用Excel求解线性规划问题

合集下载

线性规划实验-Excel求解

线性规划实验-Excel求解

用Excel求解线性规划问题实验(实验题目在最后)一、Excel函数使用Excel求解线性规划问题时,SUMPRODUCT函数可以大大降低资料录入工作量,提高工作效率。

计算数组或向量的乘积时,使用SUMPRODUCT 函数,格式如下:SUMPRODUCT(数组1,数组2,…,数组n)其中2≤n≤30,即最多可以使用30个数组参数,返回值为n个数组对应元素乘积之和。

以图1为例,在单元格D1中输入公式=SUMPRODUCT(A1:B1,A2:B2,A3:B3)得到111(相当于A1*A2*A3 + B1*B2*B3 = 1*2*3 + 3*5*7 = 111)。

在单元格D2中输入公式=SUMPRODUCT(A1:C1,A2:C2)得到53(相当于A1*A2 + B1*B2 + C1*C2 = 1*2 + 3*5 + 4*9 = 53)。

图1. 乘积和(SUMPRODUCT函数)计算结果11二、求解实例1. 问题描述与模型建立某玩具厂生产猫和龟两种玩具,制造一个玩具猫可获利30元,制造一个玩具龟可获利20元。

制造一个猫需要2小时机工和1小时手工;制造一个龟需要1小时机工和1小时手工。

在一周内,机工不能超过100h ,手工不能超过80h ,猫的产量不能超过45个。

求产品的最佳生产量和最大利润。

设1x 为一周内猫的生产量,2x 为一周内龟的生产量。

可建立如下线性规划模型:⎪⎩⎪⎨⎧≤≤+≤++=458010022030max 1212121x x x x x x x g2. 数据录入(1)启动Excel ,建立如图2所示的Excel 工作表,输入系数矩阵A 到区域C2:D4;输入约束常数b 到区域F2:F4;输入目标系数到区域C5:D5。

(2)指定单元格C6和D6存储变量1x 和2x 的值,称之为可变单元格。

在可变单元格中输入数字1表示给定初始值121==x x ,但并非一定这样;若这两个单元格不输入内容,Excel 将按0处理,不影响求解。

实验1用Excel求解线性规划模型

实验1用Excel求解线性规划模型

实验一、用Excel求解线性规划模型线性规划问题用手工求解工作量很大,而且没有较高的数学基础很难理解其计算过程和方法,但是借助Excel“规划求解”工具,就能轻而易举地求得结果。

Excel最多可解200个变量、600个约束条件的问题。

下面我们以一实例介绍利用Excel规划求解工具怎样快速解决具体的经济决策问题。

一、实验目的1、掌握如何建立线性规划模型。

2、掌握用Excel求解线性规划模型的方法。

3、掌握如何借助于Excel对线性规划模型进行灵敏度分析,以判断各种可能的变化对最优方案产生的影响。

4、读懂Excel求解线性规划问题输出的运算结果报告和敏感性报告。

二、实验内容1、[工具][规划求解]命令规划求解加载宏是Excel的一个可选安装模块,在安装Excel时,只有在选择“完全/定制安装”时才可选择装入这个模块。

在安装完成进入Excel后还要用[工具][加载宏]命令选中“规划求解”,以后在[工具]菜单下就增加了一条[规划求解]命令。

使用[规划求解]命令的一般步骤为:第一步:在选取[工具][规划求解]命令后,弹出图1所示“规划求解参数”对话框,其中各选项说明如表1。

图1“规划求解参数”对话框选项名说明设置目标单元格选取计算问题的目标函数,并含有计算公式的单元格等于按问题目标进行选择。

如利润问题,选取“最大值”可变单元格决策变量所在各单元格、不含公式,可以有多个区域或单元格约束增加、修改、删除各个约束等式或不等式,一个一个地与图2切换填入或修改添加选择后弹出图2所示对话框更改选择后弹出图3所示对话框删除删除所选定的约束条件选项决定采用线性模型还是非线性模型求解约束条件中的单元格引用位置,可从键盘直接录入,也可用鼠标拖放选取。

图2图3第二步:完成图1所示的一切填入项目后,单击“选项”按钮,在弹出的“规划求解选项”对话框中若是线性模型则选取“采用线性规模”选项按钮,再单击“确定”按钮回到图1。

