微波射频笔记3.微带线与带状线介绍

合集下载

微带线和带状线阻抗

微带线和带状线阻抗

微带线和带状线阻抗导言:微带线和带状线是在高频电路和微波领域中常用的传输线路结构。

它们由于其特殊的结构和材料选择,在高频信号传输中具有重要的应用价值。

本文将从微带线和带状线的概念、结构、特点以及阻抗等方面进行介绍和比较,以便更好地理解和应用这两种传输线路。

一、微带线微带线是一种常用的平面传输线路结构,由导体、介质和地面构成。

导体通常采用金属箔或薄膜形式,介质可以是空气、聚四氟乙烯(PTFE)等。

微带线的特点在于其导体位于介质的一侧,而另一侧与地面相隔一定距离。

1. 结构特点微带线的结构简单,由导体、介质和地面三部分组成。

导体通常是一条细长的金属带,宽度较窄,厚度较薄。

介质可以是空气、聚四氟乙烯等,其厚度相对导体较大。

地面一般采用金属层,作为微带线的底部。

2. 电磁特性由于微带线的特殊结构,其电磁特性与常规传输线路有所不同。

微带线主要有两种电磁模式,即TEM模式和TE模式。

TEM模式是指电磁波既不沿导体方向传播,也不沿介质方向传播,而是沿着微带线的平面方向传播。

TE模式是指电磁波仅沿着微带线的平面方向传播。

3. 阻抗特性微带线的阻抗取决于其结构参数和材料特性。

一般来说,微带线的阻抗较为灵活,可以通过调整导体宽度、介质高度和介电常数等参数来实现不同的阻抗匹配。

常见的微带线阻抗有50欧姆和75欧姆等。

二、带状线带状线是一种平面传输线路结构,其结构类似于微带线,但在导体形状和介质选择上有所不同。

带状线的导体通常是一条细长的金属带,宽度较宽,厚度较薄。

介质可以是聚四氟乙烯等。

1. 结构特点带状线的结构与微带线相似,由导体、介质和地面三部分组成。

导体通常是一条宽度较宽的金属带,厚度较薄。

介质可以是聚四氟乙烯等。

地面一般采用金属层,作为带状线的底部。

2. 电磁特性带状线的电磁特性与微带线类似,也有TEM模式和TE模式。

TEM模式是指电磁波既不沿导体方向传播,也不沿介质方向传播,而是沿着带状线的平面方向传播。

TE模式是指电磁波仅沿着带状线的平面方向传播。

微带与带线

微带与带线
对于常见的低耗情况
j j 0 0 r 1 jtg
1 2
1 2 0 0 r tg 0 0 r r tg 。另一方面 很明显看出
于是

可知
2
0


2
0
r
,
1 tg 2 考虑到统一介质衰减常数d用dB/m表示 8.686 273 . d r tg r tg 0 0
设则介质内波传播的Helmholtz方程是
2 E k0 r (1 jtg ) E 0 2 2 E E 0
2
设z方向的波是 其中
z E E0 e
1 (1 jtg ) 1 jtg 2
1 2
——衰减常数,——传输常数。
c TM01 2b r
为了抑制TM01模,最短的工作波长为

min c TM01 min b 2 r
根据上述要求即可确定带状线的尺寸w和b。
三、带线的衰线 带状线的衰减包括两部分:介质衰线和导体 衰线。 1. 介质衰减常数αd 对于介质衰线,任何传输线都有同一形式 的公式,所以这里采取平面波传输的办法导 出。 有介质衰减的无源区Maxwell方程
0 其中 r
2. 导体衰减常数αd
由传输线理论已知,导体衰减相当于分布的串联 电感中有损耗电阻成分,如图所示。
R1D z LD z CD z
导体衰减
传输线的二次特征参数
ZY ( R1 jL)( jC )
R1 j LC 1 j L R1 j LC 1 j L R1 j LC 2Z 0
导体上部为空气,下面为介质基片 ——电磁场大部分集中在介质片内,少部分 在空气中——非纯TEM! 空气中速度c 与 介质中速度,不匹配

