结构力学3.4三铰拱

合集下载

结构力学(一)第三版龙驭球第三章3.4三铰拱

结构力学(一)第三版龙驭球第三章3.4三铰拱
如下所示结构在竖向 荷载作用下,水平反力 等于零,因此它不是拱 结构,而是曲梁结构。
下面所示结构在竖向荷 载作用下,会产生水平反 力,因此它是拱结构。
FP FP
曲梁
三铰拱
二、 拱的类型
三铰拱
两铰拱
无铰拱
超静定拱
拉杆拱 静定拱
三、 拱的各部分名称 拱顶
C
拱轴线 拱高 f
B
拱趾 A
起拱线
跨度 l
f l
f
B
A
0 FYB
FYB
FPi ai
L
xk
L1 L
FP2 k C
L2
FP3
取左半跨为隔离体:
FP1
M
C
0
A
0 FYA L1 FP1 L1 a1 FP 2 L1 a2 M C FH f f
B
反力计算公式:
F F 0 YA YA 0 FYB FYB 0 MC H A H B H f
P P P1 P2
P
P
P1
P2
结点单元
杆件单元
杆件体系 单元
1 静定结构受力分析的方法 二、平衡方程的数目 单元平衡方程的数目=单元的自由度数,不一定等 于单元上未知力的数目。
P P1
P2
P
P1
P2
结点单元
杆件体系 单元
1 静定结构受力分析的方法 三、计算的简化与截取单元的次序 计算简化的原则:避免解联立方程,尽量使一个方程中只
FP2 FP1 D
E
C
FP3 FP1 FP2 F B
FRA
A
o
FRA
FRB
FP3

结构力学第4章 三铰拱

结构力学第4章 三铰拱

由上述的内力计算公式发现:
① 三铰拱的内力不但与荷载及三个铰的位置有关, 而且与拱轴线的形状有关。 ② 由于推力的存在,拱的弯矩比简支代梁的弯矩要小 ③ 三铰拱在竖向荷载作用下存在轴向受压。
注意: 1)该组公式仅适合平拱, 且承受竖向荷载;
2) 拱轴切线倾角k在拱的左半跨取正,右半跨取负;
三、内力图 (1)画三铰拱内力图的方法:水平基线描点法。
概述 三铰拱的计算 三铰拱的合理拱轴线
教学内容:﹡
﹡ ﹡
拱结构在工程中的应用实例 赵州桥
拱桥 (无铰拱)
超静定拱
世界上最古老的铸铁拱桥(英国科尔布鲁克德尔桥),约230年历史
1997年建成的重庆万县长江大桥:世界上跨度最大的混凝土拱桥,主拱圈 为钢管混凝土劲性骨架箱型混凝土结构,全长 856.12米,主跨420米,桥面宽 24米,为双向四车道,是世界最大跨径的混凝土拱桥。由重庆交通大学土木建 筑学院顾安邦教授主研完成,设计施工技术的研究成果获国家科技进步一等奖
甘肃灞陵桥,又名卧桥,在渭源县城南门外的清源河上,是一座古典纯木结 构伸臂曲拱型廊桥, 主跨:40米,始建于明洪武年间(公元1368-1398年), 后被洪水冲毁。1919年仿兰州卧桥改建,被称为“渭水长虹”。
§4-1
一、梁与拱的关系 F
HA=0 A


F
B
HA=0 A
B
曲梁 F
拱:杆轴线为曲线,
两拱趾不在同一水平线上的拱因为简支梁的内力计算大家非常熟练所以在计算三铰拱平拱在竖向荷载作用下的内力时和同跨度同荷载的简支代梁对应起来以找出两者在支座反力计算内力计算方面的区别加以对比便于理解和记忆
基本要求:○ 了解拱结构的分类及特点。

3_4三铰拱

3_4三铰拱

二、三铰拱的计算 (在竖向荷载作用下的平拱) 1、支座反力 与同跨度同荷载对应简支梁比较
a1
d P1 a 2
D HA C
b1 b2
P2
MA 0
VB
1 Pa 1 1P 2 a2 l
VB VB
A
VA
y
f
l2
x
l1 l
B
HB
MB 0
VA
1 Pb 1 1P 2b2 l
y x
M
x
H
q ql 2 4 f 2 x l x x l x l 2 8f
Mo
A
V
A
N Q sin H cos
D


