固体酸催化剂研究近况综述
固体酸催化剂的发展及应用文献综述
![固体酸催化剂的发展及应用文献综述](https://img.taocdn.com/s3/m/a0a5e4548e9951e79b8927fc.png)
工业催化文献综述固体酸催化剂的发展及应用专业:化学工程与工艺班级:学生学号:学生姓名:完成时间:1一、引言催化剂(catalyst):是一种能够改变化学反应速度,而它本身又不参与最终产物的物质。
:随着环境意识的加强以及环境保护要求的日益严格,,液体催化剂已完全满足不了化工产品的发展要求,然而新型固体酸催化剂却弥补了当前的一些不足,固体酸催化剂已成为催化化学的一个研究热点。
与液体酸催化剂相比,固体酸催化反应具有明显的优势,固体酸催化在工艺上容易实现连续生产,不存在产物与催化剂的分离及对设备的腐蚀等问题。
并且固体酸催化剂的活性高,可在高温下反应,能大大提高生产效率。
还可扩大酸催化剂的应用领域,易于与其他单元过程耦合形成集成过程,节约能源和资源。
关键词:固体酸催化剂摘要:通过固体孙催化剂在有机合成反应中的应用,说明固体酸催化剂的优越性,介绍了固体酸催化剂技术应用的进展,指出了固体酸催化剂应用存在的主要问题1固体酸催化剂的定义及分类1.1定义一般而言,固体酸可理解为凡能碱性指示剂改变颜色的固体,或是凡能化学吸附碱性物质的固体。
按照布朗斯泰德和路易斯的定义,则固体酸是具有给出质子或接受电子对能力的固体。
固体酸是催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。
它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。
这类催化剂广泛应用于离子型机理的催化反应,种类很多。
此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。
1.2固体酸的分类(1)固载化液体酸HF/Al2O3,BF3/AI2O3,H3PO4/硅藻土(2)氧化物简单Al2O3,SiO2,B2O3,Nb2O5复合Al2O3-SiO2,Al2O3/B2O3(3)硫化物CdS ZnS2(4)金属磷酸盐AlPO4,BPO 硫酸盐Fe2(SO4)3,Al2(SO4)3,CuSO4(5)沸石分子筛ZSM-5沸石,X沸石,Y沸石,B沸石丝光沸石,非沸石分子筛:AlPOSAPO系列(6)杂多酸H3PW12O40,H4SiW12O40,H3PMo12O40(7)阳离子交换树脂苯乙烯-二乙烯基苯共聚物Nafion-H(8)天然粘土矿高岭土,膨润土,蒙脱土(9)固体超强酸SO42-/ZrO2,WO3/ZrO2,MoO3/ZrO2,B2O3二、主题1各类固体酸催化剂的研究近况以下主要是综述了固体超强酸(H0<-11.94)的研究发展状况,包括了单组分固体超强酸催化剂和多组分复合固体酸催化剂的研究。
固体酸催化剂研究近况综述
![固体酸催化剂研究近况综述](https://img.taocdn.com/s3/m/34e69227ed630b1c59eeb51d.png)
4・ 2
广州化工
2 1 年 3 卷第 l 期 00 8 2
固体 酸 催 化 剂 研 究 近 况 综 述
李佩 莹
( 京化 工 大学材料科 学与 工程 学院 ,北京 北
摘
102 ) 009
要: 固体酸催化剂因其具有对多种化学反应有较高活性与选择性、 回收重复利用效率较高等优点, 已作为绿色环境友好型
P : 质量 分数 为 75 、 O一 .% 焙烧温度为 50 0 %的固体 酸催化剂具有
条件下的 TO i 的光催化 活性提高 了 2—1 。 0倍
1 固体酸催化剂的发展状况
1 1 固体 酸催化 剂 的历 史 .
从 Wa e 等人首次发现 了单一金属 氧化物 V O lr t : 可以催化 甲苯合成苯 甲醛开 始 , 固体 酸催化 剂便开始 了其发 展历程 。随 后一些简单的金属氧化物如 A F ZO 1 、eO 、r 等已作为 固体 酸 O 催化 剂而被 应用 于反应 中。17 9 9年 , io 等人 合 成 了首 例 H n…
Ke r s:s l cd ;c t y t u r n e e r h y wo d o i a i s aa s ;c re tr s a c d l
以往单纯追求眼前效 益 、 罔顾 环境所造 成 的危 害近 年来逐
() 6 杂多酸 ;7 阳离子交换树脂 ;8 天然粘土矿 ;9 固体超强 () () ()
L i—y n IPe — i g
( o eeo t as cec n n ier g B rn nvr t o h m cl eh ooy B in 0 0 9 hn ) C l g f e l S i eadE gne n , e i U iesy f e ia T cn l , e ig10 2 ,C ia l Ma r n i i g i C g j
固体超强酸催化剂在烷烃异构化中的研究报告进展
![固体超强酸催化剂在烷烃异构化中的研究报告进展](https://img.taocdn.com/s3/m/f921e05c6529647d26285205.png)
东北石油大学本科学生毕业设计(论文)题目:固体超强酸催化剂在烷烃异构化中的研究进展摘要烷烃异构化加工工艺作为提高汽油辛烷值的手段,具有费用低、操作灵活、节省资源等优点,日益受到人们的关注。
在烷烃异构化工艺过程中催化剂起着重大的作用,因此对烷烃异构化催化剂的研究显得尤为重要。
而固体超强酸催化剂不仅具有较强的酸性,而且其应用性能更具有其它催化剂不可比拟的优点,如对环境友好、热稳定性较高、容易制备与保存、易与反应产物分离、可反复使用等,因而被认为是最有前途的异构化催化剂,具有广阔的应用前景。
本文主要以正戊烷异构化为例,综述了烷烃异构化各类催化剂使用的工艺条件,性能差异及优缺点,重点分析讨论固体超强酸催化剂在异构化上的应用。
关键词:异构化;固体超强酸;催化;应用AbstractAlkane isomerization process as a means of improving octane number of gasoline,has the advantages of low cost,flexible operation, save resources,etc.,increasing people's attention.The catalyst plays a significant role in the isomerization process,and therefore the study of alkane isomerization catalyst is particularly important.The solid super acid catalyst not only has a strong acidity,and its application has the advantage of better performance unmatched by other catalysts,such as environmentally friendly,high thermal stability,ease of preparation and preservation,easily separated from the reaction products, be used repeatedly etc.,which is considered the most promising isomerization catalyst,has broad application prospects. This paper mainly summarizes the alkane isomerization catalyst used in all kinds of conditions, performance differences, advantages and disadvantages taking example of Pentane Isomerization, focusing on the analysis of solid super acid catalyst in the isomerization.Key words :isomerization; solid superacid; catalysis; application. - -目录第1章概述 (1)1.1烷烃异构化的目的和意义 (1)1.2烷烃异构化的研究现状和发展 (3)第2章烷烃异构化机理 (1)2.1 烷烃异构化反应热力学影响因素 (1)2.2正碳离子及其反应 (1)2.3 烷烃异构化反应的一般机理 (5)第3章烷烃异构化工艺中的催化剂类型 (8)3.1传统烷烃异构化催化剂 (8)3.2新型烷烃异构化催化剂 (9)第4章固体超强酸催化剂在烷烃异构化的研究124.1固体超强酸分类 (12)4.2固体超强酸的制备 (13)4.3 影响固体超强酸性能的因素154.4 固体超强酸的改性 (17)4.5 固体超强酸的失活与再生 (19)结束语22参考文献 (23)致27第1章概述1.1烷烃异构化的目的和意义在过去很长一段时间里,通常采用加入四乙基铅或其化合物来提高汽油的辛烷值,但铅化合物对环境造成污染。
铁系固体酸催化剂催化活性的研究
![铁系固体酸催化剂催化活性的研究](https://img.taocdn.com/s3/m/02f8cb245901020207409c47.png)
3.3对产物的液相分析
标准样品的液相图谱
mAU
所得产物的液相图谱
1200
600
1.914
1.925
mAU
500
1000
400
800
300
600
200
400
100
7.260
2.740
200
0 0 2 4 6 8 10
0 0 2 4 6 8 10
min
min
由以上两图可知:在286nm处对标样的对异丙基苯酚进行液相分析,如图1所示, 从图中可以得到,在286nm波长时,对异丙基苯酚的保留时间在1.914min;如图2, 在286nm处,在550℃下焙烧得到的固体超强酸催化下合成的对异丙基苯酚的保留 时间在1.925min。
冷凝装置的 的2-氯丙烷, 四颈烧瓶中, 调节反应温 然后加入适 度,反应3h 量的固体酸 催化剂
NaOH 洗 涤 , 再用蒸馏水洗 涤3~4次,用 无水硫酸镁干 燥后,过滤蒸 出溶剂,抽滤 后得到粗产物
3.实验结果与讨论 3.1对催化剂的红外表征
3.2对催化剂的热重分析
3.3对产物的液相分析 3.4对产物的红外表征
不怕水 耐高温
对环境污 染很小、 后处理简 单
2-
可 回 收 重 复 使 用