微带线和带状线

微带线和带状线

微带线和带状线微带线和带状线在现代通信领域,微带线和带状线是最常见的两种传输线类型。

它们各自具有独特的优点和应用场景,被广泛用于微波电路、射频电路等领域。

本文将对微带线和带状线进行详细介绍。

1.微带线微带线是一种平板传输线,通常由金属线路和绝缘基板组成。

微带线具有结构简单、成本低廉和易于制造的优点,因此在微波电路和射频电路中被广泛应用。

微带线的特性阻抗随着基板尺寸和介电常数的变化而变化,因此可以通过调整基板参数来实现特定的阻抗匹配。

微带线的主要应用场景包括天线、滤波器、功率分配器、耦合器等。

其中,微带天线是最常见的应用之一。

由于微带线可以在基板表面上实现,因此形成天线的成本和制造难度要低得多。

此外,由于微带线的结构可以自由设计,因此可以用来实现各种不同类型的天线,例如贴片天线、宽带天线、喇叭天线等。

2.带状线带状线是一种同轴传输线,由两个同心的导体组成,中间的空气或绝缘材料将它们分开。

带状线的特点是阻抗稳定,衰减小,可靠性高,因此在高频、高速信号传输系统中得到了广泛应用。

带状线的主要应用场景包括高速数据传输、精密测量、信号传输等。

例如,在高速数据传输系统中,带状线可以用来连接各种高速设备,例如CPU、存储器、芯片等。

由于带状线的阻抗稳定,因此它可以减少信号折射和反射,提高系统的可靠性和传输速度。

另外,带状线还可以用于精密测量。

例如,在用于测量电磁脉冲的场合,带状线可以提供稳定且可靠的传输路径,并保持信号的完整性和准确性。

此外,在信号传输方面,带状线可以用来连接各种高性能设备,例如放大器、滤波器等,以实现高保真、高速度的信号传输。

总之,微带线和带状线均是非常重要的传输线类型,具有独特的应用场景和优点。

在通信领域不断发展的今天,它们将继续发挥着重要作用,为高频、高速信号传输系统的发展提供技术支持。

带状线和微带线

带状线和微带线

E z(x,b)0
E z(x,0)0
理想导体表面, 电“立”
3. TM波(E波)[6]
物理意义:
Z向无限长的理想波导中,沿此方向的场有 e jz
的行波特征。 在z=常数的横截面内,导波场有驻波分布特征。 各场分量的幅度系数D取决于激励的强度。 任意一对m,n的值对应一个基本波函数,为一本
1. 带状线
带状线又称三板线, 它由两块相距为b的接 地板与中间宽度为w、 厚度为t的矩形截面 导体构成, 接地板之间填充均匀介质或空气。 由前面分析可知, 由于带状线由同轴线演化 而来, 因此与同轴线具有相似的特性, 这主 要体现在其传输主模也为TEM, 也存在高 次TE和TM模。带状线的传输特性参量主 要有:
(a, ) V0 (b, ) 0
(a,)V0 c1lnac2 (b,)0c1lnbc2
(r,) V0 ln(b/r)
ln(b/ a)
E 0 t(r,) t(r,) (r ˆ ( r r,) r ˆ (r ,))
rˆ V0 r ln(b / a)
因此电场为:
E ( r ,,z ) E 0 t( r ,) e jz r ln r ˆ ( V b 0 /a )e jz r ˆ E m e jz
z
Ez
E
圆波导是空心的 金属管
处理圆波导采用 圆柱坐标系比较 方便
我们仍然采用矩 形波导的思路并 从(24)式开始
0
Er
y
x
r
t2 F z(u ,v ) k c 2 F z(u ,v ) 0(24)
只不过 E z ( a ,) A 1 J n ( k B c a ) cn o 0 s ) 0 (
基本要求
对微波集成传输元件的基本要求之一就 是它必须具有平面型结构, 这样可以通过 调整单一平面尺寸来控制其传输特性, 从 而实现微波电路的集成化。

