黎曼几何没有平行线

合集下载

欧氏几何、罗氏几何、黎曼几何的区别。

欧氏几何、罗氏几何、黎曼几何的区别。

欧氏几何、罗氏几何和黎曼几何是几何学中的三个重要分支,它们分别由欧几里德、罗伯特·罗斯和伯纳德·黎曼提出,并在不同的数学和物理领域中发挥着重要作用。

这三种几何学在概念、方法和应用上有着明显的区别,让我们一起深入了解它们。

一、欧氏几何欧氏几何是以古希腊数学家欧几里德的名字命名的几何学。

它主要研究平面几何和空间几何中的点、线、面以及它们之间的关系和性质。

在欧氏几何中,有五条公理作为基础,这些公理包括点的唯一性、直线的无限延伸性等,构成了欧氏空间的基本性质和特征。

欧氏几何是最为直观和常见的几何学,在我们日常生活和实际工作中有着广泛的应用,比如建筑设计、地理测量等领域。

二、罗氏几何相较于欧氏几何,罗氏几何是一种非欧几何,由19世纪的数学家罗伯特·罗斯提出。

罗氏几何放弃了平行公设并提出了新的平行公设,即通过一点可以作出无数平行线。

这种新的理念打破了欧氏几何中平行线的概念,引入了一种新的、非直观的几何学体系。

罗氏几何虽然在直观上难以理解,但在相对论和曲率空间的研究中有着重要的应用,尤其是在描述引力场和黑洞的时候,罗氏几何的理论和方法显得尤为重要。

三、黎曼几何黎曼几何是由19世纪德国数学家伯纳德·黎曼创立的一种曲面的微分几何学。

相较于欧氏几何和罗氏几何,黎曼几何的研究范围更广,不再局限于平面和直线,而是研究了曲面和多维空间的性质和变换。

黎曼几何的理论为爱因斯坦的广义相对论奠定了基础,也在现代物理学和工程领域有着极其重要的应用。

结语通过对欧氏几何、罗氏几何和黎曼几何的深入了解,我们可以看到这三种几何学在概念、方法和应用上的明显区别。

欧氏几何在平面和直线的理论中有着直观的优势,罗氏几何在非直观的空间和曲率中有着重要的应用,而黎曼几何则进一步拓展了几何学的研究领域,为现代数学和物理学的发展提供了重要的理论基础。

在个人看来,欧氏几何、罗氏几何和黎曼几何的区别体现了数学的多样性和丰富性,也展示了数学在不同领域中的重要作用。

广义相对论 黎曼几何

广义相对论 黎曼几何

广义相对论黎曼几何
广义相对论和黎曼几何是两个相互关联的领域。

黎曼几何是非欧几何的一种,亦称“椭圆几何”。

在黎曼几何学中,有如下规定:在同一平面内任何两条直线都有公共点,不承认平行线的存在。

另一条公设讲,直线可以无限延长,但总的长度是有限的。

黎曼几何的模型是一个经过适当“改进”的球面。

在广义相对论中,爱因斯坦放弃了关于时空均匀性的观念,认为时空只是在充分小的空间里以一种近似性而均匀的,但是整个时空却是不均匀的。

这种解释和黎曼几何的观念是相似的。

黎曼几何简介-USTC

黎曼几何简介-USTC

3 度规相容联络
7
3. 李希张量 Ricci Tensor:
标曲率定义为:
Ricµν = Rλ µλν
R = gµν Ricµν
3.2 Levi-Civita Connection
{}
无挠率的联络显然是 Γλ µν =
λ , 满足 Γλ µν = Γλ νµ,只有对称 µν
的贡献。物理上经常计算这个联络,即假设流行上无挠率。本质上是因为这
Hodge Star 可以保证构造出满足上面条件的 m-form,即能写成 f ΩM 的形式。
5.1 Hodge Star
若 m 维流形 M 上有度规 g,可以定义 Ωr, Ωm−r 之间的同构映射,就 是 Hodge Star 操作 (∗ : Ωr → Ωm−r)

∗(dxµ1
∧ dxµ2
∧ · · · ∧ dxµr ) =

1 gµν R) 2
=
∇µGµν
=
0
其中 G 是爱因斯坦张量,若这个张量和能动量张量成正比,就给出了
爱因斯坦场方程。
由以上的这些关系,m 维流形上的黎曼曲率张量的自由度有 F (m) =
1 12
m2(m2