3、受力特点 (1)在竖向荷载作用下,拱有水平推力 H ; (2)由于推力 H 的存在,拱截面弯矩比相应简支梁小; (3)在竖向荷载作用下,拱内有轴力 N,且一般为压力。
q=2kN∙m y
1 0 3 4 5
P=8kN
例 1、三铰拱及所受荷载如图
0.667
2 33 41,sin 2 0555 . ,cos 2 0832 .
(注意截面6处 Q 有突变)
o
N 2 Q2 sin 2 H cos 2 11 2 3 0.555 7.5 0.832 9.015kN
绘制内力图
q y C q B l/2 x A B x
A
l/2
f
M x [解] 由式 y x H

ql 2
ql 2
先列出简支梁的弯矩方程
q M x x l x 2
拱的推力为:
注意

结构力学-三铰拱

结构力学-三铰拱

曲梁

拱 (arch)
一、概述
2.拱的受力特点 拱的受力特点 拱
曲梁
P
拱比梁中的弯矩小
拱 (arch)
一、概述
3.拱的分类 拱的分类
超静定拱
静定拱
两铰拱
三铰拱 拉杆 拉杆拱
高差h 高差
超静定拱
无铰拱 斜拱
拱 (arch)
一、概述
4.拱的有关名称 拱的有关名称 顶铰 拱肋 拱趾铰 跨度 拱肋 拱趾铰 矢高
1 l l a1 b1 不再顶部,或 铰C不再顶部 或 不再顶部 FH = [Y A × − P1 ( − a1 )] f 2 2 0 b a2右边的结2 YB0 YA不是平拱 不是平拱,右边的结 l l
M c0 = [Y A0 × − P1 ( − a1 )]
YB=YB YA=YA0 XA=XB =FH
二、三铰拱的数解法 ----支反力计算 支反力计算 P1 三铰拱的竖向反 P2 C 力与其等代梁的 XB 反力相等 水平反 f FH 反力相等;水平反 A B 力与拱轴线形状0 XA Mc YA l/2 l/2 无关.荷载与跨度 无关 荷载与跨度 YB YA l 一定时, 一定时,水平推 YA0 等代梁 P1 P2 A C 力与矢高成反比. 力与矢高成反比 B 请问:有水平荷载 有水平荷载,或 请问 有水平荷载 或
32kN.m C C 32kN.m
8m B 4m 4m 2kN 2kN A 4m 4m
8m B 2kN
A 2kN
32kN.m
16kN.m
16kN.m
16kN.m
水平反力的作用:使相应水平代梁弯矩 水平反力的作用:使相应水平代梁弯矩MC0 降至为零。 降至为零。

结构力学 三铰拱

结构力学 三铰拱

4 4 yk 2 4(16 4) 3m 求MK 16 MK 0 MK 12.5 4 10 3 20kN.m(下拉)
求MJ
yJ 3m
M
J
0
M J 7.5 4 10 3 30 30 0
3. 求FQ、FN的计算公式
拱轴任意截面D切线与水平线夹角为φ。 相应代梁中, F 设为正方向。
FP1=15kN K FHA A yk 4m
l/2
C f=4m
MC 0
FVA
4m
l l FVA FHA f FP1 0 2 4 0 MC 1 l l FHA ( FVA FP1 ) () f 2 4 f
0 上式中,M C 为代梁C截面弯矩。
M FHB () f
0 ND右 QD右 sin D H cosD 12 0.555 10.5 0.832 15.4kN
重复上述步骤,可求出各等分截面的内力,作出内力图。
三、三较拱的合理轴线
在给定荷载作用下,三铰拱任一截面弯 矩为零的轴线就线为合理拱轴。 三铰拱任一截面弯矩为 M M FH y
超静定拱
拉杆拱 静定拱
拱顶
C
拱轴线 拱高 f
B
拱趾
A
起拱线 跨度 l
f l
f
高跨比
l 通常 f l 在1-1/10之间变化,f 的值对内力有 很大影响。
工程实例
拱桥 (无铰拱)
超静定拱
世界上最古老的铸铁拱桥(英国科尔布鲁克代尔桥)
万县长江大桥:世界上跨度最大的混凝土拱桥
二、三铰拱的计算
A 12.5kN K左 Fº =12.5kN QK左 A 12.5kN