其中,铁系固体超强酸催化剂SO4 /Fe2O3具有制备简单、对水稳定、活 性高、无污染、可在高温下使用等优点,尤其是在低温下催化剂催化烷烃异 构化反应中具有很高的活性,此类固体超强酸被认为是前景最好的一类催化 剂。
课题研究的意义
Wavenumber/cm-1
3.5不同焙烧温度对催化剂活性的影响
焙烧温度/℃ 450 500 550 600 650
磺酸型固体酸催化剂的制备与应用研究进展
![磺酸型固体酸催化剂的制备与应用研究进展](https://img.taocdn.com/s3/m/00c464f6f705cc175527091b.png)
第31卷第6期2009年11月南 京 工 业 大 学 学 报 (自然科学版)J OURNAL O F NAN JI NG UN I V ERS I TY OF TEC HNOLOGY (N atural Science Ed i tion)V o.l 31N o .6N ov .2009do:i 10.3969/.j issn .1671-7627.2009.06.023磺酸型固体酸催化剂的制备与应用研究进展曾昌凤1,陈军2,张利雄2,路勇3(1.南京工业大学机械与动力工程学院,江苏南京210009;2.南京工业大学化学化工学院,材料化学工程国家重点实验室,江苏南京210009;3.华东师范大学绿色化学与化工过程绿色化上海市重点实验室,上海200062)收稿日期:2009-04-13基金项目:华东师范大学绿色化学与化工过程绿色化上海市重点实验室开放课题基金资助项目作者简介:曾昌凤(1966 ),女,四川彭州人,副教授,硕士,主要研究方向为化工反应与分离设备;张利雄(联系人),教授,E m ai:l m ail 4catalys i s@yahoo .co .摘 要:将磺酸基团引入到固体载体表面制备磺酸型固体酸以替代传统的硫酸催化剂.对磺酸型固体酸催化剂的制备和应用研究进展进行了综述.介绍了在中孔硅分子筛(如M C M 41、SB A 15)、中孔炭分子筛(如C M K 3、C MK 5)、半炭化炭材料、炭纳米管等载体上引入磺酸基团的方法和其中一些催化剂的催化性能,探讨这些制备方法和所制得催化材料的优点和存在的问题.关键词:磺酸型固体酸;浓硫酸;催化材料;分子筛中图分类号:O 611 62 文献标志码:A 文章编号:1671-7627(2009)06-0104-07Revie w on preparati on and application of sulfonated soli d aci d catal ystsZENG Chang feng 1,CHEN Jun 2,Z HANG L i x i o ng 2,L U Yong3(1.Co lleg e o fM echanic and Dyna m ic Eng i neering ,N an ji ng U niversity of T echnology ,N anji ng 210009,Ch i na ;2.State K ey L aboratory o fM ater i a l s O r i ented Che m ica l Eng ineer i ng ,Coll ege o f Che m i stry and Chem i ca l Eng i neering ,N an ji ng U niversity of T echnology ,N anji ng 210009,Ch i na ;3.Shanghai K ey L aboratory of G reen Che m istry and Che m ical P rocesses ,D epart ment o f Che m i stry ,East Chi na N or m a lU n i versity ,Shangha i 200062,Ch i na)Abst ract :Su lfonate ac i d group ( SO 3H )w as i n troduced on the surface of solid supports to prepare sul fonated so lid acid catalysts for substituting traditional sulfuric ac i d catalys.t The research progress on the preparati o n and the applicati o n of su lfonated so li d cata l y sts w as rev ie w ed .The m ethods for i n troducingSO 3H i n to or dered m esoporous silicas (such as MC M 41and SBA 15),ordered m esopo r ous carbons (such as C MK 3and C MK 5),i n co m plete carbonized or gan ic products ,and carbon nanotubes and the catalytic properties of the resu lting cata l y stsw ere presented .The advantages and pr oble m s o f t h ese prepa rati o n m ethods w ere d iscussed .K ey w ords :sulfonated so li d ac i d ;su lfuric acid ;cata l y tic m ateria;l m o lecu lar sieve 酸催化反应是化学工业中重要的反应之一,目前工业生产中还在大量使用液体酸,如H 2SO 4、H F 等酸催化剂.但是液体酸在使用过程中容易腐蚀设备,需要特殊的中和步骤来分离酸和产物,而且无法重复利用,仅因无法回收使用,每年有超过15M t 的浓H 2SO 4被丢弃[1],对环境造成了很大的污染.这些都造成生产成本增加、环境污染等不良后果,也浪费大量的资源.鉴于 绿色化学 和 绿色工业 的原则[2],必须改进生产工艺,以减少化工生产对环境和人类健康所造成的不利影响.相对于液体酸而言,固体酸具有无毒、不易腐蚀设备、环境友好、可循环使用等优点,因而受到人们的广泛关注.近几十年来,人们一直在寻找开发能够代替液体酸的固体酸催化剂[3-4].磺酸型固体酸的开发成为一个研究的热点,其研究思路是在一些载体(如中孔硅分子筛、中孔炭分子筛、无定型炭等)上通过各种方法引入磺酸基团,使之具有与硫酸相当的酸性.本文以各种主要载体为类别,对这些方法和所制得的酸性催化剂的性能进行综述.1 中孔硅分子筛沸石分子筛,如Y、ZS M 5等是石油化工和化学工业领域中非常重要的催化材料.由于其孔径较小,对涉及大分子的催化反应性能欠佳.自1992年M o b il公司成功合成M41S系列孔径在2~50nm中孔硅分子筛以来,分子筛在催化领域的研究进入了一个新的阶段[5].但它们的表面酸性很弱,必须进行后处理或通过在骨架中引入其他元素来满足反应所需的酸性.所以M argolese等[6-10]以此为载体,在其上引入磺酸根、丙基磺酸等酸性基团,制得磺酸型分子筛.所采用的方法主要有后合成嫁接法[8,11-14]和原位共缩合合成法[7,9,15-17].采用这2种方法所制备的新型固体酸在缩聚、酯化及酰化等反应中表现出较好催化性能[7,9,15-20].1 1 后合成嫁接法后合成嫁接法主要是利用中孔硅分子筛表面的硅羟基与巯基( S H)烷氧基硅烷反应,将 SH接入中孔分子筛,后经H2O2将 S H氧化成磺酸基,从而得到负载有机磺酸的固体酸.如将3 巯基烷氧基硅烷与预先合成的M C M 41反应,使部分共价硫醇嫁接到M C M 41的 OH上,再经H2O2氧化制得H SO3 丙基 M C M 41;该固体酸在甘油和月桂酸、油酸的酯化反应中表现出较好的催化活性[8].随后D iaz等[21]发现,用甲基代替丙基,所得H SO3 甲基 M C M 41的酸性更强.此外,为了避免使用昂贵的巯基烷氧基硅烷和后续的氧化步骤,陈静等[11]采用两步后合成法,即先将纯硅M C M 41与苯甲醇反应使其表面接枝苄基,再通过苄基与氯磺酸反应将苯磺酸接枝到介孔分子筛上,制备了H SO3 苯基 MC M 41固体酸,其比表面积和孔容分别为976m2/g和0 42c m3/g,比接枝前的MC M 41稍有减少,酸量为4 2mm ol/g.袁兴东等[22]采用后合成法制备出含碘酸基的介孔分子筛SBA 15 SO3H,并与直接法获得的催化剂进行了比较,发现后者的酸中心多于前者;酯化反应结果表明,直接法合成的催化剂比后合成法具有更高的稳定性,且简便、快捷、高效[23].高国华等[24]利用后接枝法将含有磺酸基团的硅烷偶联剂引入MC M 41,得到的酸性介孔有机 无机杂化材料在苯甲醛与乙二醇的缩醛反应中显示了较好的催化活性.合成嫁接法制备磺酸型中孔硅分子筛尽管操作较简单,但所能嫁接上的磺酸基团的数量受到中孔硅分子筛表面活性羟基数量的限制;同时,由于孔道大小的制约,不是所有的内表面羟基都能得以利用,从而导致有机酸性基团不能均匀地接到载体上.此外,依所选烷基的不同还可能导致中孔硅分子筛的孔道被堵塞[25].这些都是在采用该方法时需要注意的问题.1 2 原位共缩合合成法原位共缩合合成法是在合成中孔硅分子筛的溶胶 凝胶过程中,将含有巯基的烷氧基硅烷作为反应物与合成中孔硅分子筛所需的硅源、表面活性剂和碱同时加入到合成液中,经水热自组装后,再用HNO3或H2O2将 SH氧化成磺酸基得到负载有机磺酸的固体酸.Li m等[26]将3 巯基烷氧基硅烷(M PTS)、正硅酸甲酯(T MOS)、十六烷基三甲基溴化铵(CTAB)、Na OH、水和甲醇按摩尔比为1 2 5 0 42 0 96 272 66配制合成液,室温下搅拌12h 后于95 合成36h,再在HC l/C H3OH/H2O中回流处理以萃取出表面活性剂,得到含有机基团的MC M 41,其中S质量分数为10 88%(n(S)/ m(S i O2)=4 7mm o l/g),与原始配料中S含量(n(S)/m(S i O2)=4 8mm o l/g)相当.该材料先用20%HNO3润湿后,再在浓HNO3中搅拌24h即可将巯基氧化为磺酸基,且S含量保持不变,从而制得磺酸型MC M 41.不过MC M 41的有序度稍有降低.与此类似,M argo lese等[6]在合成SBA 15的反应物中直接加入3 巯基烷氧基硅烷,在313K下搅拌20h,再在373K下老化24h后,过滤干燥,用乙醇回流除去模板,得到含巯丙基的SBA 15.