《结构力学习题集》第8章位移法

合集下载

《结构力学习题集》第8章位移法

《结构力学习题集》第8章位移法

第8章 位移法习 题一、判断题:1、位移法未知量的数目与结构的超静定次数有关。

( )2、位移法的基本结构可以是静定的,也可以是超静定的。

( ) 4、位移法典型方程的物理意义反映了原结构的位移协调条件。

( )5、图示结构,当支座B 发生沉降∆时,支座B 处梁截面的转角大小为12./∆l ,方向为顺时针方向,设EI =常数。

( )6、图示梁之 EI =常数,当两端发生图示角位移时引起梁中点C 之竖直位移为(/)38l θ(向下)。

( )2θθC7、图示梁之EI =常数,固定端A 发生顺时针方向之角位移θ,由此引起铰支端B 之转角(以顺时针方向为正)是-θ/2 。

( )8、用位移法可求得图示梁B 端的竖向位移为ql EI 324/。

( )q9、结 构 按 位 移 法 计 算 时 , 其 典 型 方 程 的 数 目 与 结 点 位 移 数 目 相 等 。

( ) 10、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。

( ) 11、超 静 定 结 构 中 杆 端 弯 矩 只 取 决 于 杆 端 位 移 。

( ) 12、图示梁之 EI =常数,当两端发生图示角位移时引起梁中点C 之竖直位移为(/)38l θ(向下)。

2θθC二、填空题:13、判断下列结构用位移法计算时基本未知量的数目。

(1) (2) (3)(4) (5) (6)EIEIEIEI 2EI EI EIEIEA EA ab EI=EI=EI=24442第13题14、位移法可解超静定结构、静定结构,位移法典型方程体现了_______条件。

15、图示梁A 截面的角位移φA = ____________。

(杆长l,荷载作用在中点)16、图示结构,M AB = __________。

17、图示刚架,各杆线刚度i 相同,不计轴向变形,用位移法求得 M AD = ,M BA =___________。

Di i i A4518、图示结构M BA 的值为_____________,________________侧受拉。

结构力学章节习题及参考答案

结构力学章节习题及参考答案
第3章静定梁与静定刚架习题解答
习题3.1是非判断题
(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。( )
(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。( )
(3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。( )
(4)习题3.1(4)图所示多跨静定梁中,CDE和EF部分均为附属部分。( )
(7) 习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6) (c)图,故原体系是几何可变体系。( )
习题 2.1(6)图
习题2.2填空
(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图
(2) 习题2.2(2)图所示体系为__________体系。
习题 2-2(2)图
(4)习题5.1(3)图(a)和(b)所示两结构的变形相同。( )
习题7.2填空题
(1)习题5.2(1)图(a)所示超静定梁的支座A发生转角,若选图(b)所示力法基本结构,则力法方程为_____________,代表的位移条件是______________,其中1c=_________;若选图(c)所示力法基本结构时,力法方程为____________,代表的位移条件是______________,其中1c=_________。
(3) 习题7.2(3)图所示刚架各杆的线刚度为i,欲使结点B产生顺时针的单位转角,应在结点B施加的力矩MB=______。
习题 7.2(1)图习题 7.2(2)图 习题 7.2(3)图
(4) 用力矩分配法计算习题7.2(4)图所示结构(EI=常数)时,传递系数CBA=________,CBC=________。

结构力学第8章位移法(f).

结构力学第8章位移法(f).
将系数和自由项代入典型方程并求解,可得
9 Fl 22 Fl 2 Z1 , Z2 552 i 552 i
结构的最后弯矩图可由叠加法绘制: M
M1Z1 M 2 Z 2 M P
内力图校核同力法,略。
§8-4 位移法的典型方程及计算步骤
位移法计算步骤
(1)确定基本未知量:独立的结点角位移和线位移,加入附加
一个附加联系上的附加反力矩和附加反力都应等于零。
原结构的静力平衡条件
§8-4 位移法的典型方程及计算步骤
为求系数和自由项,绘弯矩图如图a、b、c。
r11 7i
6i r12 l
Fl R1P 8
6i r21 l
15i r22 2 l
F R2 P 2
§8-4 位移法的典型方程及计算步骤
§8-3 位移法的基本未知量和基本结构
确定独立的结点线位移另种一方法
把原结构的所有刚结点和固定支座均改为铰结点→铰结体系,如图b。 此铰结体系为几何不变,原结构无结点线位移。 此铰结体系为几何可变或瞬变,添加最少的支座链杆保证其几何不变, 添加的链杆数目既是原结构独立的结点线位移数目。如图b,加一个水 平支座链杆,体系成为几何不变的。
自由项 作
位移法基本方程
Z1 1 及荷载作用下的弯矩图,如图a、b。
由a图,取结点B为隔离体,由∑MB=0,可得r11=3i+3i=6i 由b图,取结点B为隔离体,由∑MB=0,可得R1P=-24kN· m
i
EI 8m
§8-4 位移法的典型方程及计算步骤
将 r11和R1P代入方程求出
R1P 4kN m Z1 r11 i
r11Z1 r1i Z i r1n Z n R1P 0 ri1Z1 rii Z i rin Z n RiP 0 rn1Z1 rni Z i rnn Z n RnP 0