34三铰拱

34三铰拱
可求两个竖向支座反力:
P1
A
HA VA
l1
C
f
l2 l
P2
B HB
VB
VA
Pibi l
由 X 0
VB
Pi ai l
得: H A HB H
等代梁
A
P1
a1 (推力) VA0
C
b1 a2
P2
B
b2VB0
另考虑中间铰C处弯矩为零:MC 0
以左部分为例
则: MC VAl1 P1(l1 a1) Hf 0
0.000 1.125 1.500 1.125 0.000 0.375 4.500 0.375 0.000
q=2kN .m
P=8kN
y
1 0
A
34
2
2
y2
x
5 6
6m
6m
绘制内力图
7
8
B
M2 M2 Hy2 11 3 2 31.5 7.5 3
1.5kN m
Q2 Q2 cos 2 H sin 2 11 2 3 0.832
当 f 等于零,H趋于无穷大;此时三铰共线。 几何瞬变体系。
5) 三铰拱受向内的推力,因此需给基础施加向外的推力。 所以三铰拱的基础要比简支梁的基础大,或加拉杆, 以减小对墙的推力。
静定拱
2. 内力的计算公式 <1> 弯矩计算公式
MK VAxK P1(xK a1) HyK
VA VA0
静定拱
§3.4.1 三铰拱的组成和类型
拱--杆轴线为曲线,在竖向荷载 作用下会产生水平推力的结构。
FP
三铰拱
静定拱
拱的拱趾铰
拱趾铰
跨度
斜拱

结构力学之三铰拱

结构力学之三铰拱

e1
须注意两个计算特点:一是要考虑偏心矩e1, 二是左、右半跨屋面倾角φ为定值。 于是,可参照式(4-6)写出拱身内力计算式为
M M 0 FS ( y e1 )
0 FQ FQ cos FS sin 0 FN FQ sin FS cos
【讨论】对于如图所示的二次抛物线三铰拱: (1) 当仅在左半跨或右半跨作用均布荷 载q时,其M图都是反对称的,如图所 示;而FQ图都是对称的。
(2) 由于推力的存在(前两式右边第二项),拱与相应简 支梁相比:其截面上的弯矩和剪力将减小。弯矩的降低, 使拱能更充分地发挥材料的作用。
(3) 在竖向荷载作用下,梁的截面内没有轴力,而拱的截
面内轴力较大,且一般为压力(拱轴力仍以拉力为正、压 力为负)
三铰拱的内力图
1.画三铰拱内力图的方法 描点法。 2.画三铰拱内力图的步骤 1)计算支座反力 2)计算拱圈截面的内力(可以每隔一定水平距离取 一截面,也可以沿拱轴每隔一定长度取一截面)。 3)按各截面内力的大小和正负绘制内力图。 注: 1)仍有Q=dM/ds 即剪力等零处弯矩达极值; 2)M、Q、N图均不再为直线; 3)集中力作用处Q 图将发生突变; 4)集中力偶作用处M 图将发生突变。
由由mc0得flflffcfpvbs????????32fp3fvbl2bcfiifsfcxfcyfp1fp1fp2fp2fp3fp3aabbccddeefffhfvafvbiil2l2l2l2ll拉杆flcf0vaf0vbf精品资料3计算拱身内力在无拉杆三铰拱的内力计算式中只须用fs去取代fh即可得出有水平拉杆拱身内力计算式为????cossinsincos0qn0qq0sssffffffyfmm???????fp3fvbl2bcfiifsfcxfcy精品资料例例2求图示三铰拱式屋架在竖向荷载作用下的支反力和内力

