π02)2cos (dx x e x ⎰⎰++=ππ002cos 1dx x dx e x 12)00(21)02()1(sin 2121000-+=-+-+-=++=πππππππe e x x e x.3、设k 为正整数,证明:(1)sin 0kxdx ππ-=⎰;(2)⎰-=ππ0cos kxdx .证明 :(1)⎰⎰---=---=-==ππππππππ0))cos((cos 1cos 1)(sin 1sin k k k kx k kx kxd k kxdx ; (2)⎰⎰---=--===ππππππππ0))sin((sin 1sin 1)(cos 1cos k k k kx k kx kxd k kxdx .4、设某公司拟在市场推出一种新产品,据市场预测,产品最终可占有全国市场的4%,即每年可销售480万元,产品刚上市时大家陌生,故开始时达不到预测数,若收益函数变化率])1(11[480)('3+-=t t R (万元/年),问第二年的收益为多少?第三年呢? 解 第二年的收益为:⎰⎰+-=21213])1(11[480)('dt t dt t R32446]4121191212[480])1(121[480212=⋅--⋅+=+⋅+=t t (万), 第三年的收益为:142 ⎰⎰+-=32323])1(11[480)('dt t dt t R 31468]91212161213[480])1(121[480212=⋅--⋅+=+⋅+=t t (万).习题 5-41、判断题:(1)定积分换元时要交换上、下限;(×)(2)⎰-=++2232110)2)(cos 1(ππdx x x x ;(√) (3)222sin 4cos x u udu π=⎰⎰;(√) (4)dx xdx x e e +-=+⎰⎰--11)1ln(11;(×) (5)⎰-=--124)1(πdx x . (√)2、计算定积分(1)⎰+2024t dt; (2)⎰+10431dx x x ; (3)dt t t ⎰-211; (4)31e ⎰; (5)21211cos dt t tππ⎰; (6)⎰203cos sin πxdx x ; (7)⎰+ωπϕω02)(sin dt t ; (8)⎰-222cos cos ππxdx x ; (9)222)1(x xdx+⎰; (10)⎰-121dx x ; (11)⎰>-2022)0(a a xa dx.解(1)⎰+224t dt ⎰⎰===40402821sec 4)tan 2(tan 2πππdu u u d u t . (2) ⎰+10431dx x x ⎰=+=++=1014442ln 41)1ln(411)1(41x x x d . (3) dt tt ⎰-21121122220011(1)2111u u u d u du t u u u =+-+==+++⎰⎰ 22arctan 22)111(21010102π-=-=+-=⎰u u du u .(4)31e⎰222221122221111111()2222t t t t t t d e t e dt dt tx etet e-----=⋅=====⋅⎰⎰⎰.143(5)22111cos dt t t ππ⎰2121111cos ()sin sin sin 12d t t t ππππππ=-=-=-=-⎰. (6)⎰203cos sin πxdx x ⎰=-===2204341)01(41sin 41)(sin sin ππxx xd . (7)20sin ()tdt πωωϕ+⎰1cos 2()2tdt πωωϕ-+=⎰11cos 2()(2())24t t d t ππωωωϕωϕω=-++⎰ 011sin 2()[sin(22)sin 2]24242t πωπππωϕπϕϕωωωωω=-+=-+-=. (8) ⎰-222cos cos ππxdx x 222222sin 213sin 61)cos 3(cos 21ππππππ---+=+=⎰x x dx x x 32)11(21)11(61=++--=. (9) 2220)1(x xdx +⎰222201(1)(1)2x d x -=++⎰52)151(211121202=--=+-=x . (10) ⎰-1021dx x ⎰⎰⎰+===202022022cos 1cos )(sin cos sin πππdu u udu u ud u x 42sin 414)2(2cos 4121202020πππππ=+=+=⎰u u ud u . 969323 (11)20a ⎰⎰⎰===60606cos )sin (sin πππdu u a u a d ua x . 3、计算定积分: (1)10xxe dx -⎰; (2)0sin t tdt π⎰; (3)120arcsin xdx ⎰;(4)1arctan x xdx ⎰; (5)⎰202cos πxdx e x ; (6)⎰π2sin xdx x .解(1) 11111102()1xx xx xxe dx xdx e xee dx e ee ------=-=-+=--=-⎰⎰⎰;(2)00sin (cos )cos cos sin t tdt td t t ttdt tπππππππ=-=-+=+=⎰⎰⎰.