结构力学 第八章 作业参考答案

结构力学 第八章 作业参考答案
基本体系
D
Z2
B
2I 2FL/9 I
M图
D
L
B
A
L
B
2FL/9
A
L
FL/9
B
解: (1)该结构为有两个基本未知量,分别为 Z1 和 Z 2 ,如图。 (2)可以得到位移法的典型方程:
⎧r11Z1 + r12 Z 2 + R1P = 0 ⎨ ⎩r21Z1 + r22 Z 2 + R2 P = 0
(3)做出基本结构的各单位内力图和荷载内力图。令 其中系数: r11 = 14i 自由项: R1 p = 0 (4)求解出多余未知力。
4
1m
E
E
E r12 2I
4m
I
I
4m
I
I
1m
0.75 E
1m
结构力学 第八章 习题 参考答案
(2)可以得到位移法的典型方程:
⎧r11Z1 + r12 Z 2 + R1P = 0 ⎨ ⎩r21Z1 + r22 Z 2 + R2 P = 0
(3)做出基本结构的各单位内力图和荷载内力图。 其中系数: r11 = r22 =
8-7 试用位移法计算连续梁,绘制弯矩图。 EI = 常数
A Z1 B 6m 6m
基本体系
Z1 C 6m
A B 6m 6m C 6m
D
D
解: (1)该结构为有两个基本未知量,分别为 Z1 和 Z 2 ,如图。 (2)可以得到位移法的典型方程:
⎧r11Z1 + r12 Z 2 + R1P = 0 ⎨ ⎩r21Z1 + r22 Z 2 + R2 P = 0

结构力学第8章位移法

结构力学第8章位移法

结构力学第8章位移法位移法是结构力学中一种常用的分析方法。

它基于结构物由刚性构件组成的假设,通过计算结构在外力作用下产生的位移和变形,进而推导出结构的反力和应力分布。

位移法的基本思想是将结构的局部位移组合成整体位移,通过建立位移和反力之间的关系,解决结构的力学问题。

位移法的分析步骤通常包括以下几个方面:1.建立结构的整体位移函数。

位移函数是位移法分析的基础,通过解结构的运动方程建立结构的位移与自由度之间的关系。

2.应用边界条件。

根据边界条件,确定结构的支座的位移和转角值。

支座的位移和转角值可以由结构的约束条件和外力产生的位移计算得出。

3.构建位移方程组。

将结构的整体位移函数带入到结构的平衡方程中,得到位移方程组。

位移方程组是未知反力系数的线性方程组。

4.解位移方程组。

通过解位移方程组,求解未知反力系数。

可以使用高斯消元法、克拉默法则或矩阵方法等解方程的方法求解。

5.求解反力和应力分布。

通过已知的位移和未知的反力系数,可以计算出结构的反力和应力分布。

这些反力和应力分布可以进一步用于结构的设计和评估。

位移法的优点是适用范围广泛,适合复杂结构的分析。

它可以处理线性和非线性的结构,包括静力学和动力学的分析。

同时,位移法具有较高的精度和准确度,在结构的分析和设计中得到广泛应用。

然而,位移法也存在一些限制。

首先,位移法假设结构是刚性的,忽略了结构的变形和位移过程中的非线性效应。

其次,位移法需要建立适当的位移函数,对于复杂结构来说,这是一个复杂和困难的任务。

此外,位移法在处理大变形和非线性结构时可能会遭遇困难。

综上所述,位移法是结构力学中一种重要的分析方法。

它通过计算结构的位移和变形,推导出结构的反力和应力分布,为结构的设计和评估提供基础。

然而,位移法也存在一些限制,需要在具体的分析问题中谨慎应用。

结构力学龙驭球第八章

结构力学龙驭球第八章

第八章 位移法总结
A EI
B EI
C
2EI D
一根直杆的刚度不同时, 位移基 本未知量的确定
如图,将BD杆分为BC和CD两根 杆件,则本题有三个未知量 B,
C ,⊿C。
第八章 位移法 总结
(a) E F G
F
C
B l/2
D l
H
A
l
l/2 l/2
(b) C
F B
D
A
(c) C
F D
3 F /28
(3) 在基本结构上分别绘制在各附加约束分别产生单位
位移Δj =1下的弯矩图 及M荷j 载作用下的弯矩图MP
第八章 位移法总结
由平衡条件求出系数kij和自由项Fi P;
(4) 解方程求Δj;
注意:一切计算
(5) 按叠加原理计算杆端弯矩。 都是在基本结构上进
M M 1 1 M 2 2 M n n M p 行!
第八章 位移法总结
MKF112q2a2
qa2
24
MFK11q2a281q2a245q82a
(c) m K
C
q
(d)
F
K
n
q/ 2
(e)
F
K
q/ 2 F
MCK112q2a281q2a2q42a8 M KC
qa2 24
再将图c荷载分解为为正对称与反对称的 叠加,取半结够如图d(正对称 )、图 e(反对称)所示。由叠加得: (上拉) (上拉) (左拉) (右拉)
三、几个值得注意的问题
1. 位移法的适用条件
(1) 位移法既可以求解超静定结构,也可以求解静定结 构;
(2) 既可以考虑弯曲变形,也可以考虑轴向和剪切变 形;