图4第三步:在图1中单击“求解”按钮,经计算完成后弹出“规划求解结果”对话框(图5)。

用EXCEL解线性规划的步骤

用EXCEL解线性规划的步骤
用EXCEL解线性规划的步骤
1. 2. 3. 4. 5. 6.
– – – – – –
将目标函数系数放入一行 将每个约束条件系数及常数项放入一行,所有约束系数及常数 项成一矩阵 将决策变量的初始值(全0或1)放入一列 用函数MMULT(A1,A2)将目标函数值放入一格:目标函数 系数行与决策变量列的乘积(或者用SUMPRODUCT(A1,A2,…) 用MMULT将每个约束条件系数行与决策变量列乘积放入对应 的常数项旁边格 在工具栏选规划求解
• 约束条件右端常数项
– 阴影价格:约束右端常数项增加一个单位, 使得目标函数最格 最大最小选择 可变单元格:决策变量列 添加约束条件:每个约束条件方程的值(>,=,<)对应的常数项 选项:线性模型 求解(保存敏感分析等报告)
1. 将目标函数系数放入一行
2. 将每个约束条件系数及常数项放入一行,所有约束系数及常数项成一矩阵
3. 将决策变量的初始值(全0或1)放入一列
4. 用函数SUMPRODUCT或MMULT(A1,A2)将目标 函数值放入一格:目标函数系数行与决策变量列的乘积
5. 用MMULT将每个约束条件系数行与决策变量列乘积放 入对应的常数项旁边格
6. 在工具栏选规划求解
7. 填好目标值所在格、决策变量(可变单元格)、约束条件
选项底下勾选采用线性模型
保存规划求解结果,包括运算结果、敏感性报告、极限值报告
最后结果
灵敏度分析
• 目标函数的系数
– 允许增加或减少的量:此范围内最优解不变 – 递减成本:最优解中等于0的变量,对应的 目标函数中的系数增加或减少多少,最优解 不再为0

怎么利用EXCEL求解线性规划

怎么利用EXCEL求解线性规划

利用线性回归方法求解生产计划方法一:1、建立数学模型:①设变量:设生产拉盖式书桌x台,普通式书桌y台,可得最大利润②确定目标函数及约束条件目标函数:y=max+115P90x约束条件:200x .....................⑴+y10≤20x .....................⑵4≤+y16128x .....................⑶+y1015≤220yx ..........................⑷,≥2、在Excel中求解线性规划①首先,如图1所示,在Excel工作表格输入目标函数的系数、约束方程的系数和右端常数项:图1②将目标方程和约束条件的对应公式输入各单元格中F2=MMULT(B6:C6,F6:F7);F3=MMULT(B3:C3,F6:F7);F2=MMULT(B4:C4,F6:F7);F2=MMULT(B5:C5,F6:F7);出现图2样式:图2线性规划问题的电子表格模型建好后,即可利用“线性规划”功能进行求解。

选择“工具”→“规划求解”出现“规划求解参数”窗口,如图3所示:图3在该对话框中,目标单元格选择F2,问题类型选择“最大值”,可变单元格选择F6:F7,点击“添加”按钮,弹出“添加约束条件”窗口,如图4所示:图4根据所建模型,共有4个约束条件,针对约束(1):2002010≤+y x ,左端“单元格所引用位置”选择F3,右端“约束值”选择D3,符号类 型选择“<=”,同理继续添加约束(2)(3)(4),完成后选择“确定”,回到“规划求解参数”对话框,如5图所示:图5④点击“选项”按钮,弹出“规划求解选项”对话框,选择“采用线性模型”和“假定非负”两项,如图6所示:图6⑤点击“确定”→“求解”,选择“运算结果报告”“敏感性报告”“极限值报告”三项,最后点击“确定”,输出结果: 运算结果报告:敏感性报告:极限报告:方法二:1、建立数学模型设生产拉盖式书桌x 台,普通式书桌y 台,总利润为Z 元 确定目标函数及约束条件 目标函数:y x Z 90115max += 约束条件:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0,22010151281642002010..y x y x y x y x t s 2、在Excel 中规划求解在Excel 中建立线性规划模型,如图1所示:图11)在E2中输入“=B2*B6+C2*C6”如图2所示,同理 E3=B3*B6+C3*C6E4=B4*B6+C4*C6B7=B5*B6+C5*C6图22)单击“工具”菜单下的“规划求解”,在弹出的“规划求解参数”对话框输入各项参数:✓目标单元格选择B7✓问题类型选择“最大值”✓可变单元选择B6:C6✓约束条件选择B6:C6≥0;E2:E4≤D2:D4参数设置完毕,如图3:图33)点击“选项”,弹出“规划求解选项”对话框,选择“采用线性模型”、“假定非负”和“显示迭代结果”,说明要求求解的问题是线性模型且所求的变量必须为非负,如图4所示:图44)点击“确定”→“求解”,选择“运算结果报告”“敏感性报告”“极限值报告”三项,最后点击“确定”,输出结果:运算结果报告:敏感性报告:极限值报告:。