(3)111122220001arcsin arcsin (arcsin )26xdx x xxd x π=-=⋅-⎰⎰⎰112222011(1)(1)1122122122x d x πππ-=++-=+⋅+-⎰.144 (4) 211112220000111arctan arctan (arctan )22821x dx x xdx x x x d x x π=-=-+⎰⎰⎰ 112001111(1)[arctan )]8218242dx x x x πππ=--=--=-+⎰. (5)⎰22cos πxdx e x ⎰⎰-==202022022)(sin sin )(sin πππx x x e xd x e x d e⎰⎰⎰-+=+=-=202020220222)(cos 2cos 2)(cos 2sin 2πππππππx xxxe xd x e e x d e e xdx e e22024cos x e e xdx ππ=--⎰,⎰-=∴202)2(51cos πx x e xdx e . (6)⎰π2sin xdx x ⎰⎰+-=-=πππ22cos 2cos )(cos xdx x x x x d x222202(sin )2sin 2sin 2cos 4xd x x xxdx xππππππππ=+=+-=+=-⎰⎰.4、求定积分(1)⎰--+12511x dx ;(2)⎰-10221dt t t ;(3)⎰414ln dx xx ;(4)11ln e x dx x +⎰;(5)⎰-ππxdx x 34sin ;(6)⎰-+11231)1cos (dx x x .解(1) ⎰--+12511x dx 6ln 51)1ln 6(ln 51|511|ln 51511)511(511212=-=+=++=----⎰x x x d .(2) ⎰-1221dt t t ⎰⎰⋅=⋅=202022)cos (sin )(sin cos sin sin ππdu u u u ud u u t 222220000111cos 411sin 2cos 444288u udu du u udu ππππ-===-⎰⎰⎰201sin 4163216u πππ=-=. (3) ⎰414ln dx xx 2222221111ln 1()ln ln 4t d t tdt t t t dt t t ==-⎰⎰ 12ln 22ln 221-=-=t .(4) 11ln ex dx x +⎰2211113(1ln )(1ln )(1ln )[(11)1]222e e x d x x =++=+=+-=⎰.145(5) ⎰-ππxdx x 34sin 0=(奇函数).(6)⎰-+11231)1cos (dx x x ⎰⎰⎰--=+=+=11111231220)cos (dx dx dx x x (奇函数). 5、证明在区间],[a a -上,若)(x f 为偶函数,则⎰⎰-=aaadx x f dx x f 0)(2)(.证明00()()()aa a af x dx f x dx f x dx --=+⎰⎰⎰,对0()()af x d x -⎰,令x u =-,有00()()()()()()()()()()aaaaaf x d x f u d u f u d u f u d u f u d u -=--=-=-=⎰⎰⎰⎰⎰,又因为积分与变量形式无关,知()()()()aaf u d u f x d x =⎰⎰,从而⎰⎰-=aaadx x f dx x f 0)(2)(.6、设k 为自然数,试证: (1)2cos kxdx πππ-=⎰;(2)2sin kxdx πππ-=⎰.证明 (1)⎰⎰⎰----+=+=ππππππππkxdx x dx kx kxdx 2cos 212122cos 1cos 2111cos 2(2)sin 2(00)444kxd kx kxk kkππππππππ--=+=+=+-=⎰. (2)21cos 211sin cos 2222kx kxdx dx xkxdx ππππππππ-----==-⎰⎰⎰ ⎰--=--=-=-=ππππππππ)00(412sin 41)2(2cos 41k kx k kx kxd k .7、证明:⎰⎰>+=+11122)0(11x x x x dx x dx . 证明 1211111112212211()1111111x t x x x x x d dx t t dt dt x t t t t==-=-+=+++⎰⎰⎰⎰ 11221111x xdt dx t x ==++⎰⎰.(积分与变量形式无关,只与积分上下限和函数有关)习题 5-51、某河床的横断面如下图所示(图形见教材P134),为了计算最大排洪量,需要计算它的横断面的面积,试根据图示的测量数据(单位:m )用梯形法计算其横断面面积.解26.67277279.529.55.225.21.121.10(4)(36+++++++++++≈⎰dx x f146 )22.222.21.421.46.6++++++)2.21.46.6779.55.21.1(4+++++++= 6.145=(2m ). 2、用矩形法,梯形法与抛物线法近似计算定积分⎰21xdx ,以求2ln 的近似值(取10=n ,被积函数值取四位小数).