结构力学 三铰拱

结构力学 三铰拱

9 / 13
À
第四章 静定拱
试求图示对称三铰拱在均布荷载作用下的合理拱轴线
q y A x q f C B
FH=ql2/8f M0=qlx/2-qx2 /2 =qx(l-x)/2 y=M0/FH=4fx(l-x)/l2
l
x
抛物线À
10 / 13
第四章 静定拱
荷载布置改变,合理拱轴亦 改变 荷载确定、拱脚位置确定, 则顶铰位置决定水平反力, 因此,有无限多个相似图形 可作合理拱轴 三铰位置确定,合理拱轴唯 一确定 设计时只能根据主要荷载选 择近似合理拱轴
第四章 静定拱 §4-1 概述
三铰拱(three-hinges arch)的构成
拱顶 拱轴线 拱高 拱址 起拱线 拱跨 拱址
1 / 13
ÀБайду номын сангаас
第四章 静定拱
1)拱的分类
三铰拱 拉杆拱1
两铰拱
无铰拱
拉杆拱2
斜拱
2 / 13
À
第四章 静定拱
2)拱的受力特点
FP
曲梁
FP • 在竖向荷载作用下 会产生水平推力。
6 / 13
À
第四章 静定拱
拱的内力图
− y ⎤⎧M ⎫ ⎧M ⎫ ⎡1 0 ⎪ 0⎪ ⎪ ⎪ ⎢ ⎥ ⎨FS ⎬ = ⎢0 cosϕ − sinϕ⎥⎨ FS ⎬ ⎪F ⎪ ⎢0 sinϕ cosϕ ⎥⎪ F ⎪ ⎦⎩ H ⎭ ⎩ N⎭ ⎣
0
由于拱轴线是弯曲的,所以内力图都是曲线形 的,内力图要通过逐点描图的方法绘制。

• 由于水平推力的存 在,使得拱内弯矩大 大减小。
3 / 13
À
第四章 静定拱 §4-2 三铰拱的计算

第三章-静定结构----三铰拱

第三章-静定结构----三铰拱
∑ M0 = 0 N D ⋅ R − N E ( R + dR ) = 0 ND = NE = N
这表明拱在法向均布荷载作用下处于无弯矩状态时,截面的轴力为一常数。
∑y=0
q ⋅ dS + 2 N ⋅ sin
dϕ =0 2 N = − qR
q ⋅ Rd ϕ + N ⋅ d ϕ = 0
R=−
N q
因N为一常数,q也为一常数,所以任一点的曲率半径R也是常数,即拱轴为圆弧。
绘制内力图
0
y
13.300 10.958 9.015 7.749 7.500 7.433 6.796 11.235 11.665 11.700 1.421 3.325 3.331 1.060 0.600 0.472 1.000 0.003 0.354
0.600
0.000
A
1
1.125 1.500 1.125
P2
f H
VA
VB
f = 1 → 10 l
曲线形状:抛物线、圆、悬链线……..
三铰拱的支座反力和内力 一、支座反力 与同跨度同荷载对应简支梁比较 支座反力
a1
d P1 a2
D
b1
c
f l2 l
b2
P2
HB
∑ MAP2 a2 ) 1 l
VB = VBo
o VA = VA
2
y2
q=2kN .m
6m x
0.000 0.375 4.500
3
ϕ2
4 5
6m
6
0.375
7 B 8
P=8kN
0.000
M图 kN.m
N图 kN
Q图 kN
拱的合理轴线 在固定荷载作用下,使拱处于无弯矩状态的轴线称为合理 轴线。由上述可知,按照压力曲线设计的拱轴线就是合理轴线。 从结构优化设计观点出发,寻找合理轴线即拱结构的优化选型。 从结构优化设计观点出发,寻找合理轴线即拱结构的优化选型。

结构力学——三铰拱

结构力学——三铰拱
FAy A
F0 Ay
a1 P1
a2 C
f
l1 l
P1
C
X 0
b1 P2
x l2
P2
b2 F l Pb Pb 0
Ay
11
22
FAy

P1 b1
l
P2b2
B FBx
FBy

Pibi l

F0 Ay
mA 0
FBy
Piai l

F0 By
B
mc 0
F0 By
FAy FP1
FAy0
FSK0 MK0
由 Fn 0
FNK FSK0sin FHcos
第二节 竖向荷载作用下三铰拱的受力分析
1 竖向荷载作用下拱反力计算 2 竖向荷载作用下指定截面内力计算
关于内力
M 1