1)
个,例如
2
维流形上只有一个自由度
R1212,且分量统一表示
成:
R Rkλµν = 2 (gkµgλν − gkν gλµ)
∇V [g(X, Y )] = V k[(∇kg)(X, Y ) + g(∇kX, Y ) + g(X, ∇kY )] = 0
3 度规相容联络
5
于是有条件 (∇kg)µν = 0,可化简为:
∂λgµν − Γk λµgkν − Γk λν gkµ = 0 满足这个条件的联络称为度规相容联络(metric connection)。对上式 轮换指标并加和得到:

欧几里得几何与非欧几何

欧几里得几何与非欧几何

欧几里得几何与非欧几何摘要:欧几里得的《几何原本》奠定了几何学发展的基础, 随着逻辑推理的理论发展, 非欧几何在艰难中产生发展起来;其中少不了欧几里得、罗巴切夫斯基与黎曼在几何学上的巨大贡献,且两者几何学之间存在着严密的辩证关系。

关键词:欧几里得几何、几何原本、非欧几何、辩证关系欧氏几何是人类创立的第一个完整的严密的(相对而言) 科学体系。

它于公元前三世纪由古希腊数学家欧几里得完成,后来经历了两千多年的发展,对科学和哲学的影响是极其深远的。

十九世纪二十年代,几何学发展史上出现了新的转折点,德国数学家高斯、匈牙利数学家亚·鲍耶和俄国数学家罗巴切夫斯基分别在1824年、1825年1826年各自独立地创立了非欧几何,其中以罗巴切夫斯基所发表的内容最完善,因此取名为罗氏几何学。

1854年,德国数学家黎曼创立了黎曼几何。

十九世纪末,德国数学家阂可夫斯基发展了黎曼几何,创立了四维空时几何学。

1915年,爱因斯坦利用非欧几何——四维空间几何学作为工具创立了广义相对论, 不久广义相对论连同非欧几何为天文观察等科学实践所证实。

从此,人们确认非欧几何是人类发现的伟大的自然科学真理。

一、欧几里得几何的发展(一)古希腊前期几何学的发展为欧几里得几何的产生奠定了基础在欧几里得时代以前,数学家与学者们就已经获得许多几何方面的成果,但大多数是零星的,有的对部分内容也作过一些整理加工,但不系统。

面对前人留下的材料以及一些证明方法,欧几里得认真进行了总结、提练、筛选,以及分析、综合、归纳、演绎,集前人工作之大成,系统整理加工成巨著《几何原本》,所以说古希腊前期的几何学的发展为欧几里得几何的产生奠定了基础。

最早研究几何的一批人是爱奥尼亚学派,它的创始人是泰勒斯,据传他曾用一根已知长度的杆子,通过同时测量竿影和金字塔影之长,求出了金字塔的高度。

人也把数学之成为抽象理论和有些定理演绎证明归功于他,如圆被直径二等分,等腰三角形两底角相等,两直线相交对顶角相等,两角及夹边对应相等的两个三角形全等,内接于半圆的角是直角等的论证。

数学平行线图片

数学平行线图片
角相等,同旁内角互补。
2. 【问题】请说明如何判定两条直线 是否平行。
2024/1/25
25
思考题及答案
【答案】可以通过以下三种方式判定两条直线是否平行:同位角相等,两直线平行;内错角 相等,两直线平行;同旁内角互补,两直线平行。
3. 【问题】请举出生活中应用平行线性质的实例。
【答案】生活中应用平行线性质的实例有很多,如铁轨的铺设、双杠的摆放、窗户的边框等 。这些实例都利用了平行线间距离相等和同位角、内错角相等的性质。
2024/1/25
另一组对边不平行
与平行的一组对边相对的 另一组对边不平行。
内角和性质
梯形的两个相邻角的内角 和为180度。
9
三角形中平行线性质
平行线与三角形的边相交
当一条平行线与三角形的两边相交时 ,它将三角形分成两个相似三角形。
相似三角形性质
平行线间距离相等
在三角形中,若两条线段平行于同一 条边,则这两条线段之间的距离相等 。
2024/1/25
5
平行线间距离公式
• 平行线间距离公式:两平行线间的距离等于其中一条直线上任 意一点到另一条直线的垂线段的长度。该公式可用于计算两条 平行线之间的距离,其中垂线段的长度可以通过勾股定理等方 法进行求解。
2024/1/25
6
CH024/1/25
7
平行四边形中平行线性质
01
02
03
对边平行
在平行四边形中,对边是 平行的,即两组对边分别 平行。
2024/1/25
对边相等
平行四边形的对边长度相 等,这是平行四边形的一 个基本性质。
内角和性质
平行四边形相邻两角的内 角和为180度。
8

