负反馈放大电路的仿真与设计
两级阻容耦合负反馈放大电路Multisim仿真分析
两级阻容耦合负反馈放大电路Multisim仿真分析一、实验目的:1.学习利用Multisim电子线路仿真软件构建自己的虚拟实验室。
2.学习多级共射极放大电路及其静态工作点、放大倍数的调节方法。
3.掌握多级放大电路的放大倍数、输入电阻、输出电阻、频率特性的测量方法。
4.加深对负反馈放大电路放大特性的理解。
5.研究负反馈对放大电路各项性能指标的影响。
二、实验原理:反馈形式:电压串联负反馈三、实验内容:1.直流工作点分析择节点5、6、7、8、9、13作为输出节点,对开环和闭环电路仿真得到相同的输出结果2.负反馈对放大电路性能的影响主要有五个方面1.降低放大倍数2.提高放大倍数的稳定性3.改善波形失真4.展宽通频带5.对放大电路的输入电阻和输出电阻的影响2.1放大电路稳定性分析在电路输入端5、输出端10同时接入交流电压表,按B键选择有无引入负反馈,按A 键选择有无负载电阻R9接入。
表1 输出电压与电压放大倍数的测量结果U o、A u的测量J1U i (mV) U o (mV) A u= U o /U i无反馈(J2断开)断开97.207 2030 20.883 闭合105.452 1524 14.452负反馈(J2闭合)断开30.563 446.583 14.612闭合37.128 414.451 11.163从而稳定了电压放大倍数。
此外,基本放大电路在空载和负载状态下,得到的输出电压相差很大,而接入负反馈后,负载接入与否对输出电压影响很小。
2.2非线性失真分析按B键断开开关S2使电路处在开环状态,双击示波器观察输出波形。
如图所示,调节信号源电压的幅值(频率不变),使输出波形出现非线性失真,在输出端利用失真度测试仪测得其失真系数为18.484%。
开关S2闭合引入负反馈,可见输出波形幅度减小,失真度测试仪显示失真系数为0.158%,因此引入负反馈后非线性失真得到明显改善。
(a)开环输出电压非线性失真 (b)电压串联负反馈失真减小2.3 幅频特性分析打开S2开关,选择simulate→analyses→AC Analysis,在弹出的对话框的“Prequency Parameters”选项卡中将“开始频率”和“终止频率”分别设置为1Hz和1GHz,在“Output”选项卡中选择输出节点10进行仿真,得到无反馈的频率特性。
EDA设计实验二 负反馈放大器设计与仿真
实验二负反馈放大器设计与仿真1.实验目的(1)熟悉两级放大电路设计方法。
(2)掌握在放大电路中引入负反馈的方法。
(3)掌握放大器性能指标的测量方法。
(4)加深理解负反馈对电路性能的影响(5)进一步熟悉利用Multisim仿真软件辅助电路设计的过程。
2.实验要求1)设计一个阻容耦合两极电压放大电路,要求信号源频率10kHz(峰值1mv),负载电阻1kΩ,电压增益大于100。
2)给电路引入电压串联负反馈:①测试负反馈接入前后电路的放大倍数,输入输出电阻和频率特性。
②改变输入信号幅度,观察负反馈对电路非线性失真的影响。
3.实验内容反馈接入前的实验原理图:1.放大倍数:Au=0.075V/0.707mV=106.0822.输入电阻:Ri=0.707mV/94.48nA=7.483kΩ3.输出电阻:Ro=0.707V/143.311nA=4.934kΩ4.频率特性:fL=357.094Hz,fH=529.108kHz输出开始出现失真时的输入信号幅度:19.807mV反馈接入后的实验电路:开关闭合之后:1.放大倍数:Af=7.005mV/0.707mV=9.9082.输入电阻:Ri=0.707mV/0.198uA=3.57kΩ3.输出电阻:Ro=0.707mV/0.096mA=7.364Ω4.频率特性:fL=67.134Hz,fH=6.212MHz输出开始出现失真时的输入信号幅度≈197mV4.理论值分析由于三极管2N2222A的β=220,所以反馈接入前第一级rbe1=rb+βVT/Ic=6.7kΩ第二级rbe2=rb+βVT/Ic=6.5kΩ第二级输入电阻Ri’=R8||(R7+40%R13)||rbe2=3.65kΩ放大倍数Au=βR4||Ri’*R9||R12/([rbe1+(1+β)R1]rbe2)=107.034输入电阻Ri=R3||(R2+30%R5)||[rbe1+(1+β)R1]=7.484kΩ输出电阻Ro=R9=5.1kΩ反馈接入后:F=0.101放大倍数Af=Au/(1+AuF)=9.056输入电阻Rif=R3||(R2+30%R5)||(1+AuF)Ri=3.621kΩ输出电阻Rof=Ro/(1+AoF)=7.425Ω所以可以得出结论Af≈1/F5.实验结果分析由仿真结果以及理论计算值可以看出,接入负反馈后,放大倍数明显下降,输入电阻变化不明显,输出电阻明显下降,原因是接入电压并联负反馈之后,输出电压基本稳定而输出电流由于负反馈的增加而变大,导致输出电阻变小。