F S


0
FN 0
0
cos sin
拱结构的优点:选用耐压性能好而抗拉性能差的砖石、混 凝土材料,节省用料,重量轻,可用于大跨、大空间结构。
拱结构的缺点:由于推力的存在,所以对基础的要求较高; 拱轴的曲线形状不便于施工(有时为减轻拱对基础的压力, 常使用拉杆布置)
第四节 三铰拱的合理轴线
使拱在给定荷载下各截面弯矩都等于零的拱轴线,被称为
例题:给定对称三铰拱铰的位置(l , f)和荷载形式(均布荷载
),求其合理拱轴线形状。 q
f l
q
x
ql2/8
M
0 C

1 ql 2 8
FH

1 8f
ql 2
M 0 1 qlx 1 qx2 1 qx(l x)

3静定结构的受力分析-三铰拱结构力学

3静定结构的受力分析-三铰拱结构力学

1 结构力学多媒体课件一、拱式结构的特征 1、拱与曲梁的区别拱式结构:指的是杆轴线是曲线,且在竖向荷载作用下会产生水平反力(推力)的结构。

FABH A =0 FABH A =0 三铰拱F PF P曲梁H≠0H≠0是否产生水平推力,是拱与梁的基本区别。

拱结构的应用:主要用于屋架结构、桥梁结构。

拱结构的应用:主要用于屋架结构、桥梁结构。

拱桥 (无铰拱)超静定拱 世界上最古老的铸铁拱桥(英国科尔布鲁克代尔桥) 万县长江大桥:世界上跨度最大的混凝土拱桥 灞陵桥是一座古典纯木结构伸臂曲拱型廊桥, 号称“渭水长虹”、“渭水第一桥” 主跨:40 米 建成时间:三峡工程对外交通专用公路下牢溪大桥(上承式钢管混凝土拱桥,主跨:160米 ,建成时间:1997)2、拱的类型三铰拱两铰拱无铰拱拉杆拱静 定 拱超 静 定 拱3、拱的优缺点a、在拱结构中,由于水平推力的存在,其各截面的弯矩要比相应简支梁或曲梁小得多,因此它的截面就可做得小一些,能节省材料、减小自重、加大跨度b、在拱结构中,主要内力是轴压力,因此可以用抗拉性能比较差而抗压性能比较好的材料来做。

c、由于拱结构会对下部支撑结构产生水平的推力,因此它需要更坚固的基础或下部结构。

同时它的外形比较复杂,导致施工比较困难,模板费用也比较大4、拱的各部分名称lf 高跨比 BACf拱顶拱轴线拱高 f拱趾 起拱线跨度 l 平拱斜拱二、三铰拱的计算 1、支座反力的计算L 2L 1Lb 2a 2b 3a 3b 1a 1k y kx kCBAfF P1F P2F P3kCBAF P1F P2F P3B M =∑0Pi iYA YAFbF FL ==∑0A M =∑0Pi iYB YBF a F FL==∑取左半跨为隔离体:CM=∑()()01111212YA P P CH F L F L a F L a M F ff⨯----==F HF H1、支座反力的计算L 2L 1Lb 2a 2b 3a 3b 1a 1k y kx kCBA fF P1F P2F P3kCBAF P1F P2F P3在竖向荷载作用下,三铰拱的支座反力有如下特点: 1)支座反力与拱轴线形状无关,而与三个铰的位置有关。