解 取10=n ,分点为:10=x ,1.11=x ,2.12=x ,…,9.19=x ,210=x 且101=∆x矩形法:用外接矩形21(1 3.4595+2.7282)0.7187710x ≈+=⎰,或者用内接矩形211(0.5 3.4595+2.7282)0.6687710dx x ≈+=⎰梯形法:2111( 1.5000 3.4595+2.7282)0.6938102dx x ≈⨯+=⎰,抛物线法:211(1.50002 2.72824 3.4595)0.69316*5dx x ≈+⨯+⨯=⎰.习题 5-61、计算反常积分 (1)41x dx ⎰∞+;(2)dx e ax-+∞⎰0(0a >);(3)⎰∞+a dx x x ln (0a >);(4)⎰∞+∞-++222x x dx ; (5)⎰-121x xdx ;(6)⎰-e x x dx 12)(ln 1;(7)xdx e xsin 0-+∞⎰;(8)⎰242cos ππx dx . 解(1)41x dx ⎰∞+31)1lim (3131331341=--=-==--+∞→∞+--∞+⎰b x dx x b .147(2) dx eax-+∞⎰ae e a e aax d e a ab b axax 1)lim (11)(1000=--=-=--=-+∞→∞+--∞+⎰.(3) ⎰∞+adx x x ln +∞=-===+∞→∞+∞+⎰)ln ln lim (21ln 21)(ln ln 222a b x x xd b aa (发散).(4) ⎰∞+∞-++222x x dx∞+∞-∞+∞-+=+++=⎰)1arctan(1)1()1(2x x x dlim arctan(1)lim arctan(1)a b a b →+∞→-∞=+-+πππ=--=)2(2.(5)⎰-121x xdx101)1(1lim 211)1(21201022=-+---=---=+→⎰εεxx d . (6)⎰-ex x dx 12)(ln1101(ln )lim arcsin(ln )122ee x x εεππ+→-===-=⎰.(7)xdx e xsin 0-+∞⎰(cos )cos cos ()xxx e d x e xxd e +∞+∞+∞---=-=-+⎰⎰00lim cos cos 0(sin )a x a e a e e d x +∞--→+∞=-+-⎰01sin sin xx e xxde +∞+∞--=-+⎰xdx e e b e x bb sin 0sin sin lim 10-∞+-+∞→⎰-+-=xdx e x sin 10-+∞⎰-=,21sin 0=∴-∞+⎰xdx e x . (8) ⎰242cos ππx dx 2242004sec lim tan lim tan()12xdx x πππεπεεπε++-→→===--=+∞⎰(发散). 2、求分开数值为1C 的两个相反电荷所需要的能量,假定正负电荷开始相距1m ,将一个电荷移动至另一个电荷的无穷远处.解 设两个相反电荷的横坐标分别为0,1,则将2C 移至无穷远处所需能量为2221111()(lim ()1)a C k dx kC kC kC x xa+∞+∞→+∞=-=-+=⎰.习题 5-71、判断题(1)微元dx x f dA )(=是所求量A 在任意微小区间].[dx x x +上部分量A ∆的近似值;(√)148 (2)由曲线2x y =与3x y =围成图形面积为⎰-=13)(dx x x A ; (×)(3)由曲线3x y =与x y =在[0,1]上围成图形绕y 轴旋转所得旋转体体积⎰-=126)(dy y y V ππ; (√)(4))(x f y =在任意微小区间],[dx x x +上的弧微分为21y ds '+=. (×) 2、将阴影部分的面表用定积分表示出来(图形见教材P144): 解 (4)令223x x =+,有(1)(3)0x x +-=,∴两曲线交点横坐标为1-=a ,3=b ,∴ ⎰--+=312)32(dx x x A .4、求由曲线围成图形的面积(1)xy 1=与直线x y =及2=x ;(2)x e y =,xe y -=与直线1=x ; (3)x y ln =,2ln =y ,7ln =y ,0=x ;(4)22,4y x x y =+=;(5)2x y =与直线x y =及x y 2=.解(1) ⎰-=---=-=-=212122ln 23)021(2ln 2|)|ln 2()1(x x dx x x A .(2) 21)11(1)()(11-+=+-+=+=-=⎰--e e e e e e dx e e A xxxx(3) 由ln y x =,有yx e =,则⎰=-===7ln 2ln 7ln 2ln 527yy edy e A .(4) 由242y y =-有2280y y +-=,即(2)(4)0y y -+=, 解得两曲线交点纵坐标为4-=a ,2=b ,从而2232244(4)(4)18226y y y A y dx y --=--=--=⎰.(5) 显然2x y =与x y =交点横坐标为0,1,2x y =与x y 2=交点横坐标为0,2,⎰⎰⎰⎰-+=-+-=1021102122)2()2()2(dx x x xdx dx x x dx x x A67)311()384(21)3(2213212=---+=-+=x x x .5、求由曲线围成图形的面积: (1)θρcos 2=,0=θ,6πθ=;(2))cos 1(2θρ+=a ,0=θ,πθ2=.