excel线性规划求解

excel线性规划求解

To Calculate Total LHS, 選擇SUMPRODUCT
1 2
選定第一列範圍
選定第二列範圍
SUMPRODUCT(F6:G6,G3:G3)=F6*F3 + G6*G3
Then repeat the same steps for constraint #2 and #3
輸入Slack 公式
求最小值
1.輸入變數x1, x2的值所在的儲存格 2.『新增』限制式
1.輸入限制式左邊及右邊的儲存格 2.選擇適當的符號
左邊
右邊
1.選擇後之結果 2.按『新增』
1.此限制式表示 constraint #1and #2 2.再新增 constraint #3
Constraint #3的左邊,右邊及符號
1.前三項限制式(constraints#1,#2,#3) 2.選擇『選項』
新增 constraint #4: x1 >=0 constraint #5: x2 >=0
按『求解』後的結果
想將此圖轉貼於 EXCEL工作表上 1.選此按鈕 2.回到EXCEL
1.按貼上的按鈕或 『編輯』下的貼上, 即顯示圖案。 2. 將之移至適當位置
完成
线性规划求解
Linear Programming Problem
輸入公式Βιβλιοθήκη 列出EXCEL的求解方式: Min:Minimum Objective Value=F4*F3+G4*G3 LHS: Left Hand Side RHS: Right Hand Side Slack: RHS - LHS for “<=“ LHS- RHS for “>=“

EXCEL求解线性规划问题

EXCEL求解线性规划问题

约束右端值降低15时,目旳函数值旳变化量。
解:(1)最优解为x1=0, x2=12.4, x3=9.5
(2) x1旳目旳系数降低5,占允许降低旳百分比=5/∞=0%,x2 旳目旳系数增长4,占允许增长旳百分比=4/7.8=51.2%。
变化旳百分比和为51.2%,没有超出100%,所以最优解不变。
(3)第一资源约束右端值增长30,占允许增长旳30 /∞=0%, 第二资源约束右端值增长4 ,占允许增长旳4/15=26.7%,
•初值和终值分别指 单元格在此次求解 前旳数值和求解后 旳数值。
敏感性分析报告(1)
可变单元格中 • “单元格”指决策变量所在单元格旳地址 • “名字”是决策变量旳名称 • “终值”是决策变量旳终值,即最优值 • “递减成本”指最优解中档于0旳变量,相应旳目旳函数中旳系数
增长或降低多少,最优解不再为0 • “目旳式系数”目旳函数中旳系数,为已知条件 • “允许旳增量”与“允许旳减量”表达目旳函数中旳系数在增量
(1)引用旳类型
三种类型 :
相对引用、 绝对引用、混合引用
(2) 相对引用
格式: A3 、B6
使用相对引用后,系统将会记住建立公式旳单元格和被 引用旳单元格旳相对位置,在复制这个公式时,新旳公式单 元和被引用旳单元依然保持这种相对位置。
(3)绝对引用 格式:$a$3 $d$5
绝对引用是指被引用旳单元与引用旳公式单元旳位置 关系是绝正确,不论将这个公式复制到任何单元,公式所 引用旳还是原来单元格旳数据。
2) 在弹出旳对话框中旳“可用加载宏”列表框 中,选定待添加旳加载宏“规划求解”选项旁 旳复选框,然后单击“拟定”.单击“拟定” 后,“工具”菜单下就会出现一项“规划求解”
3. “规划求解”各参数设置