微波技术微带相关传输线

微波技术微带相关传输线

偶模(Even Mode):当给两根微带线输入幅度相等、相位相 同的电压 Ve 时,其电场线分布是一种相互排斥的偶对称分 布,如图 2(b)所示。 这种相对于中心对称面具有偶对称 分布的模式就称为偶模,用下标“e”表示。
Vo
Vo
Ve
Ve
图 2
平行耦合带线的奇偶模电场线分布
当给两线输入的是任意电压 V1 和 V2 时,可以把 V1 和 V2 分解成一对奇、偶模分量,使 V1 等于两分量之和,V2 等于两分量之差,即
V1 Ve Vo V2 Ve Vo
由上式可解得相应的奇模电压 Vo 和偶模电压 Ve,即
Vo
Vo
Ve
Ve
图 2
平行耦合带线的奇偶模电场线分布
当给两线输入的是任意电压 V1 和 V2 时,可以把 V1 和 V2 分解成一对奇、偶模分量,使 V1 等于两分量之和,V2 等于两分量之差,即
三、平行耦合微带线的特性参量
从图 2 可以看出,奇模激励时,对称面上电场切向分 量为零,为电壁(Electric Wall); 偶模激励时,对称面 上磁场切向分量为零,为磁壁(Magnetic Wall)。 因此,在奇、 偶模激励时,求其中一根传输线的特性参量时,可将另一 根线的影响用对称面处的电(磁)壁来等效。
Vo
Vo
Ve
Ve
图 2
平行耦合带线的奇偶模电场线分布
与单根微带线一样,在耦合微带线中也引入有效介电 常数的概念。由于有效介电常数决定于场在介质中和在空 气中的相对比值,而奇、偶模的场分布是不同的,故奇、 偶模激励时的相对有效介电常数 eo 和 ee 不同。 因此,奇 模相速和偶模的相速分别由下式确定
(b)微带线的演变过程

带状线和微带线

带状线和微带线

由于其结构简单,易于制作和 加工,因此微带线在微波集成 电路中占据了主导地位。
微带线还具有低辐射、低损耗 和高可靠性等优点,因此在无 线通信、雷达、电子战等领域 得到了广泛应用。
微带线的应用场景
微带线在微波和毫米波频段的应 用非常广泛,如卫星通信、雷达、 电子战、高速数字信号处理等领
域。
在微波集成电路中,微带线被用 作信号传输线、元件和电路之间
带状线和微带线
目录
• 带状线介绍 • 微带线介绍 • 带状线和微带线的比较 • 带状线和微带线的制作工艺 • 带状线和微带线的未来发展
01 带状线介绍
带状线的定义
定义
01
带状线是一种传输线结构,由一条金属带和两侧的接
地面构成。
结构
02 金属带通常由铜、铝或其它导电材料制成,宽度和厚
度根据需要而定。接地面通常为金属板或导电层。
制作过程中需要严格控制工艺参数,如温度、压力、时间等,以确保 导体和绝缘层的厚度、宽度以及间距的精度。
尺寸缩小与精度控制
随着通信技术的发展,对带状线和微带线的尺寸和精度要求越来越高, 需要不断提高制作工艺的精度和稳定性。
可靠性问题
带状线和微带线在制作和使用过程中可能会受到环境因素的影响,如 温度、湿度、机械应力等,需要采取措施提高其可靠性。
导体制作
利用电镀或溅射技术在光刻胶 保护下形成导带,去除光刻胶 后得到微带线导体。
表面处理
对微带线导体表面进行清洗、 干燥和保护处理,确保其具有 良好的导电性能和稳定性。
制作工艺的难点和挑战
材料选择与制备
带状线和微带线对材料的要求较高,需要选择合适的导电材料和绝缘 材料,并确保其性能稳定可靠。
制程控制

射频电路预备基础知识_0_2_射频传输线

射频电路预备基础知识_0_2_射频传输线
在射频微波的低频段,可以用平行双线来传输微波能量和信号; 而当频率提高到其波长和两根导线间的距离可以相比时,电磁能量会 通过导线向空间辐射出去,损耗随之增加,频率愈高,损耗愈大,因 此在微波的高频段,平行双线不能用来作为传输线。
2. 同轴线 (Co-axial cable TL)
Features: • Electric field is completely contained within both conductors • Perfect shielding of magnetic field • TEM modes up to a certain cut-off frequency
7.圆波导
通常由金属材料(铜、铝等)制成的,圆形截面的、 内部填充空气介质的规则金属波导称之为圆波导。
注意:圆波导中有无穷多个满足边界条件的模式, 但不存在TE00、TEm0、TM00和TMm0模式。它的最 低模式是TE11模。
二、传输线特性分析
传输线有长线和短线之分。所谓长线是指传输线的 几何长度与线上传输电磁波的波长比值(电长度)大于或 接近1,反之称为短线。
V(z) V e kz V ekz
(z)
V V
(z) (z)
• 电压/电流波空间分布特性 V(z) V e kz oV ekz V (ekz oekz )
(I z) I (ekz oekz ) V (ekz oekz ) / Zo
Z(z) V (z) / I (z)
z0
I(z)
k
(V e kz V ekz ) 1 (V e kz V ekz )
(R jL)
Z0
• 传输线上单位长度的R, L, G, C
• 微带线特性阻抗与结构, 材料特性的关系