串联电压负反馈放大器仿真实验报告
串联电压负反馈放大器仿真实验报告一、实验目的本实验旨在通过仿真软件探究串联电压负反馈放大器的性能表现,掌握负反馈对放大器性能的影响,培养实验操作能力和分析问题的能力。
二、实验原理串联电压负反馈放大器是一种常见的放大器类型,通过在放大器输入端和输出端之间加入反馈电阻,实现电压的负反馈。
负反馈能够改善放大器的性能,如减小非线性失真、提高稳定性等。
三、实验步骤1. 搭建串联电压负反馈放大器电路:使用仿真软件,根据实验原理图搭建电路。
电路包括放大器、反馈电阻等元件。
2. 设定电路参数:根据实验要求,设定放大器、反馈电阻等元件的参数值。
3. 运行仿真:启动仿真软件,观察电路的输出波形,记录相关数据。
4. 分析数据:对采集的数据进行分析,探究负反馈对放大器性能的影响。
5. 优化电路:根据分析结果,对电路参数进行调整,优化放大器的性能。
6. 总结实验:整理实验数据和结论,撰写实验报告。
四、实验结果与分析1. 实验数据记录:在仿真过程中,记录不同反馈电阻下的输出电压、输入电阻等数据。
2. 数据分析:根据记录的数据,分析负反馈对放大器性能的影响。
例如,随着反馈电阻的增大,输出电压的幅度减小,但输入电阻增大,说明负反馈能够减小放大器的增益,提高输入电阻。
3. 性能优化:根据分析结果,调整电路参数,优化放大器的性能。
例如,减小反馈电阻可以减小输出电压的失真度。
五、结论总结本实验通过仿真软件探究了串联电压负反馈放大器的性能表现。
实验结果表明,负反馈能够减小放大器的增益,提高输入电阻,改善放大器的性能。
在实验过程中,我们学会了如何使用仿真软件进行电路设计和分析,提高了实验操作能力和分析问题的能力。
通过调整电路参数,我们成功地优化了放大器的性能。
本次实验对于深入理解负反馈放大器的工作原理以及在实际应用中优化放大器性能具有重要的意义。
负反馈放大器电路multisim仿真
比较后的信号会调整输入级的增益,从而影响输出 信号的幅度和相位。
负反馈放大器电路的特点
提高放大倍数的稳定性
负反馈可以减小放大倍数对元件参数变化的 敏感度,使放大倍数更加稳定。
扩展带宽
负反馈可以扩展放大器的通频带,提高频率 响应。
减小非线性失真
负反馈可以减小放大器内部的非线性效应, 降低失真。
降低噪声
强大的分析功能
Multisim支持多种电路分析方法,如瞬态分 析、频率分析等。
Multisim仿真软件的使用方法
创建电路图
在Multisim中打开软件,选择合适的元件库,开始创建电路图。
连接电路
将元件从元件库中拖拽到电路图中,按照电路图的要求连接元件。
设置参数
根据需要设置元件的参数,如电阻值、电容值等。
03
负反馈放大器电路的 Multisim仿真过程
建立负反馈放大器电路的Multisim仿真模型
01
02
03
04
打开Multisim软件,创 建一个新的电路图。
从元件库中选取所需的 电子元件,如电阻、电 容、电感、晶体管等。
根据负反馈放大器的电 路图,将元件连接起来, 形成完整的电路。
检查电路连接是否正确, 确保没有连接错误或遗 漏。
设置仿真参数和运行仿真
01 在仿真设置中,选择适当的仿真时间和仿真精度。
02 根据需要,可以设置其他仿真参数,如电源电压、 偏置电流等。
03
运行仿真,观察电路的行为和输出结果。
分析仿真结果
观察仿真结果,分析负反馈放大器的性能指标,如电压增益、带宽、相位 裕度等。
将仿真结果与理论分析进行比较,验证负反馈放大器电路的正确性和有效 性。
multisim对于负反馈放大发电路仿真
NANCHANG UNIVERSITY课程设计(年)题目:基于Multisim的反馈电路分析与仿真学院:信息工程学院系自动化专业:班级:学号:学生姓名:指导教师:完成日期:2.常用组态负反馈放大电路的仿真分析2.1 电压串联负反馈电路集成运放采用741,并用一个开关来控制电路有无负反馈的存在。
用示波器来观察反馈时的情况。
其中,输入信号V1是一个交流电压源信号。
示波器的A通道接输入信号,B通道接输出信号。
开关打向下边时,没有负反馈,输入、输出的信号波形如图所示。
上面A通道的波形是输入波形;下面B通道的电流串联负反馈电路波形为输出波形,可以看到,此时输出波形已经严重失真开关打向上边时,加入电压串联负反馈,输入、输出的信号波形如图所示,上面A通道的波形是输入波形,下面B通道的波形是输出波形。