用Excel求解LP(线性规划)问题

用Excel求解LP(线性规划)问题


x1 , x2 ≥ 0
整理ppt
3
2、输入系数:
输入系数
▪ 在单元格A2:D4中分
别输入两个不等式约 束的系数与常数项,在 单元格A5:B5中分别
输入目标函数的两个 系数,在单元格A1:B1
中任意输入两个数分 别作为决策变量x1,x2 的值(如右图,C列暂 空) 。
整理ppt
4
3、LP模型的EXCEL输入(两 种方法)
▪ 在C2单元格中输入“=A2*A$1+B2*B$1”,并复 制到C3、C4、C5中,使它们分别变为 “=A3*A$1+B3*B$1” 、“=A4*A$1+B4*B$1”和 “=A5*A$1+B5*B$1”。
整理ppt
5
利用EXCEL的SUMPRODUCT 函数进行计算
▪ sumproduct是求两个数组(矩阵)相乘的结果 ▪ 数组的输入: ▪ “选中所有的数组元
②在“可变单元格(B)”栏后的空白中 填入$A$1:$B$1;
整理ppt
8
③光标指向“约束”栏,按“添加”, 出现“添加约束”对话框(如下图),
对话框“改变约束”
▪ 依次填入约束关系,每输完一条,按“添加”, 输入所有约束条件后,按“确定”,
整理ppt
9
又退回到下图状态,在下图中可以选 “更改”、“删除”、“全部重设” 来编辑约束条件及其他设置。
3、用Excel求解LP(线 性规划)问题
整理ppt
1
1、检查是否加载了宏“规划求解”? 即查看Excel窗口的“工具”菜单下 是否有“规划求解”菜单条?
▪ 找到与你的微机中已
在机房中,这装的Office版本一致
一步骤已经为的Office安装盘。单

EXCEL求解线性规划问题演示文档.ppt

EXCEL求解线性规划问题演示文档.ppt

31
(2)约束右端值b同时变动的百分之百法则: 同时改变几个或所有函数约束的约束右端值,如果这些变动的幅 度不大,那么可以用影子价格预测变动产生的影响。为了判别这些 变动的幅度是否允许,计算每一变动占同方向可容许变动范围的百 分比,如果所有的百分比之和不超过百分之一百,那么影子价格还 是有效的;如果所有的百分比之和超过百分之一百,那就无法确定 影子价格是否有效。
个可变单元格可以取到的最小值。上限是在这种情况下可以取
到的最大值。
..........
30
延伸
下面对目标系数同时变动以及约束右端值同时变动的情况分别作延伸。 (1)目标系数c同时变动的百分之百法则: 如果目标函数系数同时变动,计算出每一系数变动量占该系数同方向 可容许变动范围的百分比,而后将各个系数的变动百分比相加,如果 所得的和不超过百分之一百,最优解不会改变;如果超过百分之一百, 则不能确定最优解是否改变。
..........
16
建立数学公式(步骤二)
• 在工作表的顶部输入数据
• 确定每个决策变量所对应 的单元格位置
• 选择单元格输入公式,找 到目标函数的值
• 选择一个单元格输入公式, 计算每个约束条件左边的 值
• 选择一个单元格输入公式, 计算每个约束条件右边的 值
图中,规定B12、C12 为可变单元格
在目标单元格中,需要填入......计.... 算目标函数值的公式。 18
建立数学公式(步骤四)
• 在工作表的顶部输入数据 • 确定每个决策变量所对应
的单元格位置 • 选择单元格输入公式,找
到目标函数的值 • 确定约束单元格输入公式,
计算每个约束条件左边的 值 • 确定约束单元格输入公式, 计算每个约束条件右边的 值

应用Excel软件求解线性规划问题

应用Excel软件求解线性规划问题

使用变量xij代表第i种原料用于生产第j种产品的数量(桶)
1
i=1, 2, 3分别代表催化裂化汽油、异戊烷和直馏汽油
2
j=1, 2, 3分别代表80#、100#汽油和燃料油
3
物料平衡约束
4
物料平衡约束
蒸汽压限制
01
辛烷值限制
02
变量非负约束
03
各类约束
Excel求解步骤
打开Excel,建立新工作表,输入公式
应用软件求解线性规划问题
添加副标题
202X
1.1 Excel的规划求解工具
Excel软件提供了求解一般规模数学规划问题的“规划求解”工具 该工具具有界面友好、操作简单、与Excel无缝集成等优点 可用于化学化工常见中、小规模线性规划、非线性规划、整数规划问题的求解
Excel提供的规划求解工具对模型规模有一定限制:求解模型的决策变量数不超过200个。当“规划求解选项”对话框中的“采用线性模型”复选框处于选中状态时,对约束条件的数量没有限制;而对于非线性问题,每个可变单元格除了变量的范围和整数限制外,还可以有最多达100个约束条件
Excel结果分析-3
整数规划的运行结果
由于工程实际问题中存在各种不确定性,因此线性规划模型中的系数C、aji、bj等均可能偏离原来的计算值,因此决策者必须掌握这些系数改变时对原最优解的影响,也就是必须进行线性规划的灵敏度分析。
可以应用Excel方便地实现
线性规划的灵敏度分析
The End
Excel求解步骤-1
打开规划求解窗口
Excel求解步骤-2
设置目标单元格 设置可变单元格 约束的输入
Excel求解步骤-3
设置规划求解选项

