三重积分概念及其计算

合集下载

三重积分计算

三重积分计算

三重积分计算三重积分是多重积分的一种,用于计算三维空间中的体积、质心、重心、转动惯量等问题。

在高等数学中,三重积分也是非常重要的一部分,本文将详细介绍三重积分的概念、性质、计算方法以及一些应用。

一、三重积分的概念三重积分是对具有三个变量的函数在三维空间中一些区域的积分。

设f(x,y,z)是定义在区域Ω上的函数,其中Ω是三维空间中的一个封闭区域。

则三重积分的定义为:∭Ωf(x,y,z)dV其中,dV 表示一小块Ω中的体积元素,dV = dx dy dz。

可以看出,三重积分实际上是对Ω中个点对应的函数值与体积元素的乘积进行求和。

三重积分对应的结果是一个数值。

二、三重积分的性质1.线性性质:设f(x,y,z)和g(x,y,z)是定义在区域Ω上的函数,a和b是常数,则有:∭Ω (af(x, y, z) + bg(x, y, z)) dV = a∭Ω f(x, y, z) dV +b∭Ω g(x, y, z) dV2.保号性质:如果在Ω上有f(x,y,z)≥0,则有:∭Ωf(x,y,z)dV≥03.次序可交换性:如果函数f(x,y,z)在区域Ω上连续,那么对于Ω中的任意小闭区域D,有:∬D f(x, y, z) dx dy = ∬D f(x, y, z) dy dx这说明在计算三重积分时,可以先对其中两个变量积分,再对剩余的变量积分。

三、三重积分的计算方法计算三重积分的方法有很多种,下面介绍常用的两种方法:直角坐标系下的直接计算和柱面坐标系的变量代换法。

1.直角坐标系下的直接计算:假设要计算Ω上的三重积分∭Ωf(x,y,z)dV,Ω的边界可以分解为有限个可求面积的曲面。

先取一个边界曲面上的点P,以该点为上顶点的立体体积为ΔV,然后作适当的划分,将ΔV划分为若干个小的体积ΔV_i。

然后取这些小体积ΔV_i中其中一点(x_i,y_i,z_i),并计算f(x_i,y_i,z_i)与ΔV_i的乘积f(x_i,y_i,z_i)ΔV_i。

第三节三重积分的概念与计算

第三节三重积分的概念与计算
过 z轴且平行 xoy平面的平面去截 ,得截面
Dz ,则三重积分的计算可化为先对
z
x,y 求二重积分,再对 z 求定积分, b

Dz
f(x, y,z)dxdydz
b
a
dz f(x,y,z)dxdy
第八章 重积分 第三节 三重积分的概念与计算
一、三重积分的概念
问题的提出: 设空间立体 V 的密度函数为 f ( x, y, z ),求立体 V 的质量 M
为了求 V 的质量,仍采用:分割、近似代替、
求和、取极限四个步骤.
首先把 V 分成 n 个小块 V1 , V2 , . . . , Vn , Vi 的体积 记为 V i
x
zz2(x,y)
z2 S2
z1 S1
zz1(x,y)
D
(x, y) yy1(x)
y
yy2(x)
先x将 ,y看作定 f(x,值 y,z)只 , 看 z的 将 作 函数,则
F (x,y)z2(x,y)f(x,y,z)dz z1(x,y)
再计F算 (x,y)在闭区 Dx间 y上的二重积分
f(x ,y ,z )d vF (x ,y )d[z 2 (x ,y )f(x ,y ,z )d ] d z.
VVdxdydz
例 3 求由曲面 z x2 2 y2及z 2 x2所围成 的闭区域 的体积.
解 由zzx222x2y2,
得 交 线 投 影 区 域 x2y21,
故 {x (,y,z)|x22y2z2x2,(x,y) D x}y 其D x 中 y {x (,y)|x2y21 }
的体积 1dxdydz
Dxy
Dxy
1
1x
xdx2 (1x2y)dy