解(1) 266001(2cos )(1cos 2)2A d d ππθθθθ==+⎰⎰66011sin 2262264ππππθθ=+=+⋅=+.149(2) θθθθθππd a d a A )cos cos 21(2)]cos 1(2[212202220++=+=⎰⎰ 2203cos 22(2cos )22a d πθθθ=++⎰ππθθθπ222026)003(2)42sin sin 223(2a a a =++=++=.6、求曲线围成图形绕指定轴旋转所得旋转体的体积:(1)042=+-y x ,0=x 及0=y ,绕x 轴;(2)42-=x y ,0=y 绕x 轴;(3)12222=+by a x ,绕x 轴;(4)x y =2,y x =2,绕y 轴;(5)x y sin =,x y cos =及x 轴上的线段]2,0[π绕x 轴旋转.解(1) 因为 dx x dV 2)42(+=π,所以3222222(24)4(44)4(24)3x V x dx x x dx x x πππ---=+=++=++⎰⎰8324(88)33ππ=--+-=.(2) 因为 dx x dV 22)4(-=π,所以dx x x V )168(2422+-=⎰-π2235)16385(-+-=x x x ππ15512=.(3) 因为 2222(1)x dV y dx b dx aππ==-,所以a aa a x a xb dx a x b V ---=-=⎰)31()1(322222ππ234ab π=.(4) 因为 dy y y dy y dy y dV )()()(4222-=-=πππ,所以2514013()()02510y y V y y dy πππ=-=-=⎰.(5) 因为 xdx dV 2sin π=,]4,0[π∈x ,xdx dV 2cos π=,]2,4[ππ∈x ,224204sin cos V xdx xdx πππππ=+⎰⎰4(1cos 2)2x dx ππ=-⎰)2(4)2cos 1(224-=++⎰πππππdx x .7、有一铸铁件,它是由三条线:抛物线2110y x =,11012+=x y 与直线10=y 围成的图形,绕y 轴旋转而成的旋转体,算出它的重量(长度单位是厘米(cm),铁的比重是7.8g/cm 3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 定积分及其应用定积分及其应用是微积分的主要内容之一,是微积分的精华,在《高等数学》中占有重要的地位 ,也是各类《高等数学》研究生入学考试的必考的重要内容之一。
复习这部份内容,考生应着重掌握定积分的定义、性质及其计算方法,掌握“微元法”这一定积分应用的重要数学思想方法。
一、知识网络定积分⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧Γ⎪⎩⎪⎨⎧-函数审敛法和计算定义广义各分分步积分法换元积分法莱公式牛积分的计算可变上限的定积分定积分的性质定积分的定义、 定积分的应用⎪⎪⎪⎩⎪⎪⎪⎨⎧)(变力作功等其它弧长体积面积微元法二、典型例题例1 . 求极限 xx dtxt xx 2sin )sin(lim2302⎰→。
[分析] 遇到极限中有可变上限有定积分,一般情况下可考虑应用洛必达法则,但由于现在被积函数中含有变量x ,因此先应将x 从被积函数中分离出来,对此题可用变量代换;另外,在求极限的过程中如能恰当地应用等价无穷小代换,可简化求极限的过程。
[解] 对定积分作变换 xt u =,由于x 2sin 2〜2)2(x ,4sin x 〜4x ,)0(→x ,因此再利用洛必达法则有原式=23020)2(sin 1lim2x x dx u x x x ⎰→=540602024sin 2lim 4sin lim 2xx x x du u x x x →→=⎰ =12112lim 440=→x x x例2. 求极限 nn n n n n)2()2)(1(1lim⋅⋅⋅++∞→.[分析] 利用定积分的定义求极限,是一种常见的考研题型,难点在于如何将n x 变型成和式∑=∆ni iixf 1)(ξ。
[解] 令 nn n n n n x )2()2)(1(1⋅⋅⋅++= 则 n n n n n x n ln )]2ln()2ln()1[ln(1ln -+⋅⋅⋅++++==]ln )2ln()2ln()1[ln(1n n n n n n -⋅⋅⋅++++ =)]1ln()21ln()11[ln(1nn n n n ++⋅⋅⋅++++ 因此 ⎰+=∞→1)1ln(ln lim dx x x n n =12ln 2-所以 原式=ee 412ln 2=-例3.设)(x f 在[]b a ,上连续,B b a A <<<,求证 ⎰-=-+→ba h a fb f dx h x f h x f )()()()(lim0.[证明1] ⎰⎰⎰-+=-+b a bab a dx x f h dx h x f h dx h x f h x f )(1)(1)()(′ 令 u h x =+,则⎰⎰++=+hb ha b adu u f dx h x f )()(从而⎰⎰⎰-=-+++babah b h a dx x f h dx x f h dx h x f h x f )(1)(1)()(=⎰⎰++-ha ah b b dx x f h dx x f h )(1)(1 由积分中值定理及)(x f 的2的性知 )()(1lim0b f dx x f h h b b h =⎰+→ )()(1lim 0a f dx x f h ha ah =⎰+→ 故原题得证.