结构力学(第二章)-三铰拱课件

结构力学(第二章)-三铰拱课件
稳定性分析对于结构的整体稳定性和安全性具有 重要意义。
03
三铰拱的设计与优化
设计原则与步骤
确定设计要求
明确三铰拱的设计目标,如承载能力、稳定性、 经济性等。
截面设计
根据计算出的内力和弯矩,设计三铰拱的截面尺 寸和形状。
结构分析
对三铰拱进行受力分析,计算出各截面的内力和 弯矩。
稳定性分析
对三铰拱进行稳定性分析,确保其在承载过程中 不会发生失稳。
3D打印技术
3D打印技术能够实现复杂结构的快速 、精确制造,为三铰拱的原型制作和 试验提供便利。
未来发展方向与趋势
跨学科融合
结构力学与材料科学、计算机科 学、人工智能等学科的交叉融合,
将推动三铰拱在理论和实践上的 创新。
绿色与可持续发展
在未来的发展中,三铰拱的设计和 建造将更加注重环保和可持续发展, 如采用可再生材料和节能技术。
智能化与自动化
随着智能化和自动化技术的发展, 三铰拱的设计、建造和监测将趋向 于智能化和自动化,提高效率和安 全性。
THANK YOU
感谢聆听
案例分析与实践
案例一
某桥梁的三铰拱设计,通过优 化设计,提高了桥梁的承载能 力和稳定性。
案例二
某工业厂房的三铰拱设计,采 用轻量化设计,降低了结构的 自重。
案例三
某大型场馆的三铰拱设计,通 过参数优化,实现了结构的优 化和美观。
04
三铰拱的施工与维护
施工工艺与要点
01
02
03
04
施工准备
确保施工场地安全,检查施工 材料质量,制定施工计划和安
100%
建筑工程
在建筑工程中,三铰拱可用于大 型工业厂房、仓库、展览馆等建 筑的屋盖结构。

结构力学之三铰拱课件

结构力学之三铰拱课件
桥梁工程
三铰拱广泛应用于桥梁工程中, 如公路桥、铁路桥和立交桥等。
100%
工业建筑
三铰拱适用于工业建筑中的大型 厂房、仓库等结构,能够承受较 大的竖向荷载和水平荷载。
80%
公共建筑
三铰拱也适用于公共建筑中,如 体育馆、会展中心等大型建筑, 能够提供大跨度和高承载能力的 结构体系。
02
三铰拱的力学分析
定位与调整
在吊装完成后,对三铰拱的位 置和角度进行调整,确保其符 合设计要求三铰拱的各个部件连接牢 固、可靠。
防腐与涂装
在施工完成后,对三铰拱进行 防锈蚀处理和涂装,提高其耐 久性和美观度。
施工安全
安全措施
在施工过程中,采取一系列安全措施,如设置安全警示标志、配 备安全带和安全帽等,确保施工人员的安全。
在基础上按照设计要求拼装三铰拱的各个部件,确保 拱体的几何尺寸和位置准确。
04
固定与调整
通过焊接或螺栓连接等方式将拱体固定在基础上,并 进行必要的调整,确保拱体的稳定性和承载能力。
05
施工监测
在施工过程中,对三铰拱的各项参数进行监测,确保 施工质量和安全。
安装技术
01
02
03
04
吊装方法
根据三铰拱的重量和尺寸,选 择合适的吊装机械和吊装方法 ,确保吊装过程中的安全和质 量。
三铰拱的特点
稳定性好
由于三铰拱具有静定结构的特点,因此其稳定性较 好,不易发生侧向失稳或扭转失稳。
承载能力强
三铰拱的承载能力较强,能够承受较大的竖向荷载 和水平荷载。
适用范围广
三铰拱适用于各种类型的建筑结构,如桥梁、厂房 、仓库等,尤其适用于需要承受较大荷载和跨度的 结构。
三铰拱的应用场景