在室温下用H2O2将巯丙基氧化成丙基磺酸后,用1m o l/L 的硫酸处理试样2h,过滤烘干后得到了酸量较高的磺酸型SB A 15.其XRD峰形与SB A 15完全相同,仅峰强度有所减小.而H2O2的氧化时间对试样的峰强度有很大的影响,氧化时间越长,峰强度越105第6期曾昌凤等:磺酸型固体酸催化剂的制备与应用研究进展低,说明试样的有序度减弱.其比表面积也随着氧化时间的增加而减小.由酸碱滴定可知,试样的酸量随着氧化时间的增加而增大.所以,通过调节H2O2的氧化时间就可以制备出一系列不同比表面积、不同酸量的磺酸型SB A 15,以满足不同反应体系的需求.之后,为了得到孔径较大的磺酸型中孔硅,M ar go lese等[6]通过调节正硅酸乙酯(TEOS)的用量,制备了孔径大于6nm、比表面积为674m2/g、酸量为1 64mm o l/g的磺酸型SBA 15.该催化剂在醇类脱水生成醚的反应中显示出较高的选择性,特别是在甲醇和丁醇的脱水反应中,在温度低于400K的情况下,选择性达100%[27].随后的研究也表明,采用该方法所制备的磺酸型中孔硅分子筛中的磺酸基团的浓度大于采用后合成嫁接法制备的试样[28].同时,产物的孔径也较大,有利于大分子如脂肪酸及其酯在孔道中的扩散[29].后续的研究表明,通过选择与磺酸基团相连的有机基团的类型,可以调变所制得的磺酸基中孔硅分子筛的酸强度[30].如采用巯基上带吸电子能力更强的基团(如苯基基团)的硅烷,所制得的磺酸基中孔硅分子筛的酸强度得到显著的提高.此外,有机基团的选择还影响最终酸性催化剂的活性.M baraka 等[17]分别将丙基磺酸根和芳香基磺酸根连接到SBA-15上,之后在H2O2中氧化、干燥、水洗,最后用1m o l/L的硫酸酸化处理、水洗干燥后,得到比表面积为735和540m2/g、酸量为1 44和0 92mm o l/ g(H+)的SBA-15-SO3H和SBA-15-ph-SO3H.它们被用于棕榈酸的酯化反应,在酸醇摩尔比为1 20、反应温度为358K、催化剂用量为棕榈酸质量的10%的反应条件下,尽管SB A-15-ph-SO3H的比表面积和酸量都低于SB A-15-SO3H,但是SBA -15-ph-SO3H的催化活性要明显高于SB A-15 -SO3H,说明磺酸根连接的有机基团对最终制备的催化剂的催化活性确实有较大的影响.D iaz等[31]在研究前人成果的基础上,由原位合成法制备了H SO3 -甲基-MC M-41、H SO3-乙基 MC M 41、H SO3 甲基/乙烯基 M C M 41固体酸,用于丙三醇与月桂酸、油酸的酯化反应,并研究了烷基链长度对所得固体酸催化活性的影响.由实验结果可知,在丙三醇与月桂酸的酯化反应中,H SO3 乙基 MC M 41表现出最高的催化活性,373K下反应6h,月桂酸的转化率高达93%;而相同条件下,用H SO3 甲基/乙烯基 M C M 41催化,其转化率只有80%;相比之下,H SO3 甲基 M C M 41的催化活性最低,其转化率仅为63%.相同的情况也发生在丙三醇与油酸的酯化反应中,393K的温度下反应4h,油酸的转化率分别为90%、60%和40%.由上述结果可知,当磺酸根与MC M 41表面的距离即烷基链长度有一个最佳值,此时的磺酸型固体酸的催化活性最高.这主要是由于甲基的引入,导致固体酸的亲水性有所降低,不利于反应的进行.因此,有研究先采用原位共缩合合成法制备有机磺酸 中孔硅分子筛固体酸,再采用后合成接枝法调变磺酸型中孔分子筛的表面亲/疏水性.M baraka 等[13,31]将用原位共缩合合成法制得的SBA 15 SO3H在398K下干燥后,将其与疏水的有机硅烷混合,在甲苯中回流4h,再于空气中干燥过夜和萃取器中用C H2C l2/(C2H5)2O萃取24h,干燥后得到含有有机磺酸根和有机疏水基团的SB A 15 SO3H,并用于生物柴油的制备.由于该疏水型SBA 15 SO3H 含有疏水基团,所以油脂较易与SBA 15孔道壁上的酸性基团接触,且反应后水和脂肪酸甲酯易于排除孔道,有利于酸催化反应的进行.张明伟等[32]亦采用水热法直接合成表面含丙磺酸基和不同烷基(如甲基、辛基和十六烷基)的疏水性介孔分子筛固体酸SBA 15 SO3H,其硫质量分数为3 53%~ 4 255%,酸含量为(0 84~1 08)mm o l/g,相对润湿接触角 r(SBA 15SO3H)< r(C H3 SB A 15 SO3H) < r(C8H17 SBA 15 SO3H)< r(C16H33 SBA 15 SO3H),催化剂对冰醋酸和正丁醇的酯化反应转化率可达75 5%,转化率随相对润湿角的增大而增大.2 无定型炭炭材料由于其在强酸碱环境下良好的化学稳定性一直都是催化剂研究中广泛采用的载体.2004年,H ara等[1]将萘在N2保护下半炭化,再用大量浓H2SO4于523K下磺化15h,引入磺酸根,得到具有酸性的炭材料.试样经核磁共振谱仪检测确定磺酸基团被引入到芳香碳原子上.由中和滴定测得试样的酸量为4 9mm ol/g,大约为萘酸量的5倍.由试样的热质量损失分析可知,该材料能在473K的高温下保持稳定.将其代替浓硫酸,用于乙酸乙酯的合成、2,3 二甲基 2丁烯的水合反应,其催化效果接近于浓硫酸,明显优于铌酸等传统固体酸.而在乙酸环己酯的水解反应中,其催化活性是浓硫酸的2倍.但106南 京 工 业 大 学 学 报 (自然科学版)第31卷是在一定反应温度下或在大于323K的水中,由萘为原料制备的磺酸型炭材料的磺酸根容易脱落,导致催化剂失活.其后,研究者们以价格更为低廉的蔗糖[33]、葡萄糖[2]等为原料,在高于573K的高温下热解后,得到黑色的带有少量羟基的多环芳香炭材料,随后在浓H2SO4或发烟H2SO4中于423K磺化,用磺酸根取代羟基,得到比较坚硬的磺酸型炭材料.由试样的结构分析可知,它是由含有 OH、 COOH和 SO3H的无定型炭组成,而且不同的炭化温度和不同的硫酸浓度均对最终炭材料的酸量和催化活性有很大的影响.由元素分析和中和滴定[2]的结果综合而得,相对于其他的炭化温度,在673K下炭化再磺化而得的炭材料的酸量最大.随着炭化温度的升高,炭材料上的羟基减少,磺化引入的磺酸根也相对减少;用发烟硫酸磺化而得的炭材料的酸量要比用浓硫酸磺化的大将近一倍.由于发烟硫酸的价格以及操作上的危险性等因素,一般选择价格低廉而又相对安全的浓硫酸.这些由糖类炭化、磺化而制得的酸性炭材料几乎不溶于任何溶剂(如水、甲醇、乙醇、苯、己烷和N,N-二甲基甲酰胺等),而且仅需通过简单的机械搅拌,它们就能均匀地分散在溶液中,停止搅拌一段时间后,由于重力作用而沉积在容器底部,易于与溶液分离.这有利于催化反应结束后固体催化剂与液体反应物、产物的分离.以蔗糖为原料制备的炭材料被用于生物柴油的制备[33],其催化活性约为浓硫酸的1/2,是萘催化剂[1]的2倍.而用发烟硫酸磺化,所得磺酸型炭材料的酸密度是浓硫酸磺化的2倍,催化活性也相应地成倍增加.反应完毕过滤出催化剂后,在滤液中没有发现 SO3H,这说明以蔗糖为原料制备的磺酸型炭材料能重复使用,而且没有失活现象发生.以葡萄糖为原料制备的磺酸型炭材料被用于2,3-二甲基-2-丁烯的水合以及乙酸的酯化反应[2],并与浓H2SO4、铌酸等传统的酸性催化剂作了比较.结果表明,在2,3-二甲基-2-丁烯的水合反应中,相同的反应条件下,由浓H2SO4催化所得2,3-二甲基-2-丁醇的产率为4 4%,铌酸仅为0 4%,而磺酸型炭材料表现出较好的催化活性,产率为3%,若用发烟H2SO4磺化,所得炭材料的催化活性略优于浓H2SO4,产率达4 5%;在乙酸的酯化反应中,磺酸型炭材料依然表现出优越的催化活性,约为浓H2SO4活性的1/7,用发烟H2SO4磺化而得的炭材料的催化活性依然是用浓H2SO4磺化所得炭材料的2倍.由反应数据可知,炭化温度确实对所得炭材料的催化活性有很大的影响.当炭化温度小于723K,所得的炭材料的催化活性较好;随着炭化温度的升高,炭材料的活性降低,所以一般选择673K的炭化温度.但是上述材料均为无定形结构,且比表面积较小,仅2m2/g.较小的比表面积不利于有机分子的扩散,导致反应物分子不能与酸性位很好的接触,使反应速度变慢.为了解决上述磺酸型炭材料的缺点,人们将此方法应用于规整中孔炭分子筛.3 中孔炭分子筛中孔炭分子筛分别继承了中孔硅分子筛孔道结构和炭材料稳定性的优点,而在催化、吸附、传感器、电容器等领域受到广泛的关注[34-37].2007年,Bu dar i n等[38]以玉米淀粉为原料,在水中形成凝胶后再结晶,为了防止结构的坍塌而采用低表面张力的溶剂(一般为乙醇)交换出材料中的水,干燥后得到膨胀的中孔淀粉.最后,在中孔玉米淀粉中掺杂有机酸(如对甲苯磺酸等)后,在真空下炭化,制得具有中孔结构的磺酸型炭材料.炭化温度不同,所得的中孔炭材料的结构也不同.炭化温度由423K升至923K,所得的炭材料从无定形结构变为石墨结构,表面也由亲水性变为疏水性.该材料虽然具有较大的比表面积(180m2/g),平均孔径为6nm,但是它并非是有序的中孔结构,材料中还含有一定量的孔径在0 5nm左右的微孔,而且其制备方法较为复杂,玉米淀粉的选取也较为苛刻.所以,Bossaert 等[29]和W ang等[39]直接在中孔炭分子筛C MK-3和C MK-5上,分别采用气相沉积法和表面化学改性法,制备了孔径分布均匀、结构有序的磺酸型中孔炭分子筛H SO3-C MK-3和H SO3-C MK-5.其中,W ang等[39]在制备H SO3-C MK-5时,是直接以高温炭化而得的中孔炭分子筛C MK-5为基底,在其表面用次磷酸还原重氮盐(4-苯基-重氮磺酸盐),引入磺酸根.C MK-5磺化后,其孔径、比表面积和孔容均有所减小,分别从4 6n m、1436m2/ g和2 0c m3/g降至3 3nm、843m2/g和0 82c m3/g.由其电子显微镜图可知,磺化并没有改变C MK-5的六边形结构,仅X射线衍射峰强度较C MK 5有所减小.由酸碱滴定可知,H SO3 C MK 5的酸量为(1 93 0 08)mm o l/g(H+),远远高于磺酸型中孔分子筛的酸量.C MK 5是疏水性材料,而107第6期曾昌凤等:磺酸型固体酸催化剂的制备与应用研究进展H SO3 C MK 5由于含有亲水性的H SO3基团,变为亲水性材料,所以它可用于疏水和亲水的反应体系.该H SO3 C MK 5被用于双酚A的催化合成反应,酚到双酚A的最大转换率为28 6%,在其他的一些酸催化反应中也显示出较高的催化活性和较强的稳定性,回收重复反应5次后,没有发生明显的失活现象.传统制备中孔炭分子筛的方法一般采用高温炭化,这有助于得到较为坚硬的中孔结构,但是高温炭化使所得炭材料上缺少有机基团.