《结构力学习题集》(含答案)

《结构力学习题集》(含答案)

第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;;B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M kM p21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

aa9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

qlll /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

ll l /32 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m3m3m14、求图示刚架B 端的竖向位移。

q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l ll/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

E I = 常数。

qll l/2219、求图示结构A、B两截面的相对转角,EI=常数。

l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。

ll21、求图示结构B点的竖向位移,EI = 常数。

结构力学 第8章 位移法

结构力学 第8章 位移法

6
杆端内力、位移的符号规定: 杆端内力、位移的符号规定:

杆端弯矩: 表示AB杆 端的弯矩 绕杆端顺时针 端的弯矩。 顺时针为正 杆端弯矩: MAB表示 杆A端的弯矩。绕杆端顺时针为正 杆端剪力:绕隔离体顺时针转为正(同前) 杆端剪力:绕隔离体顺时针转为正(同前)。 顺时针转为正 结点转角: 顺时针转为正。 结点转角:以顺时针转为正。 转为正 杆端的相对线位移:使杆件弦转角顺时针转动为正。 杆端的相对线位移:使杆件弦转角顺时针转动为正。 弦转角顺时针转动为正
1 2 3
杆14, 36: 两端固定
4 5 6
基本未知量3个。 基本未知量 个
杆12, 23, 25: 一端固定 一端铰结
23
又例:
m m
原结构
次超静定) (4次超静定) 次超静定
基本结构
次超静定) (5次超静定) 次超静定
24
§8—4 位移法的典型方程及计算步骤 4
基本未知量为: 基本未知量为:Z1、Z2 。 基本结构如图。 基本结构如图。 R1—附加刚臂上的反力矩 附加刚臂上的反力矩 F R2—附加链杆上的反力 附加链杆上的反力 l 据叠加原理, 则有 据叠加原理, 2 R1=R11+R12+R1P=0 R2=R21+R22+R2P=0
EI
可见, 不独立, 代入第一式: 可见,B=f (A、△AB), 不独立 代入第一式 MAB=3iA 式中 (转角位移方程) 转角位移方程) (固端弯矩) 固端弯矩)
l
t2
16
§8—3 位移法的基本未知量和基本结构 3
1.位移法的基本未知量 1.位移法的基本未知量
位移法的基本未知量是各结点的角位移和线位移, 位移法的基本未知量是各结点的角位移和线位移, 计算时应 各结点的角位移 独立的角位移和 数目。 首先确定独立的角位移 线位移数目 首先确定独立的角位移和线位移数目。 (1) 独立角位移数目 同一刚结点,各杆端转角相等一个独立的角位移未知量。 一个独立的角位移未知量 同一刚结点,各杆端转角相等一个独立的角位移未知量。 固定支座处,转角=0,已知量; =0,已知量 固定支座处,转角=0,已知量; 铰结点或铰支座各杆端的转角不独立,不必作为基本未知量。 铰结点或铰支座各杆端的转角不独立,不必作为基本未知量。 独立角位移数目= 独立角位移数目=结构刚结点的数目

结构力学第8章 矩阵位移法

结构力学第8章 矩阵位移法

单元两端的杆端位移分别在单元坐标系和整体坐标系 下分解,其位移分量就构成上面的杆端位移向量。
与坐标轴的正方向一致者为正;
返回目录
作业1:已知单元的内力图,列出单元坐标下 及整体坐标下的杆端力向量。
3.04
1.24
y 0.43
4.38N)
x
作业2:已知单元的杆端力如图,写出单元坐 标及整体坐标表示的单元杆端力向量,并 作出单元的内力图。
2EI
l
x
2EI EI
l 6EIl x x
l2
EuIj 1
6EIl
x
l 2 uj 1
EA
l
x
EI
EuIj 1
l
平l面梁单元ul j 的1 x单元刚度矩阵
l
y
ui=1
6EI
l2
N ElA i y
6EI
l
12 2EI l3
12EI
Qi
0l 3
y
2EI
0 Ml iy
2EI 6EI
l
l2
vi =1 θi=1
等截面直杆的刚度方程
适用于两端都是刚结点的杆, 基本未知量为杆两端的转角和侧移;
刚度方程:
M AB
4i A
2i B
6i
l
M BA
2i A
4i B
6i
l
QAB
QBA
1 l
(
M
AB
M BA)
QAB
QBA
6i l
A
6i l
B
1 2i l2
4i
❖ 写成矩阵的形式:
❖ 杆端弯矩、剪力、杆端 侧移均以绕杆端顺时针 为正。关键掌握每个系