三重积分的概念和计算方法

三重积分的概念和计算方法

三重积分的概念和计算方法三重积分是数学中的一个重要概念,是在三维空间中求解某个空间区域内函数值的方法。

本文将介绍三重积分的基本概念以及常见的计算方法。

1. 三重积分的概念三重积分是对三维空间内的函数进行积分运算,用于描述空间区域内某个物理量的总量。

在三维空间中,我们将积分区域分成无限个微小的体积元,通过将这些微小体积元叠加起来,就可以计算出整个积分区域内函数值的总和。

2. 三重积分的符号表示三重积分通常用∬∬∬f(x,y,z)dxdydz表示,其中f(x,y,z)为被积函数,dxdydz表示积分元,代表了积分的区间范围。

3. 三重积分的计算方法在计算三重积分时,需要确定积分的区域以及被积函数的表达式。

3.1 直角坐标系中的三重积分在直角坐标系中,我们常用直角坐标系(x, y, z)来描述三维空间的位置。

对于一般的积分区域,可以通过确定积分的上下限来确定积分的范围。

3.1.1 矩形坐标系中的三重积分计算方法对于矩形坐标系中的三重积分,可以根据积分区域的形状选择合适的积分顺序,并通过嵌套积分的方式来计算。

常见的积分顺序有xyz、xzy、yxz、yzx、zxy和zyx六种情况,具体选择哪种积分顺序需要根据具体问题进行分析和判断。

3.1.2 柱坐标系中的三重积分计算方法在柱坐标系中,我们用ρ、φ和z来描述空间的位置。

对于圆柱形的积分区域,可以通过确定积分的范围来进行计算。

根据积分区域的形状,可以选择适合的积分顺序,并结合柱坐标系的变换公式进行计算。

3.1.3 球坐标系中的三重积分计算方法在球坐标系中,我们用r、θ和φ来描述位置。

对于球形的积分区域,可以通过确定积分的范围来进行计算。

根据积分区域的形状,可以选择适合的积分顺序,并结合球坐标系的变换公式进行计算。

4. 三重积分的应用领域三重积分在物理、工程、几何等领域都有着广泛的应用。

常见的应用包括计算空间体积、质量、质心、转动惯量、质心坐标等。

5. 三重积分的计算实例为了更好地理解和掌握三重积分的计算方法,我们举一个简单的实例来进行说明。

三重积分的概念与计算

三重积分的概念与计算
x2 y2 z2 1 dxdydz 其中积分区域 {(x, y, z) | x2 y2 z2 1}.
解 积分域关于三个坐标面都对称,
被积函数是 z 的奇函数,球面
关于xoy面对称

z
ln( x2 x2
y
y2 2
z2 z2
1
1)
dxdydz

0.
例 计算 ( x y z)2dxdydz其中是由抛物面
z x2 y2和球面 x2 y2 z2 2所围成的空间闭 区域.
解 ( x y z)2
x2 y2 z2 2( xy yz zx)
其中 xy yz是关于 y的奇函数,
在球面坐标系中
体积元素为
化为三次积分, 从小到大,从边界到边界。
例6.求 的体积,它由球心在(0,0, a), 半径为a 的球面
顶点在原点,半顶角为 的锥面围成,如图.
解: 球面方程为 x2 y2 (z a)2 a2
z
2a
在球坐标系下方程为r 2a cos
锥面方程为 所以
且关于zox面对称, ( xy yz)dv 0,
同理 zx是关于 x 的奇函数,
且关于 yoz面对称, xzdv 0,

由 x,y 位置对称性知 x2dv y2dv,


则I ( x y z)2dxdydz
(2x2 z2 )dxdydz,
dx
2
1 2
x
d
y
2
f (x, y, z)dz
01
x
3. 设
计算
提示: 利用对称性

三重积分讲解

三重积分讲解

三重积分是微积分学中的一个重要部分,也是解决许多实际问题的基础。

以下是对三重积分的详细讲解:1.三重积分的概念:三重积分是将一个函数的积分运算转化为三个不同的积分,即分别对三个变量进行积分。

其一般形式为:∫∫∫f(x,y,z)dxdydz其中f(x,y,z)是待求积分的函数,而∫∫∫是三重积分的符号。

2.三重积分的物理背景:三重积分有着深刻的物理背景。

在物理学中,一个物体的质量分布、能量分布或者电荷分布等可以用三重积分来表示。

例如,一个物体的质量分布可以表示为空间中的密度函数f(x,y,z),那么该物体的总质量就可以通过三重积分来计算。

3.三重积分的计算方法:三重积分的计算通常采用“分割、近似、求和、取极限”的方法。

具体步骤如下:(1)分割:将积分区域分割成许多小的立方体,每个立方体称为一个“小块”。

(2)近似:用每个小块的中心点(x',y',z')来近似该小块上的积分,即用该点的函数值f(x',y',z')来近似该小块上的积分。

(3)求和:将所有小块的积分值相加,得到粗略的积分值。

(4)取极限:将小块的尺寸逐渐缩小,使得粗略的积分值逐渐接近精确的积分值。

4.三重积分的几何意义:三重积分可以理解为空间物体的质量,即空间物体占据空间区域,在点(x,y,z)处的体密度为f(x,y,z),整个空间物体的总质量就是将f(x,y,z)累积遍整个空间区域。

5.三重积分的性质:三重积分具有与一元定积分相同的性质,例如可加性、可移性、可换序性等。

同时,三重积分也具有与二重积分不同的性质,例如三重积分可以通过“分割、近似、求和、取极限”的过程得到精确的积分值,而二重积分则不能。

6.三重积分的实际应用:三重积分在许多实际应用领域有着广泛的应用,例如物理学中的质量分布、电荷分布、能量分布等问题,工程学中的体积计算、质量平衡等问题,以及统计学中的数据分布等问题。