而X i n g等[40]通过控制炭化温度,得到富含羟基等有机基团的中孔炭分子筛C MK-3,X射线衍射表征结果显示,炭化温度对所得中孔炭材料的结构有较大的影响:在炭化温度高于773K时,所得炭材料在小角度有明显X射线衍射峰,说明在较低的炭化温度下,所得的中孔炭分子筛也具有规整的中孔结构.炭化温度既影响了中孔炭分子筛C MK-3的结构,也影响了最终磺酸型中孔炭分子筛的酸强度.不同炭化温度下所得试样的红外光谱表征结果表明,在823K炭化的C MK-3上有大量的有机基团存在.该试样经磺化后有明显的S O振动峰,其酸量为1 2mm o l/g;而在1173K炭化的C MK-3在磺化后没有发现S O振动峰,说明1173K的高温已经使试样完全炭化,所以无法引入磺酸根.优化的制备H SO3-C MK-3磺酸型中孔炭分子筛的条件为823K炭化和气相磺化法引入磺酸根.所制备的试样经核磁共振和N2吸附等表征显示,磺化并没有改变中孔炭分子筛的结构,但磺化后的C MK-3的比表面积、孔容和孔径均有所减小.将其用于催化环己酮肟经Beckm ann重排制备己内酰胺的反应,环己酮肟的转化率达91%,己内酰胺的选择性为84%,而且仅需通过简单的活化处理,就可恢复其催化活性,且能重复反应多次.同样,磺酸型中孔炭分子筛的催化活性来源于其上的 SO3H.但是过低的炭化温度致使所得中孔炭分子筛的强度减弱,炭层较松散,而过高的炭化温度致使炭材料上的有机基团全部被热解,难以引入磺酸根,所以想要得到坚硬而且酸量高的磺酸型中孔炭分子筛,需要改变制备方法.为此,Liu 等[41]采用浸渍法先将蔗糖负载在MC M-48的表面,再经半炭化和磺化,制得酸性C-MC M-48复合催化材料,在中孔硅分子筛表面负载一层炭有利于提高其水热稳定性.4 炭纳米管炭纳米管作为一种结构新颖的材料也被广泛应用制备催化剂的研究.如有研究以H2SO4-HNO3混合溶液对炭纳米管进行化学改性,使其表面产生羧酸基团[42],得到具有酸性的催化材料.但由于炭纳米管表面的酸性基团很少,因此,通过表面改性以增加酸性基团密度的研究还需深入.对于磺酸型炭纳米管的制备,是先将炭纳米管在1m o l/g的HNO3中于333K氧化3h,再于393K下干燥得到酸化的炭纳米管.之后,将其在大量浓硫酸中,于523K下磺化18h,冷却水洗过滤后,得到了酸量为1 90mm o l/g的磺酸型炭纳米管[43].在此过程中炭纳米管没有被浓硫酸氧化.将这种新型的质子酸催化剂用于乙酸甲酯的催化,并与硫酸处理的活性炭、硝酸处理的炭纳米管作比较,结果发现,磺酸型炭纳米管的催化活性明显优于其他两种催化剂,为它们的3倍.而且在重复使用3次后,其催化活性依然保持不变,完全可以代替传统的液体酸.5 结论与展望从以上的介绍可以看出,磺酸型固体酸催化材料由于其催化性能与传统的硫酸相当,有望成为环境友好型的替代催化剂,所以,十多年来,其研究十分活跃.总的来说,通过选择适宜的载体、制备方法和磺化措施可以调节磺酸型固体酸的比表面积、酸量和表面亲/疏水性质,从而调变其催化性能.不过,还存在以下一些问题需要进一步研究1)在载体的选择方面,中孔硅分子筛由于其固有的水热稳定性方面的弱点和表面羟基数量较少的问题,作为磺酸型固体酸的制备还需在这两个方面进行改性;无定型炭和炭纳米管比表面积还有待提高;中孔炭分子筛的价格较高,需要开发新方法以降低其成本.2)在制备方法方面,制备过程中要采用昂贵的巯基烷氧基硅烷,有些制备步骤繁多,还需要进一步开发新的制备技术.3)上述制备得到的磺酸型固体酸的催化稳定性及重复性还有待提高,特别是在一些催化反应中结构容易塌陷、酸性基团容易脱落等;其中,水中的稳定性尤为重要,因为许多反应如酯化、水解等都会有水产生,而上述研究中的许多磺酸型固体酸的结构在沸水中容易塌陷,而有关催化剂失活再生的问题还少有研究.4)寻找适宜这种磺酸型催化材料反应的工作还有待加强,因为目前这些催化剂108南 京 工 业 大 学 学 报 (自然科学版)第31卷参与的反应体系大多是如酯化和醚化等有水产生的反应.5)磺酸型固体酸还具有良好的离子交换和质子传导性能,这方面的研究还非常缺乏.这些都是使其实现工业化所需进行的研究方向.目前有研究表明,在中孔硅分子筛表面负载一层炭有利于提高其水热稳定性[41],也许将中孔硅分子筛与炭材料相结合制备磺酸型固体酸可能会成为一个研究方向.参考文献:[1] H ara M,Yos h i da T,Takagak i T,et a.l A car b on m aterial as astrong p rot on i c aci d[J].Ange w Che m In t Ed,2004,43(22):2955-2958.[2] Ok a mu raM,Takagak i A,Toda M,et a.l Aci d catal yzed reacti onson flexible pol ycycli c aro m ati c carbon i n a m orphous carbon[J].Che m M ater,2006,18(13):3039-3045.[3] Cor m a A.Inorgan ic solid aci ds and their use i n aci d catal yzed hyd rocarbon reacti ons[J].Che m Rev,1995,95(3):559-614.[4] H aller G.Ne w catal yti c concepts fro m ne w m ateri als:understandi ng catal ysis fro m a fundamen tal perspective,past,presen t,andf u t u re[J].J C at a,l2003,216(1/2):12-22.[5] K res ge C T,Leono w i czM E,Roth W J,et a.l Ord ered m es oporousm olecu l ar s i eves syn t hesized by a li qu i d cryst a l te m p l ate m echan is m[J].N at u re,1992,359:710-712.[6] M argolese D,C hristiansen S C,Chm el k a B F,et a.l D irect syn t hes es of ordered SBA 15m es oporous silica contai n i ng su lf on ic acidgroups[J].Che m M ater,2000,12(8):2448-2450.[7] Isabel D,C arlos M A,Fed ericoM,et a.l Co m b i ned al ky l and s u lf on i c aci d f uncti onali zati on ofM CM 41 t ype silica,esteri fi cati onof glycero l w i th f atty aci ds:esteri fi cati on of glycerol w it h fattyaci d s[J].J Cata,l2000,193(2):295-302.[8] M erci er L,Pi nnavaia T J.Access i n m esoporous materi als:advantages of a un i for m pore stru cture i n t he des i gn of a heavy m etalion ads orben t f or environm en t al re m ed i ation[J].Adv M ater,1997,9(6):500-503.[9] BossaertW D,D evos D E,van Rh ij n W M,et a.l M esoporou s s u lf on i c aci ds as selecti ve heterogen eous catal ysts for t he syn t hesisofm on ogl yceri des[J].J C at a,l1999,182(1):156-164. [10] van Rh ij n W M,Devos D E,S el s B F,et a.l A n e w fa m ily of mes oporous m olecu l ar si eves prepared w ith li qu i d crystal te m plat es[J].C he m Co mmun,1998(3):317-318.[11] 陈静,韩梅,孙蕊,等.卞基磺酸接枝M C M-41介孔分子筛的合成与表征[J].无机化学学报,2006,22(9):1568-1572.Chen J i ng,H an M e,i Sun Ru,i et a.l Syn t hesis and characterizati onof b enz y l s u l phonic acid f unctionalizedM C M 41[J].C h i n J InorgChe m,2006,22(9):1568-1572.[12] Dufaud V,DavisM E.Design of heterogen eou s catal ysts vi a mu ltip le acti ve site pos iti oning i n organ ic i n organ ic hybri d m ateri als[J].J Am Che m Soc,2003,125(31):9403-9413.[13] M barak a I K,Shank s B H.D es i gn of mu ltifuncti on ali zed m esoporous sili cas for es t erification of fatt y aci d[J].J C at a,l2005,229(2):365-373.[14] Para m badath S,Ch i da m bara m M,S i ngh A P.Synthes i s,ch aract eri zation and catal ytic prop erties of b enzyl sulph on i c aci d f un cti onalized Zr T M S catalysts[J].C atal Tod ay,2004,97(4):233-240.[15] Jaen icke S,C huah G K,Li n X H,et a.l O rgan ic i norgan i c hyb ri dcatal ysts for aci d and base cat alyzed reacti on s[J].M icroporM esoporM at er,2000,35:143-153.