可以看出,此时输出信号波形没有失真。
但输出信号的幅度减小了。
与理论上引入负反馈放大倍数降低了,减少非线性失真是相符合。
2.2电流串联负反馈电路集成运放采用LM307H,其中,输入信号V1是一个交流电流源信号。
示波器的A通道接输入信号,B通道接输出信号。
开关打向下边时,没有负反馈,输入、输出的信号波形如图所示。
下面A通道的波形是输入波形;上面B通道的波形为输出波形,可以看到,此时输出波形已经严重失真。
开关打向上边时,加入电压串联负反馈,输入、输出的信号波形如图所示,下面A通道的波形是输入波形上面B通道的波形是输出波形。
可以看出,此时输出信号波形没有失真。
但输出信号的幅度减小了。
与理论上引入负反馈放大倍数降低了,减少非线性失真是相符合的。
2.3电压并联负反馈电路集成运放采用741,并用一个开关来控制电路有无负反馈的存在。
用示波器来观察反馈时的情况。
其中,输入信号V1是一个交流电压源信号。
示波器的A通道接输出信号,B通道接输入信号。
开关打向下边时,没有负反馈,输入、输出的信号波形如图所示。
上面A通道的波形是输出波形;下面B通道的波形为输入波形,可以看到,此时输出波形已经严重失真。
负反馈放大电路的仿真及设计
负反应放大电路的仿真与设计一、实验目的1.掌握两种耦合方式的多级放大电路的静态工作点的调试方法。
2.掌握多级放大电路的电压放大倍数,输入电阻,输出电阻的测试方法。
3.掌握负反应对放大电路动态参数的影响。
二、实验器材2N2222A三极管〔2个〕、1mV 10KHz 正弦电压源、12V直流电压源、10uF电容〔5个〕、5.1KΩ1%负反应电阻、3.0KΩ5%集电极电阻〔2个〕、1.50KΩ1%电阻、1.40KΩ1%电阻、1.00KΩ1%负载电阻、100Ω1%电阻、21.0KΩ1%基极电阻〔2个〕、11.0KΩ1%基极电阻〔2个〕、开关、万用表、示波器等。
三、实验原理与要求由于电容对直流量的电抗为无穷大,因而阻容耦合放大电路各级之间的直流通路各不相通,各级的静态工作点相互独立。
在实验电路中引入电压串联负反应,将引回的反应量与输入量相减,从而调整电路的净输入量与输出量,改变电压放大倍数、输入电阻与输出电阻。
设计一个阻容耦合两级电压放大电路,要求信号源频率10kHz(幅度1mv) ,负载电阻1kΩ,能不失真放大符合要求的交流信号,且电压增益大于100。
给电路引入电压串联深度负反应,并分别测试负反应接入前后电路放大倍数、输入、输出电阻和频率特性。
改变输入信号幅度,观察负反应对电路非线性失真的影响。
原理图如下:四、实验内容与方法1.电路频率特性的测试1)未引入负反应前的电路频率特性将电路中的开关J1翻开,则此时电路为未引入电压串联负反应的情况,对电路进展频率仿真,得到如下的电路频率特性图。
可知下限频率f L=755.4901 Hz, 上限频率f H=328.5528KHz。
调节信号源的幅度,当信号源幅度为1mV时,输出波形不失真,如下:继续调节信号源的幅度,当信号源幅度为2mV时,输出波形出现了较为明显的失真,如下2)引入电压串联负反应后的电路频率特性将电路中的开关J1闭合,则此时电路引入电压串联负反应,对电路进展频率仿真,得到如下列图所示的引入电压串联负反应后的电路频率特性图。
负反馈放大电路的设计与仿真实验报告-V1
负反馈放大电路的设计与仿真实验报告-V1【正文】负反馈放大电路的设计与仿真实验报告一、引言负反馈是现代电子学中常用的一种技术手段,可用于提高放大电路的稳定性、增加带宽、降低失真等。
本实验旨在通过设计和仿真一个负反馈放大电路,比较其与未加负反馈的放大电路的性能差异,并验证负反馈对电路的改善作用。
二、设计与仿真1.设计要求本实验设计的放大电路要求如下:①输入阻抗大于10kΩ;②输出阻抗小于1kΩ;③增益要求10倍左右;④带宽大于10kHz。
2.电路设计本实验采用非反相输入的共射极放大电路(图1),电路由电压放大和电流放大两部分构成。
图1 非反相输入共射极放大电路其中,Vi为输入信号,C1为耦合电容,R1为输入电阻,R2为电路的DC偏压电阻,Q1为NPN晶体管,Rc为集电极负载电阻,C2为旁路电容,Re为发射极电阻,VCC为电源电压,RL为输出负载电阻。
为了实现负反馈,本实验在放大电路中串联了一个反馈电阻Rf(图2)。
图2 负反馈放大电路3.电路仿真为了验证电路设计的正确性,本实验通过仿真软件Multisim对放大电路进行仿真。
结果显示,电路有很好的放大效果,输入输出波形相位相同,且波形幅值增益约为10倍。
经过仿真后,输出信号稳定,未出现失真等问题。