微带线与带状线

微带线与带状线

带状线:走在内层(stripline/double stripline),埋在PCB内部的带状走线,如下图所示。

蓝色部分是导体,绿色部分是PCB的绝缘电介质,stripline是嵌在两层导体之间的带状导线。

因为stripline是嵌在两层导体之间,所以它的电场分布都在两个包它的导体(平面)之间,不会辐射出去能量,也不会受到外部的辐射干扰。

但是由于它的周围全是电介质(介电常数比1大),所以信号在stripline中的传输速度比在microstrip line中慢!微带线:是走在表面层(microstrip),附在PCB表面的带状走线,如下图所示。

蓝色部分是导体,绿色部分是PCB的绝缘电介质,上面的蓝色小块儿是microstrip line。

其中黄色部分是环氧有机材料。

由于microstrip line(微带线)的一面裸露在空气里面(可以向周围形成辐射或受到周围的辐射干扰),而另一面附在PCB的绝缘电介质上,所以它形成的电场一部分分布在空中,另一部分分布在PCB的绝缘介质中。

但是microstrip line中的信号传输速度要比stripline中的信号传输速度快,这是其突出的优点!影响PCB走线特性阻抗Z0的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。

在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。

最常使用的微带线结构有4种:表面微带线(surface microstrip)、嵌入式微带线(embedded microstrip)、带状线(stripline)、双带线(dual-stripline)。

微带线的接地参考层和高速信号线在不同layer?比如L1/L2但是共面波导的接地参考层和高速线在同一个layer,就是高速线包地。

就是说高速信号两边铺铜,铜的属性是地覆铜板/层压板(Laminate)半固化片(Prepreg)Prepreg:半固化片,又称预浸材料,是用树脂浸渍并固化到中间程度(B阶)的薄片材料。

射频与微波技术知识点总结

射频与微波技术知识点总结

射频 /微波的特点: 1.频率高2.波长短3.大气窗口4.分子谐振微波频率: 300MHz-3000GHz 波长:0.1mm-1m独特的特点:RF/MW 的波长与自然界物体尺寸相比拟在 RF/MW 波段,由于导体的趋肤效应、介质损耗效应、电磁感应等影响,期间区域不再是单纯能量的集中区,而呈现分布特性。

长线概念:通常把 RF/MW 导线(传输线)称为长线,传统的电路理论已不适合长线!RF/MW系统的组成:传输线:传输 RF/MW 信号微波元器件:完成微波信号的产生、放大、变换等和功率的分配、控制及滤波天线:辐射或接收电磁波微波、天线与电波传播的关系:(简答)U 微波:U 对象:如何导引电磁波在微波传输系统中的有效传输目的:希望电磁波按一定要求沿微波传输系统无辐射的传输;天线任务:将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波作用: 1.有效辐射或接收电磁波; 2.把无线电波能量转换为导行波能量max min电波传播分析和研究电波在空间的传播方式和特点常用传输线机构:矩形波导共面波导同轴线带状线微带线槽线分析方法Z0(R j L) /(G j C)称为传输线的特性阻抗特性阻抗Z0 通常是个复数 , 且与工作频率有关。

它由传输线自身分布参数决定而与负载及信源无关, 故称为特性阻抗L对于均匀无耗传输线, R=G=0, 传输线的特性阻抗为Z0特性阻抗Z0 为实数 , 且与频率无关。

C此时,常用的平行双导线传输线的特性阻抗有250Ω , 400Ω和 600Ω三种。

常用的同轴线的特性阻抗有50 Ω和 75Ω两种。

均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗及工作频率有关, 且一般为复数 , 故不宜直接测量。

无耗传输线上任意相距λ /2 处的阻抗相同,一般称之为λ /2 重复性。

传输线上电压和电流以波的形式传播,在任一点的电压或电流均由沿-z 方向传播的行波(称为入射波)和沿 +z 方向传播的行波(称为反射波)叠加而成。

微波技术-3-带状线与微带

微波技术-3-带状线与微带

特征阻抗
L 1 Z0 ( 3.178) C v pC
3.7.1 传播常数、特征阻抗和衰减的公式— —带状线设计的经验公式

计算特征阻抗的经验公式(中心导体零厚度)
b Z0 (3.179a ) r we 0.441b 30

We是中心导体的有效宽度,即
w 0 0.35 we w b ( 3.179b) 2 w w b b 0.35 0.35 b b

中心导带上的电荷密度
s Dy x, y b / 2 Dy x, y b / 2
n nx nb s 2 0 r An cos cosh (3.187) a a 2a n1, 3 , 5,..

