二项式定理—解题技巧

二项式定理—解题技巧
二项式定理—解题技巧

二项式定理

1.二项式定理:

011()()n n n r n r r n n

n n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,

2.基本概念: 项数:共(1)r +项

通项:1r n r r r n T C a b -+=展开式中的第1r +项r n r r

n C a b -叫做二项式展开式的通项。

3.注意关键点:

①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n

b a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的

次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0

1

2

,,,,,,.r

n

n n n n n C C C C C ??????项的系

数是a 与b 的系数(包括二项式系数)。

4.常用的结论:(令值法)

令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *

+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *

-=-+-+++-∈L L

5.性质:

①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)

k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n

n n n n n C C C C C ++++++=L L , 变形式1221r n n

n n n n C C C C +++++=-L L 。

③奇数项的二项式系数和=偶数项的二项式系数和:

02421321

11222

r r n n n n n n n n n C C C C C C C +-++???++???=++++???=?=L

④各项的系数的和:()()n

bx a x g +=.令(1)

奇数项系数和:

()()[]1121

-+g g 偶数项系数和:()()[]1g -1g 2

1

⑤二项式系数的最大项:如果n 是偶数时,则中间项(第12

n

+)的二项式系数项2n

n C 取得最大值。

如果n 是奇数时,则中间两项(第21n +.第2

3

n +项)系数项12n n C -,1

2n n C +同

时取得最大值。

⑥系数的最大项:求()n

a bx +展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别

为121,,,n A A A +???,设第1r +项系数最大,应有112

r r

r r A A A A +++≥??≥?,从而解出r 来。

6.二项式定理的十一种考题的解法: 题型一:二项式定理的逆用;

例:12321

666 .n n n n n n C C C C -+?+?++?=L

解:012233(16)6666n n n

n n n n n C C C C C +=+?+?+?++?L 与已知的有一些差距,

123211221666(666)6

n n n

n n n n n n n n C C C C C C C -∴+?+?++?=

?+?++?L L 0122111(6661)[(16)1](71)666

n n n n n n n n C C C C =+?+?++?-=+-=-L

练:1231393 .n n

n n n n C C C C -++++=L

题型二:利用通项公式求n x 的系数;

例:在二项式n

的展开式中倒数第3项的系数为45,求含有3x 的项的系数 解:由条件知2

45n n

C -=,即2

45n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由

2

102

1

10343

4110

10

()

()r r r r

r

r r T C x x C x

--

+-

-+==,由题意102

3,643

r r r --

+==解得, 则含有3x 的项是第7项633

6110210T C x x +==,系数为210。

练:求29

1()2x x

-

展开式中9x 的系数 。

题型三:利用通项公式求常数项;

例:求二项式210(x 的展开式中的常数项

解:5202102

110

10

1()()2r r

r

r

r r r T C x C x --+==,令52002r -=,得8r =,所以88910145()2256T C ==

练:求二项式6

1(2)2x x

-的展开式中的常数项

练:若21()n x x

+的二项展开式中第5项为常数项,则____.n = 题型四:利用通项公式,再讨论而确定有理数项;

例:求二项式9

展开式中的有理项

解:1271

936

219

9

()

()(1)r r r

r

r

r r T C x x C x

--+=-=-,令

276

r

Z -∈,(09r ≤≤)得39r r ==或, 所以当3r =时,

2746r -=,334

449

(1)84T C x x =-=-, 当9r =时,2736

r -=,393

3109

(1)T C x x =-=-。 题型五:奇数项的二项式系数和=偶数项的二项式系数和;

例:若

n 展开式中偶数项系数和为256-,求n .

解:设

n 展开式中各项系数依次设为01,,,n a a a ???