结构力学 第8章 位移法

结构力学  第8章 位移法

B B
3i
1
0 0
l
3i
l
3i
l2
A
θ=1
B
i
-i
0
二、由外部荷载求固端反力矩
mAB q
EI l
q EI l mBA
mAB
ql 2 8
ql 2 mBA 8
» 在已知荷载及杆端位移的共同作用下的杆端力 一般公式(转角位移方程): AB 4i A 2i B 6i m AB M
位移法:以某些结点位移基本未知量
用力法求解,有6个未知数。 用位移法求解,未知数=
?个。
5.力法与位移法的适用范围:
力 法: 超静定结构
位移法:超静定结构,也可用于静定结构。 一般用于结点较少而杆件较多的刚架。
位移法正负号规定
★杆端角位移、杆两端相对线位移(侧移)Δ :顺时针为正 ★ 杆端弯矩:绕杆端顺时针为正、绕结点逆时针为正
综上所述,位移法的基本思路是: 1. 在原结构产生位移的结点上设置附加约束,使结点 固定,从而得到基本结构,然后加上原有的外荷载;
2. 人为迫使原先被“固定”的结点恢复到结构原有的 位移。
通过上述两个步骤,使基本结构与原结构的受力和变 形完全相同,从而可以通过基本结构来计算原结构的内力 和变形。
位移法中需要解决的问题:
2. 回顾力法的解题思路
先求多余未知力 结构内力
结构位移
具体解题过程:
超静定结构 拆成基本结构 加上某些条件
位移条件(力法典型方程)
3. 反推位移法的解题思路
先求某些结点位移 结构内力
具体解题过程:
结 构 拆成单根杆件 的组合体
1.杆端位移协调条件
2.结点平衡条件

结构力学习题集矩阵位移法习题及答案老八校

结构力学习题集矩阵位移法习题及答案老八校

1文档收集于互联网,已整理,word 版本可编辑.第八章 矩阵位移法 – 老八校一、判断题:1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。

2、单元刚度矩阵均具有对称性和奇异性。

3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。

4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。

5、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。

6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。

7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。

8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。

9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。

10、矩阵位移法既能计算超静定结构,也能计算静定结构。

11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: 二、计算题:12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。

13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。

EI ,EA 均为常数。

14、计算图示结构整体刚度矩阵的元素665544,,K K K 。

E 为常数。

15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵[][]K K 2224,。

16、已知平面桁架单元在整体坐标系中的单元刚度矩阵,计算图示桁架结构原始刚度矩阵[]K 中的元素,,7877K K EA =常数。

,cos α=C ,sin α=S ,C C A ⋅= S S D S C B ⋅=⋅=,,各杆EA 相同。

2文档收集于互联网,已整理,word 版本可编辑.17、计算图示刚架结构刚度矩阵中的元素8811,K K (只考虑弯曲变形)。

设各层高度为h ,各跨长度为l h l 5.0,=,各杆EI 为常数。

18、计算图示结构原始刚度矩阵的元素4544,K K 。

李廉锟《结构力学》(上册)课后习题详解(8-11章)【圣才出品】

李廉锟《结构力学》(上册)课后习题详解(8-11章)【圣才出品】

第8章位移法复习思考题1.位移法的基本思路是什么?为什么说位移法是建立在力法的基础之上的?答:(1)位移法的基本思路位移法的基本思路是首先确定原结构的基本未知量,加入附加联系从而得基本结构,令各附加联系发生与结构相同的结点位移;再根据在荷载等外因和各结点位移共同作用下,各附加联系上的反力偶或反力均等于零的条件,建立方程,求出未知位移;最后求出结构反力和内力。

(2)位移法是建立在力法的基础之上的原因因为位移法的基本结构是两端固定的或一端固定一端铰支的单跨超静定梁。

位移法进行计算是以这些基本结构为基础的,需要用力法算出单跨超静定梁在杆端发生各种位移时以及荷载等因素作用下的内力,才能继续进行位移法以后的求解。

2.位移法的基本未知量与超静定次数有关吗?答:位移法的基本未知量与超静定次数无关。

因为位移法的基本未知量是指独立的结点的角位移和独立的结点的线位移,而这两个量与超静定次数并无关系。

3.位移法的典型方程是平衡条件,那么在位移法中是否只用平衡条件就可以确定基本未知量,从而确定超静定结构的内力?在位移法中满足了结构的位移条件(包括支承条件和变形连续条件)没有?在力法中又是怎样满足结构的位移条件和平衡条件的?答:(1)在位移法中只用平衡条件就可以确定基本未知量,从而确定超静定结构的内力。