欧氏几何与非欧几何

欧氏几何与非欧几何

欧氏几何欧几里得几何学,简称欧氏几何,主要是以欧几里得平行公理为基础的几何学。

欧几里得他把当代希腊数学家积累的几何知识和逻辑推理的思想方法加以系统化,初步奠定了几何学的逻辑结构的基础。

19世纪末期,德国数学家希尔伯特于1899年发表了著名的著作《几何基础》,书中提出了一个欧几里得几何的完整的公理体系。

从此人们把满足希尔伯特公理系统中的结合公理、顺序公理、合同公理、平行公理、连续公理等五组公理以及由其导出的一切推论组成的几何学叫做欧几里得几何学。

特别指出的是,平行公理在欧几里得几何中有着很重要的作用。

凡与平行公理有关的命题,都是欧几里得几何学的结论。

如三角形三条高线共点;过不共线的三点恒有一圆;任何三角形三内角之和等于180°;存在相似形;勾股定理成立。

1872年,德国数学家克莱茵在爱尔朗根大学提出著名的“爱尔朗根计划书”,明确了采用几何变换对各种几何进行分类。

指出,如果一种几何变换,它的全体组成一个“群”,就相应有一种几何学。

在每一种几何中主要研究在相应的变换下的不变性和不变量。

根据这种观点,欧几里得几何学就是研究图形在合同变换下(或在运动变换下)不变的科学。

欧几里得著有《几何原本》一书,该书共13卷,除第5、7、8、9、10卷是用几何方法讲述比例和算术理论以外,其他各卷都是论述几何问题的。

《几何原本》共有23个定义,5条公设,5条公理,他力图把几何学建立在这些原始的定义、公理和公设的基础上,然后以这些显然的假设为依据推证出体系里的一切定理。

在第1卷开始他首先提出23个定义,前6个定义是:①点没有大小;②线有长度没有宽度; ③线的界是点;④直线上的点是同样放置的;⑤面只有长度和宽度;⑥面的界是线。

在定义之后,有5个公设:①从任意点到另一点可以引直线;②有限直线可以无限延长;③以任意点为圆心,可用任意半径作圆;④所有直角都相等;⑤如果两条直线与另一条直线相交,所成的同侧内角的和小于两直角,那么这两条直线在这一侧必相交。

黎曼几何

黎曼几何

《数学专题讲选》期末论文07数学20075202 阮腾达黎曼几何本学期开设的数学专题选讲中,我最感兴趣的就是肖建波老师讲的黎曼曲面专题。

课后,我结合老师上课内容和查找相关资料,了解了黎曼几何的产生及其内容概要。

古希腊数学家欧几里得的《几何原本》提出了五条公设。

头四条公设分别为:1.由任意一点到任意一点可作直线。

2.一条有限直线可以继续延长。

3.以任意点为心及任意的距离可以画圆。

4.凡直角都相等。

第5条公设说:同一平面内一条直线和另外两条直线相交,若在某一侧的两个内角的和小于两直角,则这两直线经无限延长后在这一侧相交。

长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。

有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到,而且以后再也没有使用。

也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。

因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。

由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明?几乎从欧几里得提出第五公设(也称平行公设)以来,数学家们就感到它不像公设,是能够加以证明的.尽管人们的尝试失败了——事实证明他们也必然要失败,数学家们却由此而建立了两种全新的几何学,即非欧几何!建立非欧几何的荣誉,应该由高斯、鲍耶和罗巴切夫斯基三人共同分享。