1x =-令,则有010,n a a a ++???=①,1x =令,则有0123(1)2,n n

n a a a a a -+-+???+-=② 将①-②得:1352()2,n a a a +++???=-1

1352,n a a a -∴+++???=-

有题意得,1

822562n --=-=-,9n ∴=。

练:若n 的展开式中,所有的奇数项的系数和为1024,求它的中间项。

题型六:最大系数,最大项;

练:在2()n

a b +的展开式中,二项式系数最大的项是多少

解:二项式的幂指数是偶数2n ,则中间一项的二项式系数最大,即211

2n

n T T ++=,也就是第1n +项。

练:在

(2n

x

的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少 解:只有第5项的二项式最大,则

152

n

+=,即8n =,所以展开式中常数项为第七项等于6281

()72

C =

例:写出在7

()a b -的展开式中,系数最大的项系数最小的项

解:因为二项式的幂指数7是奇数,所以中间两项(4,5第项)的二项式系数相等,且同时取得最大

值,从而有34347T C a b =-的系数最小,434

57T C a b =系数最大。

练:在10

(12)x +的展开式中系数最大的项是多少

解:假设1r T +项最大,1102r r r

r T C x +=?Q

111010111

12101022

2(11)12(10)22,r r r r r r r r r r r r C C A A r r A A r r C C --+++++?≥≥-≥???∴=???≥+≥-≥????解得,化简得到6.37.3k ≤≤,又010r ≤≤Q ,7r ∴=,展开式中系数最大的项为777

7810

215360.T C x x == 题型七:含有三项变两项;

例:求当25

(32)x x ++的展开式中x 的一次项的系数

2525

(32)[(2)3]x x x x ++=++,2515(2)(3)r r r r T C x x -+=+,当且仅当1r =时,1r T +的展

开式中才有x 的一次项,此时124125(2)3r T T C x x +==+,所以x 得一次项为144

5423C C x 它的系数为144

5423240C C =。

.

题型八:两个二项式相乘;

例:342

(12)(1)x x x +-求展开式中的系数.

解:333(12)(2)2,m m m m m

x x x +?=??Q 的展开式的通项是C C

444(1)C ()C 1,0,1,2,3,0,1,2,3,4,n n n n n

x x x m n -?-=?-?==的展开式的通项是其中

342,02,11,20,(12)(1)m n m n m n m n x x +=======+-令则且且且因此

20022111122003434342(1)2(1)2(1)6x C C C C C C ???-+???-+???-=-的展开式中的系数等于.

练:610

(1(1+

求展开式中的常数项. 练:2

*31(1)(),28,______.n

x x x n N n n x

+++∈≤≤=已知的展开式中没有常数项且则

题型九:赋值法;

例:设二项式1)n x

的展开式的各项系数的和为p ,所有二项式系数的和为s ,若

272p s +=,则n 等于多少

解:

若20121

)n n n a a x a x a x x

=+++???+,有01n P a a a =++???+,02n n

n n S C C =+??+=,

令1x =得4n P =,又272p s +=,即42272(217)(216)0n n n n

+=?+-=解得

216217()n n ==-或舍去,4n ∴=.

练:若的展开式中各项系数之和为64,则展开式的常数项为多少

例:2009

1232009200912

0123200922009(12)(),222

a a a x a a x a x a x a x x R -=+++++∈++???+L 若则

的值为 解:200920091212002200922009

1

,0,2222222a a a a a a x a a =

+++???+=∴++???+=-令可得 200912022009

01, 1.222

a a a

x a ==++???+=-在令可得因而 练:554321

54321012345(2),____.x a x a x a x a x a x a a a a a a -=+++++++++=若则

完整版二项式定理测试题及答案

二项式定理测试题及答案 n 能使(n+i) 4 成为整数(B ) C.2 D.3 A A ; L L A ;J°,则S 的个位数字是(C ) -a ) 8展开式中常数项为1120,其 中实数a 是常数,则展开式中各项系数的和 x A. 15 个 B. 33 个 C. 17 个 D. 16 个 是(C ) A.28 B.38 C.1 或38 D.1 或 28 5.在(2 3 5)100的展开式中,有理项的个数是( 6.在、x 1 3x 24 的展开式中,x 的幕指数是整数的项共有(C B . 4项 -x)6的展开式中,含 、5 A. 3项 7?在(1 - x)5- (1 A 、一 5 B 、5 C & (1 x)5 (1 x)3的展开式中x 3的系数为(A A . 6 B. -6 C. 9 9.若x==,则(3+2x) 10的展开式中最大的项为(B 2 A.第一项 C . 5项 3 x 的项的系数是(C 、一10 B. 、10 ) D . -9 第三项 C. 第六项 D. 第八项 A. 7 B. 12 C. 14 D . 5 11.设函数 f(x) (1 2x)10 ,则导函数 2 f (x)的展开式x 项的系数为(C ) A. 1440 B .-1440 C .-2880 D .2880 12 .在(x 1 5 -I)5 x '的展开式中,常数项为( B ) (A ) 51 (B ) -51 (C )- ii (D ) ii 13 .若(x n n 1) x L 3.2. ax bx L 1(n N ),且 a:b 3:1,则n 的值为(C ) A. 9 B . 10 C . ii D. 12 14 .若多项式x 2 10 x =a 0 a i (x 1) a 9(x i)9 a i0(x i)i0, 则 a 9 ( ) (A ) 9 (B ) 10 (C ) 9 (D ) 10 10.二项式 n 的最小值为( ) A 解:根据左边 1,易知 a io 10 X 的系数为 1,左边x 9的系数为0,右边x 9的系数为 1 3 )n 的展开式中含有非零常数项,则正整数 3x 3 1.有多少个整数 A.0 B.1 2. 2 4 展开式中不含x 项的系数的和为(B ) A.-1 B.0 C.1 D.2 3?若 S =A 1 4.已知(x (2x 4