Excel求解线性规划问题实验教程要点

Excel求解线性规划问题实验教程要点

数学与信息科学学院Excel求解线性规划问题实验教程二零一三零八月目录1.关于“规划求解” (1)2.如何加载“规划求解” (2)3.“规划求解”各参数解释和设置 (3)4.“规划求解”的步骤 (6)5.Excel求解线性规划问题 (8)6.Excel求解运输问题 (14)7.Excel求解目标规划问题 (18)8.Excel求解整数规划问题 (22)1.关于“规划求解”“规划求解”是Excel中的一个加载宏,借助“规划求解”,可求得工作表上某个单元格(被称为目标单元格)中公式(公式:单元格中的一系列值、单元格引用、名称或运算符的组合,可生成新的值。

公式总是以等号(=)开始)的最优值。

“规划求解”将对直接或间接目标单元格中公式相关联的一组单元格中的数值进行调整,最终在目标单元格公式中求得期望的结果。

“规划求解”通过调整所指定的可更改的单元格(可变单元格)中的值,从目标单元格公式中求得所需的结果。

在创建模型过程中,可以对“规划求解”中的可变单元格数值应用约束条件(约束条件:“规划求解”中设置的限制条件。

可以将约束条件应用于可变单元格、目标单元格或其它与目标单元格直接或间接相关的单元格。

而且约束条件可以引用其它影响目标单元格公式的单元格。

使用“规划求解”可通过更改其它单元格来确定某个单元格的最大值或最小值。

)Microsoft Excel的“规划求解”工具取自德克萨斯大学奥斯汀分校的Leon Lasdon 和克里夫兰州立大学的Allan Waren共同开发的Generalized Reduced Gradient(GRG2)非线性最优化代码。

线性和整数规划问题取自Frontline Systems公司的John Watson 和Dan Fylstra提供的有界变量单纯形法和分支边界法。

2.如何加载“规划求解”安装office的时候,系统默认的安装方式不会安装宏程序,需要用户根据自己的需求选择安装。

下面是加载“规划求解”宏的步骤:(1)在“工具”菜单上,单击“加载宏”。

线性规划的EXCEL求解(NO5)

线性规划的EXCEL求解(NO5)
额为80单位,配送中心送往仓库的限额为90单位。单位运输成
本、企业的产量和各仓库配送量等数据,如下表所示。试确定
运送方案,使总运费最少。
起点 终点 配送中心
B1
B2
产量
A1
3
7.5
100
A2
3.5
8.2
80
A3
3.4
9.2
70
配送中心
2.3
2.3
配送量
120
130
250
14
电子表 格建立 及最优 解
2
建立电子表格模型: 其公式输入为:
3
二、用EXCEL规划求解工具求解线性规划模型
4
输入规划求解参数
5
点击求解按钮,求得最优解。
6
例2 营养配餐问题
根据生物营养学理论,要维持人体正常的生理健康需求, 一个成年人每天需要从食物中获取3000卡路里热量,55克蛋 白质和800毫克钙。假定市场上可供选择的食品有猪肉、鸡蛋、 大米和白菜,这些食品每千克所含热量和营养成份,以及市 场价格如下表所示。问如何选购才能在满足营养的前提下, 使购买食品的总费用最小?
项目号
项目成本
项目周期
年现金流
净现值
内部报酬率
1
400000
20
2
250000
10
3
100000
8
4
75000
15
5
75000
6
6
50000
5
7
250000
10
8
250000
3
59600 55000 24000 12000 18000 14000 41000 99000

利用excel软件求解线性规划问题

利用excel软件求解线性规划问题

数学规划模型实验指导手册Excel的规划求解加载宏求解数学规划问题一、什么是规划求解加载宏?规划求解加载宏(简称规划求解)是Excel的一个加载项1,可以用来解决线性规划与非线性规划优化问题。