(2)在位移法中已满足结构的位移条件(包括支承条件和变形连续条件)。

因为在位移法的假设和取基本未知量时,结构的支承条件和变形连续条件就已经考虑进去了,所以位移法中结构的位移条件自动满足,故只需要平衡条件就可以确定基本未知量了。

(3)力法的典型方程实质上就是满足结构的位移条件(包括支承条件和变形连续条件)。

力法是在满足平衡条件下进行分析的,只要结构不破坏,平衡条件会自动满足。

4.在什么条件下独立的结点线位移数目等于使相应铰结体系成为几何不变所需添加的最少链杆数?答:不考虑受弯直杆的轴向变形(即受弯直杆两端距离不变)的条件下,独立的结点线位移数目等于使相应铰结体系成为几何不变所需添加的最少链杆数。

《结构力学习题集》-矩阵位移法习题及答案

《结构力学习题集》-矩阵位移法习题及答案

第八章 矩阵位移法一、判断题:1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。

2、单元刚度矩阵均具有对称性和奇异性。

3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。

4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。

5、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。

6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。

7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。

8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。

9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。

10、矩阵位移法既能计算超静定结构,也能计算静定结构。

11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.2134123412341234xy M , θ( )二、计算题:12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。

123ll4ll5EI2EIEA(0,0,0)(0,0,1)(0,2,3)(0,0,0)(0,2,4)(0,0,0)xyM , θEI13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。

EI ,EA 均为常数。

l(0,0,1)(0,5,0)(2,3,4)l①②123xy M , θ14、计算图示结构整体刚度矩阵的元素665544,,K K K 。

E 为常数。

l l l1342A , I AA /222A I , 2A xyM , θ15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵[][]K K 2224,。

李廉锟《结构力学》(上册)配套题库【课后习题】(位移法)【圣才出品】

李廉锟《结构力学》(上册)配套题库【课后习题】(位移法)【圣才出品】

第8章位移法复习思考题1.位移法的基本思路是什么?为什么说位移法是建立在力法的基础之上的?答:(1)位移法的基本思路位移法的基本思路是首先确定原结构的基本未知量,加入附加联系从而得基本结构,令各附加联系发生与结构相同的结点位移;再根据在荷载等外因和各结点位移共同作用下,各附加联系上的反力偶或反力均等于零的条件,建立方程,求出未知位移;最后求出结构反力和内力。

(2)位移法是建立在力法的基础之上的原因因为位移法的基本结构是两端固定的或一端固定一端铰支的单跨超静定梁。

位移法进行计算是以这些基本结构为基础的,需要用力法算出单跨超静定梁在杆端发生各种位移时以及荷载等因素作用下的内力,才能继续进行位移法以后的求解。

2.位移法的基本未知量与超静定次数有关吗?答:位移法的基本未知量与超静定次数无关。

因为位移法的基本未知量是指独立的结点的角位移和独立的结点的线位移,而这两个量与超静定次数并无关系。

3.位移法的典型方程是平衡条件,那么在位移法中是否只用平衡条件就可以确定基本未知量,从而确定超静定结构的内力?在位移法中满足了结构的位移条件(包括支承条件和变形连续条件)没有?在力法中又是怎样满足结构的位移条件和平衡条件的?答:(1)在位移法中只用平衡条件就可以确定基本未知量,从而确定超静定结构的内力。

(2)在位移法中已满足结构的位移条件(包括支承条件和变形连续条件)。

因为在位移法的假设和取基本未知量时,结构的支承条件和变形连续条件就已经考虑进去了,所以位移法中结构的位移条件自动满足,故只需要平衡条件就可以确定基本未知量了。

(3)力法的典型方程实质上就是满足结构的位移条件(包括支承条件和变形连续条件)。

力法是在满足平衡条件下进行分析的,只要结构不破坏,平衡条件会自动满足。

4.在什么条件下独立的结点线位移数目等于使相应铰结体系成为几何不变所需添加的最少链杆数?答:不考虑受弯直杆的轴向变形(即受弯直杆两端距离不变)的条件下,独立的结点线位移数目等于使相应铰结体系成为几何不变所需添加的最少链杆数。

第8章 位移法(李廉锟_结构力学)