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

二项式定理11种题型解题技巧

二项式定理知识点及11种答题技巧 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

2018届浙江省基于高考试题的复习资料——二项式定理

(2)增减性与最大值:当r≤n+1 22 n 相等并同时取最大值。 九、计数原理与古典概率 (二)二项式定理 一、高考考什么? [考试说明] 3.了解二项式定理,二项式系数的性质。 [知识梳理] 1.二项式定理:(a+b)n=C0a n+C1a n-1b+ n n +C r a n-r b r+ n +C n b n,其中组合数C r叫 n n 做第r+1项的二项式系数;展开式共有n+1项,其中第r+l项T r+1=C r a n-r b r(r=0,1,2, n ???),会求常数项、某项的系数等 2.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等,即C m=C n-m; n n n+1 时,二项式系数C r的值逐渐增大,当r≥时, n C r的值逐渐减小,且在中间取得最大值。当n为偶数时,中间一项(第n n 2+1项) 的二项式系数C n 2 n 取得最大值。当n为奇数时,中间两项(第 n+1n+3 和项)的 22 二项式系数C n-12 n =C n+12(3)二项式系数的和: C0+C1+ n n +C r+ n +C n=2n; n C0+C2+???=C1+C3+???=2n-1。n n n n 3.展开式系数的性质:若 (a+bx)n=a+a x+ 01+a x n;令f(x)=(a+bx)n n 则:(1)展开式的各项系数和为f (1) (2)展开式的奇次项系数和为1 [f(1)-f(-1)] 2

(6) x - ? 展开式中的常数项是( ) 1 (3)展开式的偶次项系数和为 [ f (1)+ f (-1)] 2 二、高考怎么考? [全面解读] 从考试说明来看,二项式定理主要解决与二项展开有关的问题,从考题来看,每一年均 有一题,难度为中等,从未改变。命题主要集中在常数项,某项的系数,幂指数等知识点上。 掌握二项式定理主要以通项为抓手,由通项可解决常数项问题、某项的系数问题,系数要注 意二项式系数与展开式系数的区别。 [难度系数] ★★★☆☆ [原题解析] [2004 年] (7)若 ( x + 2 3 x )n 展开式中存在常数项,则 n 的值可以是( ) A .8 B .9 C .10 D .12 [2005 年] (5)在 (1- x)5 + (1- x) 6 + (1- x) 7 + (1- x) 8 的展开式中,含 x 3的项的系数是( ) A .74 B . 121 C .-74 D .-121 [2006 年] (8)若多项式 x 2 + x 10 = a + a ( x + 1) + 1 + a ( x + 1) 9 + a ( x + 1) 10 , 9 10 则 a = ( ) 9 A .9 B .10 C .-9 D .-10 [2007 年] ? 1 ?9 ? x ? A . -36 B . 36 C . -84 D . 84 [2008 年]

二项式定理 练习题 求展开式系数的常见类型

二项式定理 1.在()103x -的展开式中,6 x 的系数为 . 2.10()x -的展开式中64x y 项的系数是 . 3.92)21(x x -展开式中9x 的系数是 . 4.8)1(x x - 展开式中5x 的系数为 。 5.843)1()2 (x x x x ++-的展开式中整理后的常数项等于 . 6.在65 )1()1(x x ---的展开式中,含3x 的项的系数是 . 7.在x (1+x )6的展开式中,含x 3项的系数为 . 8.()()8 11x x -+的展开式中5x 的系数是 . 9.72)2)(1(-+x x 的展开式中3x 项的系数是 。 10.54)1()1(-+x x 的展开式中,4x 的系数为 . 11.在6 2)1(x x -+的展开式中5x 的系数为 . 12.5)212(++x x 的展开式中整理后的常数项为 . 13.求(x 2+3x -4)4的展开式中x 的系数.