[16] D i az I,M o'h i no F,Perez Pari en t e J.et a.l S ynthesis,characteri zati on and catal ytic activit y of M CM 41 t yp e m es oporous s ilicasf uncti onalized w it h s u lf onic aci d[J].App l C atal A:Gen,2001,205(1/2):19-30.[17] M baraka IK,R adu D R,L i n V C,et a.l O rganosu lf on ic aci d functi ona li zed m es oporous sili cas for the esterifi cati on of f atty aci d[J].J Cata,l2003,219(2):329-336.[18] B runel D,B l an c A C,Gal arneau A,et a.l Ne w trends i n t he des i gn of s upported catal ysts on m es oporous silicas and their app licati ons i n fi ne che m icals[J].C atal Tod ay,2002,73(1/2):139-152.[19] Das D,Lee J F,Ch eng S.Selecti ve s ynthesis of b i sph enol A overm esoporou sM CM s ilica catal ysts functi onaliz ed w ith su lf on ic aci dgroups[J].J Cata,l2004,223(1):152-160.[20] 黄艳蕾,陈扬英,刘秀梅,等.苯基改性的中孔分子筛SBA 15的合成及其磺化[J].催化学报,2004,25(5):413-416H uang Yan l e,i Chen Yangyi ng,L i u X i u m e,i et a.l Synthesis andsulfonati on of phenyl m od ifi ed SBA 15m es oporous m ol ecu l ars i eve[J].Ch i n J C at a,l2004,25(5):413-416.[21] D i az I,Pariente E,Sastre.Syn t h es i s ofM C M 41materi als functi ona li sed w i th dial kylsilane group s and t he i r cat alytic acti vity i nthe esterifi cati on of gl ycerol w ith fatty aci ds[J].App l C atal A:Gen,2003,242(1):161-169.[22] 袁兴东,沈健,李国辉,等.表面含磺酸基的介孔分子筛催化剂SBA-15-SO3H的制备及其催化性能[J].高等学校化学学报,2002,23(12):2332-2335.Yuan X i ngdong,Shen Ji an,L iGuohu,i et a.l Preparari on of h i gh lyacti ve esterificati on catal yst SBA 15m esoporou s s ilica functi onali zed w it h s u lfon i c aci d group[J].Ch e m J Ch i n U n i v,2002,23(12):2332-2335.[23] 袁兴东,沈健,李国辉,等.表面含磺酸基的介孔分子筛SBA15 SO3H的直接合成[J].催化学报,2003,24(2):83-860.Yuan X i ngdong,Shen Jian,L i Guohu,i et a.l D i rect s yn t h es i s ofSBA 15m esoporous sili ca f unctionalized w it h s u lfon i c acid groups[J].Ch i n J C ata,l2003,24(2):83-86.[24] 高国华,周文娟,何鸣元.磺酸基功能化M C M-41有机-无机杂化材料的合成与表征[J].催化学报,2005,26(5):357-359.Gao Guohua,Zh ouW en j u an,H eM i ngyuan.Synthes i s and c h aracteri zation ofM CM 41 SO3H organ ic i norgan ic hybri ds[J].Ch i n JC at a,l2005,26(5):357-359.109第6期曾昌凤等:磺酸型固体酸催化剂的制备与应用研究进展。
固体酸催化剂的制备、表征与工业应用研究进展
![固体酸催化剂的制备、表征与工业应用研究进展](https://img.taocdn.com/s3/m/31d9147127d3240c8447efc4.png)
固体酸催化剂的制备、表征与工业应用研究进展近年来,固体酸作为一种新型的、性能独特的环境友好型酸性催化剂,凭借其绿色无污染、产物与反应物容易分离,催化效率高,对设备的腐蚀性大大降低且使用寿命长,稳定性好等优点而受到广泛研究应用。
其主要分为天然粘土类固体酸、负载酸型固体酸、复合金属氧化物固体酸及金属硫酸盐固体酸四大类,它的出现使酸性催化剂迈入了新的时代,成为催化领域研究的热点之一。
本文主要对固体酸的制备、表征及其最新的研究进展进行探讨。
1. 固体酸催化剂的制备常见固体酸催化剂的制备方法有物理浸渍法、溶胶-凝胶法、沉淀法及水热合成法等。
对几种主要制备方法简述如下。
1.1 浸渍法浸渍法是将载体置于含活性组分的溶液中浸泡,当多孔载体与溶液接触时,由于表面张力作用而产生的毛细管压力,使溶液浸入毛细管内部,然后溶液中的活性组分再在细孔内表面上吸附,达到平衡后将剩余液体除去(或将溶液全部浸入固体),再经干燥、煅烧、活化等步骤来制备催化剂。
刘养春[1]等通过浸渍法制备复合固体酸催化剂。
实验以一定量的超细SiO2为载体,在马弗炉中于200℃下活化,将活化后的超细SiO2置于活性组分Ti(SO4)2和Zr(SO4)2(质量比为5:1)的混合水溶液中,室温下浸渍24 h,于110℃下干燥,在马弗炉内于300℃下焙烧 3 h得到负载复合固体酸催化剂Ti(SO4)2-Zr(SO4)2/SiO2。
固体酸催化剂一般多使用M x O y型氧化物作为载体,存在催化剂热稳定性差,重复使用率低,制备复杂,且后处理繁琐,使用成本高等问题[2,3]。
而凹凸棒存在大量内部孔道,活化中心和较大比表面积,具有良好的吸附性、离子交换性等优点,作为载体性能优越。
李恩博等利用浸渍法制备出粘土类的负载型固体酸催化剂Ga2(SO4)3/凹凸棒[4]。
实验首先将凹凸棒溶于一定浓度的硫酸溶液中进行酸化处理,经过静置、过滤、烘干、研磨后将所得粉末与Ga2(SO4)3·18H2O按比例混合后浸于乙醇溶液中静置4 h。
固体酸催化剂的研究进展
![固体酸催化剂的研究进展](https://img.taocdn.com/s3/m/beecd3660622192e453610661ed9ad51f11d546d.png)
固体酸催化剂的研究进展固体酸催化剂是一种具有固体酸特性的材料,具有催化反应的能力。
相比于液体酸催化剂,固体酸催化剂具有结构稳定、可重复使用、废气处理效果好等优点,因此在各个领域得到了广泛的应用。
本文将重点介绍固体酸催化剂的研究进展。
固体酸催化剂的种类很多,常见的有氧化铝、分子筛、硼氢化钠、钨酸等。
这些材料都具有高度离子化的氧化物表面,能够吸附和活化反应物,在反应中起到催化剂的作用。
其中,分子筛是最常用的固体酸催化剂之一,具有孔道结构和可调变的酸性等特点,广泛应用于转化反应、酸碱中和反应、环氧化反应、酯化反应等。
催化剂结构的设计与调控是指通过合成方法和表面改性来控制催化剂的结构特征,以优化其催化性能。
例如,可以通过调控分子筛孔道结构的孔径大小和酸性位点的浓度,来控制反应物分子在孔道内的扩散和反应速率,从而提高催化剂的选择性和活性。
此外,还可以通过改变催化剂的掺杂元素、控制晶格缺陷和表面缺陷等方法,来调控催化剂的酸性和还原性,进一步提高催化剂的活性。
催化剂活性的提高是指通过合理设计催化剂的物理化学性质和表面活性位点,以提高催化剂在特定反应中的催化性能。
例如,可以通过增加催化剂的表面酸性位点、提高活性位点的分布均匀性、调控催化剂的空间电子结构等方法,来增加催化剂与反应物之间的相互作用,提高反应速率和选择性。
此外,还可以通过金属掺杂、负载等手段,来提高催化剂的稳定性和抗中毒性,延长催化剂的使用寿命。
除了催化剂的结构设计和活性提高,固体酸催化剂的研究还涉及到反应机理的探索和反应条件的优化。
通过对催化反应的原位表征、理论模拟和实验研究,可以揭示反应的微观机理和关键步骤,为催化剂的设计和优化提供理论依据。
而通过对反应条件的优化,可以调节反应物浓度、反应温度、反应时间等参数,以提高反应的转化率和选择性。
综上所述,固体酸催化剂的研究进展主要包括催化剂结构的设计与调控、催化剂活性的提高、反应机理的探索和反应条件的优化等方面。
固体酸催化剂的分类以及研究近况
![固体酸催化剂的分类以及研究近况](https://img.taocdn.com/s3/m/0e7c4527dd36a32d737581cf.png)
固体酸催化剂的分类以及研究近况刘庆辉,詹宏昌,汤敏擘(广东省安全科学技术研究所评价中心,广州510620) 摘 要:固体酸作为一种新型绿色环保型催化剂引起了人们的广泛关注。
到目前为止,已经开发出固载化液体酸、简单氧化物、硫化物、金属盐、沸石固体酸、杂多酸固体酸、阳离子交换树脂、粘土矿、固体超强酸等九类固体酸。
笔者在综合国内外的研究近况的基础上,提出了对固体酸催化剂研究的展望。