通过三重积分,我们可以更好地理解和解决这些问题。

三重积分及其计算

三重积分及其计算

三重积分及其计算三重积分是对三维空间内的函数进行积分运算。

它在物理、工程、计算机图形学等领域中有广泛的应用。

本文将介绍三重积分的概念、计算方法以及一些常见的应用。

一、三重积分的定义在直角坐标系中,设函数f(x,y,z)在体积为V的闭区域D上连续,将V分割成许多小体积ΔV,取P_i(x_i,y_i,z_i)为小体积ΔV中的任一点,使ΔV_i=f(P_i)ΔV,其中f(P_i)是P_i点上的函数值。

三重积分的定义为:\[\iiint\limits_{V} f(x, y, z) dV = \lim_{\,\Delta V_i\,\to 0}\sum\limits_{i=1}^{n} f(P_i) \Delta V_i \]其中,\(\Delta V_i\)表示小体积的体积,n为分割的小体积数量。

二、三重积分的计算方法根据三重积分的定义,可以推导出以下三种计算方法:直接计算、分离变量法和坐标变换法。

1.直接计算法直接计算法较为繁琐,适用于函数f(x,y,z)的表达式较简单的情况。

将积分区域V分成若干个小区域,然后对每个小区域使用定积分的计算方法进行计算,最后将所有小区域的积分值相加即可。

2.分离变量法当函数f(x,y,z)具有可分离变量性质时,可以使用分离变量法来简化积分计算。

即假设有f(x,y,z)=g(x)h(y)k(z),则有:\[\int\int\int f(x, y, z) dV = \int g(x)dx \int h(y)dy \int k(z)dz\]3.坐标变换法当函数f(x,y,z)在直角坐标系中表达较为复杂时,可以通过坐标变换将其转换为其他坐标系,从而简化积分计算。

常用的坐标变换方法包括球坐标、柱坐标和三角代换等。

具体的变换公式可参考相关数学教材。

三、常见的应用三重积分在物理、工程和计算机图形学等领域中有广泛的应用。

以下列举几个常见的应用。

1.物理学在物理学中,三重积分常用于计算物体的质量、质心和转动惯量等。

三重积分的定义和计算方法

三重积分的定义和计算方法

三重积分的定义和计算方法在多元微积分中,三重积分被用来计算三维空间中复杂曲面或体积的性质。

本文将介绍三重积分的定义和计算方法,以帮助读者更好地理解和应用这个概念。

一、定义三重积分是对一个三维空间区域内的函数进行积分。

类似于二重积分用来计算二维平面区域内的函数性质,三重积分将函数在三维空间内的性质展现出来。

它可以用于计算体积、质心、质量等相关问题。

二、直角坐标系下的三重积分计算在直角坐标系下,三重积分的计算可以通过以下步骤进行:1. 建立坐标系:确定一个适当的坐标系,常见的是笛卡尔坐标系(x, y, z)。