14.(x 2+x +y )5的展开式中,x 5y 2的系数为 . 15.若 32()n x x -+的展开式中只有第6项的系数最大,则n= ,展开式中的常数项是 . 16.已知(124 x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数. 17.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为64,则二项式系数的最大值为________. 18.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,则展开式的系数和为________. 19.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________. 20.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.

二项式定理各种题型解题技巧

二项式定理 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0 1 2 ,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: ⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项式系数1 2n n C -,12n n C +同时

最新二项式定理练习题(含答案)

二项式定理 1 单选题 2 (x+1)4的展开式中x的系数为3 A.2 B. 4 C. 6 D.8 4 答案 5 B 6 解析 7 分析:根据题意,(x+1)4的展开式为T r+1=C 4 r x r;分析可得,r=1时,有x 8 的项,将r=1代入可得答案.9 解答:根据题意,(x+1)4的展开式为T r+1=C 4 r x r; 10 当r=1时,有T 2=C 4 1( x)1=4x; 11 故答案为:4. 12 故选B. 13 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 14 2 (x+2)6的展开式中x3的系数是 15 A.20 B.40 C.80 D. 160 16 答案 17 D 18 解析 19 分析:利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中20 x3的系数. 21 解答:设含x3的为第r+1, 22 则Tr+1=C6rx6-r?2r, 23

24 令6-r=3, 25 得r=3, 26 故展开式中x3的系数为C63?23=160. 27 故选D. 28 点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工29 具 30 3在(1+数学公式)4的展开式中,x的系数为 31 A.4 B.6 C.8 D.10 答案 32 33 B 34 解析 35 分析:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r;分析可36 得,r=2时,有x的项,将x=2代入可得答案. 37 解答:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r; 当r=2时,有T3=C42(数学公式)2=6x; 38 39 故选B. 40 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 4(1+x)7的展开式中x2的系数是 41 42 A.21 B.28 C.35 D.42 43 答案 A 44 45 解析

二项式定理知识点总结复习过程

二项式定理知识点总 结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(*∈N n )等号右边的多项式 叫做()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设 x b a ==,1,则()n n n k n k n n n n n x C x C x C x C x +++++=+-ΛΛ101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式;另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.314-n 例2.(1)求7(12)x +的展开式的第四项的系数;

(完整版)排列组合二项式定理新课

20.1.1 排列的概念 【教学目标】 1.了解排列、排列数的定义;掌握排列数公式及推导方法; 2. 能用“树形图”写出一个排列问题的所有的排列,并能运用排列数公式进行计算。 3.通过实例分析过程体验数学知识的形成和发展,总结数学规律,培养学习兴趣。 【教学重难点】 教学重点:排列的定义、排列数公式及其应用 教学难点:排列数公式的推导 【教学课时】 二课时 【教学过程】 合作探究一:排列的定义 我们看下面的问题 (1)从红球、黄球、白球三个小球中任取两个,分别放入甲、乙盒子里 (2)从10名学生中选2名学生做正副班长; (3)从10名学生中选2名学生干部; 上述问题中哪个是排列问题?为什么? 概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n个不同元素中,任取m(m n ≤)个元素(这里的被取元素各不相同) 按照一定的顺序 .....排成一列,叫做从n个不同元素中取出m个元素的一个排列 ....。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关)(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二排列数的定义及公式 3、排列数:从n个不同元素中,任取m(m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m元素的排列数,用符号m n A表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导