3.7.2 近似静电解
——带状线特征阻抗的数值方法

系数An的求解 中心导体表面电荷分布的简单假设
1 x W 2 s x ( 3.188 ) 0 x W 2

利用三角函数的正交性,得到系数An
2a sinnW 2a An 3.189 2 n 0 r coshnb / 2a

导体损耗
Rs c Np / m ( 3.199) Z 0W
3.11 传输线和波导小结

常见传输线和波导的比较
特性 基模 同轴线 TEM 波导 TE10 带状线 TEM 微带 准TEM
其他模式
色散(基模)
TE,TM

TE,TM
中等
TE,TM

混合TE-TM

带宽
损耗 功率容量 物理尺寸 加工难度
主要分析方法(TEM模) 采用静场分析方法 保角变换 求解电位的拉普拉斯方 程 用途 微波无源集成电路。特 别适合多层微波集成的 中间层。

圆波导、同轴线、带状线、微带线简介

圆波导、同轴线、带状线、微带线简介

微带电路简介
微带电路的结构图
微带电路简介
r =13,tanδ=0.006)。则微带电路与普通晶体 ( 管印刷电路的区别为:微带电路要求基片介质必 须损耗小,不易变形,介电常数 在 r 2-20之间, 金属板的导电性能好,加工线条精度高。 微带线是一种双导体结构。对于空气微带线, 其上传输的波形是TEM波;对于实际填充 介 质的标准微带线,导带周围有两种介质,其场大 部分集中在导带与接地板之间。由于相速度在介 质不连续的界面处不能与TEM模匹配,因此实际 上,微带线中传输的是一种TE-TM混合波。其纵 向场分量主要是由介质、空气分界面处的边缘场
1、3 带状线简介

带状线的结构 带状线的结构如下图所示,由一个宽度为W, 厚度为t的中心导带和相距为d的上、下两块接地 板构成,接地板之间填充 r 的均匀介质。 带状线支持TEM波传输,这也是带状线的主 模式。同时带状线可认为是由同轴线演变而来, 故存在高次波形TE或TM模。一般可通过选择带 状线的横向尺寸来抑制高次模的出现,当取 min min b W 时可保证TEM波主模单模工 2 r 2 r 作。
r d tan 0
同轴线简介
Rs 1 1 2 a b c b ln a 1
Rs f / 2 式中, 是导体的表面电阻, tanσ是同轴 线中填充介质的损耗角正切。

同轴线中的高次模 若同轴线的尺寸与波长相比足够大时,传输线上 有可能传输TM或TE波。
圆波导
圆波导TE01场结构分布图
圆波导 TM01模 将m=0,n=1代入TM波的各分量表达式中,可得:

Ez J 0 (
01
a a
) e j z
) e j z

第3章 微波传输线汇总

第3章 微波传输线汇总

带单位长度上对地的奇、偶模电容
C0o(1)、C0e(1) 和C0o(εr)、C0e(εr)
εreo
由准静态分析法
εree
C0o (εr ) C0o (1) C0e (εr ) C0e (1)
第三章 微波传输线
“场”的理论
第三章 微波传输线
3―1 引言 3―2 带状线 3―3 微带传输线 3―4 耦合带状线和耦合微带线 3―5 金属波导传输线的一般理论 3―6 矩形波导 3―7 圆波导 3―8 同轴波导
第三章 微波传输线
3―1 引言
“场”的理论
微波传输线是用来传输微波信号和微波能量的传输线。
带状线
w
t
h
er
平行双线 截断平行线 微带线
第三章 微波传输线
3―2 带状线
“场”的理论
中心导带一条:厚度为t,宽度为W的矩形截面 接地板上、下两块:间距为b 中心导带周围媒质:空气或其它介质
线上传输的主模为TEM模,可用长线理论分析
εr
带状线
第三章 微波传输线
“场”的理论
一、特性阻抗 Z0 由长线理论可知,TEM模传输线特性阻抗的计算公式
抑制波导型TE 波 抑制波导型TM 波 抑制TE 型表面波 抑制TM 型表面波
第三章 微波传输线
“场”的理论
3―4 耦合带状线和耦合微带线
耦合传输线:互相靠近的两对传输线彼此产生电磁耦合
耦合带状线和耦合微带线
第三章 微波传输线
一、结构、尺寸、分析方法
“场”的理论
将激励电压U1和U2分解成一对等幅反相的奇模电压 和一对等幅同相的偶模电压 U1 Ue Uo , U2 Ue Uo
第三章 微波传输线 微带线特性阻抗Z0和相对等效介电常数与尺寸的关系