2. 划定积分区域:确定要求解的函数所在的空间区域,通常使用不等式或图形的方程来描述。

3. 分割积分区域:将积分区域划分为许多小立方体或长方体。

4. 选择积分方式:根据问题的要求选择适当的积分方式,常见的有直角坐标系下的直角坐标形式、柱坐标形式和球坐标形式。

5. 计算积分:根据所选择的积分方式,将函数进行变量替换并进行积分计算。

三、柱坐标系和球坐标系下的三重积分计算柱坐标系和球坐标系是常用的坐标系,它们在计算具有对称性的问题时非常有用。

1. 柱坐标系下的三重积分计算:柱坐标系中,用(r, θ, z)表示点的坐标。

三重积分的计算在柱坐标系下往往更加便捷,特别适用于具有圆柱对称性的问题。

2. 球坐标系下的三重积分计算:球坐标系中,用(ρ, φ, θ)表示点的坐标。

球坐标系下的三重积分计算常常用于具有球对称性的问题。

四、应用举例三重积分在物理学、工程学和计算机图形学等领域有着广泛的应用。

以下是一些常见的应用举例:1. 计算体积:通过三重积分可以计算具有复杂形状的立体体积。

2. 计算质心:对于有一定密度分布的物体,可以使用三重积分来计算其质心坐标。

3. 计算质量:类似地,通过三重积分可以计算具有复杂密度分布的物体的总质量。

4. 计算电荷分布:在电磁学中,可以利用三重积分来计算复杂电荷分布下的电势。

五、总结本文介绍了三重积分的定义和计算方法,包括在直角坐标系、柱坐标系和球坐标系下的计算。

三重积分的概念与计算

三重积分的概念与计算

三重积分的概念与计算在数学分析学科中,积分是一个重要的概念,它用于计算曲线、曲面或空间体所围成的面积、体积以及其他相关量。

而三重积分则是积分的一种特殊形式,用于计算三维空间中的体积、质量、质心等物理量。

本文将介绍三重积分的概念,并探讨其计算方法。

一、三重积分的概念三重积分是对三维空间上的函数进行积分运算。

在直角坐标系下,三重积分可以表示为∭f(x,y,z)dxdydz。

其中,f(x,y,z)是被积函数,而dxdydz则表示积分元素。

三重积分的结果是一个标量。

三重积分可以理解为对一个三维区域进行分割,并将每个小区域的体积乘以被积函数的值后相加。

当区域较为规则时,可以采用基本几何体(如长方体、球体等)的体积公式进行计算。

但对于复杂的区域,通常需要采用变量代换或切割方法进行计算。

二、三重积分的计算方法1. 直角坐标系下的三重积分计算在直角坐标系下,三重积分的计算可以按照先x后y再z的顺序进行。

具体计算方法如下:首先,确定积分区域。

三重积分的区域可以是一个立体体积,可以被一个或多个不等式所限定。

通过对区域的划分,可以将其分解为若干个可计算的部分。

制条件是根据区域的形状和约束条件确定的。

最后,进行计算。

根据上述确定的区域和限制,将被积函数f(x,y,z)代入积分式中,进行积分运算。

2. 极坐标系下的三重积分计算在某些情况下,采用极坐标系可以简化三重积分的计算。

极坐标系下,积分元素可以表示为rdrdθdz。

基于极坐标系的计算方法如下:首先,确定极坐标下的积分区域。

通常需要借助于图形的对称性来确定合适的极坐标范围。

其次,确定积分限。

根据极坐标下的区域范围,确定积分的上下限。

最后,进行计算。

将被积函数f(r,θ,z)代入积分式中,并按照r,θ,z的顺序进行积分运算。

三、举例说明下面通过一个具体例子来说明三重积分的应用。

例:计算函数f(x,y,z) = x^2 + y^2 + z^2在半径为2的球体内的体积。

解:在直角坐标系下,球体的方程为x^2 + y^2 + z^2 = 4。

三重积分的概念及其计算

三重积分的概念及其计算

= ∫ dx
a

dy

f (x, y, z )dz
y1(x )
z1 ( x , y )
所以有
∫∫∫ f (x, y, z )dV
D
= ∫ dx
a
b
y2 ( x )

z 2 ( x ,y )
dy

f (x, y, z )dz (2)
y1 (x )
z1 ( x , y )
公式 (2) 将三重积分化为先 z , 后 y , x 的三次积分 同理对于区域
I =
∫−1 dx ∫x
1
1
2
dy ∫
x 2 +y 2
0
f (x , y , z )dz
.
例 化三重积分
I = ∫∫∫ f ( x, y, z)dxdydz 为三次积分

Ω : z = xy 与 x + y = 1, z = 0 所围成的区域
x+ y=1
z
z=xy
y
1
o
1
.
x
例 化三重积分
I = ∫∫∫ f ( x, y, z)dxdydz 为三次积分
Ω2
z = x2 + y2 + 1
y
x+ y = 4
.
1
o
4
x
例 计算 I = ∫∫∫ f ( x , y , z)dxdydz
z Ω: 曲面 z = x + y 2 + 1,平面 x + y = 4 及三个坐标面所围区域
Ω2
取第一卦限部分
z = x2 + y2 + 1
y

三重积分的概念与计算

三重积分的概念与计算

例: 设物体占有空间闭区域 ,在 点( x , y , z ) 处的密度为 ( x , y , z ) , 假定 ( x , y , z ) 在 上连续,则该物 体的质量为
z
z z2 ( x , y )
z2 S 2

z1
S1
z z1 ( x , y )
M ( x , y, z )dv .
z e dv 2 e dv 2 [ dxdy ] e dz
z
z
1


2
0
D( z )
2 (1 z )e dz 2.
z 0
1
总结: f ( z )dxdydz c f ( z )dz dxdy

d
Dz
属于第二型, Dz的面积易求。
所围成的空间闭区域.
如图,
z

2
: 0 z x2 y2 ,
1 1 x2 y2
x y 1, 1 x 1.
I 1 dx x 2 dy 0
f ( x , y , z )dz .
x
y
为三个 例 3 计算三重积分 zdxdydz ,其中
坐标面及平面 x y z 1所围成的闭区域.
D d c Dz
(1) : z x 2 y 2与z 2所围。
(2) : z x 2 y 2与z 2所围。
( 3) : x 2 y 2 z 2 R 2 ,0 z R (4) : x 2 y 2 z 2 R 2 ,0 z a
截面法的一般步骤: z 轴)投影,得 (1) 把积分区域 向某轴(例如 投影区间[c , d ] ; z 轴且平行xoy 平面的平面去 (2) 对 z [c , d ]用过 截 ,得截面Dz ;