不过在介绍他们的工作之前,我们先来看在这方面曾作过努力和贡献的几位数学家。

首先要提到的是意大利耶稣会士和帕维亚大学的教授萨谢利。

他研究了一个四边形ABCD(如图1),∠A和∠B是直角,AD=BC。

他证明了∠D=∠C,那么这两个角的大小只有三种可能:钝角、直角或锐角,萨谢利称之为钝角和锐角假定和锐角假定。

他希望证明钝角和锐角假定是错误的,那么余下的直角假定就是第五公设的等价形式!萨谢利隐含的假定的矛盾性,但对于锐角假定,逻辑事实使他左右为难,最后毫无说服力地硬塞进一个“矛盾”。

黎曼几何的结论

黎曼几何的结论

黎曼几何的结论黎曼几何(Riemannian Geometry)是一门对形式化的抽象几何的研究,它被用来描述一般相对论中复杂的曲线面和曲线空间,例如欧拉心形空间和环形空间。

这种几何分析可以用来描述物理中复杂的运动,如量子场理论,普朗克动力学和弦理论,以及几何光学。

除此之外,它还被用于不变量场,也可以形式化研究几种基本的几何性质,如平滑结构、曲率和照度等。

黎曼几何的研究,可以追溯到十九世纪中叶,克劳德·黎曼及其他几何学家,使用一种测度来表示曲空间(curved space)上的物理量,这个度量被称为黎曼测度(Riemannian metric)。

黎曼测度能够描述曲空间上任意特定点处的曲率,同时可以进一步研究出曲率的地方性效应。

黎曼几何的模型使人们可以思考这样的话题:曲线和曲空间的几何结构,相对论曲空间的定义,以及它们如何受到各种外在影响的变化,如引力等。

黎曼几何的主要结论是有关引力和它对曲空间的作用的研究。

对它的探索发现,具有引力的曲空间具有不同的结构和性质。

相比于平面几何,引力曲空间具有更为复杂的几何性质,它也维护着其结构的一致性。

除此之外,黎曼几何还可以解释宇宙膨胀、时空弯曲和测量等现象,被用于解释宇宙中的某些物理过程。

黎曼几何对物体表现出的引力对它的结构和形状有很大的影响,使它成为几个主要的物理问题的重要研究课题,如相对论卫星测量学和量子力学。

它的研究也可能帮助我们认识宇宙的构成,揭示其宇宙背景中的重要性质,并估计曲空间的曲率。

有报道说这些基本结论,早在二千年前美索不达米亚阿拉伯数学家穆罕默德拉布尔就已经提出了,但因为科学技术缺乏,当时我们没有办法分析出这些实质性的结果,直到有了黎曼几何的发展,科学家们才能得以开展此研究。

黎曼几何的世界

黎曼几何的世界

黎曼几何的世界
几乎从欧几里得提出第五公设(也称平行公设)以来,数学家们就感到它不像公设,是能够加以证明的.
公元1854年,黎曼发表了一篇关于球面(或椭球)几何的论文.文中对平行公设作了以下否定性陈述:“过不在直线上的任一点,不可能引一条直线与已知直线平行.”这相当于对平行公设(①原注:平行公设的一种陈述方法是——过不在直线上的任一点,有且只有一条直线与已知直线平行. )的否证.黎曼还决定看看如果改变欧几里得其他公设的陈述会怎么样,诸如“直线可无限延伸并产生无限长度”改为“直线没有边界,但并非无限长”.也就是说,它没有端点但却具有有限的长度.
在球面几何中这种性质是存在的,因为在那上面所有的“直线”都是大圆.(②原注:一个大圆是在球面上的圆周,它的中心即为球心. )研究一个球,注意它任意两个大圆永远相交于两点,这意味着没有两条直线(大圆)是平行的.在球面几何里,我们还发现一个三角形的内角和大于180°.而一个三角形的面积随着角的和的增大而增大.
这样的世界在哪里存在?莫非它就是我们的宇宙?如果我们宇
宙的质量足够大,使得引力能让它猝然停止膨胀,并紧接着收缩变小,最终形成一个球的形状.这个球状的宇宙经历几十亿年之后,最后会缩成一个点一般大小,这个点具有无限的热量和密度.如果引力的大
小不足以使宇宙紧缩,那么大概它会达到一个平衡点,此时膨胀恰好停止.。

