尿酸前言英文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Uric acid (2, 6, 8-trihydroxypurine, UA) is the principal end-product of purine metabolism in the human body[1].It is generated by xanthine and hypoxanthine under the xanthine oxidase-catalyzed conversion. Its normal level in serum is in the micromolar (120 - 450μM) and in urinary excretion is approximately 2mM [2]. Abnormal levels of UA in body fluids probably cause kinds of diseases and pathological disorders including hypertension, hyperuricemia, Lesch-Nyan, gout[3], arthritis[4], kidney disease[5], cardiovascular disease[6], neurological diseases[7], etc.
Taking preeclampsia for example,it is a hypertensive disorder that occurs during pregnancy, and approximately 10−15% of maternal deaths worldwide are caused by preeclampsia, which is a leading cause of maternal death[8-9]. So far, because of its two hallmarked symptoms-elevated blood pressure and significant protein in the urine, tests of preeclampsia is mainly based on the levels of blood pressure and urine protein[10]. However, it is generally late stage preeclampsia that is diagnosed using the tests[11-12]. In recent years, in order to decrease maternal and infant mortality rates, great efforts were devoted to the development of new approaches for early diagnosis of preeclampsia[13-15]. It has been proved that uric acid, an significant biomarker in urine and serum samples, may be critical for the development of a method for early onset of preeclampsia (gestational hypertension) [16].
Hence it is important to monitor UA level in bodily fluids( such as blood and urine) for diagnosis and treatment of these disorders. Simple and reliable methods for routinely detection of UA are crying needs in clinical laboratory. The control and management of UA level in human fluids is very essential to have a healthy life.
So far, a variety of techniques have been developed for the detection of UA in biological environments, including chemiluminescence[17-20],chromatography[21-23],electrochemical methods[24-27], etc. Among these methods, spectrophotometry is interfered by the color of blood; chromatography is troublesome operation and time-consuming; while the electrochemical methods have attracted much attention because of high sensitivity, low cost and manpower requirements, rapid response, compatibility for miniaturization and microfabrication technology. Different electrochemical approaches such as chemically modified electrode[28-29], electrochemical pretreatment[30], polymer modified electrode[31-33], and enzyme modified electrode[34] were designed to detect UA. However, UA tends to interference from some electroactive constituents, due to nearly the same oxidation such as ascorbic acid (AA). Besides, there always exist adsorption phenomena or the renewal of the surface each time.
In the following studies, biomineralized fluorescent metal nanoparticles have aroused wide concerns.
A variety of biological templates have been used to synthesize metal nanoclusters, such as DNA[35-38], thiols[39], polypeptides, and proteins[40]. These metal nanoclusters are widely used in the biological macromolecular detection[41], Hela cell transfection[42], surface markers of living cell[43], intracellular staining[44], DNA identification of single nucleotide mutations[45], DNA ligand coupling[46] and so on. Herein we describe poly (cytosine) nucleotides-templated silver nanoclusters (C-Ag NCs) that exhibit stronger fluorescence intensity and better light stability, and which is non-toxicity and water-soluble using NaBH4as the reducing agent. Upon the quenching effect of hydrogen peroxide (H2O2) on C-Ag NCs, a novel optical biosensor using C-Ag NCs as fluorescent indicator for uric acid is constructed. This response principle allows simple and rapid detection of uric acid, even in complex systems. Importantly, the sensitivity of the UA’s response is improved considerably because of the better fluorescent properties of C-Ag NCs, which led to a lower detection limit of 50nM and wider linear range from 50nM to 50μM. Furthermore, the detection ability of uric acid in serum samples is confirmed and this C-Ag NCs-based uric acid biosensor shows good promise of practical application.
[1] Dryhurst, G. Electrochemistry of Biological Molecules; Academic Press: New York, 1977.
[2]Ames, R. B.; Cathcart, R.; Schwiers, E.; Hochstein, P. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 6858–6862.
[3] Chu, Q. C.; Lin, M.; Geng, C. H.; Ye, J. N. Chromatographia 2007, 65,179–184.