探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n * ∈≤ 即学即练: 1.计算 (1)4 10A ;(2)25A ;(3)3355A A ÷ 2.已知101095m A =???L ,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----L 用排列数符号表示为( ) A .5079k k A --B .2979k A -C .3079k A -D .3050k A - 答案:1、5040、20、20;2、6;3、C 典型例题 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 解析:(1)利用好树状图,确保不重不漏;(2)注意最后列举。 解:略 点评:在写出所要求的排列时,可采用树状图或框图一一列出,一定保证不重不漏。 变式训练:由数字1,2,3,4可以组成多少个没有重复数字的三位数?并写出所有的 排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中,m =n 全排列数:(1)(2)21!n n A n n n n =--?=L (叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)4 4A (3))!1(-?n n 想一想:由前面联系中( 2 ) ( 3 )的结果我们看到,25A 和3 355A A ÷有怎样的关系? 那么,这个结果有没有一般性呢? 排列数公式的另一种形式:

二项式定理10种题型的解法

二项式定理十种题型及解法 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

二项式定理(基础+复习+习题+练习)

课题:二项式定理 考纲要求: 1.能用计数原理证明二项式定理 2.会用二项式定理解决与二项展开式有关的简单问题. 教材复习 1.二项式定理及其特例: ()101()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈, ()21(1)1n r r n n n x C x C x x +=++ ++ + 2.二项展开式的通项公式:r r n r n r b a C T -+=1210(n r ,,, = 3.常数项、有理项和系数最大的项: 求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性. 4.二项式系数表(杨辉三角) ()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式 系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和. 5.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量 的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图) 6.()1对称性. 与首末两端“等距离”的两个二项式系数相等(m n m n n C C -=).直线2 n r = 是图象的对称轴. ()2增减性与最大值: 当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n n C -,12n n C +取得最大值 ()3各二项式系数和:∵1(1)1n r r n n n x C x C x x +=++ ++ +, 令1x =,则012 2n r n n n n n n C C C C C =+++ ++ +

排列组合与二项式定理知识点

排列组合与二项式定理知识点

第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ) ,,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10 ==n n n C C

2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排 列个数等于! !...!!2 1 k n n n n n =. 例如:已知数字3、2、2,求其排列个数3 ! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列 个数1!3!3==n . 三、组合. 1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑵组合数公式: )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -= +--==Λ ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合. (或者从n+1个编号不同的小球中,n 个白球一

二项式定理试题类型大全

二项式定理试题类型大全 一.选择题 1.有多少个整数n 能使(n+i)4成为整数(B )A.0 B.1 C.2 D.3 2. ()82x -展开式中不含..4x 项的系数的和为(B )A.-1 B.0 C.1 D.2 3.若S=123100123100A A A A ++++L L ,则S 的个位数字是(C ) A 0 B 3 C 5 D 8 4.已知(x - x a )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( C )A.28 B.38 C.1或38 D.1或28 5.在3100(25)+的展开式中,有理项的个数是()A.15个B.33个.17个D.16个 6.在2431??? ? ??+x x 的展开式中,x 的幂指数是整数的项共有(C ) A .3项 B .4项 C .5项 D .6项 7.在(1-x)5-(1-x)6的展开式中,含x 3的项的系数是( C ) A 、-5 B 、 5 C 、10 D 、-10 8.35)1()1(x x +?-的展开式中3x 的系数为( ) A .6B .-6 C .9D .-9 9.若x= 21,则(3+2x)10的展开式中最大的项为(B )A.第一项B.第三项 C.第六项 D.第八项 10.二项式431(2)3n x x - 的展开式中含有非零常数项,则正整数n 的最小值为( ) A .7 B .12 C .14 D .5 11.设函数,)21()(10x x f -=则导函数)(x f '的展开式2x 项的系数为(C ) A .1440 B .-1440 C .-2880 D .2880 12.在51(1)x x +-的展开式中,常数项为( B ) (A )51 (B )-51 (C )-11 (D )11 13.若32(1)1()n n x x ax bx n *+=+++++∈N L L ,且:3:1a b =,则n 的值为( C ) A.9 B.10 C.11 D.12 14.若多项式102x x +=10109910)1()1()1(++++???+++x a x a x a a ,则=9a ( ) (A ) 9 (B )10 (C )9- (D )10- 故选D 。 17.若二项式6)sin ( x x -θ展开式的常数项为20,则θ值为( B ) A. )(22Z k k ∈+ππ B. )(22z k k ∈-ππ C. 2π D. 2π- 18.5310 被8除的余数是( )A 、1 B 、2 C 、3 D 、7 19已知i x +=2,设444334224141x C x C x C x C M +-+-=,则M 的值为( ) A 4 B -4i C 4i D 20.数(1.05)6的计算结果精确到0.01的近视值是………………………( ) A .1.23 B .1.24 C .1.33 D .1.44