5. 黎曼几何初步

5. 黎曼几何初步

§5 黎曼几何初步一、 黎曼空间[黎曼空间及其度量张量] 若n 维空间R n 中有一组函数g ij ( x i )=g ji ( x i ),使得两邻点x i, x i +d x i之间的距离ds 由一个正定二次型d s 2 = g ij ( x )d x i d xj 决定,则称空间R n 为黎曼空间,记作V n .称黎曼空间V n 中的几何学为黎曼几何.二次型 ds 2称为V n 的线素.定义曲线弧长的微分为()j i ij x x x g s d d d =而任一曲线x i =x i(t )()a t b ≤≤的弧长为积分()()⎰=baji ij t tx t x t x g s d d d d d因为在坐标变换()x x x i i i ='下,ds 2为一个不变量,所以j ji i ij j i xx x x g g ''∂∂∂∂= 这表明g ij ( x)为一个二阶协变张量的分量,它称为黎曼空间V n的度量张量或基本张量.[矢量的长度·两矢量的标量积和夹角·伴随张量] 在黎曼空间中关于标量(场)、矢量(场)、张量(场)等的定义类似前面各节,它们的运算法则也相仿.设{}a i 是一个逆变矢量,则其长度的平方为g ij a i a j设{}i a 与{}b i 是两个逆变矢量,则其标量积为g ij a i bj 这两矢量夹角的余弦为g a b g a ag b bij i j ij ijij i j设g ij a i=a j , g ij b i=b j则{}j a 与{}j b 都是协变矢量,它们的长度与标量积分别为g ij a i a j=a j a j, g ij a i b j=a j b j张量j k i T ⋅⋅的伴随张量为j l i lk ijk T g T ⋅⋅=,k i lj jk i l T g T ⋅⋅⋅=式中g lj 满足等式g g il lj i j=δ式中j i δ为克罗内克尔符号.[黎曼联络与克里斯托弗尔符号] 在黎曼空间中总可以用唯一的方式确定联络k ij Γ,满足条件:(i) 仿射联络是无挠率的,即kji k ij ΓΓ=(ii) 仿射联络所产生的平行移动保持矢量的长度不变. 这种k ij Γ称为黎曼联络或勒维-奇维塔联络. 根据上述两个条件可以得出⎪⎪⎭⎫⎝⎛∂∂-∂∂+∂∂=l iji jl j il kl kij x g x g x g g 21Γ 如果记k ij lk l ij g ΓΓ=,则有⎥⎦⎤⎢⎣⎡∂∂-∂∂+∂∂=l ij i jl jil l ij x g x g x g 21,Γ 有时用下面的记号:[]l ij l ij ,,Γ=和{}k ij k ij Γ=它们分别称为第一类和第二类克里斯托弗尔三指标符号.此外,还有等式0=--∂∂lkj il l ki jl kij g g xg ΓΓ或i kj j ki kij xg ,,ΓΓ+=∂∂还要指出,§4中关于协变微分法的一切结果,对黎曼联络k ij Γ都成立.二、 勒维-奇维塔的平行性仿射联络空间中的平行移动,是由仿射联络ijk Γ决定的.在具有度量张量g ij 的黎曼空间Vn中,利用黎曼联络ijk Γ来定义相应的平行移动称为V n的勒维-奇维塔平行移动.设沿V n 中某一曲线 x i =x i (t )()a t b ≤≤ 给定了矢量场a i =a i(t ),如果沿这条曲线作一无穷小位移时,矢量a i(t )按规律0d d d d d =+=tx a t a t Da ji k ij k k Γ 变化,则称矢量a i(t )沿曲线作勒维-奇维塔平行移动.勒维-奇维塔平行移动具有性质:1度量张量g ij 的协变导数等于零,即0=--∂∂=∇lkj il l ki jl kij ij k g g x g g ΓΓ还有 ∇=k j i δ0, ∇=k ij g 02若两族矢量a i (t )和b i(t )都沿曲线平行移动,则()0d d=j i ij b a g t所以两矢量的标量积与夹角在平行移动下保持不变.3 黎曼空间V n中的自平行曲线(也称为测地线)和仿射联络空间中自平行曲线的情况完全一样,都由微分方程0d d d d d d 22=+s x s x sx kj i jk i Γ 所确定.不过这里的k ij Γ是黎曼联络.