[4] Wortmann, R. L. Disorders of purine pyrimidine metabolism. In Harrison’s Principles of Internal Medicine, 15th ed.; Braunwald, E., Fauci, A. S., Kasper,D. L., Hauser, S. L., Longo, D. L., Jameson, J. L., Eds.; McGraw-Hill: New York, 2001; pp 2268-2273.
[5] Khosla, U. M.; Zharikov, S.; Finch, J. L.; Nakagawa, T.; Roncal, C.; Mu,W.; Krotova, K.; Block, E. R.; Prabhakar, S.; Johnson, R. J. Kidney Int. 2005, 67, 1739–1742.
[6] Baker, J. F.; Krishnan, E.; Chen, L.; Schumacher, H. R. Am. J. Med. 2005, 118, 816–826.
[7]Moallem, H. J.; Taningo, G.; Jiang, C. K.; Hishhorn, R.; Fikrig, S. Clin. Immunol. 2002, 105, 75–80.
[8]Savaj, S.; Vaziri, N. D. Iran. J. Kidney Dis. 2012, 6, 334−338. (3) Carty, D. M.; Delles, C.; Dominciczak, A. F. Trends Cardiovasc. Med. 2008, 18, 186−194.
[9] Goldenberg, R. L.; McClure, E. M.; MacGuire, E. R.; Kamath, B. D.; Jobe, A. H. Int. J. Gynecol. Obstet. 2011, 113, 91−95.
[10] Conde-Agudelo, A.; Villar, J.; Lindheimer, M. Obstet. Gynecol. 2004, 104, 1367−1391.
[11]Lovgren, T. R.; Dugoff, L.; Galan, H. L. Clin. Obstet. Gynecol. 2010, 53, 888−898.
[12] Telang, M. A.; Bhutkar, S. P.; Hirwani, R. R. Placenta 2013, 34, 2−8
[13] Urato, A. C.; Bond, B.; Craigo, S. D.; Norwitz, E. R.; Paulus, J. K.; Strohsnitter, W. C. J. Perinatol. 2012, 32, 757−762.
[14] Wu, Y.; Xiong, X.; Fraser, W. D.; Luo, Z.-C. Am. J. Hypertens. 2012, 25, 711−717.
[15] Wolak, T.; Sergienko, R.; Wiznitzer, A.; Paran, E.; Sheiner, E. Hypertens. Pregnancy 2012, 31, 307−315.
[16] Buhimschi, C. S.; Norwitz, E. R.; Funai, E.; Richman, S.; Guller, S.; Lockwood, C. J.; Buhimschi,
I. A. Am. J. Obstet. Gynecol. 2005, 192, 734−741.
[17] He, D.; Zhang, Z.; Huang, Y.; Hu, Y.; Zhou, H.; Chen, D. Luminescence 2005, 20, 271–275.
[18] Lin, Z.; Chen, Z.; Liu, Y.; Wang, J.; Chen, G. Analyst 2008, 133, 797–801.
[19] Poole, R. A.; Kielar, F.; Richardson, S. L.; Stenso, P. A.; Parker, D. Chem. Commun. 2006, 4084–4086.
[20] Wu, F.; Huang, Y.; Li, Q. Anal. Chim. Acta 2005, 536, 107–113.
[21] Kim, K. M.; Henderson, G. N.; Ouyang, X.; Frye, R. F.; Sautin, Y. Y.; Feig, D. I.; Johnson, R. J. J. Chromatogr., B 2009, 877, 2032–2038.
[22] Cooper, N.; Khoseravan, R.; Erdmann, C.; Fiene, J.; Lee, J. W. J. Chromatogr., B 2006, 837, 1–10.
[23] Cirillo, P.; Gersch, M. S.; Mu, W.; Scherer, P. M.; Kim, K. M.; Gesualdo, L.; Henderson, G. N.; Johnson, R. J.; Sautin, Y. Y. J. Am. Soc. Nephrol. 2009, 20, 545–553.
[24] Behera, S.; Raj, C. R. Biosens. Bioelectron. 2007, 23, 556–561.