三、实验结果为了验证负反馈对电路的改善作用,本实验对比了带负反馈和不带负反馈两种放大电路的性能差异。
实验结果如下:1.带负反馈电路性能带入一个2V的正弦信号作为输入信号,测量输入电阻、输出电压、输出阻抗及增益等参数,结果如下:输入电阻:17.5kΩ输出电压:19.5V输出阻抗:751Ω增益:9.752.不带负反馈电路性能带入一个2V的正弦信号作为输入信号,测量输入电阻、输出电压、输出阻抗及增益等参数,结果如下:输入电阻:16.8kΩ输出电压:10.2V输出阻抗:3.04kΩ增益:5.1通过以上测量参数可知,带负反馈电路与不带负反馈电路相比,具有更高的增益、更低的输出阻抗和更好的稳定性。
电压串联负反馈放大电路设计与仿真--课程设计
目录摘要 (2)关键词 (2)Abstract (2)Keywords (2)一、引言 (3)1.1研究本课题的重要性 (3)1.2集成电路产业简介 (3)1.3 PSPICE软件的介绍 (3)二、放大电路介绍 (6)三、放大电路的设计与仿真 (10)3.1电路设计框图 (10)3.2 电路版图 (10)3.3局部电路分析 (11)3.4直流分析 (12)3.4.1直流工作点分析 (12)3.4.2温度对静态工作点的影响 (13)3.5瞬态分析 (14)3.6交流分析 (15)3.6.1输入电阻 (16)3.6.2输出电阻 (16)3.6.3放大电路的频响特性及其增益 (17)四、心得体会 (19)致谢 (20)参考文献 (21)附录 (22)电压串联负反馈放大电路的设计与仿真摘要:主要对电压串联负反馈放大电路进行了设计与仿真,主要利用其放大功能。
该放大器主要分为4个部分:输入级、中间级、输出级以及负反馈回路。
其主要核心思想是利用电压负反馈减小增益改变对电路频率特性的影响,同时获得较好的放大效果。
通过PSPICE 软件对其进行直流分析、瞬态分析、交流分析等等。
关键词:晶体管;放大器;电路设计;PSPICEAbstract: the main voltage series negative feedback amplifying circuit design and simulation, mainly use the zoom feature. That amplifier comprises 4 major components: input level, intermediate output, level and negative feedback circuit. Whose main core idea is using voltage negative feedback reduces the gain change effects on circuit frequency characteristics, both better Zoom effect. By PSPICE software on its DC analysis, AC analysis, transient analysis, and so on.Keywords:transistors; amplifier circuit design; PSPICE1 / 28一、引言1.1研究本课题的重要性随着微电子技术、大规模集成电路和电子计算机计算的快速发展、电路设计规模的扩大、电路复杂程度的加深,传统的电路设计方法已经不能满足现代电路设计的要求。
实验三负反馈放大电路
实验三 负反馈放大电路
一、实验目的
1、研究负反馈对放大器性能的影响。
2、掌握反馈放大器性能的测试方法。
二、实验原理
反馈在电子技术中得到广泛应用。所谓反馈就是将放大器的输出信号(电压或电流)的一部分或全部,通过适当的电路(反馈网络)送回到放大电路的输入回路,使放大器获得某些性能的改善。在电子技术中,对反馈来说,有正反馈和负反馈两类。但如何判断电路的反馈是属哪一类呢?可以采用瞬时极性法。先假定输入信号处于某一个瞬时极性,然后逐级推出电路其他有关各点瞬时信号极性情况,最后判断反馈到输入端信号的瞬时极性是增强还是削弱了原来的输入信号。如果反馈回来的信号增强了原输入信号则为正反馈。相反,削弱了输入信号就是负反馈。
559
闭环
∞
1
29.9
29.9
46.6
1.5K
1
29
29
Multisim仿真:
软件版本号:Multisim 14.2
三极管型号:2N1711
仿真步骤:
(1)开环电路
在Multisim中选择元器件,搭建图1所示电路,暂不接入反馈信号Rf与Cf,按照图1修改元器件参数,直流电压源为+12V。
选择交流电压源V1,频率设为10KHz,从R1处输入信号。在Vi处放置电压探针,调节V1幅值,直至Vi显示电压有效值为1mV.