所以一曲线为测地线的充分必要条件是它的单位切矢量sx id d 互相平行.三、 黎曼空间中的曲率[曲率张量与李奇公式] 张量的协变导数与普通导数的明显区别是:求高阶导数时,张量导数的结果一般与求导的次序有关.例如,运算∇∇-∇∇k j j k 作用于矢量{}a i 时,则有l r kl i jr r jl i kr j i kl k i jl i k j i j k a x x a a ⎪⎪⎭⎫ ⎝⎛-+∂∂-∂∂=∇∇-∇∇ΓΓΓΓΓΓ (1) 记rkli jr r jl i kr ji klkijlikjl x x R ΓΓΓΓΓΓ-+∂∂-∂∂=它是一个三阶协变一阶逆变的四阶混合张量,称为空间V n的曲率张量或黎曼-克里斯托弗尔张量.由(1)式得∇∇-∇∇=k j i j k i kjl il a a R a左边称为逆变矢量{}a i 的交错二阶协变导数;对协变矢量{}ib 的交错二阶协变导数是r rjki i j k i k j b R b b -=∇∇-∇∇张量的交错二阶协变导数是∇∇-∇∇=-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==-+-+∑∑j k s s s r r r k j s s s r r r jkir s s s r r r ir r jkq i s s s is s r r r q mp lTTR TR T ml m l p m p p l q q m l12121231212121112111211这称为李奇公式.[黎曼符号·李奇张量·曲率标量·爱因斯坦空间] 曲率张量的协变分量R g R jklr ri jkl i=称为第一类黎曼符号,而R jkl i 称为第二类黎曼符号. 曲率张量缩并得R R g R kl jkl jrj jklr ==称为李奇张量.李奇张量再缩并得R = g klR kl称为曲率标量.若李奇张量满足R nRg ij ij =1则称此空间为爱因斯坦空间. [曲率张量的性质]1曲率张量前两个指标j 和k 是反对称的,即i jkl i kjl R R -=特别R jjl i=02曲率张量对三个协变指标作循环置换后相加,使得R R R jkl i klj i ljk i++=0这称为李奇恒等式.3第一类黎曼符号R kjlr 可按下式计算:()q jl p kr q jr p kl pq l j kr r j kl r k jl l k jr jklrg x x g x x g x x g x x g R ,,,,222221ΓΓΓΓ-+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∂∂∂-∂∂∂+∂∂∂-∂∂∂= 因此R kjlr 关于指标j , k 与 l , r 是反对称的;关于前一对指标与后一对指标是对称的;对前面三个指标作循环置换后相加等于零,即R j klr =-R kjlr R j klr =-R jkrlR j klr = R lrjkR jklr +R kljr +R ljkr = 04李奇张量是对称的,即R kl = R lk . 5 空间V n 中任一点下式成立:∇+∇+∇=i jkl r j kil r k ijl rR R R 0这称为皮安奇恒等式.它表明,按协变导数的指标(i )及曲率张量前两个指标(j , k )作循环置换所得到的和等于零.[黎曼曲率(截面曲率)与常曲率空间] 对黎曼空间V n内一点M 的两个线性无关矢量{}p i 和{}q i 作()K R p q p q gg g g p q p qrijk r i j krkij rj ik r i j k=-这称为p i,q i所确定的平面的黎曼曲率,又称为截面曲率.如果对空间V n(n > 2)中所有点都有R rijk =K (g rk g ij -g rj g ik )则黎曼曲率K 为常数,这就是舒尔(Schur)定理.黎曼曲率为常数的空间Vn称为常曲率空间,这种空间的线素可化为形式()()()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+⋅⋅⋅+++⋅⋅⋅+=221221241d d d n n x x K x x s 这称为黎曼形式的常曲率空间的度量.常曲率空间是爱因斯坦空间.。