第8章 位移法(李廉锟_结构力学)
M F
q
M
θA
θB
A
B
β
θ
A
θ
B
AB
§8-2 等截面直杆的转角位移方程
FP x 1. 先求杆端位移引起的弯矩 取简支梁基本结构 y
δ11 X 1 + δ12 X 2 + ∆1∆ = ϕ A δ 21 X 1 + δ 22 X 2 + ∆ 2 ∆ = ϕ B
δ11 = δ 22 =
l 3EI
M AB θA A FS BA l FS BA
θA
F EI
B
∆ AB
令式( ) 的函数, 令式(8-2)的MBA=0,θB 是θA 和∆AB的函数,转角 , 位移方程为
∆AB F M AB = 3iABθA − 3iAB + M AB l MBA = 0
§8-2 等截面直杆的转角位移方程 一端固定、 3、一端固定、一端定向的等截面直杆
§8-1 概述
位移法主要是由于大量高次超静定刚架的出现而 位移法主要是由于大量高次超静定刚架的出现而 发展起来的一种方法。 发展起来的一种方法。由于很多刚架的结点位移数远 比结构的超静定次数少,采用位移法比较简单。 比结构的超静定次数少,采用位移法比较简单。
F l/2 A B EI = 常数 l D l l C
第八章
§8-1 概述
位移法
§8-2 等截面直杆的转角位移方程 §8-3 位移法的基本未知量和基本结构 §8-4 位移法的典型方程及计算步骤 §8-5 直接由平衡条件建立位移法基本方程 §8-6 对称性的利用
§8-1 概述
已有的知识: 已有的知识: (1)结构组成分析; 结构组成分析; 静定结构的内力分析和位移计算; (2)静定结构的内力分析和位移计算; (3)超静定结构的内力分析和位移计算 力法。 力法。

《结构力学》第八章-位移法

《结构力学》第八章-位移法

(5) 按叠加法绘制最后弯矩图。
18
例 8—1 图示刚架的支座A产生了水平位移a、竖向位移b=4a
及转角=a/L,试绘其弯矩图。
L
解:基本未知量 Z 1(结点C转角); C EI
B C Z1
B
基本结构如图示;
2EI
建立位移法典型方程: r11Z1+R1△=0
A Z1
基本结构 A
为计算系数和自由项,作
链为了杆能数简,捷即地为确定原出结结构构的的独独立立线线位
(b)
移位移数数目目(见,可图以b)。
11
2.位移法的基本结构
用位移法计算超静定结构时,每一根杆件都视为一根单跨超静
定梁。因此,位移法的基本结构就是把每一根杆件都暂时变为一根
单跨超静定梁(或可定杆件)。通常 的做法是,在每个刚结点上假想 1
构在荷载等外因和各结点位移共同作用下,各附加联系上的反力矩
或反力均应等于零的条件,建立位移法的基本方程。
(3) 绘出基本结构在各单位结点位移作用下的弯矩图和荷载作
用下(或支座位移、温度变化等其它外因作用下)的弯矩图,由平衡
条件求出各系数和自由项。
(4) 结算典型方程,求出作为基本未知量的各结点位移。
正。
B
B
B′
X2
X3
M1图
1
M

2
7
将以上系数和自由项代入典型方程,可解得 X1=
X2=

称为杆件的线刚度。此外,用MAB代替X1,用
MBA代替X2,上式可写成
MAB= 4iA+2i B- MBA= 4i B +2i A-
(8—1)
是此两端固定的梁在荷载、温度变化等外因作用下的杆

结构力学位移法题及答案

结构力学位移法题及答案

超静定结构计算——位移法一、判断题:1、判断下列结构用位移法计算时基本未知量的数目。

(1) (2) (3)(4) (5) (6)EIEIEIEI 2EI EI EIEIEA EA ab EI=EI=EI=244422、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。

3、位移法未知量的数目与结构的超静定次数有关。

4、位移法的基本结构可以是静定的,也可以是超静定的。

5、位移法典型方程的物理意义反映了原结构的位移协调条件。

二、计算题:12、用位移法计算图示结构并作M 图,横梁刚度EA →∞,两柱线刚度 i 相同。

213、用位移法计算图示结构并作M 图。

E I =常数。

lll/2l/214、求对应的荷载集度q。

图示结构横梁刚度无限大。

已知柱顶的水平位移为()5123/()EI→。

12m12m 8mq15、用位移法计算图示结构并作M图。

EI =常数。

ll l l16、用位移法计算图示结构,求出未知量,各杆EI相同。

4m19、用位移法计算图示结构并作M图。

ql l20、用位移法计算图示结构并作M 图。

各杆EI =常数,q = 20kN/m 。

6m6m23、用位移法计算图示结构并作M 图。

EI =常数。

ll 224、用位移法计算图示结构并作M 图。

EI =常数。

lql29、用位移法计算图示结构并作M 图。

设各杆的EI 相同。

qql l /2/232、用位移法作图示结构M 图。

E I =常数。

ql l/2l /2l36、用位移法计算图示对称刚架并作M 图。

各杆EI =常数。

l l38、用位移法计算图示结构并作M 图。

EI =常数。

ql l l l42、用位移法计算图示结构并作M 图。

2m 2m43、用位移法计算图示结构并作M 图。

EI =常数。

lllql48、已知B 点的位移∆,求P 。

ll/2/2A∆51、用位移法计算图示结构并作M 图。

超静定结构计算——位移法(参考答案)1、(1)、4; (2)、4; (3)、9; (4)、5; (5)、7;(6)、7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章 位移法习 题一、判断题:1、位移法未知量的数目与结构的超静定次数有关。