图8反馈接入基极(仿真)
(4)总结反馈对失真改善的特点。
特点:引入电压串联负反馈后,电路在采集原始信号时其真度提高,与上一级电路的衔接性增强,可改善波形失真。对于同一放大电路,若引入负反馈,当输出波形刚出现失真时,对应的输入电压将远大于无负反馈时刚出现失真所对应的输入电压。
3.测放大器频率特性
实验一 两级负反馈放大电路设计
实验一两级负反馈放大电路设计一、实验目的和任务1.观察负反馈对放大电路性能的影响;2.熟练运用放大电路增益、输入电阻、输出电阻、幅频特性的测量方法;3.加深对负反馈放大电路的原理和分析方法的理解。
二、实验原理介绍电路原理图如图1-1所示。
反馈网络由Rf、Cf、Ref构成, 在放大电路中引入了电压串联负反馈, 反馈信号是Uf 。
在实验四中已测量了基本放大电路的有关性能参数, 在本实验中将测量反馈放大电路的性能参数, 观察负反馈对放大电路性能的影响, 验证有关的电路理论。
图1-1图1-1中, 反馈系数为: (1-1)反馈放大电路的电压放大倍数Auuf、输入电阻Rif、输出电阻Rof、下限频率fLf、上限频率fHf与基本放大电路的有关参数的关系分别如下:uuuu uuuuf A F 1A A +=(1-2)i uu uu if R )A F 1(R += (1-3) )A F 1/(R R uu uu o of += (1-4) )A F 1/(f f uu uu L Lf += (1-5) H uu uu Hf f )A F 1(f += (1-6) 反馈深度为: 1+FuuAuu 对负反馈来说, (1+FuuAuu )>1其中, Auu 、Ri 、Ro 、fL 、fH 分别为基本放大电路(图1-1)的电压放大倍数、输入电阻、输出电阻、下限频率和上限频率。
可见, 电压串联负反馈使得放大电路的电压放大倍数的绝对值减小, 输入电阻增大, 输出电阻减小;负反馈还对放大电路的频率特性产生影响, 使得电路的下限频率降低、上限频率升高, 起到扩大通频带、改善频响特性的作用。
此外, 电压串联负反馈还能提高放大电路的电压放大倍数的稳定性、减小非线性失真。
这些都可以通过实验来验证。
基本放大电路的电压放大倍数的相对变化量与负反馈放大电路的电压放大倍数的相对变化量的关系可以用下式来表示: uuuu uu uu uuf uuf A dA A F 11A dA •+= (1-7)三、实验内容和数据记录1.设置静态工作点(1)按图连线, 注意接线尽可能短。
负反馈放大电路仿真
负反馈放大电路仿真报告一、实验目的1.熟悉Multisim 软件的使用方法。
2.掌握负反馈放大电路对放大器性能的影响。
3.学习负反馈放大器静态工作点、电压放大倍数、输入电阻、输出电阻的开环和闭环仿真方法。
4.学习掌握Multisim9交流分析 5.学会开关元件的使用二、实验原理1. 晶体管构成的负反馈放大器电路基本结构负反馈在电子电路中有着非常广泛的应用,虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如稳定放大倍数,改变输入、输出电阻,减小非线性失真和展宽通频带等。
因此,几乎所有的实用放大器都带有负反馈。
负反馈放大器有四种组态,即电压串联,电压并联,电流串联,电流并联。
本例以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。
图3.4-1为带有负反馈的两级阻容耦合放大电路,在电路中通过RF 把输出电压uo 引回到输入端,加在晶体管VT1的发射极上,在发射极电阻RF1上形成反馈电压u f 。
根据反馈的判断法可知,它属于电压串联负反馈。
图3.4-1 带有电压串联负反馈的两级阻容耦合放大器2. 负反馈放大器的主要性能参数计算 (1)闭环电压放大倍数 u u u uf F A 1A A +=,其中:io u u uA =Au 为基本放大器(无反馈)的电压放大倍数,即开环电压放大倍数。
1+AuFu ──反馈深度,它的大小决定了负反馈对放大器性能改善的程度。
(2)反馈系数 F1F F1u R R R F +=(3)输入电阻 Rif =(1+AuFu )Ri (4)输出电阻 uuO OOf F A 1R R +=式中:Ro 为基本放大器的输出电阻。
Auo 为基本放大器R L =∞时的电压放大倍数。
三、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表四、实验内容与步骤1. 在Multisim 环境下,并画出下图3.4-2所示电路1.8k20mV 1kHz10uF-POL10uF-POL C610uF-POL图3.4-2负反馈放大电路2. 直流分析(1)调节信号源V2的大小,使输出端在开环情况下输出不失真。
两级负反馈放大电路实验报告
竭诚为您提供优质文档/双击可除两级负反馈放大电路实验报告篇一:负反馈放大器实验报告负反馈放大器实验目的加深理解放大电路中引入负反馈的方法和负反馈对放大器各项指标的影响。
实验原理负反馈在电子电路中的作用:改善放大器的动态指标,如稳定放大倍数,改变输入输出电阻,减小非线性失真和展宽通频带,但同时也会使放大器的放大倍数降低。
负反馈的几种状态:电压串联,电压并联,电流串联,电流并联。
本实验以电压串联为例,分析负反馈对放大器指标的影响。
1.下图为带有电压串联负反馈的两极阻容耦合放大器电路,在电路中通过Rr把输出电压uo引回到输入端,家在晶体管T1的发射极上,在发射极电阻Rf1上形成反馈电压uf。
主要性能指标如下:(1)闭环电压放大倍数Ar=Av/1+AvFv,Av为开环放大倍数。