非欧几何(Non-Euclidean.

非欧几何(Non-Euclidean.

非欧几何(Non-Euclidean geometry)简介福州大学林鸿仁非欧几何就是非欧几里得几何,是针对欧几里得几何而言的,非欧几何通常指的是罗巴切夫斯基几何和黎曼几何。

众所周知,素有“几何之父”之称的古希腊的数学家欧几里得( Euclid,希腊文:Ευκλειδης,约公元前330年-前275年)有一本传世之作叫《几何原本》,已经传了两千多年了。

其中的基本内容,至今还是我们孩子们学习的课程,包括《平面几何》和《立体几何》。

西方的几何学大概兴于公元前7世纪的古埃及,对古代埃及人来说,几何学就是“测地术”,几何是在测量地块中获得的,是一种经验的几何知识,所以大都十分零散杂乱,缺乏系统。

古希腊的欧几里得首先觉察到,很有必要对这些“上帝的杰作”进行整理,于是特地到古埃及的亚历山大,收集整理并于公元前3世纪写成《几何原本》这一巨著,开创了数学理论的系统化逻辑化的先河,除了使几何成为一门独立学科之外,也成为西方科学研究方法的典范。

欧几里得的《几何原本》全书共分13卷,包含了5条“公理”、5条“公设”、23个定义和467个命题。

在每一卷中,欧几里得都采用了完全不同的叙述方式,先提出公理、公设和定义,再将命题进行逻辑推理和证明。

他先后对直边形、圆、比例论、相似形、数、立体几何等进行系统的论述。

在这里,作为定义的基本概念,如点、线、面、直角等,已不是具体的图形或图像,而是抽象的一般概念;推演定理的方法,也尽量避开直观,而采用“三段论式”的逻辑方法。

欧几里得的成功之处在于,从一些被认为是不证自明的事实出发,通过逻辑演绎,用很少的几个公理公设,令人信服地推出了很多的定理,而且它们与现实世界又是一致的。

欧几里得建立的这一个几何学公理体系一直受到后世数学家的普遍称颂,被公认为数学严格性的典范。

因此,在相当长的历史时期里,人们一直把几何称为“欧几里得几何”简称“欧氏几何”,并把它奉为金科玉律。

但由于时代的局限,他的5条公设中的第5条一直被质疑。

黎曼猜想为什么危险 猜想危险在什么地方

黎曼猜想为什么危险 猜想危险在什么地方

黎曼猜想为什么危险猜想危险在什么地方本文导读:却不知道它后面隐藏的危险一、大神黎曼过直线外一点,可作其几条平行线?欧氏几何说,只能作一条;罗氏几何说,至少可以作两条(包括一组和无数)。

黎曼慢悠悠地反问:谁知道平行线相交还是不相交呢?“平行线公理”的世纪之争,最终终结于黎曼。

黎曼提出:过直线外一点,一条平行线也作不出来。

(这是人话吗?)可基于黎曼几何得出的“无平行线”结论,最终成了广义相对论的数学帮手。

广义相对论最初源于爱因斯坦意识到引力并不是一种力,而是时空几何弯曲的体现。

物理直觉超于常人的爱因斯坦一直找不到数学工具来表达他的想法,如果没有数学支撑,直接说引力是时空弯曲效应,肯定会被吐槽成“物理是体育老师教的”。

所以,直到他从数学界朋友了解到黎曼的“非欧几何”,才让广义相对论提早问世。

当爱因斯坦得意地跟全世界说:如果没有我,50年内也不会出现广义相对论。

这时候,能和爱因斯坦站在一起吹牛的,也只有数学大神黎曼了。

二、黎曼猜想与裸奔的互联网“几何”一直是黎曼的主业,这又是一座深不可测的数学殿堂。

但今天聊的不是他的主业,而是他在1859年“闲暇之余”随手丢下的一个猜想。

这个猜想说的是:存在一个对素数分布规律有着决定性影响的黎曼ζ函数①非平凡零点②。

关于这些点,容易证明它们都分布在一个带状区域上,黎曼认为它们的分布要比这个容易证明的结果齐整得多,他猜测它们全都位于该带状区域正中央的一条直线上。

而这条被猜测为包含黎曼ζ函数所有非平凡零点的直线则被称为临界线。

就这样,黎曼猜想正式被提出。

讲人话,我们来看黎曼猜想到底长什么样纸!首先定义一个函数叫黎曼函数:ζ(s)= 1 + 1 / 2^s+ 1 / 3^s+ 1 / 4^s+……黎曼猜想指的是:黎曼函数所有非平凡零点的实部都是1/2。