(完整版)10.3三重积分的概念和计算

(完整版)10.3三重积分的概念和计算

z z2( x, y)
z2 S2
y1(x), y2 (x) 在 [a,b] 上连续.
z1 S1
z z1( x, y)
aO b
D
(x, y)
y
y y2( x)
x
y y1(x)
8
三重积分
(2) 对 (x, y) Dxy , 过 (x, y) 作平行于z轴的
直线穿过区域 ,
则由曲面 S1 : z z1(x, y) 穿入,穿入点 M1(x, y, z1(x, y))
截面法的一般步骤
(1) 把积分区域向某轴 (如z轴) 投影,
得投影区间 [பைடு நூலகம்1,c2 ];
(2) 对z [c1,c2 ] 用过z轴且平行xOy的平面去截 ,
得截面Dz; (红色部分)

(x,
y,
z) :
c1
z
c2 , ( x,
y) Dz
z
c2
(3) 计算二重积分 f ( x, y, z)dxdy z
则该区域上的三重积分的被积函数中的
x换成y的积分与y换成z的积分, z换成x的积分相等.
22
三重积分
从而
xdxdydz ydxdydz zdxdydz
于是
(x y z)dxdydz 3 xdxdydz
1 x y
3 dxdy0 xdz
Dxy
1
1 x
1 x y
30 xdx0 dy0 dz
Dxy
Dxy z1 ( x, y )
化为二次积分即可.
11
三重积分
同样,也可以把积分域Ω向yOz、zOx面投影.
所以,三重积分可以化为六种不同次序的三次积 分(累次积分).

三重积分概念及其计算

三重积分概念及其计算

三重积分概念及其计算三重积分是多重积分的一种,它用于计算三维空间中的体积、质量、质心等物理量。

在本文中,我们将详细介绍三重积分的概念和计算方法。

一、三重积分的概念三重积分是对三维空间中的函数进行求和的一种数学运算。

它可以用于计算空间中的体积、质量、质心等物理量。

三重积分通常表示为∭f(x,y,z)dV,其中f(x,y,z)是定义在三维空间中的函数,dV表示微小体积元素。

二、三重积分的计算方法1.直角坐标系中的三重积分在直角坐标系中,三重积分的计算可以采用分步积分的方法。

具体而言,首先需要确定积分区域的边界,然后分别对x、y、z进行积分。

设积分区域为V,边界为S。

根据积分的基本原理,三重积分可以表示为:∭f(x,y,z)dV=∫∫∫_Vf(x,y,z)dV其中V表示积分区域的体积,dV表示微小体积元素。

假设积分区域可以被表示为:V:a≤x≤b,g(x)≤y≤h(x),p(x,y)≤z≤q(x,y)那么,三重积分可以分步计算为:∭f(x,y,z)dV = ∫∫∫_V f(x,y,z)dxdydz= ∫_a^b∫_(g(x))^(h(x)) ∫_(p(x,y))^(q(x,y)) f(x,y,z) dzdydx依次对x、y、z进行积分即可得到结果。

2.柱坐标系中的三重积分在柱坐标系中,三重积分的计算可以采用柱坐标系下的坐标变换公式。

具体而言,用柱坐标r、θ、z替换直角坐标系中的x、y、z,然后对新的坐标进行积分。

设柱坐标系下的积分区域为V,边界为S。

根据柱坐标系下的坐标变换公式,三重积分可以表示为:∭f(x,y,z)dV = ∬∬∬_V f(rcosθ,rsinθ,z)rdzdrdθ其中 r 表示到原点的距离,θ 表示与正 x 轴的夹角,z 表示垂直于 xy 平面的坐标。

积分区域 V 在柱坐标系下的表示方式为:V:α≤θ≤β,g(θ)≤r≤h(θ),p(r,θ)≤z≤q(r,θ)根据这个表示,可以将三重积分计算为:∭f(x,y,z)dV = ∬∬∬_V f(rcosθ,rsinθ,z)rdzdrdθ= ∫_α^β ∫_(g(θ))^(h(θ)) ∫_(p(r,θ))^(q(r,θ))f(rcosθ,rsinθ,z) zdrdθ依次对θ、r、z进行积分即可得到结果。