( )2、位移法的基本结构可以是静定的,也可以是超静定的。

( ) 4、位移法典型方程的物理意义反映了原结构的位移协调条件。

( )5、图示结构,当支座B 发生沉降∆时,支座B 处梁截面的转角大小为12./∆l ,方向为顺时针方向,设EI =常数。

( )6、图示梁之 EI =常数,当两端发生图示角位移时引起梁中点C 之竖直位移为(/)38l θ(向下)。

( )2θθC7、图示梁之EI =常数,固定端A 发生顺时针方向之角位移θ,由此引起铰支端B 之转角(以顺时针方向为正)是-θ/2 。

( )8、用位移法可求得图示梁B 端的竖向位移为ql EI 324/。

( )q9、结 构 按 位 移 法 计 算 时 , 其 典 型 方 程 的 数 目 与 结 点 位 移 数 目 相 等 。

( ) 10、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。

( ) 11、超 静 定 结 构 中 杆 端 弯 矩 只 取 决 于 杆 端 位 移 。

( ) 12、图示梁之 EI =常数,当两端发生图示角位移时引起梁中点C 之竖直位移为(/)38l θ(向下)。

2θθC二、填空题:13、判断下列结构用位移法计算时基本未知量的数目。

(1) (2) (3)(4) (5) (6)EIEIEIEI 2EI EI EIEIEA EA ab EI=EI=EI=24442第13题14、位移法可解超静定结构、静定结构,位移法典型方程体现了_______条件。

15、图示梁A 截面的角位移φA = ____________。

(杆长l,荷载作用在中点)16、图示结构,M AB = __________。

17、图示刚架,各杆线刚度i 相同,不计轴向变形,用位移法求得 M AD = ,M BA =___________。

Di i i A4518、图示结构M BA 的值为_____________,________________侧受拉。

PEA EIEI ll1=EI 1==19、图示连续梁各杆之EI =常数,用位移法计算时,典型方程式中之自由项R P 1=_______________。

4m 2m 2m2kN/m20、用位移法计算图示结构时,有_______个未知量。

EIEIEIEI =EI21、图示结构B 点的竖向位移为____________。

EI PEIEI1=22EI Bll22、图示结构,EI=常数,各杆长度l 相同。

为了使结点A 转动单位角位移,则在该点施加的力偶矩M 应等于_______________。

M A23、图示刚架,用位移法求解时只有横粱的侧移作为基本未知量,若设横梁AB 、CD 的水平侧移分别为Z 1和Z 2,则其典型方程中的主系数r 22=_________。

lA CB D EI EI 2EI2EI EI 0EI 0P l→→24、图示结构位移法典型方程中的常数项R p 1=_______,R p 2=_________。

6m6m3m 4m10kN/m20kN/mZ Z Z 123三、选择题:25、图示梁线刚度为i ,杆长为l ,已知杆件A 端转角为α,竖向位移为a =αl ,则杆端A 的弯矩为: ( )A .4i α ;B .6i α ;C .8i α ;D .10i α 。

26、欲使图示结构中的内力M M M M ql AC CA CB BC ====212/,则应有:( )A .A =∞,I I 12,均为常数;B .I I 12==∞,A = 常数;C .I A 2=∞=∞,;D .I A 20=∞=,。

27、图示结构用位移法求解可得: ( )A . ()∆=P i h //1212;B . ()∆=P i h //121 ;C . ()∆=Ph i 2124/ ; D . ()∆=P i h //241。

h28、图示结构EI =常数,二力杆的EA =∞,正确的杆端弯矩(顺时针为正)是:( )A.M M M FE FC BE ===0;B.M M m M m FE FC BE =-==-24,;C.M M mM m FE FC BE =-==2,; D.M M mM FE FC BE =-==20,.m29、位移法典型方程中的系数是: ( )A.单位位移引起的杆端力或杆端弯矩;B.单位位移引起的附加联系的反力或反力矩;C.单位荷载引起的杆端力或杆端弯矩;D.单位荷载引起的附加联系的反力或反力矩。

30、连续梁和M 图如图示,则支座B 的竖向反力B F 是: ( )()A.121.↑;()B.507.↑; ()C.1107.↓; ()D.1707.↑。

图 M ()kN .m 16.7211.573.2115.8531、图示梁之EI =常数,固定端B 发生向下竖直位移∆但不转动,由此引起梁中点C 之竖直位移为: ( )A.(/)14∆(向上);B.(/)12∆(向下);C.(/)58∆(向下);D.(/)1116∆(向下)。

32、图示结构,各杆EI 常数,截面C 、D 两处的弯矩值M C 、M D 分别为:(单位:kN.m ) ( )A. 1.0, 2.0;B. 2.0, 1.0;C.-1.0, -2.0;D.-2.0,-1.0。