[证明2] 由证明1可知⎰⎰⎰-=-+++→→babahb ha h h hdxx f dx x f dx hx f h x f )()(lim )()(lim 00=)]()([lim 0h a f h b f h +-+→ ( 洛必达法则 ) =)()(a f b f -例4.设)(x f 在[a ,b ]上连续,试证⎰≤≤+∞→=1101)(max ))((lim x f dx x f x ppp[证明] 记A x f x =≤≤)(max 10 ,由连续性可知,存在 ],[0b a x ∈,使 )(x f A =.当0>p 时 ⎰⎰=≥1111)())((A dx A dx x f pp pp对0>∀ε,选取 0>δ,使得当 δ<-<00x x 时,有 2)(ε-≥A x f设 且,100≤≤≤≤βαx 0 <βα-<δ则 ⎰⎰≥111))(())((βαppppdx x f dx x f⎰-≥βαεppdx A 1])2([=pA 1))(2(αβε--因为 当 +∞→p 时,1)(1→-pαβ,故当p 充分大时有 ⎰-=--≥112)2())((εεεA A dx x f pp因此当 p 充分大时有 A dx x f A pp≤≤-⎰11))((ε由ε的任意性知 ⎰=+∞→11))((lim A dx x f ppp例5. 计算⎰+-1a r c t a n dx xa xa [分析] 本题应用换元积分法,换元时应注意要换限. [解法1] 令 xa xa t +-=a r c t a n则 t a tta x 2cos tan 1tan 122=+-⋅=, 故 原式=⎰04)2cos (πt a td =tat 2cos │04π+dt t a⎰402cos π=2a [解法2] 令 t x cos = 原式=2cos 2cos 2cos 2020202a dt t a t t a t d t =-⋅=⎰⎰πππ [解法3] 记xa xa x +-=)(ω ,分部积分得 原式=⎰+-+-aadx x a axx x 0220)(22111)(arctan ωωω =⎰-adx x a x222=2a例6.计算 ⎰+102)1(dx x xe x[分析] 定积分的计算常常需要一定的特殊方法和技巧,这些方法和技巧只有通过平时多做习题并注意体会和积累来掌握.[解法1] 原式=⎰⎰++++-=+-1010101111dx xxe e x xe x dxe x x x x=12210-=+-⎰e dx e e x [解法2] 原式=⎰+-+102)1()11(dx x e x x=⎰⎰+-+10210)1(1dx x e dx x e xx =⎰⎰+-+10102)1(11dx x e de x x x =-+11x e x⎰+102)1(dx x e x +⎰+102)1(dx x e x=12-e例7.证明柯西积分不等式,若)(x f 和)(x g 都在[a ,b ]上可积,则有⎰⎰⎰≤bab abadx x g dx x f dx x g x f ])(][)([])()([2[分析] 这是代数中欧几里德空间中有关内积的柯西不等式的一个应用,证明方法也类似. [证明] 对任意的实数λ有⎰⎰⎰+=+bababadx x g x f dx x gdx x g x f )()(2)()]()([222λλλ+0)(2≥⎰badx x f上式右端是λ的非负的二次三项式,则其判别式非正,即0])(][)([])()([222≤-⎰⎰⎰babab adx x g dx x f dx x g x f故原式得证 例8.设)(x f 和)(x g 都在[a ,b ]上可积,试证212212212])([])([]))()(([⎰⎰⎰+≤+bababadx x g dx x f dx x g x f[证明]⎰+badx x g x f 2)]()([ =⎰++ba dx x g x f x g x f )]()()][()([=⎰⎰+++babadx x g x f x g dx x g x f x f )]()()[()]()()[(212212]))()(([])([⎰⎰+⋅≤babadx x g x f dx x f212212]))()(([])([⎰⎰+⋅+babadx x g x f dx x g (柯西不等式)=]))(())([(]))()(([212212212⎰⎰⎰++bababadx x g dx x f dx x g x f故 212212212])([])([]))()(([⎰⎰⎰+≤+bababa dx x g dx x f dx x g x f例9.证明0s i n 202>⎰πdx x[证明] 令 u x =2⎰⎰=ππ20202sin 21sin du uudx x ]sin sin [2120⎰⎰+=πππdu uu du u u(第二个积分中令 t u ==π)]sin sin [2100⎰⎰++=πππdt t t du u u⎰+-=ππ0sin )11(21udu u u 当 π<<u 0 时,0sin )11(>+-u u u π故 0sin 202>⎰πdx x例10.