10.3 三重积分

10.3 三重积分
x2 y2 z2 2 dv 2 dv 2 dv a b c V V V
20
三重积分
x2 y 2 z 2 解 因为 M 2 2 2 dv a b c V
x2 y2 z2 2 dv 2 dv 2 dv a b c V V V
i 1 i i
n
i
)v i
体积元素
3
三重积分
2. 三重积分存在性
当f ( x , y , z ) 的三重积分存在性时, 称f ( x , y, z )
在Ω上是可积的.
连续函数一定可积 3. 三重积分的几何意义 (1)占有空间区域
, 体密度函数为 f ( x, y, z )
M f ( x, y, z )dv
x2 所以 2 dv a V
x2 a a 2 dx
a
d ydz
Dx
4 abc 15 由对等性知
2 bc a 2 x2 2 x (1 2 )dx a a a
x2 dydz bc(1 2 ) a Dx

f ( x, y, z)dv



b
a
dx
y2 ( x )
y1 ( x )
dy

z2 ( x , y )
z1 ( x , y )
f ( x, y, z)dz
9
先对z,次对y,最后对x的三次积分
三重积分

这是平行于 z 轴且穿过闭区域 内部的直线与闭区域 的边界曲面 S 相交不多于两点情形.则考虑化为先对 z,后对xy的累次积分.过程如下:
1 dxdy (1 z )(1 z ) 2 Dz 1 1 1 2 原式= 0 z (1 z ) dz . 2 24

三重积分的概念及其计算

三重积分的概念及其计算

三重积分的概念及其计算三重积分是对于具有三个独立变量的函数在三维空间内的积分。

它对于解决和分析各种物理、几何和工程问题起着重要的作用。

在本文中,我们将讨论三重积分的概念、计算方法以及一些应用。

首先,让我们来讨论三重积分的定义和概念。

三重积分是对于一个三维实值函数,在一个三维有界区域内的体积进行积分。

三重积分的符号表示为∭f(x,y,z)dV,其中f(x,y,z)是被积函数,表示在(x,y,z)处函数的值;dV表示积分元素,用于表示积分的区域体积。

为了计算三重积分,我们需要确定被积函数的积分区域。

这个区域可以是一个有界的立体,也可以是由不同的条件限定的多个区域的并集。

一旦确定了积分区域,我们可以通过将该区域划分成较小的体积元素,并对每个体积元素进行积分来逼近整个区域的积分值。

接下来,我们将讨论三种常用的计算三重积分的方法。

第一种方法是直角坐标系下的三重积分计算。

在直角坐标系下,我们可以将积分区域划分为一系列的长方体或平行六面体,每个体积元素的体积可以表示为ΔV=ΔxΔyΔz,其中Δx、Δy和Δz分别是划分的长方体或平行六面体边长的增量。

然后,我们可以对每个体积元素进行积分,并将所有体积元素的积分值相加,得到最终的三重积分值。

第二种方法是柱面坐标系下的三重积分计算。

在柱面坐标系下,我们可以通过引入新的变量,如极角θ和距离原点的距离ρ来简化积分计算。

积分区域可以通过极坐标变换转换为适合柱面坐标的形式。

然后,我们可以对每个体积元素进行积分,并将所有体积元素的积分值相加,得到最终的三重积分值。

第三种方法是球面坐标系下的三重积分计算。

在球面坐标系下,我们可以通过引入新的变量,如极角θ、方位角φ和距离原点的距离r来简化积分计算。

积分区域可以通过球坐标变换转换为适合球面坐标的形式。

然后,我们可以对每个体积元素进行积分,并将所有体积元素的积分值相加,得到最终的三重积分值。

除了上述的计算方法,我们也可以使用数值方法来计算三重积分。

三重积分的概念与计算复习过程

三重积分的概念与计算复习过程
作业
115页 3, 4, 6, 12, 13
第三节
第九章
三重积分的概念与计算
一、三重积分的概念 二、三重积分的计算
一、三重积分的概念
引例: 设在空间有界闭区域 内分布着某种不均匀的
物质, 密度函数为(x,y,z) C ,求分布在 内的物质的
质量 M .
解决方法: 类似二重积分解决问题的思想, 采用
被积函数是 z的奇函数,球面
关于xoy面对称
zlx n2x 2 ( y2y 2 z2z 21 1)dxdy0.dz
例 计算 ( x y z)2dxdydz其中是由抛物面
z x2 y2和球面 x2 y2 z2 2所围成的空间闭 区域.
解 (xyz)2
x 2 y 2 z 2 2 (x y z z)x
f(x, y,z)dv
21 f
(x,
y,z)dv,f关于x(z,
y)为偶函数 .
0,f关于x(z, y)为奇函数
例 利用对称性简化计算
z ln( x2 y2 z2 1)
x2 y2 z2 1 dxdydz 其中积分区域 {(x, y, z) | x2 y2 z2 1}.
解 积分域关于三个坐标面都对称,
b2(1c z2 2)
ab(1
z2 c2
),
原式
0cab(1cz22 )zdz
1 abc2 .
4
例. 计算三重积分
cz Dz z
解: :
c z c Dz:ax22by221cz22
a
by
x
用“先二后一 ”
z2dxdydzccz 2 d z Dz dxdy
ccz2ab(1cz22)dz
4
15