图1为带有电压串联负反馈的两极阻容耦合放大器(2)反馈系数Fv=RF1/Rf+RF1(3)输入电阻R1f=(1+AvFv)RfRf为基本放大器的输入电阻(4)输出电阻Rof=Ro/(1+AvoFv)Ro为基本放大器的输出电阻Avo为基本放大器Rl=∞时的电压放大倍数。
2.本实验还需测量放大器的动态参数,即去掉图1的反馈作用,得到基本放大器电路如下图2图2基本放大器实验设备与器件模拟实验箱,函数信号发生器,双踪示波器,交流伏安表,数字万用表。
实验内容1.静态工作点的测量2.测量基本放大器的各项性能指标实验将图2改接,即把Rf断开后风别并在RF1和RL上。
测量中频电压放大倍数Av,输入输出电阻Ri和Ro。
(1)条件;f=1Kh,us=5mV的正弦信号,用示波器监视输出波形,在输出波形(2)保持us不变,,断开负载电阻RL,测量空载时的输出电压uo计入3—2表2.观察负反馈对非线性失真的改善(1)实验电路改接成基本放大器形式,在输入端加入f=1Kh的正弦信号,输出端接示波器,逐步增大输入信号的幅度,使输出波形开始出现失真,记下此时的波形和输出电压的幅度。
负反馈放大电路的设计与仿真实验报告
负反馈放大电路的设计与仿真实验报告一.实验报告1.掌握两种耦合方式的多级放大电路的静态工作点的调试方法。
2.掌握多级放大电路的电压放大倍数, 输入电阻, 输出电阻的测试方法。
3.掌握负反馈对放大电路动态参数的影响。
二.实验原理三.实际放大电路由多级组成, 构成多级放大电路。
多级放大电路级联而成时, 会互相产生影响。
故需要逐级调整, 使其发挥发挥放大功能。
四.实验步骤1.两级阻容耦合放大电路(无反馈)两级阻容耦合放大电路图(1)测输入电阻及放大倍数由图可得输入电流Ii=107.323nA输入电压Ui=1mA输出电压Uo=107.306mV.则由输入电阻Ri=Ui/Ii=9.318kOhm.放大倍数Au=Uo/Ui=107.306(2)测输出电阻输出电阻测试电路由图可得输出电流Io=330.635nA.则输出电阻Ro=Uo/Io=3.024kOhm.(3)频率响应幅频响应与相频响应由左图可知当放大倍数下降到中频的0.707倍对应的频率为上限频率或下限频率。
由下表可知, 中频对应的放大倍数是601.1943则上限频率或下限频率对应的放大倍数应为425.044左右。
故下限频率为f L=50.6330kHZ上限频率为f H=489.3901kHZ则频带宽度为438.7517kHZ(4)非线性失真当输入为10mA时开始出现明显失真, 输出波形如下图所示2.有串联电压负反馈的两级阻容耦合放大电路有串联电压负反馈的两级阻容耦合放大电路图(1)测输入电阻及放大倍数由图可得输入电流Ii=91.581nA.输入电压Ui=1mA.输出电压Uo=61.125mV. 则由输入电阻Ri=Ui/Ii=10.919kOhm.放大倍数Au=Uo/Ui=61.125(2)测输出电阻由图可得输出电流Io=1.636uA.则输出电阻Ro=Uo/Io=611.247Ohm(3)频率响应幅频相应与相频相应由图可知当放大倍数下降到中频的0.707倍对应的频率为上限频率或下限频率。
含负反馈的两级阻容耦合放大电路设计
含负反馈的两级阻容耦合放大电路设计一实验目的:1.学习利用Electronics Workbench Multisim电子线路仿真软件构建自己的虚拟实验室。
2.学习多级共射极放大电路及其静态工作点、放大倍数的调节方法。
3.掌握多级放大电路的放大倍数、输入电阻、输出电阻、频率特性的测量方法。
4.加深对负反馈放大电路放大特性的理解。
5.研究负反馈对放大电路各项性能指标的影响。
二主要仪器设备:1. 虚拟实验设备⏹操作系统为Windows XP的计算机 1台⏹Electronics Workbench Multisim 8.x~9.x电子线路仿真软件1套.2. 实际工程实验设备⏹模拟实验箱 1台⏹函数信号发生器 1台⏹示波器 1台⏹数字万用表 1台三实验原理及实验电路通常放大电路的放大倍数都是很微弱的,一般为毫伏或微伏数量级.为了推动负载工作,因此要求把几个单级放大电路连接起来,使信号逐级得到放大.因此构成多极放大电路.级间的连接方式叫耦合,如耦合电路是采用电阻,电容耦合的叫阻容耦合放大电路.本试验采用的就是两极阻容耦合放大电路,如图1-1所示.其中两极之间是通过耦合电容C2及偏置电阻连接,由于电容隔直作用,所以两极放大电路的静态工作点可以单独调试测定.两极阻容耦合放大电路的电压放大倍数Au= Au1*Au2从表面看,通过对多个单级放大电路的适当级联,可以实现任意倍数的放大。
似乎放大电路已经没有什么可以研究的了。
但是,问题并不是这么简单。
首先静态工作点与放大倍数是互相影响的,其次,放大倍数与输出电阻也可能互相影响,第三,输入电阻与放大倍数也可能互相影响.在电路中引入负反馈,可以解决这个问题。
如电路图所示.负反馈对放大电路性能主要有五个方面的影响:1.降低放大倍数2.提高放大倍数的稳定性3.改善波形失真4.展宽通频带5.对放大电路的输入电阻和输出电阻的影响四实验预习内容:1预习实验电路的原理,明确实验目的及内容2掌握放大电路的静态和动态的测试方法.3了解实验所需仪器设备的结构性能及使用方法(特别是波特图示仪)4求电路图1-1的静态工作点和电压放大倍数五实验研究分析报告参照实验电路图1-1,完成测量电路的接线,断开反馈支路。
模拟实验二:负反馈放大电路
1~3k
负反馈放大器设计的注意事项
3. 减小射极跟随器负载电容的影响. 减小射极跟随器负载电容的影响.