关键词:固体酸;催化剂;近况Classif ication and R esearch Development of Solid Acid C atalystL IU Qi ng2hui,ZHA N Hong2chang,TA N G M i ng2bo(Safety Assessment Center,Guangdong Institute of Safety Science&Technology,Guangzhou510620,China) Abstract:Recently,solid acids as new green catalysts have attracted considerable attention.By far,nine kinds of solid acids,such as solid2supported liquid acid,ordinary oxid,sulfide,salt,zeolite solid acid,cation ex2 change resin,clunch and solid superacid had been developed.The prospects for solid acids were proposed on the base of colligating recent domestic and abroad researching.K ey w ords:solid acids;catalyst;research development 固体酸是近年来研究与开发的一种新型酸催化剂,也是具有广泛的工业应用前景的环境友好的催化剂之一,因而对固体酸的研究具有十分重要的意义,成为当前催化研究的热点之一[1]。
固体超强酸催化剂[详解]
![固体超强酸催化剂[详解]](https://img.taocdn.com/s3/m/2b09fa7a1fb91a37f111f18583d049649b660e33.png)
固体超强酸催化剂超强酸是比100%的硫酸还要强的酸,其Hammett函数H0<-11.93(100%硫酸的H0为-11.93),可分为固态和液态。
固体超强酸和液体超强酸相比,有容易与反应物分离,可重复使用,不腐蚀反应器,减少催化剂公害,催化剂有良好的选择性等优点。
在催化反应中,固体超强酸对烯烃双键异构化、醇脱水、烯烃烷基化、酸化、醋化等都显示出较高的活性。
这种催化剂不腐蚀设备,不污染环境,催化反应温度低,制备简便,有广泛的应用前景。
固体超强酸是近年来发展的一种新型催化材料,对许多化学反应有较好的催化活性、选择性及重复使用性能。
固体超强酸是近年来研究与开发的一种新型固体酸催化剂,随着人们对固体超强酸不断深入研究,催化剂的种类也从液体含卤素超强酸发展为无卤素固体超强酸、单组分固体超强酸、多组分复合固体超强酸。
无论是催化剂的制备、理论探索、结构表征,还是工业应用研究都有了新的发现,固体超强酸由于其特有的优点和广阔的工业应用前景,已受到国内外学者广泛关注,成为固体酸催化剂研究中的热点。
1. 催化性能1.1饱和烃的异构化反应饱和烃类分子如正丁烷、戊烷较稳定,不易发生反应。
如用100%硫酸作催化剂,室温下不会发生反应,但用SbF5SiO2-Al2O3固体超强酸却能使丁烷发生反应,主要产物为异丁烷。
nC5H12 SbF5SiO2-Al2O3 异戊烷1.2氧化反应SO42--Fe2O3能在室温下使丁烷异构化。
但在100℃以上用脉冲法进行反应时,只发生氧化反应但是,单用Fe2O3作催化剂,即使反应温度为300℃丁烷也不发生反应。
1.3阴离子聚合反应烷基乙烯基醚的聚合反应是阴离子聚合反应,可用烷基金属化合物或Ziegler型催化剂。
但是SO42--Fe2O3对此反应有极高的反应活性。
如异丁基乙烯基醚用SO42--Fe2O3作催化剂,在0℃能很快发生聚合反应。
甲基乙烯基醚和乙基乙烯基醚在该催化剂存在下以甲苯作稀释剂也能在低温(零度或零度以下)下高速聚合。
固体酸催化剂的研究进展
![固体酸催化剂的研究进展](https://img.taocdn.com/s3/m/33d5ffa318e8b8f67c1cfad6195f312b3169ebca.png)
固体酸催化剂的研究进展基于氧化物的固体酸催化剂包括铝酸盐、硅酸盐、锡酸盐、钛酸盐等。
这类催化剂在油脂加氢、异构化、酯交换等反应中表现出良好的活性和选择性。
基于有机酸或离子的固体酸催化剂包括离子交换树脂、功能化SO42-团的SiO2等。
这类催化剂可以通过选择合适的有机酸或离子来调控其酸性,从而实现对不同反应的催化。
1.新型固体酸催化剂的合成和性能调控:研究人员通过改变催化剂的成分、结构和形貌等因素来提升其催化性能。
例如,将不同金属掺杂到氧化物催化剂中可以增强其酸性和抗齿型能力;采用纳米材料可以提高催化剂的比表面积和催化活性。
2.固体酸催化剂在有机合成中的应用:固体酸催化剂在有机合成中有着广泛的应用。
例如,通过固体酸催化剂可以实现简单、高效的醇醚化反应、酯化反应、甘氨酸催化羰基垂直三聚化反应等。
3.固体酸催化剂的工业应用:固体酸催化剂在化学工业中有很大的应用潜力。
例如,ZSM-5型分子筛催化剂在石油加氢和秋冬菜籽原料酯化反应中具有广泛的工业应用。
随着工业化生产的需求,研究人员还在努力提高固体酸催化剂的稳定性、降低成本以及开发新的催化反应。
4.固体酸催化剂的表征和反应机制研究:为了更好地理解固体酸催化剂的性能和反应机制,研究人员也在进行催化剂的表征和反应机制研究。
例如,通过催化剂表面酸性的测试,研究催化剂表面酸性位点的分布和性质;通过理论计算和反应动力学模拟,研究催化反应的速率控制步骤和反应途径。
总之,固体酸催化剂作为一类重要的催化剂,在有机合成、化学工业以及环境保护等领域都有着广泛的应用前景。
未来的研究还需进一步提高固体酸催化剂的活性和稳定性,并且深入理解其反应机制,以满足不同领域的应用需求。
固体酸催化剂的制备、表征与工业应用研究进展
![固体酸催化剂的制备、表征与工业应用研究进展](https://img.taocdn.com/s3/m/3983e072f5335a8102d220c4.png)
指示剂 中性红
碱型色 黄
酸型色 红
pKa +6.8
[H2SO4] % 8×10-8 5×10-5 3×10-4 5×10-3 2×10-2 0.1 4.8
甲基红
苯偶氮萘胺 二甲基黄 2-氨基-5-偶氮甲苯 苯偶氮二苯胺 结晶紫 对硝基二苯胺 二苯基壬四烯酮
黄
黄 黄 黄 黄 蓝 橙 橙黄
红
红 红 红 紫 黄 紫 砖红
不同反应温度对催化性能的影响
在200℃吸附吡啶后,由于吡啶分子被质子化,3635cm-1吸收带消失,1540cm-1吸收 带出现,而小笼中的3545cm-1则基本上不受影响。这表明吡啶的吸附是有选择性的。 这是由于吡啶分子的动力直径较大,只能进入Y型分子筛的大笼,而不能进入较小的笼。 因此,这种吸附的选择性属于几何形状的选择性。从而可用吡啶吸附的红外光谱,判 断Y沸石大笼和小笼中的酸性位。
碳基固体酸的优点
价廉易得 比表面积大 磺酸酸量高
催化活性和选择性好
易回收再生使用 对设备腐蚀性小 在强酸碱环境下具有良好的化学稳定性
不同催化剂用量对催化性能的影响
碳基固体酸制备方法最新进展 在这三种碳基固体酸中,有序中孔材料是多相催化领域的研究热点,制备方法主要有低 温炭化 -磺化法、高温炭化-氧化 -磺化法和高温炭化 -嫁接法三种。 低温炭化 -磺化法
例:能使二肉桂丙酮变红但不能使共叉乙酰苯变黄的催化剂的酸性 强度是 -5.6<H0<-3.0
指示剂名称 二肉桂丙酮 共叉乙酰苯 黄醌 2.4.6- 三硝基苯胺 pKa -3 -5.6 -8.2 -10.10 酸型色 红 黄 黄 黄 碱型色 黄 无色 无色 无色
用于测定酸强度的碱性指示剂:
碱性:
萍-固体酸催化剂
![萍-固体酸催化剂](https://img.taocdn.com/s3/m/f57599004a7302768e99398a.png)
Page 6
三、 杂多酸催化剂
Page 7
3.1 杂多酸固体酸催化剂的作用机理
作为固体酸催化剂,杂多酸是由中心原子(杂原子)和配位体 ( 多原子)以一定结构通过氧原子配位桥联而组成的含氧多元酸的 总称。杂多酸具有独特的“准液相”行为,它具有沸石一样的笼 形 结构,体相内的杂多酸阴离子间有一定的空隙,有些较小的 极性分子(如水、醇、氨、吡啶等)可以进入杂多酸的体相内, 在固体 杂多酸表面发生变化,迅速地扩及体相内各处,从而在 其体内形 成假液相,因此固体杂多酸是一类多功能催化剂,既 可作均相催 化,又可作非均相催化;既可作酸催化剂,又可作 氧化——还原 催化剂。 杂多酸的这种表面型和体相(准液相)催化作用的存在, 使其 催化反应不仅发生在催化剂的表面上,而且发生在整个催化 剂 的体相,因而具有更高的催化活性和选择性。杂多酸还有多功 能(强酸性、强氧化性、阻聚作用、光电催化)等优点。
催化剂、杂多酸固体酸催化剂、离子交换树脂固体酸催化 剂 、固体超强酸催化剂等固体酸催化剂研究的主要进展,主要介绍杂多
酸催化剂。
Page 3
二、分类
1 磺酸型固体酸催化剂
磺酸型固体酸催化剂的开发以代替液体酸为目的。其研究思 路是在一些载体(如中孔硅分子筛、无定形碳等)上通过各种方 法 引入硫磺基团,使之具有与硫酸相当的酸性。
碳基固体酸将天然糖类化合物炭化, 然后连键磺酸基,是一个 合理利用生物资源、工艺绿色的例子。 希望今后的催化技术能 有新的突破,真正实现绿色化学的目标。
Page 11
固体酸催化剂的研究进展
庞 金 萍 化学11-1
一、背景
固体酸催化剂具有对多种化学反应有较高活性与选择性、回 收重复利用和 效率较高等优点,作为绿色环境友好型催化材料备 受人们关注。以往单纯 追求眼前效益、不顾对环境所造成的危害 的做法近年来越来越受到人们的 批判。随着环保意识的增强,以 及“绿色化学”的提出,越来越多的学者 致力于开发效益兼顾环 境、促使化学工业转向开发可持续发展的新型催化 剂。 催化剂在 工业化生产上起着加速反应进行和提高产率的重要作用,目前工 业 生产中还在大量使用此类液体酸,然而,这类酸催化剂与反应物 及产物 分离困难,难以回收重复利用,对环境造成了很大的污染。这与所倡 导的 “绿色”相悖,造成了很大的污染。这些都造成生产成本增 加、环境污染 等不良后果,也浪费大量的资源。鉴于“绿色化学” 和“绿色工业”的原 则,必须改进生产工艺,以减少化工生产对环 境和人类健康所造成的不利 影响。 相比液体酸催化剂而言,固体酸催化剂能更好地解决这些问 题,具有广泛 的工业应用前景,是一种无毒、不易腐蚀设备、可 循环使用、环境友好型 新型催化剂
固体酸催化剂在酯化反应中的性能研究
![固体酸催化剂在酯化反应中的性能研究](https://img.taocdn.com/s3/m/e19ea693d05abe23482fb4daa58da0116c171f38.png)
固体酸催化剂在酯化反应中的性能研究摘要:固体酸催化剂在酯化反应中的应用已经引起了广泛的关注。
本文通过对固体酸催化剂在酯化反应中的性能进行研究,探讨了其催化机理、催化活性以及对反应产物的影响。