规划求解可以用来解决最多有200个变量,100个外在约束和400个简单约束(决策变量整数约束的上下边界)的问题。

可以设置决策变量为整型变量。

规划求解加载宏的开发商是Fronline System公司。

用户通过自定义安装MS-Office所使用的是标准版本规划求解加载宏,Fronline System公司同时提供增强的Premium Solver工具。

规划求解工具在Office典型安装状态下不会安装,可以通过自定义安装选择该项或通过添加/删除程序增加规划求解加载宏。

二、怎样加载规划求解加载宏?加载规划求解加载宏的方法如下:(1)打开“工具”下拉列菜单,然后单击“加载宏”,打开“加载宏”对话框。

(2)在“可用加载宏”框中,选中“规划求解”旁边的复选框2,然后单击“确定”按钮。

1加载项的功能是为Microsoft Office 提供自定义命令或自定义功能的补充程序2如果“规划求解”未列出,请单击“浏览”进行查找。

(3)如果出现一条消息,指出您的计算机上当前没有安装规划求解,请单击“是”用原Office安装盘进行安装。

(4)单击菜单栏上的“工具”。

加载规划求解后,“规划求解”命令会添加到“工具”菜单中。

三、怎样使用规划求解加载宏求解数学规划?规划求解加载宏是一组命令构成的一个子程序,这些命令有时也称作假设分析3工具,其功能是可以求出线性和非线性数学规划问题的最优解和最优值。

使用规划求解加载宏求解数学规划的步骤首先,在Excel工作表中输入目标函数的系数向量、约束条件的系数矩阵和右端常数项(每一个单元格输入一个数据);其次,选定一个单元格存储目标函数(称为目标单元格),用定义公式的方式在这个目标单元格内定义目标函数;再次,选定与决策变量个数相同的单元格(称为可变单元格),用以存储决策变量;再选择与约束条件个数相同的单元格,用定义公式的方式在每一个单元格内定义一个约束函数(称为约束函数单元格);最后,点击下拉列菜单中的规划求解按钮,打开规划求解参数设定对话框(如图4所示),完成规划模型的设定模型设定方法如下:(1)设定目标函数和优化方向:光标指向规划求解参数设定对话框中的“设置目标单元格”提示后的域,点击鼠标左键,然后选中Excel工作表中的目标单元格。

运用EXCEL求解线性规划模型

运用EXCEL求解线性规划模型

EXCEL求解线性规划模型
线性规划问题解的讨论 线性规划问题解的种类? 唯一解的表现是……? 无穷解的表现是……? 无可行域无解的表现是……? 可行域无界的表现是……? 上述结果用EXCEL建模求解的最后对话框提示不同。
01
图解法解得分析:
02
解的结果
03
有可行域
04
无可行域
05
可行域有界
06
可行域无界
▍单击“粘贴列表”,在电子表格中的相应位置得出结果。
将单元格名称粘贴到电子表格中
EXCEL求解线性规划模型
EXCEL求解线性规划模型
EXCEL求解线性规划模型
对结果进行修饰 利用“替换”功能中的“全部替换”去掉“=Sheet1!”和“$”,得出区域名称和引用结果。
EXCEL求解线性规划模型
规划求解过程
删除:选择欲删除单元格名称,单击“删除”。
3
1
2
4
路径:“插入”——“名称”——“定义”,进入“定义名称” 界面。
单击某个名称,可查看其引用位置。
更改:先添加新名称,再删除原名称。也可修改原名称的引用位置。
查看、更改、删除
EXCEL求解线性规划模型
查看、更改、删除操作界面
EXCEL求解线性规划模型
07
唯一解
08
无穷解
09
唯一解
10
无穷解
11
无解
12
一定无解
EXCEL求解线性规划模型
线性规划问题的灵敏度分析是在求出最优解的基础上,进一步讨论当cj、bi、aij发生变化时,对最优解的影响。
判断某一参数发生变化,原最优解是否发生变化?
02
怎样得出使原最优解不变的参数变化范围

线性规划的EXCEL求解

线性规划的EXCEL求解
• 这些表格中的底色部分只是为了讲课方便, 并无实际意义,因此底色可以任意选择。
第二步,选择工具菜单中的“规划求解”,弹出对话框:
可变单元格,即表示 决策变量的单元格,
本例为B5:d5
该处填写目标函数所 在的单元格,本例中
即为E4
要达到何种目标,本 例取最大值
选择适当的操作,完成 约可条件,本处选择添 加(也可根据需要填更 改或删除,左边是添加
销 地 B1 B2
B3
B4
加工厂
A1
3 11 3 10
A2
19 2 8
A3
7 4 10 5
解:先根据题目做出运价表和运量表
B1 B2 B3 A1 3 11 3 A2 1 9 2 A3 7 4 10 销量 3 6 5
B4 产量 10 7 84 59 6
其中黄色部分为运价,墨绿色部分为相应产地的产量, 红色部分为销量,上述表格称之为运价运量表。
• 精度:默认为0.000001,以确定约束条件单元格中的数值 是否满足要求。
• 允许误差:输入满足整数约束条件的目标单元格求解结果 与最佳结果间的允许百分比误差,此选项只能用于有整数 约束的问题。默认值为5%;
• 收敛度:仅用于非线性规划问题。当最近五次迭代时,目 标单元格中数值的变化都小于“收敛度”中设置的数值时, 即停止运行。默认值为0.001
例:某工厂生产三种产品,各种产品所需的原材料和设备 台时及能供给数量如下表所示,问如何安排生产利润最大?