探头观察, 用×10探头观察,减少示波器的输入电容. 探头观察 减少示波器的输入电容.
Байду номын сангаас
负反馈放大器设计的注意事项 电路要有良好的接地, 4. 电路要有良好的接地,尽量加粗接地 线,消除干扰信号通过地线引起的影响. Vcc 第一 级放 大器 第二 级放 大器 第三 级放 大器
RW1 10K
R5 10K
R6 10K
关于下次实验预习: 增益自动切换的电压放大电路
在2学时以内完成者 在3学时以内完成者 补做一次完成者 90分 70分 60分
�
未完成预约下次实验的办法:实验结束时当堂填表预约. 未完成预约下次实验的办法:实验结束时当堂填表预约.
负反馈放大器指标
设计一负反馈放大器, 要求当 RL =2K 时, 设计一负反馈放大器,
Avf = 40(±10%) ±
反馈深度不低于10 反馈深度不低于 Ri ≥ 15k , Rof ≤ 100 f Lf ≤10Hz, , fHf ≥1MHz, , , 当负载R 当负载 L = 2k 时, Vo ≥500mV. .
设计要求:电路对晶体管的β值变化不敏感,实 设计要求:电路对晶体管的 值变化不敏感 值变化不敏感, 验中不得挑选晶体管的β值 验中不得挑选晶体管的 值. 电阻的相对误差为 %,电容的误差为 %, 电阻的相对误差为10%,电容的误差为20%, %,电容的误差为 在给定的误差范围电路必须能稳定工作. 在给定的误差范围电路必须能稳定工作. 电阻,电容标称值的选择从所发元件中选取. 电阻,电容标称值的选择从所发元件中选取.
关于下次实验预习: 增益自动切换的电压放大电路
负反馈放大电路仿真实验
实验三负反馈放大电路仿真实验一、实验目的(1)、进一步熟悉multisim10软件的使用方法(2)、学会用该软件对负反馈放大电路进行仿真分析(3)、研究负反馈对放大电路性能的影响(4)、掌握负反馈电路的测试方法二、实验原理1、负反馈可以稳定放大倍数,但是其稳定性是以损失放大倍数为代价的,即Af减小到A的(1+AF)分之一,才使其稳定性提高到A的(1+AF)倍;2、负反馈改变输入电阻和输出电阻串联负反馈增大输入内阻,R(if)=(1+AF)Ri3、电压负反馈减小输出电阻: R(of)=Ro/(1+AF);4、引入负反馈后,各种原因引起的放大倍数的变化都将减小,当然也包括因信号频率变化而引起的放大倍数的变化,因此其效果是展宽了同频带;负反馈下线频率为:f Lf=f L/(1+A m F);负反馈上限频率为: f Hf=f H(1+A m F)。
三、实验步骤及内容1、组建负反馈放大仿真电路图1 两级阻容耦合放大电路2、负反馈放大电路开环、闭环放大倍数的测试2.1 开环电路测试(1) 开关S1、 S2打开的情况下,通过示波器,读取输入输出波形的峰值,从而得到没有加反馈、无负载时的开环电压放大倍数Au.(2) 关闭仿真开关,在输出端接上10K电阻,重新开启仿真开关,利用读数指针读出波形的峰值,冰球出在没有加反馈时的开环电压放大倍数Au,并计算电压放大倍数变化量,填入表1中。
2.2 闭环电路测试(1)闭合开关S1,断开S2,使电路引入负反馈环节,测出空载的放大倍数、放大倍数变化量等,并填入表中(2)闭合开关S1、S2,开启仿真开关,,做带负载的闭环电路测试,并将结果填入表1中。
表1 测试开环、闭环电路电压放大倍数数据解:放大倍数A U=U OU i ; ∆A A=A VO−A VLA VO.根据计算可见:①外加负载会使电路的放大倍数减小,但对闭环电路的影响明显小于对开环电路的影响;说明闭环电路稳定性更好。
②闭环电路的放大倍数远小于开环电路的放大倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
负反馈放大电路的仿真与设计
一、实验目的
1. 掌握两种耦合方式的多级放大电路的静态工作点的调试方法。
2. 掌握多级放大电路的电压放大倍数,输入电阻,输出电阻的测试方法。
3. 掌握负反馈对放大电路动态参数的影响。
二、实验器材