实验结果表明,固体酸催化剂在酯化反应中表现出较高的催化活性和稳定性,可以有效地促进反应的进行,产物收率较高。
关键词:固体酸催化剂,酯化反应,催化活性,产物收率1. 引言酯化反应是一种重要的有机合成反应,广泛应用于化工、药物、食品等领域。
传统的酯化反应通常使用液体酸作为催化剂,但液体酸存在易挥发、难回收等缺点,限制了其在工业生产中的应用。
相比之下,固体酸催化剂具有结构稳定、易回收、可重复使用等优点,成为了酯化反应中的重要催化剂。
固体酸催化剂在酯化反应中的研究已经取得了一定的进展,但仍存在一些问题,如催化活性、反应速率、产物选择性等方面有待进一步研究。
本文旨在通过对固体酸催化剂在酯化反应中的性能进行深入研究,探讨其催化机理、影响因素以及优化方法,为固体酸催化剂在酯化反应中的应用提供理论基础和技术支持。
2. 固体酸催化剂的性能固体酸催化剂是一类以固体酸为主要成分的催化剂,具有较强的酸性。
固体酸催化剂在酯化反应中的性能受多种因素影响,如催化活性、酸位密度、孔结构等。
固体酸催化剂的性能主要包括以下几个方面:2.1 催化活性固体酸催化剂的催化活性是评价其性能优劣的重要指标。
固体酸催化剂的催化活性与其酸性强度密切相关,通常采用测定固体酸催化剂的酸度来评价其催化活性。
研究表明,酸度越强的固体酸催化剂其催化活性越高,在酯化反应中表现出更好的催化效果。
2.2 酸位密度固体酸催化剂的酸位密度是影响其催化活性的重要因素之一。
酸位密度较大的固体酸催化剂通常具有较高的催化活性,能够有效地催化酯化反应。
因此,提高固体酸催化剂的酸位密度可以提高其催化活性,从而促进反应的进行。
2.3 孔结构固体酸催化剂的孔结构对其催化性能也有一定影响。
孔结构良好的固体酸催化剂具有较大的比表面积和孔容,有利于底物与催化剂的接触,可以提高反应速率和产物选择性。
固体酸催化剂
![固体酸催化剂](https://img.taocdn.com/s3/m/2303a9a6b8f67c1cfbd6b832.png)
辽宁石油化工大学设计(论文) 题目固体酸催化剂的研究进展学院化学化工与环境学部专业班级研2016姓名张健学号4322016 年11 月6日摘要固体酸催化剂具有对多种化学反应有较高活性与选择性、回收重复利用与效率较高等优点,作为绿色环境友好型催化材料备受人们关注。
以往单纯追求眼前效益、不顾对环境所造成的危害的做法近年来越来越受到人们的批判。
随着环保意识的增强,以及“绿色化学”的提出,越来越多的学者致力于开发效益兼顾环境、促使化学工业转向开发可持续发展的新型催化剂。
催化剂在工业化生产上起着加速反应进行与提高产率的重要作用,其中酸催化剂在催化剂领域中得到了广泛的研究及应用。
相比液体酸催化剂而言,固体酸催化剂具有广泛的工业应用前景,就是一种无毒、不易腐蚀设备、可循环使用、环境友好型新型催化剂。
本文着重介绍固体酸催化剂以及发展前景。
关键词:固体酸催化剂;活性;选择性;环保1 绪论1.1固体酸催化剂固体酸催化剂就是一种性能独特的酸性催化剂,它的出现使酸催化反应迈入了新的时代。
首先固体酸催化剂的使用在一定程度上缓解与避免了均相反应所带来的不利因素的出现,其次由于其使用温度范围广,适用于700~800 K 进行的反应,这就将研究对象扩大到热力学上可进行的反应范围内。
基于此,从19 世纪40年代开始,化学工作者们从未间断过对固体酸的研究。
目前,已有大量应用于酸催化反应的固体酸[1-2],见表1。
1、2 几类重要的固体酸催化剂1、2、1 负载型催化剂负载试剂于无机载体中即成负载试剂催化剂亦称负载型催化剂。
1989 年负载试剂催化剂就已经实现了工业化,取得了良好的经济与环境效益,引领催化研究进入了崭新的阶段。
采用一定的方法(如下表2)将活性物质固定在载体上即制成了负载型催化剂,按照负载物质的性质不同,可将其分为负载碱型催化剂、负载酸型催化剂与负载氧化物型催化剂。
在负载型催化剂中,催化活性高于载体活性与试剂活性的简单组合,可以理解为,在负载过程中活性物质与载体的共同作用强化了催化作用,进而表现出高的催化活性与环境友好性。
固体酸催化剂的研究进展
![固体酸催化剂的研究进展](https://img.taocdn.com/s3/m/af65f00380eb6294dc886c4d.png)
炭基固体酸催化剂的研究进展摘要酸催化反应在化工工业生产中广泛应用,目前工业上硫酸、盐酸等液体酸催化剂使用较普遍,液体酸存在一次性消耗大、对设备腐蚀严重、后处理困难,对环境污染较大等缺点。
固体酸催化剂作为一种新型的环保材料,在化工生产中的应用变得越来越广泛,主要用于缩酮缩醛反应、水解反应、烷基化反应、酯化反应等。
其中,炭基固体酸催化剂是近年来较为热门的研究课题,以葡萄糖、淀粉、蔗糖、纤维素作为原料在一定条件下制备新型固体酸催化剂。
炭基固体酸催化剂酸量高、催化活性和选择性好、易回收再生使用和对设备腐蚀性小等优点。
本文简单介绍生物质炭基固体酸催化剂的制备原料、分类及制备方法,分析其作为催化剂的作用机理,简述炭基固体酸催化剂的现状并展望其发展前景及方向。
(正文部分)碳基固体磺酸作为一种新型的固体酸催化剂,具有催化活性高、酸密度大、后处理简单、价格低廉等优点。
目前碳材料种类繁多且存储量巨大,其中木纤维原料作为碳材料的一种,是可再生能源,在环境、能源状况日渐恶化的今天具有重要利用价值。
炭基固体酸催化剂指的是以炭材料为载体,在其表面上负载一些酸性基团或者固体酸,使其具备液体的B 酸及L 酸活性中心。
由于炭材料具有疏水性的特点,使得反应后的分离操作变得简单且催化剂易于回收,其巨大的比表面积能够提高其催化活性,近年来,有关炭基固体酸的研究在国内外均有报道。
1.炭基固体酸分类以炭基固体酸载体的不同可将其分为两类:一类为以碳材料为载体,在其表面键合上-SO3H基团的磺化碳固体酸;另一类为以活性炭为载体,在其表面负载上杂多阴离子的活性炭载杂多酸催化剂。
根据结构不同可以将磺化碳基固体酸分为普通碳基固体酸、多孔碳基固体酸和有序中孔碳基固体酸三种。
普通碳基固体酸的孔道结构为大孔,比表面积一般小于5 m2/g,这种材料以无定型炭的形式存在,孔道无序排列;多孔碳基固体酸的孔道大部分都为中孔,比表面积可达到1000m2/g以上,孔道无序排列,孔径分布和比表面积的大小由制备方法决定;有序中孔碳基固体酸的孔道为中孔,比表面积一般高于400 m2/g,这些孔道以一定的形状有序排列,孔道形状、孔径大小和比表面积由模板剂类型和制备方法决定。
固体酸催化剂研究近况综述
![固体酸催化剂研究近况综述](https://img.taocdn.com/s3/m/f5d516325a8102d276a22fb0.png)
固体酸催化剂研究近况综述李佩莹(北京化工大学材料科学与工程学院,北京 100029)摘 要:固体酸催化剂因其具有对多种化学反应有较高活性与选择性、回收重复利用效率较高等优点,已作为绿色环境友好型催化材料备受人们关注。
本文主要综述了近年来国内外对各类型固体超强酸、杂多酸固体酸、离子交换树脂的研究近况,并提出了对今后固体酸发展的展望。
关键词:固体酸;催化剂;近况A Revie w of the Current R esearch on So lid A ci d Catal ystsLI P ei -ying(College o fM aterials Sc i e nce and Eng i n eering ,Be ijing University o f Che m icalTechno logy ,Be ijing 100029,Ch i n a)Abst ract :A s perspective green cata l y tic m ater i a ls ,so li d acid catalysts w ere focused on for its h i g h reacti v ity ,selec ti v ity and recoverability rate .The present sit u ation i n the deve l o p m ent bo t h at ho m e and abroad of so lid acid cata lysts such as so lid superacid and zeo lite so li d ac i d w ere rev i e w ed.The deve lopm ent pr ospect of solid acid w as proposed.K ey w ords :solid acids ;catalys;t current research以往单纯追求眼前效益、罔顾环境所造成的危害近年来逐渐得到人们的重视。
南大合成固体酸催化剂
![南大合成固体酸催化剂](https://img.taocdn.com/s3/m/3d9d8f58f08583d049649b6648d7c1c708a10ba2.png)
南大合成固体酸催化剂南大合成固体酸催化剂:探索科学前沿,开启新能源时代引言:人类对能源的需求日益增长,而传统能源资源的枯竭和环境污染问题也日益突显。
因此,寻找新能源和清洁能源的研究成为了当代科学的热点。
南大合成固体酸催化剂作为一种重要的催化剂,在新能源领域发挥着重要的作用。
本文将从南大合成固体酸催化剂的定义、特性、应用以及未来发展等方面进行探讨。
一、定义和特性南大合成固体酸催化剂是指通过合成方法得到的具有酸性的固体催化剂。
其特性主要体现在以下几个方面:1. 高活性:南大合成固体酸催化剂具有较高的催化活性,能够在相对温和的条件下催化反应进行,提高反应速率和选择性。
2. 高稳定性:南大合成固体酸催化剂具有较好的热稳定性和化学稳定性,能够在高温和强酸碱条件下保持催化活性。
3. 可重复使用:南大合成固体酸催化剂具有较好的可重复使用性,可以通过简单的再生处理后重复使用,减少资源浪费。
二、应用领域1. 生物质转化:南大合成固体酸催化剂在生物质转化领域具有广泛的应用前景。
它可以将生物质中的纤维素、半纤维素等转化为高附加值的燃料和化学品,实现资源的高效利用。
2. 环境保护:南大合成固体酸催化剂可以用于废水处理、废气净化等环境保护领域。
它能够将废水中的有机物质和有害气体进行高效转化和去除,减少对环境的污染。
3. 新能源开发:南大合成固体酸催化剂在新能源开发领域也有重要应用。
它可以催化水解反应、氧化反应等,实现氢能、太阳能等新能源的高效转化和利用。
三、未来发展南大合成固体酸催化剂的发展前景十分广阔,但仍面临一些挑战:1. 催化机理的解析:南大合成固体酸催化剂的催化机理尚不完全清楚,需要进一步深入研究和解析。
2. 提高催化活性:虽然南大合成固体酸催化剂具有较高的催化活性,但与传统酸性催化剂相比仍有一定差距,需要进一步提高其催化活性。