[25] Moraes, M. L.; Rodrigues Filho, U. P.; Oliveira, O. N., Jr.; Ferreira, M. J. Solid State Electrochem. 2007, 11, 1489–1495.
[26] Liao, C. W.; Chou, J. C.; Sun, T. P.; Hsiung, S. K.; Hsieh, J. H. IEEE Trans. Biomed. Eng. 2006, 53, 1401–1408.
[27] Prasad, K. S.; Muthuraman, G.; Zen, J. M. Electrochem. Commun. 2008, 10, 559–563.
[28] Wang, Z.; Wang, Y.; Luo, G. Analyst 2002, 127, 1353−1358.
[29] Fernandez, L.; Carrero, H. Electrochim. Acta 2005, 50, 1233−1240.
[30] Strochkova, E. M.; Tur’yan, Y. I.; Kuselman, I.; Shenhar, A. Talanta 1997, 44, 1923−1928.
[31] Li, Y.; Lin, X. Sens. Actuators, B 2006, 115, 134−139.
[32] Lin, X.; Zhang, Y.; Chen, W.; Wu, P. Sens. Actuators, B 2007, 122, 309−314.
[33] Lin, L.; Chen, J.; Yao, H.; Chen, Y.; Zheng, Y.; Lin, X. Bioelectrochemistry (Amsterdam, Netherlands) 2008, 73, 11−17.
[34] Nakaminami, T.; Ito, S.; Kuwabata, S.; Yoneyama, H. Anal. Chem. 1999, 71, 1928−1934.
[35] Ozawa, T.; Yoshimura, H.; Kim, S. B. Anal. Chem. 2013, 85, 590-609.
[36] Guo, C.; Irudayaraj, J. Anal. Chem. 2011, 83, 2883-2889.
[37] Xu, H.; Suslick, K. S. Adv. Mater. 2010, 22, 1078-1082.
[38] Diez, I.; Ras, R. H. A. Nanoscale 2011, 3, 1963-1970.
[39] Choi, S.; Dickson, R. M.; Yu, J. Chem. Soc. Rev. 2012, 41, 1867-1891.
[40] Shah, P.; Rorvig-Lund, A.; Chaabane, S. B.; Thulstrup, P. W.; Kjaergaard, H. G.; Fron, E.; Hofkens, J.; Yang, S. W.; Vosch, T. Design Aspects of Bright Red Emissive Silver Nanoclusters/DNA Probes for MicroDNA Detection. ACS Nano 2012, 6, 8803-8814.
[41] Sharma, J.; Yeh, H. C.; Yoo, H.; Werner, J. H.; Martinez, J. S. A Complementary Palette of Fluorescent Silver Nanoclusters. Chem. Commun. 2010, 46, 3280-3282.
[42] Zhou, Z. X.; Du, Y.; Zhang, L. B.; Dong, S. J. A Label-Free, GQuadruplex DNAzyme-Based Fluorescent Probe for Signal-Amplified DNA Detection and Turn-on Assay of Endonuclease. Biosens. Bioelectron. 2012, 34, 100-105.
[43] Ma, K.; Shao, Y.; Cui, Q. H.; Wu, F.; Xu, S. J.; Liu, G. Y. Base-Stacking-Determined Fluorescence Emission of DNA Abasic Site-Templated Silver Nanoclusters. Langmuir 2012, 28, 15313-15322.
[44] Ganguly, M.; Pal, A.; Negishi, Y.; Pal, T. Synthesis of Highly Fluorescent Silver Clusters on
Gold(I) Surface. Langmuir 2013, 29, 2033-2043.
[45] Qu, F.; Li, N. B.; Luo, H. Q. Highly Sensitive Fluorescent and Colorimetric pH Sensor Based on Polyethylenimine-Capped Silver Nanoclusters. Langmuir 2013, 29, 1199-1205.
[46] Zhou, T. Y.; Huang, Y. H.; Li, W. B.; Cai, Z. M.; Luo, F.; Yang, C. L.; Chen, X. Facile Synthesis of Red-Emitting Lysozyme-Stabilized Ag Nanoclusters. Nanoscale 2012, 4, 5312-5315.。