大学物理物理知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理物理知识点总

Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第一章质点运动学主要内容

一. 描述运动的物理量 1. 位矢、位移和路程

由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t =

运动方程的分量形式()

()x x t y y t =⎧⎪⎨=⎪⎩

位移是描述质点的位置变化的物理量

△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。 明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s )

2. 速度(描述物体运动快慢和方向的物理量)

平均速度

x

y

r x y i j i

j t t t

瞬时速度(速度) t 0r dr

v lim

t dt

∆→∆==

∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y

x v v dt dy dt dx dt r d v +=⎪⎭

⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt

= 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量)

平均加速度v

a t

∆=∆ 瞬时加速度(加速度) 220lim

t d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向二.抛体运动 运动方程矢量式为 2

012

r v t gt =+

分量式为 02

0cos ()1sin ()2

αα==-⎧⎪

⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度ds

v dt

= 切向加速度t dv

a dt

=

(速率随时间变化率) 法向加速度2

n v a R

=(速度方向随时间变化率)。

2.角量:角位移θ(单位rad )、角速度d dt

θ

ω=

(单位1rad s -⋅) 角速度22d d dt dt

θω

α==(单位2rad s -⋅)

3.线量与角量关系:2 = t n s R v R a R a R θωαω===、

、、 4.匀变速率圆周运动:

(1) 线量关系020220122v v at s v t at v v as =+⎧⎪⎪=+⎨⎪⎪-=⎩ (2) 角量关系02022

0122t

t t ωωαθωαωωαθ=+⎧⎪

=+⎨⎪⎪-=⎩

第二章牛顿运动定律主要内容

一、牛顿第二定律

物体动量随时间的变化率

dp

dt

等于作用于物体的合外力i

F =

F 即:

=

dP dmv

F dt dt

=, m =常量时 dV F =m F =ma dt 或 说明:(1)只适用质点;(2) F

为合力 ;(3) a F 与是瞬时关系和矢量关系;

(4) 解题时常用牛顿定律分量式

(平面直角坐标系中)x x

y

y F ma F ma F ma =⎧=⎨=⎩ (一般物体作直线运动情况)

(自然坐标系中) ⎪⎩

⎪⎨⎧====⇒=(切向)(法向)dt dv m ma F r v m ma F a m F t t n n 2

(物体作曲线运动)

运用牛顿定律解题的基本方法可归纳为四个步骤 运用牛顿解题的步骤:

1)弄清条件、明确问题(弄清已知条件、明确所求的问题及研究对象) 2)隔离物体、受力分析(对研究物体的单独画一简图,进行受力分析) 3)建立坐标,列运动方程(一般列分量式); 4) 文字运算、代入数据

举例:如图所示,把质量为10m kg =的小球挂 在倾角0

30θ=的光滑斜面上,求 (1) 当斜面以1

3

a g =

的加速度水平向右运动时, (2) 绳中张力和小球对斜面的正压力。

解:1) 研究对象小球

2)隔离小球、小球受力分析

3)建立坐标,列运动方程(一般列分量式);

:cos30sin 30T x F N ma -= (1)

:sin 30cos300T y F N mg +-= (2)

4) 文字运算、代入数据

:2T x N ma -= (1

3

a g =) (3)

: 2T y F mg = (4)

(2)由运动方程,N =0情况

第三章动量守恒和能量守恒定律主要内容

一. 动量定理和动量守恒定理

1. 冲量和动量

2

1

t t I Fdt =⎰

称为在21t t -时间内,力F

对质点的冲量。

质量m 与速度v 乘积称动量P mv = 2. 质点的动量定理:2

121t t I F dt mv mv ==-⎰

质点的动量定理的分量式: 3. 质点系的动量定理:2

1

t 000t =-=-∑∑∑⎰

n

n n

ex

i i i i i

i

i

F

dt m v m v P P

质点系的动量定理分量式x x ox

y y oy z

z oz I P P I P P I P P

=-⎧⎪

=-⎨⎪=-⎩

动量定理微分形式,在dt 时间内: =

dP

Fdt dP F dt

=或 4. 动量守恒定理:

当系统所受合外力为零时,系统的总动量将保持不变,称为动量守恒定律

动量守恒定律分量式:

二.功和功率、保守力的功、势能

1.功和功率:

质点从a 点运动到b 点变力F 所做功cos θ=⋅=⎰⎰b b

a

a

W F dr F ds

恒力的功:cos W F r F r θ=∆=⋅∆ 功率:cos θ=

==dw

p F v F v dt

2.保守力的功

物体沿任意路径运动一周时,保守力对它作的功为零0=

=⎰c l

W F dr

3.势能

保守力功等于势能增量的负值,()

0=--=-p

p p w E

E E

物体在空间某点位置的势能()p E x,y,z

d F r

⋅0

0p =E

相关文档
最新文档