设)(x f 在 [0,a ] 上连续,且0)0(=f , )(max 0x f M ax ≤≤= ,证明2)(2Ma dx x f a≤⎰[分析] 应该先建立)(x f 与f ´)(x 之间的关系,然后再“放大”估值,拉格朗日微分中值定理和牛顿—莱布尼茨公式都可以建立两者之间的关系. [证明1] 由0)0(=f 和微分中值定理有f f x f +=)0()(´f x =)(ξ´x )(ξ, ),0(x ∈ξ. 故22)()()(a M xdx M xdx f xdx f dx x f aa aa=≤≤'=⎰⎰⎰⎰ξξ [证明2] 由0)0(=f 和牛顿—莱布尼茨公式有)()0()()(0x f f x f dt t f a=-='⎰,于是 Mx Mdt dt t f dt t f x f xx x=≤'≤'=⎰⎰⎰)()()(,故 22)()(a M Mxdx dx x f dx x f aa a=≤≤⎰⎰⎰.例11. 设函数)(x f 在 [0,π]上上连续,且0)(0=⎰πdx x f ,0cos )(0=⎰πxdx x f 。
试证:在(0,π)内至少存在两个不同的点1ξ和2ξ,使 0)()(21==ξξf f .[分析] 如对)(x f 的原函数 ⎰=xdt t f x F 0)()(能找到三个点使0)(=x F ,则使用两次罗尔定理就可以得两个ξ(即1ξ和2ξ),使 0)()(21==ξξf f .[证明] 令⎰=xdt t f x F 0)()(,π≤≤x 0,则有 0)0(=F ,0)(=πF .又 0=)(cos cos )(0x dF x xdx x f ⎰⎰=ππ=⎰+ππ0sin )(]cos )([xdx x F x x F=⎰πsin )(xdx x F对⎰=xtdt t F x 0sin )()(ϕ在[0, π] 上使用拉格朗日微分中值定理得0=ξξπϕπϕπsin )()0()(sin )(0F xdx x f =-=⎰, 0<ξ<π.因为0sin ≠ξ,所以 0)(=ξF .再对)(x F 在区间 [0, ξ], [ξ, 0] 上分别应用罗尔定理, 知至少存在∈1ξ(0, ξ) ,2ξ∈(ξ, π), 使0)()(21='='ξξF F ,即 0)()(21==ξξf f .例12. 设)(x f 在[0,1]上连续且单调减,试证对任何)1,0(∈a 有 ⎰⎰≥adx x f a dx x f 01)()([证明1]⎰⎰-adx x f a dx x f 01)()(=⎰⎰-a dx x f a dx x f 01)()(⎰⎰--=1)()()1(aadx x f a dx x f a=)()1()()1(βαaf a af a --- =)]()([)1(βαf f a a -- 其中 1,0≤≤≤≤βαa a又)(x f 单调减,则)()(βαf f ≥,故原式得证. [证明2]⎰⎰-adx x f a dx x f 01)()(=⎰⎰-a dx x f a dx x f 01)()(⎰⎰--=1)()()1(aadx x f a dx x f a≥)()1()()1(a af a a af a ---=0 故原得证.[证明3] 令at x = ⎰⎰⎰⎰=≥=adx x f a dx t f a dt at f a dx x f 011010)()()()(故原式得证. [证明4] 设=)(a F ⎰⎰-adx x f a dx x f 010)()(⎰-='10)()()(dx x f a f a F =)()(ξf a f -, )1,0(∈ξ.故当0)(,0≥'≤≤a F a ξ ,)(a F 单调增,0)0()(=≥F a F ; 当 )(,0)(,1a F a F a ≤'≤<ξ单调减, 0)1()(=≥F a F . 故原不等式得证.例3. 设⎰⎰+-=212).(,)(2)()(x f dx x f dx x f xx x f 求[解] 原等式两端分别从0到1和从0到2积分得⎰⎰⎰⎰⎰+⋅-=1012010102)(2)()(dx x f dx x f xdx dx x dx x f⎰⎰⎰⎰⎰+⋅-=201202022)(4)()(dx x f dx x f xdx dx x dx x f即⎰⎰⎰+-=102010)(2)(2131)(dx x f dx x f dx x f ⎰⎰⎰+-=102020)(4)(238)(dx x f dx x f dx x f从以上两式可解得31)(10=⎰dx x f ,43)(20=⎰dx x f 故 3234)(2+-=x x x f .例14. 设)(x f 定义在],[b a 上,且对],[b a 上任意两点y x ,及10<<λ,有)()1()(])1([y f x f y x f λλλλ-+≤-+试证 .2)()()(1)2(b f a f dx x f a b b a f b a +≤-≤+⎰ [证明]⎰⎰+=+baba adx x f dx x f 2)()(⎰+bb a dx x f 2)(在第二个积分中令 t b a x -+= 得⎰⎰+-++=bab a adx x b a f x f dx x f 2)]()([)(⎰+-=+≥baba f ab dx b a f )2()()2(2不等式左端得证.