丙 资源供

原材料


4 120
工时


3 100
单位利润 4
5
3
解:设生产甲,乙,丙分别为 x1, x2, x3件,则可得数学模型 为

Excel2000解决线性规划问题

Excel2000解决线性规划问题

实验一、Excel2000解决线性规划问题一、问题的提出某公司拟用集装箱托运甲、乙两种货物,这两种货物每件的体积、重量、获得利润以及托运所受限制如下表所示:二模型得出分析:这个问题是一个整数规划问题, 故应该确定决策变量、目标函数及约束条件。

设X1,X2分别为甲乙两种货物托运的件数,显然, X1,X2是非负的整数,这是一个纯整数规划问题,根据问题的要求可知对于货物总体积的托运限制最大不得超过1365立方英尺,故应有约束条件:195 X1+273 X2≦1365对于货物总重量的托运限制为最大不得超过140千克,故应有约束条件为:4 X1+40 X2≦140同时有:X i≥0, i=1,2希望货物托运的配置,使得可获得利润最大,即求W=2X1+3X2 的最大值由分析可得如下模型:MaxW=2X1+3X2 (所获利润最大)约束条件如下195 X1+273 X2≦13654 X1+40 X2≦140X i≥0, i=1,2X1≦4三、模型求解1.建立规划求解工作表(如下图所示)⑴.在可变单元格(B4:C4)中输入初始值(1,1)⑵.在上图有关单元格输入如下公式单元格地址公式C6 =B2*B4+C2*C4C7 =B3*B4+C3*C4C8 =B5*B4+C5*C4⑶.求最佳组合解:①.选取[工具]→[规划求解…]出现如下对话窗:②.在“设置目标单元格”窗口,输入C8。

③.选定“最大值”选项。

④.在可变单元格中输入B4:C4。

⑤.选取“添加”,出现“添加约束”窗口,在“添加约束”窗口输入:单元格引用位置运算符号约束值B4:C4 int单击“添加”,再输入以下约束条件:B4:C4 >= 0单击“添加”,再输入以下约束条件:B4 >= 4单击“添加”,再输入以下约束条件:C6 <= 1365单击“添加”,再输入以下约束条件:C7 <= 140,单击“确定”⑥在“规划求解参数”窗口,选择“求解。