结构力学之三铰拱概要课件

结构力学之三铰拱概要课件
请注意,以上扩展内容仅为概要性的课件提纲,如需详细讲解,还需进一步细化和 补充具体内容。
03
三铰拱的动力学分析
动力学基础
动力学定义
动力学是研究物体运动与受力之间关系的学科,是结构力学的重 要基础。
牛顿运动定律
牛顿运动定律是动力学的基础,包括惯性定律、动量定律和作用反 作用定律,用于描述物体运动的基本规律。
体平衡,确保结构安全稳定。
02
三铰拱的静力学分析
静力学基础
静力学基本概念
静力学是研究物体在静止状态下的平 衡条件的力学分支,涉及力的平衡、 力矩的平衡等概念。
力的分解与合成
介绍如何将力分解为分力,以及如何 将分力合成为合力,以实现力的平衡 。
三铰拱的静力学模型
三铰拱的定义与构成
解释三铰拱的结构组成,包括三个铰链和构成的拱形结构。
能的同时,可以通过优化形状、比例和细节处理等方式提高三铰拱的视
觉效果。
三铰拱的施工方法
常规施工方法
常规的三铰拱施工采用搭设支架、安装模板、绑扎钢筋、浇筑混凝土等步骤进 行。在施工过程中,需要严格控制施工质量,确保各个施工环节的精度和稳定 性。
新型施工方法
随着技术的发展,一些新型施工方法如预制装配式施工、3D打印技术等也逐渐 应用于三铰拱的施工中。这些新型施工方法具有效率高、质量好等优点,但在 应用过程中也需要考虑到成本、技术成熟度等因素。
结构力学之三铰拱概要课件
目录
• 三铰拱的概述和特性 • 三铰拱的静力学分析 • 三铰拱的动力学分析 • 三铰拱的设计和施工 • 三铰拱在结构工程中的应用 • 三铰拱的发展和前景
01
三铰拱的概和特性
三铰拱的定义
定义
三铰拱是一种由三个铰链连接的 弧形结构,主要用于承受荷载并 将其传递给支座。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理想的情况,此时各截面内只有均匀分布的正应力,拱处于轴心受压状态,如果
在拱的设计中能获得上述结果,拱的经济效果将最好。
三、三铰拱的合理轴线 在固定荷载作用下,使拱处于无弯矩状态的轴线称为合理 轴线。由上述可知,按照压力曲线设计的拱轴线就是合理轴线。 从结构优化设计观点出发,寻找合理轴线即拱结构的优化选型。
y x A ch

x B sh


x
Qo

VA
M M H y
Q
o
P1
Mo
Q Q cos H sin N Q sin H cos



V
A
3、受力特点
(1)在竖向荷载作用下有水平反力 H; (2)由拱截面弯矩计算式可见,比相应简支梁小得多; (3)拱内有较大的轴向压力N.
q=2kN .m y
q 8f 4f y x x l x 2 2 x l x 2 ql l
例2、设三铰拱承受均匀分布的水压力,试证明其合理轴线是园弧曲线。
[证明] 设拱在静水压力作用下处于无弯矩状态,然后由平衡条件推导轴线方程。
q
D
E
dS R d
M0 0 N D R N E R dR 0 ND NE N
RA
D
23
P1
M D R12 rD
N D R12 cos D
RB
(2)确定各截面合 力的作用线
索多边形 合力多边形 压力多边形 压力线
P2 QD R12 sin D
P3
如果是分布荷载,压力线
呈曲线,称为压力曲线;如果
RB
是集中荷载,压力线呈多边形,
称压力多边形。
压力线可以描述拱的工作状况。各截面合力R若都沿拱轴切线方向作用是最
对拱结构而言,任意截面上弯矩计算式子为:
M M Hy
它是由两项组成,第一项是简支梁的弯矩,而后一项与拱轴形状 有关。令
M M Hy 0
M x yx H
在竖向荷载作用下,三铰拱的合理轴线的纵标值与简支梁 的弯矩纵标值成比例。
例1、设三铰拱承受沿水平方向均匀分布的竖向荷载,求其合理轴线。
VA VA
26983 11kN 12 2 6 38 9 VB VB 9 kN 12
(2)内力计算
y2
以截面2为例
4f 44 x l x 312 3 3m l2 12 2
dy dx
x 3
MC 11 6 2 6 3 H 7.5kN f 4
M2 M2 Hy2 11 3 2 3 15 . 7.5 3
15 . kN m
tg 2 4 f 2x 1 l l
x 3
4 4 2 3 1 12 12
Q2 Q2 cos 2 H sin 2 11 2 3 0.832
q qC y 。
因事先
M 得不到,故改用q(x)和y(x)表示:
qc+.f
M M H y M H f y 0 M y f H
d2y 1 d2 M 2 dx H dx 2
对简支梁来说, d M q x 2
2
M M Hy 在本例的座标系中可表达为:
qc
f y
q qc y
y
y*
x
e
x
shx chx
e x chx shx
dx
而 q x qc y, 即
y