令 ab xb t --=(10≤≤t ) 得⎰⎰-+-=1])1([)()(dt b t at f a b dx x f ba⎰-+-≤10)]()1()([)(dt b f t a tf a b=2)()()(a f b f a b +-不等式右端得证. 故不等式得证.例15. 没)(x f 在 [0, 1]上连续且0)(>≥a x f . 试证⎰⎰≤110)(ln )(ln dx x f dx x f .[证明1] 由于)(x f 连续且0)(>≥a x f ,因此,)(ln x f 在 [0, 1] 上可积,故有=⎰1)(dx x f ∑∑==∞→∞→⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛nk n k n n n k f n n k f n11ln 1lim ln1lim ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛≤∑=∞→n k n n k f n 11ln lim =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∑=∞→n k n n k f n 11lim ln=⎰1)(lndx x f[证明2] 设a dx x f =⎰1)(,则0>a ,又曲线)(x f y =下凹,则其上任一点的切线都在曲线上方,而在a x =处的切线为)(1ln a x aa y -=- 对任一点)(t f x =,都有≤)(ln t f ])([1ln a t f aa -+ 则 ⎰⎰⎰-+≤10110])([1ln )(ln dt a t f a adt dt t f1)(1ln 1-+=⎰dt t f a a⎰==1)(lnln dt t f a故⎰⎰≤101)(ln )(ln dt t f dt t f[证明3] 易证当0>t 时有不等式1ln -<t t 令 ⎰=1)()(dxx f x f t ,得<-⎰1)(ln )(ln dx x f x f ⎰1)()(dxx f x f -1上式两边从0到1积分得对x 积分得⎰⎰<-11)(ln )(ln dx x f dx x f 1)()(1010-⎰⎰dxx f dx x f故 ⎰⎰≤101)(ln )(ln dt t f dt t f例16.求曲线x y =的一条切线l ,使该曲线与切线l 及直线0=x ,2=x 所围成的图形面积最小.[解] 设切点为),(t t ,则切线l 的方程为)(21t x tt y -=-即 221t x ty +=面积为 dx x t x t t S ⎰⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫⎝⎛+=20221)( 3241-+=t t 令 02121)(2123=+-='--t t t S 得驻点 1=t .又0)1(>''S ,故1=t 时S 取最大值. 此时l 的方程为 212+=x y .例16. 设函数)(x f 在闭区间[0, 1]上连续,在开区间(0, 1)内大于零,并满足223)()(x a x f x f x +=' (a 为常数) , 又曲线)(x f y =与0,1==y x 所围成的图形S 的面积值为2,求)(x f ,并问a 为何值时,图形S 绕x 轴旋转一周秘得的旋转体的体积最小. [解] 由条件可得, 当 0≠x 时有23)()()(2a x x f x f x x x f =-'='⎥⎦⎤⎢⎣⎡ 故 Cx x a x f +=223)( 由)(x f 边连续性知0)0(=f .又由已知条件得2==⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+⎰1023102212123Cx ax dx Cx x a 22C a +故 a C -=4因此所求函数x a x a x f )4(23)(2-+=旋转体的体积为[]ππ)31631301()()(2210++==⎰a a dx x f a V ,令 0)31151()(=+='πa a V ,得 5-=a .又 0151)5(<=-''V ,故知当5-=a 时,旋转体体积最小.例17. 计算⎰--+32232dx x x[分析] 计算带绝对值的被积函数的积分,先脱掉绝对值.脱掉的方法有两种,一是令含绝对值部分的函数为零,求出其实根,以其实根为分段点,将被积函数化成分段函数;二是利用函数的奇偶性、周期性等性质,使绝对值符号脱落. [解法1] 先令0=x 得分段点0=x .于是原式=⎰⎰-++---320223232dx x x dx x x ,再分别令 032,03222=-+=--x x x x ,易得分段点1,1=-=x x ,于是得到原式=⎰⎰-----+---012122)32()32(dx x x dx x x+⎰⎰-++-+-31212)32()32(dx x x dx x x 349=. [解法2] 注意到322-+x x 为偶函数,因此有原式=⎰⎰-++-+-322222)32(32dx x x dx x x=⎰⎰-++-+32222)32(322dx x x dx x x=⎰⎰⎰-++-++-+-21322212)32()32(2)32(2dx x x dx x x dx x x=349. 例18. 