2N2222A三极管(2个)、1mV 10KHz 正弦电压源、12V直流电压源、10uF电容(5个)、5.1KΩ1%负反馈电阻、3.0KΩ5%集电极电阻(2个)、1.50KΩ1%电阻、1.40KΩ1%电阻、1.00KΩ1%负载电阻、100Ω1%电阻、21.0KΩ1%基极电阻(2个)、11.0KΩ1%基极电阻(2个)、开关、万用表、示波器等。
三、实验原理与要求
由于电容对直流量的电抗为无穷大,因而阻容耦合放大电路各级之间的直流通路各不相通,各级的静态工作点相互独立。
在实验电路中引入电压串联负反馈,将引回的反馈量与输入量相减,从而调整电路的净输入量与输出量,改变电压放大倍数、输入电阻与输出电阻。
设计一个阻容耦合两级电压放大电路,要求信号源频率10kHz(幅度1mv) ,负载电阻1kΩ,能不失真放大符合要求的交流信号,且电压增益大于100。
给电路引入电压串联深度负反馈,并分别测试负反馈接入前后电路放大倍数、输入、输出电阻和频率特性。
改变输入信号幅度,观察负反馈对电路非线性失真的影响。
原理图如下:
四、实验内容与方法
1.电路频率特性的测试
1)未引入负反馈前的电路频率特性
将电路中的开关J1打开,则此时电路为未引入电压串联负反馈的情况,对电路进行频率仿真,得到如下的电路频率特性图。
可知下限频率f L=755.4901 Hz, 上限频率f H=328.5528KHz。
调节信号源的幅度,当信号源幅度为1mV时,输出波形不失真,如下:
继续调节信号源的幅度,当信号源幅度为2mV时,输出波形出现了较为明显的失真,如下
2)引入电压串联负反馈后的电路频率特性
将电路中的开关J1闭合,则此时电路引入电压串联负反馈,对电路进行频率仿真,得到如下图所示的引入电压串联负反馈后的电路频率特性图。
可知下限频率f L=194.0094 Hz, 上限频率f H=4.3860 MHz。
再来观察引入电压串联负反馈后,整个电路的最大不失真电压值。
当信号源幅度为1mV 时,可以被不失真放大,调节信号源幅度至20mV时,输出波形仍未失真,如下图:
继续增大至21mV时,输出波形开始出现了饱和失真,如下图:
可见加入负反馈后,电路的动态范围增大,即电路可不失真放大的最大信号幅度增大。
2.测量电压放大倍数
1)未引入负反馈的放大倍数
测得输入电压U i=0.999951mV,输出电压U o=618.169mV,则A u=U o/U i=618.199。
2)引入负反馈的放大倍数
测得输入电压U i≈1mV,输出电压U o=47.551mV,则A u=U o/U i=47.551。
可见电压串联负反馈的引入,使得电压放大倍数明显减小,两者相差约13倍。
3.测量输入电阻
1)未引入负反馈时
测得输入电压U i=0.999951mV,输入电流I i=182.358 nA,则R i=U i/I i=5.483KΩ2)引入负反馈后
测得输入电压U i≈1mV,输入电流I i=167.05nA,则R i=U i/I i=5.986KΩ。
可见电压串联负反馈的引入,使得输入电阻增大。
4.测量输出电阻
1)未引入负反馈前
测得输出电压Uo=0.999959mV,输出电流I i=354.594nA,则Ro= Uo/Io=2.820KΩ。
2)引入负反馈后
测得输出电压Uo=0.999959mV,输出电流I i=14.03 uA,则Ro= Uo/Io=71.273Ω。
可见电压串联负反馈的引入,使得输出电阻减小。
5.AF ≈1/F的验证
按如下图所示连接电路,闭合J1。
由于电压串联负反馈电路的A F=A uuf=U o/U i、F=F uu
=Uƒ/U o,因此,需要测量输出电压U o、输入电压U i、反馈电压Uƒ。
测得U i≈1mV,U o=47.552mV,Uƒ=991.916uF,则A F=A uuf=U o/U i=47.551,F=F uu =Uƒ/U o=0.02086,1/F=47.939,因此A F 1/F得到验证。
五、实验总结
本实验通过对二级阻容耦合放大电路引入电压串联负反馈前后进行电路仿真,由实验结果可以得出这样的结论:对电路引入电压串联负反馈,会减小其下限频率,增大其上限频率,从而使其通频带变宽;引入电压串联负反馈,会减小电路的电压放大倍数,并增大电路可不失
真放大的最大信号幅度,减小非线性失真;引入电压串联负反馈,会增大输入电阻,减小输出电阻,最后通过测量计算验证了A F 1/F的结果。