利用excel求解线性规划问题

利用excel求解线性规划问题

利用excel求解线性规划问题线性规划(Linear Programming,LP)是一种用于求解最优化问题的数学方法。

它在经济学,管理学,工程学等领域得到了广泛应用。

Excel是一种功能强大的电子表格软件,提供了一些内置的工具和函数,可以帮助我们求解线性规划问题。

在Excel中求解线性规划问题,通常需要使用“规划求解”工具,该工具位于“数据”选项卡的“分析”分组中。

下面将逐步介绍如何使用Excel求解线性规划问题。

步骤1:建立模型首先,我们需要建立线性规划模型。

模型通常包括目标函数和约束条件。

目标函数:我们需要定义一个目标函数,它表示我们希望最大化或最小化的目标。

在Excel中,可以使用单元格引用和各种数学运算符来定义目标函数。

约束条件:我们需要定义一系列约束条件,这些约束条件是对决策变量的限制。

在Excel中,可以使用不等式和等式来表示约束条件。

每个约束条件都可以转化为一个单元格引用和数学运算符的组合。

步骤2:输入数据在建立模型之后,我们需要输入相关数据。

这包括目标函数中的系数和约束条件中的系数和约束值。

在Excel中,我们可以使用单元格来输入这些数据。

步骤3:设置规划求解选择“数据”选项卡,在“分析”分组中找到“规划求解”工具。

如果没有找到该工具,可能需要先启用“加载项”中的“分析工具包”。

点击“规划求解”,将会打开一个对话框。

在这个对话框中,我们需要输入一些参数来设置求解过程。

目标单元格:这是包含目标函数结果的单元格。

调整变量单元格:这是包含决策变量的单元格范围。

约束条件:这是包含约束条件的单元格范围。

约束条件中的系数:这是一个选择项,用于指定约束条件中的系数是包含在单元格范围中还是直接输入。

约束条件的约束值:这是一个选择项,用于指定约束条件中的约束值是包含在单元格范围中还是直接输入。

约束条件的约束类型:这是一个选择项,用于指定约束条件的类型(大于等于,小于等于等)。

非负约束:这是一个复选框,用于指定决策变量是否具有非负约束。

利用excel求解线性规划问题

利用excel求解线性规划问题

利用excel求解线性规划问题利用excel 求解线性规划问题“规划求解”示例例1 美佳公司计划制造Ⅰ、Ⅱ两种家电产品。

已知各制造一件时分别占用的设备A ,B 的台时、调试工序时间及每天可用于这两种家电的能力、各售出一件时的获利情况,如下表所示。

问该公司应制造两种家电各多少件,使获取的利润为最大。

1.建立数学模型2. 打开excel ,输入下列数据。

⎪⎪⎩⎪⎪⎨⎧>=<=+<=+<=+=0,52426155..2max 212121221x x x x x x x t s x x z3、如何在工作表中设置问题条件?先设置目标单元格,即最大利润,把它放在E1单元格上,可变单元格放置计划生产Ⅰ和Ⅱ产品的件数,这里把它放在C10:D10区域。

F4:F6是约束单元格,要对它们的值进行约束。

单击E1,在编辑框输入如图所示的公式。

注意,表示绝对引用的美元符号,可以单击F4功能键添加。

4、单击E4单击格式,在编辑栏上输入公式:=$C$4*$C$10+$D$4*$D$10。

绝对引用单元格有一个好处,显示的单元格位置变化时,引用的数据没改变。

5、单击E5单击格式,在编辑栏上输入公式:=$C$5*$C$10+$D$5*$D$10。

6、单击E6单击格式,在编辑栏上输入公式:=$C$6*$C$10+$D$6*$D$10。

7、如何使用规划求解功能?单击工具菜单,如果看不到规划求解选项不要慌,先选加载宏。

然后勾选规划求解,确定单击数据菜单——点击“模拟分析”——8、单击“规划求解”:指定目标单元格。

一种方法是先选中目标单元格E1,单击工具---规划求解。

另一种先单击工具---规划求解,再输入目标单元格名称。

输入可变单元格区域。

比较快的方法是,单击折叠框,用鼠标选中可变单元格区域:$C$11:$E$11。

注意勾选最大值哦。

设置目标: $E$1;点选“最大值”;设置:可变单元: $C$10:$D$109.设置条件不等式。

利用excel软件求解线性规划问题讲解

利用excel软件求解线性规划问题讲解

下面我们通过一个例子来解释怎样用“规划求解”来求解数学规划问题。

例1 公司通常需要确定每月(或每周)生产计划,列出每种产品必须生产的数量。

具体来说就是,产品组合问题就是要确定公司每月应该生产的每种产品的数量以使利润最大化。

产品组合通常必须满足以下约束:● 产品组合使用的资源不能超标。

● 对每种产品的需求都是有限的。

我们每月生产的产品不能超过需求的数量,因为生产过剩就是浪费(例如,易变质的药品)。

下面,我们来考虑让某医药公司的最优产品组合问题。

该公司有六种可以生产的药品,相关数据如下表所示。

设该公司生产药品1~6的产量分别为126,,,x x x (磅),则最优产品组合的线性规划模型为123456123456123456123456max 6 5.3 5.4 4.2 3.8 1.86543 2.5 1.545003.2 2.6 1.50.80.70.316009609281041..977108410550,16j z x x x x x x x x x x x x x x x x x x x x x s t x x x x j =++++++++++≤⎧⎪+++++≤⎪⎪≤⎪≤⎪⎪≤⎨⎪≤⎪≤⎪⎪≤⎪⎪≥≤≤⎩下面用规划求解加载宏来求解这个问题: 首先,如下如所示,在Excel 工作表内输入目标函数的系数、约束方程的系数、右端常数项;其次,选定目标函数单元、可变单元、约束函数单元,定义目标函数、约束函数其中,劳动力约束函数的定义公式是“=MMULT(B3:G3, J5:J10)”,原料约束函数的定义公式是“=MMULT(B4:G4,J5:J10)”,目标函数的定义公式是“MMULT(B5:G5, J5:J10)”。

注:函数MMULT(B3:G3, J5:J10)的意义是:单元区B3:G3表示的行向量与单元区J5:J10表示的列向量的内积。

这一要特别注意的是,第一格单元区必须是行,第二格单元区必须是列,并且两个单元区所含的单元格个数必须相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档