33、图示结构EI EI 12=∞= , 常数,用位移法求解时,.最少的未知量数为: ( )A.1;B.2;C.3;D.4。

1EI 2EI 2EI 1234、图b 是图a 所示结构位移法所作图的条件是: ( )A.i i i 123==,为有限值。

B.i i i i 1213≠=,,为有限值。

C.i i i 123≠≠,为有限值。

D.i i i 132==∞,,为有限值。

i i 12i 3l Pl/4Pl/4Pl/4Pl/4( b )35、图示连续梁,EI =常数,欲使支承B 处梁截面的转角为零,比值a/b 应为:( )A.1/2;B.2;C.1/4;D.4。

q36、图示结构,EI=常数,已知结点C 的水平线位移为()∆CH ql EI =→71844/,则结点C 的角位移ϕC 应为: ( )A.ql 3/46EI (顺时针向); B.-ql 3/46EI (逆时针向); C.3ql 3/92EI (顺时针向); D.-33ql /92EI (逆时针向)。

ql四、计算题37、用位移法计算图示结构并作M 图,各杆刚度均为EI ,各杆长均为 l 。

38、用位移法计算图示结构并作M 图,各杆长均为 l ,EI =常数。

39、用位移法计算图示结构并作M 图,横梁刚度EA →∞,两柱刚度EI 相同。

240、用位移法计算图示结构并作M 图。

E I =常数。

l41、求对应的荷载集度q 。

图示结构横梁刚度无限大。

已知柱顶的水平位移为 ()5123/()EI →。

12m12m8mq42、用位移法计算图示结构并作M 图。

EI =常数。

ll43、用位移法计算图示结构,求出未知量,各杆EI 相同。

44、用位移法计算图示结构并作M 图,EI =常数。

18、用位移法计算图示结构并作M 图。

19、用位移法计算图示结构并作M 图。

qll20、用位移法计算图示结构并作M 图。

各杆EI =常数,q = 20kN/m 。

21、用位移法计算图示结构并作M 图。

EI =常数。

ll l ll22、用位移法计算图示结构并作M 图,E = 常数。

mm246、用位移法计算图示结构并作M 图。

EI =常数。

q47、用位移法计算图示结构并作M 图。

l = 4m 。

48、用位移法计算图示结构并作M 图。

30kN/m EI 1=49、用位移法计算图示刚架并作M 图。

已知各横梁EI 1=∞,各柱EI =常数。

P P h51、用位移法计算图示结构并作M 图。

设各杆的EI 相同。

q q52、用位移法作图示结构M 图。

并求A B 杆的轴力, E I =常数。

ll53、用位移法作图示结构M 图。

EI =常数。

l/254、用位移法作图示结构M 图。

E I =常数。

qql l /2l /2l55、用位移法计算图示结构并作出M 图。

30KN/m56、用位移法计算图示结构并作M 图,E =常数。

57、用位移法计算图示结构并作M 图。

E I =常数。

q58、用位移法计算图示对称刚架并作M 图。

各杆EI =常数。

l l59、用位移法计算图示结构并作M 图。

EI =常数。

60、用位移法计算图示结构并作M 图。

EI =常数。

q61、用位移法计算图示结构并作M 图。

EI =常数。

ql62、用位移法计算图示结构并作M 图。

设各柱相对线刚度为2,其余各杆为1。

63、用位移法计算图示结构并作M图。

q q64、用位移法计算图示结构并作M图。

65、用位移法计算图示结构并作M图。

EI =常数。

lql44、用位移法计算图示结构并作M图,C支座下沉 ,杆长为l。

EIB CEI 266、用位移法计算图示结构并作M 图。

杆长均为l ,支座A 下沉c 。

67、用位移法计算图示结构并作M 图。

68、用位移法计算图示结构并作M 图。

EI =常数。

θl l69、已知B点的位移∆,求P 。

/2/2A70、用位移法计算图示结构并作M 图。

E =常数。

θI 2I71、图示对称刚架制造时AB 杆件短了Δ ,用位移法作M 图。

EI =常数。

A Bl72、用位移法计算图示结构并作M 图。

q73、用位移法计算图示刚架,作M 图。

除注明者外各杆EI =常数。

74、用位移法计算图示刚架,作M 图。

除注明者外各杆EI =常数。

75、 用位移法计算图示刚架作M 图。

除注明者外各杆EI =常数,EI 1=∞。

q76、图示结构C 为弹性支座,弹簧刚度k i l =/2,用位移法计算,并作M 图。

77、用位移法计算图示结构并作M 图。

E =常数。

l l/2/2l 378、用位移法计算图示结构并作M 图。

EI =常数,k EI l 0=/。

l l79、用位移法计算图示结构并作M 图。

80、用位移法求图示梁的M图。

已知EI =常数,B支座弹簧刚度kEIl=3。

EI=/l381、用位移法作图示结构的M图。

弹簧刚度系数k EI l=/3,设E I =常数。

q82、试用位移法作图示结构M图。

相关文档
最新文档