第三章 微波传输线 4微带线

第三章 微波传输线 4微带线

第3章 微波传输线
微带线可由双导体系统演化而来, 但由于在中心导带和接 地板之间加入了介质, 因此在介质基底存在的微带线所传 输的波已非标准的TEM波, 而是纵向分量Ez和Hz必然存在。
下面我们首先从麦克斯韦尔方程出发加以证明纵向分量的 存在。
第3章 微波传输线
为微带线建立如图 3 - 5 所示的坐标。介质边界两边电磁 场均满足无源麦克斯韦方程组:
t )](w / h h
2)
h
2h
2h
第3章 微波传输线
式中, we为t不为零时导带的等效宽度; RS为导体表面电阻。
为了降低导体的损耗, 除了选择表面电阻率很小的导体材 料(金、 银、 铜)之外, 对微带线的加工工艺也有严格的要求。 一方面加大导体带厚度, 这是由于趋肤效应的影响, 导体带越厚, 则导体损耗越小, 故一般取导体厚度为 5~8 倍的趋肤深度; 另一 方面, 导体带表面的粗糙度要尽可能小, 一般应在微米量级以下。
(2) 介质衰减常数αd
对均匀介质传输线, 其介质衰减常数由下式决定:
ad
1 2
GZ0
27.3
0
tan
第3章 微波传输线
式中, tanδ为介质材料的损耗角正切。由于实际微带只有 部分介质填充, 因此必须使用以下修正公式
式中,
q
ad
e
27.3
(q e ) tan
0
r
为介质损耗角的填充系数。
r
一般情况下, 微带线的导体衰减远大于介质衰减, 因此一般
第3章 微波传输线
同理可得
EZ1 y
r
Ez 2 y
j
(1
1
r
)
E
y