二项式定理练习题.doc

10.3二项式定理 【考纲要求】 1、能用计数原理证明二项式定理. 2、会用二项式定理解决与二项展开式有关的简单问题. 【基础知识】 1、二项式定理:n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( 二项式的展开式有1n +项,而不是n 项。 2、二项式通项公式:r r n r n r b a C T -+=1 (0,1,2,,r n =???) (1)它表示的是二项式的展开式的第1r +项,而不是第r 项 (2)其中r n C 叫二项式展开式第1r +项的二项式系数,而二项式展开式第1r +项的 系数是字母幂前的常数。 (3)注意0,1,2,,r n =??? 3、二项式展开式的二项式系数的性质 (1)对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等。即 m n C =m n n C - (2)增减性和最大值:在二项式的展开式中,二项式系数先增后减,且在中间取得最大值, 如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等且最大。 (3)所有二项式系数的和等于2n ,即n n n n n n n n n n C C C C C C 212210=++++++--ΛΛ 奇数项的二项式系数和与偶数项的二项式系数和相等,即 15314202-=+++=+++n n n n n n n C C C C C C ΛΛΛΛ 4.二项展开式的系数0123,,,,n a a a a a ???的性质: 对于2012()n n f x a a x a x a x =++++g g g 0123(1)n a a a a a f ++++???+=, 0123(1)(1)n n a a a a a f -+-+???+-=- 5、证明组合恒等式常用赋值法。 【例题精讲】 例1 若,,......)21(2004200422102004R x x a x a x a a x ∈++++=-求(10a a +)+(20a a +)+……+(20040a a +) 解:对于式子:,,......)21(2004200422102004R x x a x a x a a x ∈++++=- 令x=0,便得到:0a =1

二项式定理知识点总结

二项式定理知识点总结 1.二项式定理公式: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。 各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0 1 2 ,,,,,,. r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L

令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即 0,n n n C C =·1 k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:0242132111222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: 00112220120120011222021210 01230123()()1, (1)1,(1)n n n n n n n n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L n n L n n n L 024135(1)(1),() 2 (1)(1),() 2 n n n n n n a a a a a a a a a a a a ----++-++++=+---+++=n n n n L n n n n n n n n n n L n n n n n n n ⑤二项式系数的最大项: 如果二项式的幂指数n 是偶数时,则中间一项的二项式系数21 2n n n C T +=取得最大值。

高二数学排列组合二项式定理单元测试题(带答案)

排列、组合、二项式定理与概率测试题 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、如图所示的是2008年北京奥运会的会徽,其中的“中国印”的外边是由四个色块构成,可以用 线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ( ) A. 8种 B. 12种 C. 16种 D. 20种 2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( ) A .96种 B .180种 C .240种 D .280种 3、五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则 不同的选排方法共有( ) A .12种 B .20种 C .24种 D .48种 4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( ) A . 10种 B. 20种 C. 30种 D . 60种 5、设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a ≡b (mod m )。已知 a =1+C 120+C 2 20·2+C 320·22+…+C 2020· 219,b ≡a (mod 10),则b 的值可以是( ) A.2015 B.2011 C.2008 D.2006 6、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22种 B .23种 C .24种 D .25种 7、令1 ) 1(++n n x a 为的展开式中含1 -n x 项的系数,则数列}1 { n a 的前n 项和为 ( ) A . 2) 3(+n n B . 2) 1(+n n C . 1+n n D . 1 2+n n 8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( ) A .32 B .1 C .-1 D .-32

高中数学19种答题方法及6种解题思想

高中数学19种答题方法及6种解题思想一.十九种数学解题方法 1.函数 函数题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。 2.方程或不等式 如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法; 3.初等函数 面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……; 4.选择与填空中的不等式 选择与填空中出现不等式的题目,优选特殊值法; 5.参数的取值范围 求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法; 6.恒成立问题 恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏; 7.圆锥曲线问题 圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式; 8.曲线方程 求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点); 9.离心率 求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可; 10.三角函数 三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围; 11.数列问题 数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想; 12.立体几何问题 立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题; 13.导数 导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

相关文档
最新文档