三重积分概念及部分计算方法

三重积分概念及部分计算方法

D
D z1 ( x, y)
4
z
若 在 xoy 平 面 上 的 投 影 区 域记为Dxy,则有
f ( x, y, z)dv dxdy z2 ( x, y) f ( x, y, z)dz

Dxy
z1 ( x, y)
o
a
投影区域Dxy用不等式表示:
b x
1(x) y 2(x),a x b
dy
2 ( x) dy
z2 ( x, y) f ( x, y, z)dz

a
1 ( x)
z1( x,y)
5
f ( x, y, z)
b
dy
2 ( x) dy
z2 ( x, y) f ( x, y, z)dz

a
1 ( x)
z1( x,y)
公式(2)把三重积分化为先对z、次对y、最 后对x的三次积分。
y
则将二重积分化为二次积分, 于是得到三重积分的计算公式:
S2 : z z2(x, y) z2

z1 S1 : z z1( x, y)
D (x, y)
y y1( x)
y
y y2(x)
y 2(x)
Dxy y 1(x)
oa
bx
f ( x, y, z)
b
-∞< z < +∞
o

②三组坐标面分别为
x
y
r =常数,即以z 轴为轴的圆柱面;
M (r, , z)
• M(x,y,z)
z
r
y
x
•P(r, ,0)
=常数,即过z 轴的半平面;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5 三重积分
教学目的 掌握三重积分的定义和性质.
教学内容 三重积分的定义和性质;三重积分的积分换元法;柱面坐标变换;球面坐标变换. 基本要求 掌握三重积分的定义和性质,熟练掌握化三重积分为累次积分,及用柱面坐标变
换和球面坐标变换计算三重积分的方法.
教学建议 (1) 要求学生必须掌握三重积分的定义和性质,知道有界闭区域上的连续函数必可
积.由于三重积分的定义与性质及充要条件与二重积分类似,可作扼要叙述与比较.
(2) 对较好学生可布置这节的广义极坐标的习题.
一、三重积分的概念
背景:求某非均匀密度的曲顶柱体的质量时,通过“分割、近似,求和、取极限”的步骤,
利用求柱体的质量方法来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义.
定义1 设()z y x f ,,是定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于V 的任何分割T ,当它的细度δ
<T 时,属于T 的
所有积分和都有
ε
σζ
ηξ<-∆∑=J f N
i i i
i
i
1
),,(,
则称()z y x f ,,在V 上可积,数J 称为函数()z y x f ,,在V 上的三重积分,记作
J =
()⎰⎰⎰V
dvdydz
z y x f ,,,
其中()z y x f ,,称为三重积分的被积函数,z y x ,,称为积分变量,称为V 积分区域.
可积函数类
(ⅰ)有界闭区域V 上的连续函数必可积.
(ⅱ)有界闭区域V 上的有界函数()z y x f ,,的间断点集中在有限多个零体积的曲面上,
则()z y x f ,,必在V 上可积.
二、化三重积分为累次积分
定理21.15 若函数()z y x f ,,在长方体V =[][][]f e d c b a ,,,⨯⨯上的三重积分存在,且对任何x ∈[]b a ,,二重积分
()x I =()dydz z y x f D
⎰⎰,,
存在,其中D =[][]f e d c ,,⨯,则积分
⎰b
a
dx ()⎰⎰D
d z y x f σ
,,
也存在,且
()⎰⎰⎰V
dxdydz z y x f ,,=⎰b
a
dx ()⎰⎰D
d z y x f σ
,,. (1)
为了方便有时也可采用其他的计算顺序.若简单区域V 由集合
()()()()(){}
b x a x y y x y y x z z y x z z y x V ≤≤≤≤≤≤=,,,,,,2121
所确定,V 在xy 平面上的投影区域为
D =()()(){
}b x a x y y x y y x ≤≤≤≤,,21 是一个x 型区域,设()z y x f ,,在上连续,
()y x z ,1,()y x z ,2在D 上连续,()x y 1,()x y 2上[]b a ,连续,则
()⎰⎰⎰V
dxdydz z y x f ,,=
()()⎰⎰⎰D
z y
x z dz z y x f dxdy 21,,,=()()()()
⎰⎰⎰b a
x y x y z y
x z dz
z y x f dy dx 212
1,,,,
其他简单区域类似.
一般区域V 上的三重积分,常将区域分解为有限个简单区域上的积分的和来计算.
例1
计算
⎰⎰⎰+V
dxdydz y x 221
,其中V 为由
平面x y z x x ====,0,2,1,y z =所围的区域.
例2 求⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz
c z b y a x 222222,其中V 为
222
222
1x y z a b c ++≤. 例3改变下列累次积分顺序
1
10
(,,)x
x y
dx dy f x y z dz --⎰