PCB布线中的微带线和带状线设计

PCB布线中的微带线和带状线设计

PCB布线中的微带线和带状线设计在PCB布线设计中,微带线和带状线是两种常用的传输线结构。

它们被广泛应用于高频电路中,如射频电路和微波电路,以保证信号的传输质量和减小传输损耗。

本文将详细介绍微带线和带状线的概念、设计原理和性能特点。

一、微带线的概念和设计原理微带线是一种平面传输线结构,由一条导体线和接地平面构成。

导体线通常位于接地平面的上方,与接地平面通过介质层相隔一定的距离。

微带线的导体线可以是导线或导电层,接地平面则是铜层或称为接地层。

在微带线中,信号的传输主要是通过导体线的电磁场耦合在介质层中进行,同时也有一部分能量通过导体线与接地平面之间的电容耦合进行传输。

微带线的电磁场分布主要由两个因素决定:导体线的宽度和导体线与接地平面之间的距离。

这两个因素共同决定了微带线的特性阻抗和传播特性。

通常情况下,当微带线的宽度增加时,阻抗会降低,但是传输损耗会增加;当微带线与接地平面的距离增加时,阻抗会增加,但是传输损耗会降低。

因此,在设计微带线时需要根据具体应用要求权衡选择合适的宽度和距离。

微带线的设计还需要考虑到导体线的长度和弯曲,因为这些因素会对传输线的电磁性能产生影响。

导体线的长度应尽量避免过长,因为导体线长度的增加会导致信号的传输延迟和功率损耗的增加。

而弯曲则会引入信号反射和散射,影响传输线的匹配和信号完整性。

二、带状线的概念和设计原理带状线是一种常用的传输线结构,由一条狭窄的导体线嵌在介质层中,上面覆盖着一层接地平面。

带状线的导体线与接地平面之间的距离通常比微带线小,这样可以实现更高的功率传输和更低的传输损耗。

带状线的设计与微带线类似,主要考虑的因素包括导体线的宽度、导体线与接地平面之间的距离以及导体线的长度和弯曲。

不同的是,带状线相比微带线更适用于高功率、高频和窄带的应用。

带状线的导体宽度可以选择得更窄,这样可以实现更高的特性阻抗。

同时,带状线的传输电磁场主要分布在导体线附近,相对于微带线来说,带状线的电磁场集中度更高,能够实现更好的信号耦合效果。

微波射频笔记2.传输线理论

微波射频笔记2.传输线理论

传输线理论1.特征阻抗Z0在高频范围内,信号传输过程中,信号沿到达的地方,信号线和参考平面(电源或地平面)间由于电场的建立,会产生一个瞬间电流,在信号传输过程中,传输线就会等效成一个电阻,大小为V(行波电压)/I(行波电流),把这个等效的电阻称为传输线的特性阻抗Z0;输入阻抗Z1指的是传输线上总电压V(z)/总电流I(z)。

50Ω的特征阻抗:阻抗为51.1Ω时,趋肤效应带来的损耗最小,为了方便计算,行业同一为50Ω;同轴线阻抗30Ω时,功率容量最大,77Ω时,损耗最小,折中也取了50Ω。

理论证明:线越宽,阻抗(特征阻抗)越小。

(类似导体电阻值与粗细成反比的概念,但特征阻抗与长度无关);阻抗会随位置变化。

2. 插入损耗IL为了描述波的传输,引入概念传输系数T:T= 2Z1/(Z1+Z0);传输线中两点间的传输系数T常常用dB(分贝)表示成插入损耗IL = -20lg|T| dB。

注:Z1和Z0分别是传输线上两个点的阻抗。

3. 分贝(dB)、dBm的概念在微波系统中两个功率电平P1和P2之比用dB表示为10lg(P1/P2),如P1/P2=2,等效于3dB,即功率降低一半,衰减3dB;若令P2=1mW,则P1可以用dBm来表示为10lg(P1/0.001W),如1mW的功率为0dBm;1W的功率为30dBm;引入lg公式的好处就是:将乘除运算转为加减运算。

4. 阻抗匹配理论证明:1/2波长的线不变换或不改变负载特征阻抗;理论得出:若线的长度为1/4波长,则:λ/4阻抗变换器的缺点是频带窄,只能对中心频率f0匹配。

当频率f偏离中心频率f0时,主传输线上有反射产生。

频率f偏离中心频率f0越大,主传输线的反射系数模|Γ|也越大。

为展宽带宽,可以采用两节或多节λ/4阻抗变换器。

用两节或多节λ/4阻抗变换器时,满足一定反射系数或驻波比的工作带宽比用单节λ/4阻抗变换器时宽得多。

λ/4阻抗变换变换的是电压和电流的幅值,因为阻抗=电压/电流,且λ/4内一定会有电压和电流的波谷点和波腹点!5.三种传输模式TEM波:横电磁波,电场、磁场与电磁波传输方向垂直;TE波:横电波,电场与电磁波方向垂直,传输方向上有磁场分量;TM波:横磁波,磁场与电磁波方向垂直,传输线上有电场分量。

微波技术微波传输线微带线基础

微波技术微波传输线微带线基础
微波技术微波传输线微带线基础
1、微带线的发展
三个特点
可用印刷电路的方法做成平面电路,电路结构十分紧凑; 高介电常数的介质基片缩短了导波波长,使传输线纵、横
向尺寸均大为缩减; 微带线导体的半边是自由空间,连接固体器件十分方便。
微波技术微波传输线微带线基础
1、微带线的发展
带状线 微带线
微波技术微波传输线微带线基础
目前,微带集成电路发展十分迅速,已成为微波技术 的主要发展方向之一。
微波技术微波传输线微带线基础
一、基片材料要求:
①εr 大(小型化); ②tgδ小(损耗小); ③εr 温度系数小(频漂小); ④纯度高,一致性好; ⑤表面光洁度高; ⑥电阻率高,热传导率高,击穿强度高(大功率传送)。
常见基片材料:
微波技术微波传输线微带线基础
3、微带线的色散特性
高次波型的存在,除了使参量偏离于按TEM波计算的结果 外,还增加了辐射损耗,并引起电路各部分之间的互耦, 使工作状况恶化。
在微带电路中,高次波型主要有两种:波导波型和表面波 型。前者存在于金属带条和接地板之间,后者则只要在接 地板上放一块介质基片即能存在。