H
y
qc , H
d y 1 qc y 2 dx H
这表明拱在法向均布荷载作用下处于无弯矩状态时,截面的轴力为一常数。
y0
q dS 2 N sin
d 0 2 N qR
q Rd N d 0
R
N q
因N为一常数,q也为一常数,所以任一点的曲率半径R也是常数,即拱轴为园弧。
例3、设三铰拱上承受填土荷载,填土表面为一水平面,试求拱的合理轴线,设 填土的容重为,拱所受的分布荷载为 [解]由拱截面弯矩计算式
M MC H f 0 H C f
VA
x
c
VB
H
l1
VA
2、内力计算 以截面D为例
P1
Qo
x-a1 M
截面内弯矩要和竖向力及水平力对D点构成 的力矩相平衡,设使下面的纤维受拉为正。
H
y
D H x
MD 0
M VA x P 1 x a1 H y
§3-6



(Three-hinged
arches)
三铰拱的类型、基本参数
拱的实例
三铰拱的特点
P1
H
l
P2
f H
VA
VB
f 1 10 l
曲线形状:抛物线、园、悬链线……..
二、三铰拱的支座反力和内力 1、支座反力 与同跨度同荷载对应简支梁比较
a1
d P1 a2
D
b1
c
f l2
b2
P2
HB
0.667
7.5 0.555 0.0025kN 0.003kN
N 2 Q2 sin 2 H cos 2 11 2 3 0.555
2 33 41,sin 2 0555 . ,cos 2 0832 .

7.5 0.832 9.015kN
q y C q B l/2 x A B x
A
l/2
f
M x [解] 由式 y x H

ql 2
ql 2
先列出简支梁的弯矩方程
q M x x l x 2
拱的推力为:
MC ql 2 H f 8f
注意
*合理轴线对应的是
一组固定荷载; *合理轴线是一组。
所以拱的合理轴线方程为:
特征方程为:
2
2

H
0

x

H

H


H
y C1e
C2 e
x
H H qc y a , 代入原方程, a 设其特解 q y x A ch x B sh x c H H qc x 0 , y 0 A 设 x 0, y 0 B 0 q y c ch x 1 悬链线 H
2 1 0 3 4 5
P=8kN
6 7 8 B
例 1、三铰拱及其所受荷载如
图所示拱的轴线为抛物线方程
f=4m H 7.5kN VB 9kN
2 y2 x
7.5kN
A
4f y 2 x l x l 制内力图。
计算反力并绘
x2=3m VA 11kN
3m 6m 6m
(1)计算支座反力
2
y2
q=2kN .m
6m x
0.000 0.375 4.500
3
2
4 5
6m
0.375
7 B 8
6
P=8kN
0.000
M图 kN.m
N图 kN
Q图 kN
二、三铰拱的压力线
拱与受弯结构不同,在竖向荷载作用下,它不仅产生弯矩
和剪力,还产生轴力。经过合理设计可使其成为以受压为主的 结构体系。 因此拱结构可采用受压性能良好而受拉性能较差的脆性材 料(如砖石、素砼)建造,以保证其良好的经济性。 下面我们研究拱截面的受力情况。
MA 0
1 VB Pa 1 1 P 2 a2 l
VB VB
VA VA
HA
y
MB 0
VA
x
VA
1 Pb 1 1 P 2b2 l
l1
x 0
VB
H A HB H
l
P1
d
P1
P2
cfLeabharlann MC 0VA l1 P 1 d H f 0
绘制内力图
0
y
13.300 10.958 9.015 7.749 7.500 7.433 3.325 6.796 11.235 11.665 11.700 1.421 3.331 1.060 0.600 1.000 0.472 0.003 0.354
0.600
0.000
A
1
1.125 1.500 1.125
Q
M
N
R
e
拱截面一般承受三种内力:M、Q、N。 若用合力 R 代替截面所有内力,则其偏心距为e = M/N, 显然我们可以求出各个截面的合力大小、方向和作用点。
P1
作用线
P2
G
rD k2 C D
P3
H
F
A
(1)确定各截面合力的 大小和方向: 数解 RA RB
绘力多边形
k1
k3
B
射线
RA
大小和方向 o
相关文档
最新文档