3. 拓展应用领域:目前南大合成固体酸催化剂已在一些领域得到应用,但仍有许多领域有待拓展,如能源储存、化学品合成等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷( A 卷)专业: 课程代码: 19060071学号: 姓名:作文题(任选一题,写一篇综述论文,每题 100 分)自拟题目,写一篇关于工业上绿色环保催化剂进展的综述论文[能力层次: 综合运用和创见 ];[难易度: 较难 ]要求:1、查阅文献至少在20篇以上,并且外文文献引用2篇以上;2、论文字数3000字以上;3、论文格式严格按照综述论文要求书写;绿色固体酸催化剂研究近况综述摘 要:催化剂的研究和发展是现代化学工业的核心问题之一,现代化学工业的巨大成就是同使用催化剂联系在一起的。
目前90%以上的化工产品,是借助催化剂生产出来的。
工业催化的发展是紧随化学工业的演变而发展的。
催化剂和催化技术的研究与应用,对国名经济的许多重要部门是至关重要的。
但就化工工艺过程来说,催化剂的应用可以具体概括为以下几个方面:更新原料路线,采用更廉价的原料;革新工艺流程,促进工艺过程的开发;缓和工艺操作条件,达到节能降耗的目的;开发新产品,提高产品收率,改善产品的质量;消除环境污染或开发从原来到产品的整个化工品过程,对资源的有效利用以及污染控制的环境友好的“绿色催化工艺”等。
引言:固体酸催化剂因其具有对多种化学反应有较高活性与选择性、回收重复利用效率较高等优点,已作为绿色环境友好型催化材料备受人们关注。
本文主要综述了近年来国内外对各类型固体超强酸、杂多酸固体酸、离子交换树脂的研究近况,并提出了对今后固体酸催化剂发展的展望。
关键词:固体酸;催化剂【正文】以往单纯追求眼前效益、罔顾环境所造成的危害近年来逐渐得到人们的重视。
随着环保意识的增强,以及绿色化学的提出,越来越多的学者致力于开发效益兼顾环境、使化学工业促可持续发展的新型催化剂。
催化剂在工业化生产上起着加速反应进行和提高产率的重要作用,其中酸催化剂在催化领域中得到了广泛的研究及应用。
常用的酸催化剂有:浓H2 SO4、H3PO4等。
作为传统酸催化剂,浓H2SO4具有价格便宜,催化效果好,适用范围广的特点;然而,这类酸催化剂与反应物及产物分离困难,难以回收利用,产品要经中和、水洗等多重工序,而且反应产生的废液会严重腐蚀设备,这与所倡导的绿色大潮流相悖。
相比而言,固体酸催化剂能更好地解决这些问题,具有广泛的工业应用的前景,是一种环境友好型的新型催化剂。
如杂多酸、阳离子交换树脂、天然粘土矿、固体超强酸。
1 .1固体酸催化剂的研究近况。
以下主要是综述了固体超强酸(HO<-11.94) 的研究发展状况;包括了单组分固体超强酸催化剂和多组分复合固体酸催化剂的研究。
1.1.1组分固体超强酸催化剂苏文悦、亦琳等人【1】对SO2/TiO2进行了研究;发先SO2/TiO2固体酸可用于光催化降解溴代甲烷。
当H2SO4浸渍液浓度为1mol/L 时,制备所得的SO2/TiO2酸性最强(HO<4–12.14),具有超强酸性和最高的光催化活性;且比在相同反应条件下的TiO2的光催化活性提高了2~10倍。
任立国等人[ 2] 制备了H2PO3/TiO2 固体酸,对其进行了表征,并催化了乙酰乙酸乙酯和乙二醇的缩酮化反应。
研究结果表明,经H2PO3改性后的TiO2在25℃~575℃焙烧形成,表面同时存在L酸中心B 酸中心的固体超强酸。
在缩酮化反应中,H2PO3质量分数为75% 焙烧温度为500℃的固体酸催化剂具有最高催化活性。
于荟、银华等人[3] 采用等体积浸渍法制备了新型晶体状SO2/TiO2固体酸,以其为催化剂催化一系列物化表征后显示,SO2/TiO2固体酸具有纳米级晶粒、须状形貌、高比表面积和孔结构,500℃焙烧时催化剂活性最高。
酯化反应中,在催化剂的投入质量为0.2n(正丁醇) / n(乙酸) = 15反应时间为3h的条件下,正丁醇转化可达94%。
1. 1.2 多组分复合超强酸催化剂复合其他金属氧化物型;李文生、尹双凤等人[4]制备了经高温活化焙烧的B2O3剂。
表征后得出:对700℃活化焙烧的B2O3/Zr2,B2O3固体酸催化剂的发展。
一、固体酸催化剂的历史从Walter等人【4】首次发现了单一金属氧化物V2O5 可以催化甲苯合成苯甲醛开始;固体酸催化剂便开始了其发展历程。
随后一些简单的金属氧化物如Al2O3、Fe2O3等已作为固体酸催化剂而被应用于反应中。
1979 年,Hino等人【5】合成了首例M X O Y/SO2型催化剂。
因其具有能在较温和的条件下活化酸催化反应、易分离、副反应少、不腐蚀、重复使用的优点,SO2、TiO2、Zr2、Fe2O3等迅速代替传统酸催化剂应用于SO2、O、SO反应中。
NiO- Zr2-SO2、Fe2O3-ZrO2-SO2等复合型固体,超强酸催化剂的出现更成为研究的热点。
二、固体酸催化剂的分类由首例固体酸催化剂的发现到目前为止;被开发的固体酸大体可以分为九类[6];(1)固体化液体酸;(2)氧化物,包括简单氧化物和复合氧化物;(3)硫化物;(4) 金属盐;(5)沸石分子筛;它含量为比表面最大,而B2O3的含量为8.3%时催化剂表面的总酸量最大。
实验还表明催化剂表面B/Zr 原子之比中强酸百分含量间存在顺变关系,而且中强酸中心是催化环己酮肟贝克曼重排的活性中心。
郭锡坤、王小明[7] 以Al2O3为载体,用分步浸渍法制得Cu/Zr、S2O2、Al2O3固体酸,用于催化选择还原NO 的反应。
实验表明,由S2O2和Zr2可抑制Al2O颗粒的烧结及Cu2O4尖晶石相的生成,且促使催化剂表面B酸中心的形成;在10%水蒸气存在时NO的最大转化率还能达80%。
Caio Tagusagawa Atsushi Takagaks等人[8]采用溶胶凝胶法制备了不同x值的具有孔结构的Tax-W0-x氧化物超强酸。
表征结果显示,当x值在3~ 10时,样品具有无定型虫孔型孔结构,Ta3W7氧化物超强酸具有高比表面积的孔结构,形成B酸中心;在苯甲醚的Friedel-Crafts烷基化反应中表现出最高的催化活性。
三、磁性复合型;常铮、李峰等人[9]利用超声波法制得磁性纳米固体酸催化剂Zr( SO4)2/Fe3O4,并对不同配比的催化剂进行表征。
当Fe3+/ Fe2+的摩尔比为5.5;Na的浓度为0.1mol/L时;制出的磁性相对最强、粒大小均匀。
当Zr( SO4)2/Fe3O4的颗摩尔比降低时;酯化时的催化活性降低,但催化剂的磁性增强,即其回收率增大。
常铮、郭灿雄等人[10]制备出磁性超细固体SO2、ZrO2、Fe3O4;并用于催化乙酸丁酯的合成反应。
经实验表征后发现,磁基体的平均粒径为40nm,催化剂在650℃条件下焙烧,部分Fe3O4 会转化为Fe2O3,使整体磁性能下降。
但650℃处理的SO2、ZrO2、Fe3O4催化剂虽然比表面积降低到60.8 m2 /g 左右,酸性却增强,催化活性也上升。
王君[ 11] 设计合成了SO2/ZrO2/F e3O4/Al2O3/SO2/ZrO2/Fe3O4/TiO2、SO2/ZrO2/Fe3O4/B2O3和SO2/ZrO2/Fe3O4/WO3四种固体酸催化剂,并依次作为合成柠檬酸三丁酯、乙酸乙酯、乙酸乙酯和苹果酯的催化剂。
分析结果显示,Al2O3、TiO2与Fe3O4的引入均能抑制ZrO2(t)向Zr2(m)转变,有效抑制晶粒生成,提高酸性;B2O3在高温烧结中起钉扎作用,阻碍晶界的移动,同样抑制晶粒生成;WO3与Fe3O4的引入能使ZrO2在较高的焙烧温度下保持ZrO2(t)利于形成酸中心。
四、复合稀土元素及交联剂负载型;华平、李建华等人[12]合成了稀土复合型的SO2/Ti2/La3O4固体酸,且用于催化合成马来酸二辛脂。
经考察得出,当Ti/La 的物质量之比6:1,用于浸渍的硫酸浓度为1.8mol/L时,550℃焙烧的催化剂活性最高,酯化率可达96. 9% 。
陈同云[13] 用共沉淀法制得了引入稀土元素钕的固体超强酸SO2/ZrO2/Nd2O3,将其用于催化乙酸和甘油的酯化反应。
实验结果显示15℃陈化、650℃焙烧、ZrO2/Nd2O3的物质量之比为100:1时,催化剂酸度最强(HO=16.0),酯化率达95%以上。
低温陈化和的Nd2O3加入使催化剂的酸性增强,并能使Zr2四方晶相在较宽的温度范围内不发生转化。
Yan Li Xiao、Dong Zhang 等人[14]通过沉淀法和浸渍法制备SO4/ZrO2、TiO2/La3+,并研究其在脂肪酸和甲醇酯化反应中的催化性能。
实验结果表明,La(NO3)3为0.1%,用于浸渍的硫酸浓度为0.5mol/L,焙烧温度550℃时,催化剂活性最高。
且该催化剂在循环使用5次后仍表现出高活性,转化效率达90%以上。
郭锡坤、谌宁[15]以累托土为基质,采用四种不同的方法:(1)向Zr交联剂中引入La ;(2) 在未焙烧的Zr-CLR中引入La ;( 3)在焙烧后的Zr-CLR中引入La ;( 4)先用La与Na-R进行;交换加入Zr交联剂,分别制备了不同的含La的SO2改性Zr4交联粘土固体酸催化剂。
结果表明,先用La与Na-R进行交换再加入Zr交联剂,或采用La-Zr双组分与累托土交联所得的固体酸L酸酸量增多,酸强度增强。
郭锡坤、俊豪等人[16]采用溶胶凝胶法制备了Cu/Ce2/ SO2/Ti- PLL固体酸催化剂,并且进行表征。
结果表明,钛交M4联剂能增大交联蒙脱土载体的比表面积,制得的孔径为3~7nm;SO2与钛形成螯合双配位结构,促使了B酸中心的形成,酸量提高;Ce还促使了Cu 的还原作用。
(5)分子筛负载型陈静、孙蕊等人[17] 采用液相沉积法制备了MCM-41负载S2O8/TiO2的固体超强酸,以乙酸和异戊酯的酯化反应考察催化剂的性能。
表征显示,催化剂保持了MCM-41的孔结构,而且促进了S2O2-酸中心的形成了得到了Ti/Si的物量比为1:80.5mol/LS2O2-溶液浸渍5h、550℃下焙烧4h 的最佳工艺条件。
Dildk Varisli等人[18] 采用浸渍法制备了MCM-41负载钨硅酸(STA)的孔纳米级复合固体酸,对其进行表征后催化乙醇脱水反应。
实验表明,乙醇脱水反应的转化率随温度的上升而提高,在nW/nSi为0.24、反应温度为250℃时,经STA/MCM-41催化的转化率几乎可达100,催化剂的L酸中心促进了乙醇脱水生成乙烯。
肖容华、徐景士[19]利用混合球磨法将ZS-5分子筛与研细的Zr(OH)4混合研磨至光滑后按15g/mL硫酸浸泡,焙烧后制得SO2/Zr2/ZS超强酸( H0=-12.70)。
m (ZS-5/OMM4ZrO2)=4,浸渍液H2SO4浓度为1.0mol/L 600℃焙烧3h为%,较好的催化剂制备条件。
ZS-5的引入有利于表面的晶化,增大催化剂的比表面积,使其活性增强。