微波技术微波传输线微带线基础
图示
微波技术微波传输线微带线基础
1、微带线的发展
概念的提出:40年代末、50年代初。 从六十年代以来,无线电技术对小型化的要求日益迫切,
改变以波导、同轴线为主体的微波系统已成为当务之急; 同时在微波固体器件上已产生重大突破,要求有微波传输 线与之配合,此时微带线就占据了重要的应用位置,因为 它的下述三个主要特点解决了微波电路小型化、集成化中 的主要矛盾。
微带线基础
微带线的发展 微带线的特性参量 微带线的色散特性 微带线的应用

微带线(microstrip)和带状线(stripline)

微带线(microstrip)和带状线(stripline)

微带线(microstrip)和带状线(stripline)微带线剖面图适合制作微波集成电路的平面结构传输线。

与金属波导相比,其体积小、重量轻、使用频带宽、可靠性高和制造成本低等;但损耗稍大,功率容量小。

60年代前期,由于微波低损耗介质材料和微波半导体器件的发展,形成了微波集成电路,使微带线得到广泛应用,相继出现了各种类型的微带线。

一般用薄膜工艺制造。

介质基片选用介电常数高、微波损耗低的材料。

导体应具有导电率高、稳定性好、与基片的粘附性强等特点。

两个方面的作用在手机电路中,一条特殊的印刷铜线即构成一个电感微带线,在一定条件下,我们又称其为微带线。

一般有两个方面的作用:一是它把高频信号能进行较有效地传输;二是与其他固体器件如电感、电容等构成一个匹配网络,使信号输出端与负载很好地匹配。

1.PCB的特性阻抗Z0与PCB设计中布局和走线方式密切相关。

影响PCB 走线特性阻抗的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。

微带线2.当印制线上传输的信号速度超过100MHz时,必须将印制线看成是带有寄生电容和电感的传输线,而且在高频下会有趋肤效应和电介质损耗,这些都会影响传输线的特征阻抗。

按照传输线的结构,可以将它分为微带线和带状线。

在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。

最常使用的微带线结构有4种:表面微带线(surfacemicrostrip)、嵌入式微带线(embedded microstrip)、带状线(stripline)、双带线(dual-stripline)。

2.微带线是位于接地层上由电介质隔开的印制导线,它是一根带状导线(信号线).与地平面之间用一种电介质隔离开。

印制导线的厚度、宽度、印制导线与地层的距离以及电介质的介电常数决定了微带线的特性阻抗。

如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微带线
1.随便介绍一下
①用途:微带功分器、微带耦合器、微带滤波器、PCB板布线、微带天线...
②优点:易于有源、无源电路集成
③走线原则:①尽量短②尽量平滑③尽量正交
微带布线的弯曲,宽度突变,接头处会引入寄生电抗,影响匹配,可以通过去处一部分导体来实现补偿,可借鉴下图:
2.选用指南
微带板导体一般选用金银铜这三种,最常用的铜箔厚度有35um和18um两种。

铜箔越薄,越易获得高的图形精密度,所以高精密度的微波图形应选用不大于18um的铜箔。

目前的铜箔类型有压延铜箔和电解铜箔两类。

压延铜箔较电解铜箔更适合于制造高精密图形,所以在材料订货时,可以考虑选择压延铜箔的基材板。

压延法制造的铜箔要求铜纯度高(一般≥99.9%),铜箔弹性好,适用于挠性板、高频信号板等高性能PCB的制造,在产品说明书中用字母“W”表示。

电解铜箔则用于普通PCB的制造,铜的纯度稍低于压延法所用的铜纯度(一般未99.8%),并用字母“E”表示
3.高段位玩法
在射频微波电路中,微带线结构可以模拟实现集总参数元件;若传输线长度<λ/8,则给定频率时,L正比于Z0,C反比于Z0,若使Z0很大,则L很大,C 很小以至于可以忽略。

故串联电感可用高阻抗微带线代替,同理并联电容可用低阻抗微带线实现。

如上图,一段半波长微带线跨接在主传输线上,两端开路,其中长度<λ/4的相当于电容,而>λ/4的相当于电感。

带状线
1.结构:
一般是微带线上在盖一层相同厚度的基板,上下都接地,也可以看成是同轴线的一种;带状线也支持高阶TM模和TE模,因此需要避免,可采用:
一、短路螺钉将上下两面地短路;二、两平面间距离小于λ/4。

2.用途:常用于耦合器
3.优点:
封闭的电磁场,故损耗比微带线小,相同频率下比微带更小型化;
4.其余各项要求性能与微带线相似。

相关文档
最新文档