三、三重积分换元法
设变换T :()w v u x x ,,=,()w v u y y ,,=,()w v u z z ,,=把uvw 空间中的区域V '一对一地映成xyz 空间中的区域V ,并设函数()w v u x x ,,=,()w v u y y ,,=,()w v u z z ,,=及它的偏导数在区域V '内连续且行列式
()w v u J ,,=x x x u
v w y
y y u v w z z z u
v w
∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂≠
0 , ()w v u ,,∈V ', 则
()⎰⎰⎰V
dxdydz z y x f ,,=
()()()()()⎰⎰⎰'
V dudvdw
w v u J w v u z w v u y w v u x f ,,,,,,,,,,,(4)
其中()z y x f ,,在V 上可积. (一)、柱面坐标变换:如下图所示
变换T :⎪⎩⎪
⎨⎧+∞<<∞-=≤≤=+∞
<≤=z z z r y t r x ,20,sin 0,cos πθθθ,
()z r J ,θ=
10
0cos sin 0sin cos θθ
θθr r -=r

按(4)式
()⎰⎰⎰V
dxdydz z y x f ,,=
()⎰⎰⎰'
V dz
rdrd z r r f θθθ,sin ,cos ,
这里V '为V 在柱面坐标变换下的原象.
在柱面坐标中:r =常数,是以z 轴为中心轴的圆柱面; θ=常数,是过z 轴的半平面; z =常数,是垂直于z 轴的平面. 若V 在平面上的投影区域D ,即V =
()()()(){}D y x y x z z y x z z y x ∈≤≤,,,,,,2
1

()⎰⎰⎰V
dxdydz z y x f ,,=
()()()
dz
z y x f dxdy D
y x z y
x z ⎰⎰⎰,,21,,,
其中二重积分部分应用极坐标计算.
例4 计算()⎰⎰⎰+V
dxdydz
y x
22
,其中V 是由曲面
()z y x =+222与4=z 为界面的区域. 例5 计算
,V
zdxdydz V ⎰⎰⎰
由2224x y z ++=和抛物面
223x y z +=围成。

例6计算22,V
x y dxdydz V +⎰⎰⎰
由222x y z +=和1z =围
成。

(二)、球坐标变换
变换T :
⎪⎩

⎨⎧≤≤=≤≤=+∞
<≤=πϕϕπθθϕθϕ0,cos 20,sin sin 0,cos sin r z r y t r x ,
()θϕ,,r J =
sin cos cos sin sin cos sin sin sin sin cos cos cos sin ϕ
ϕ
θ
ϕθϕθ
ϕθϕθϕθϕr r r r r ---=ϕsin 2
r ,
变换公式为:
()⎰⎰⎰V dxdydz
z y x f ,,=
()θ
ϕϕϕθϕθϕd drd r
r r r f V sin cos ,sin sin ,cos sin 2
⎰⎰⎰'
在球面坐标中:
r =常数,是以原点为中心的球面
θ=常数,是过z 轴的半平面.
ϕ=常数,是以原点为顶点,以z 轴为中心轴的圆锥面.

()()()(){}
βθαθϕϕθϕθϕθϕ≤≤≤≤≤≤=',,,,,2121r r r r V 时,
()⎰⎰⎰
V
dxdydz
z y x f ,,=
()()
()
()()
dr
r r r r f d d r r ϕϕθϕθϕϕθθϕθϕθϕθϕθθsin cos ,sin sin ,cos sin 2
,,
21
21
2
1
⎰⎰⎰ .
例7 求由圆锥体βcot 22y x z +≥和球体()2222a a z y x ≤-++所确定的立体体
积,其中

⎭⎫

⎛∈2,0πβ和0>a 为常数.
解 球面方程()2
2
22a a z y x =-++在球坐标系下表
示为ϕcos 2a r =,圆锥面
βcot 22y x z +=在球坐标系下表示为βϕ=,
(){
}πθβϕϕθϕ20,0,cos 20,,≤≤≤≤≤≤='a r r V
⎰⎰⎰V dv =⎰⎰⎰β
ϕπ
ϕϕθ0cos 202
20sin a dr r d d =()
βπ43cos 134-a .
例8 计算
222(),V
x y z dxdydz V ++⎰⎰⎰
:2222x y z z ++=
例9 求I =⎰⎰⎰V zdxdydz ,其中V 为由122222
2≤++c z b y a x 与0≥z 所围区域.。

相关文档
最新文档