证明 n nn ln 1131211)1ln(+<++++<+ . [证明] 令xx f 1)(=,显然 0>x 时,)(x f 单调减少,于是 =⎰+11)(n dx x f ⎰21)(dx x f +⎰32)(dx x f ++⎰+1)(n ndx x f<⎰21)1(dx f +⎰32)2(dx f ++⎰+1)(n ndx n f=)()2()1(n f f f +++=n 131211++++. 即 <+)1ln(n n131211++++ .又 1+⎰ndx x f 1)(=1+⎰21)(dx x f +⎰32)(dx x f ++⎰-nn dx x f 1)(>1+⎰21)2(dx f +⎰32)3(dx f ++⎰-nn dx n f 1)(=1+)()3()2(n f f f +++=n 131211++++ . 即 1+n ln >n131211++++ .故原不等式得证.例19. 已知 π=⎰+∞∞--dx ex 2, 计算⎰+∞---122dx xe xx.[解]⎰+∞---122dx xe xx=⎰⎰+∞-+∞-+-+-+-+⋅11)1(2)1()1()1(2122x d e e x d e e x x =⎰⎰+∞-+∞--⋅0022221dt e e dt e e t t (令1+=x t )=)1(2221ππ-=-ee e .例20. 已知 ∑∞==122,61k k π计算⎰+∞-03)1(1dx e x x π.[解] 令xy π=, 则 yx π=, dy y dx 2π-=, 于是有原广义积分 ()⎰∞+⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=2311dy y e y I y ππ =⎰⎰∞+--∞+-=-0221111dy eye dy e y yyy ππ, 由于 当0>y 时,11<=-y ye e, ∑∑∞=-∞=-==-00)(11k ky k k y y e e e , 故 ⎰∑∞+∞=--⋅=2)(1dy eye I k kyyπ=⎰∑∞+∞=-0121dy yek kyπ=∑⎰∞=∞+-121k kydy ye π=∑∞=+∞--⎥⎦⎤⎢⎣⎡--10221k ky ky k e k ye π =∑∞==⋅=12222616111k k πππ.例21. 设 ⎰-=xt dt e x f 02)(, 求⎰1)(dx xx f . [解] 显然⎰1)(dx xx f 是个瑕积分,由分部积分法得 ⎰1)(dx xx f =⎰10)2()(x d x f =2⎰'-1010)(2)(dx x f x x f x=-021101)21(x x x e dx e dx xe x ---=-=⋅⎰⎰=11--e.例22. 设)(x f 在[0, 1] 上连续,且单调减少,0)(>x f ,证明: 对于满足10<<<βα的任何βα,有 ⎰⎰>βαααβdx x f dx x f )()(0.[分析]⎰⎰>βαααβdx x f dx x f )()(0可得 ⎰⎰>βαααβdx x f dx x f )()(0,将 β 换成x (α≥x ),于是辅助函数 ⎰⎰-=xdx x f dx x f x x F ααα)()()(0.[证明] 令 ⎰⎰-=xdx x f dx x f xx F ααα)()()(0, (α≥x )⎰⎰⎰-=-='αααα0)()()()()(dx x f dx x f x f dt t f x F=[]0)()(0>-⎰dt x f t f α, ()(x f 单减)故)(x F 单调增加, 又0)()(0>=⎰adx x f a a f (0)(,0>>x f a ),因此 0)(>βF , 即⎰⎰>βαααβdx x f dx x f )()(0.例23. 求一列积分(1) ⎰+=20cos sin sin πdx xx xI(2) ⎰+=201999)(cot 1πx dxI (3) ⎰++--=2244dx x x xI[分析] 作变量替换,使分母不变,而使分子为分母中另一项的积分.对前后两积分求和即可求积分值.[解] (1) ⎰--+--=2)()2cos()2sin()2sin(ππππdu u u u I (令 x u -=2π)==+⎰20sin cos cos πdu uu u ⎰+20sin cos cos πdx x x x, 故 =I 2⎰⎰==++=20202cos sin cos sin πππdx dx x x x x I , 所以 4π=I .[解] (2) =I )()]2[cot(1121999du u --+⎰ππ( 令 x u -=2π)=⎰+201999)(tan 1πu dx =⎰+201999)cot 1(1πudu =du u u ⎰+20199919991)(cot )(cot π=⎰+2019991999)(cot 1)(cot πdx x x 故 I 2⎰⎰==++=220199919992)(cot 1)(cot 1πππdx dx x x , 所以 4π=I .[解] ⎰--+++=02)(422du u u u I (令 24+=-u x 即 x u -=2)⎰++-+=2242dx x x x故 =I 2⎰++-++-22424dx x x x x =220=⎰dx ,所以 1=I .。