更通俗的数学表达式如下:ζ(s)= 1 + 1 / 2^s+ 1 / 3^s+ 1 / 4^s+……=0的所有非平凡解都在直线x=1/2上。

时空几何|欧几里德(平面)几何非欧几里德(双曲、椭圆)几何

时空几何|欧几里德(平面)几何非欧几里德(双曲、椭圆)几何

时空几何|欧几里德(平面)几何非欧几里德(双曲、椭圆)几何数学研究的对象是“数”与“形”,形的数学就是几何学.它是以直观为主导,以培养人的空间洞察力与思维为目的.从数学发展的历史来看几何学的第一个最重要著作就是欧几里得(Euclid,约公元前330一275年)的《几何原本》.它被世界各国翻译成各种文字.它的印刷量仅次于“圣经”,所以不少人称《几何原本》为数学工作者的“圣经”。

《几何原本》在数学史乃至人类思想史上有着无比崇高的地位。

1 欧几里德几何(Euclid Geometry)-平面欧氏几何源于公元前3世纪。

古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理(公设),在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。

按所讨论的图形在平面上或空间中,又分别称为“平面几何”与“立体几何”(欧几里得空间)。

Euclid(约公元前330一275) ↑在欧几里德以前,古希腊人已经积累了大量的几何知识,并开始用逻辑推理的方法去证明一些几何命题的结论。

欧几里德将早期许多没有联系和未予严谨证明的定理加以整理,写下《几何原本》一书,标志着欧氏几何学的建立。

这部划时代的著作共分13卷,465个命题。

其中有八卷讲述几何学,包含了现今中学所学的平面几何和立体几何的内容。

但《几何原本》的意义却绝不限于其内容的重要,或者其对诸定理的出色证明。

真正重要的是欧几里德在书中创造的公理化方法。

在证明几何命题时,每一个命题总是从再前一个命题推导出来的,而前一个命题又是从再前一个命题推导出来的。

我们不能这样无限地推导下去,应有一些命题作为起点。

这些作为论证起点,具有自明性并被公认下来的命题称为公理,如“两点确定一条直线”即是一例。

同样对于概念来讲也有些不加定义的原始概念,如点、线等。

在一个数学理论系统中,我们尽可能少地先取原始概念和不加证明的若干公理,以此为出发点,利用纯逻辑推理的方法,把该系统建立成一个演绎系统,这样的方法就是公理化方法。

欧式几何

欧式几何

欧式几何VS非欧几何1什么是欧式几何?2.欧式几何的来源?欧几里得3欧式几何公理有哪些?4欧式几何的缺陷——出现非欧几何5什么是非欧几何?包括?罗巴切夫斯基(俄)———罗式几何黎曼(德)————黎曼几何6三种几何的关系导出命题第五条公理称为平行公理,可以导出下述命题:通过一个不在直线上的点,有且仅有一条不与该直线相交的直线。

平行公理并不像其他公理那么显然。

许多几何学家尝试用其他公理来证明这条公理,但都没有成功。

19世纪,通过构造非欧几里德几何,说明平行公理是不能被证明的。

(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何。

)从另一方面讲,欧式几何的五条公理并不完备。

例如,该几何中的有定理:任意线段都是三角形的一部分。

他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。

然而,他的公理并不保证这两个圆必定相交。

因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统。

非欧氏几何非欧氏几何产生于非欧式空间,而非欧式空间可以理解成扭曲了的欧式空间,可能它的坐标轴不再是直线,或者坐标轴之间并不正交(即不成90度)例子:欧式空间中的球面,对于在球面上爬行的蚂蚁来说就是非欧式空间的平面,它们在爬行的过程中不会感觉到球面的弯曲。

当然在这样的一个球面上,欧式几何也不再成立,譬如:三角形的内角和不再是180度,而球面上两点之间的最短距离也不再是两点之间的连线(因为这时两点之间的的线段根本经过球面)欧氏几何是平面,非欧几何是在一个不规则曲面上的非欧几何学是一门大的数学分支,一般来讲,他有广义、狭义、通常意义这三个方面的不同含义。

所谓广义式泛指一切和欧几里的几何学不同的几何学,狭义的非欧几何只是指罗式几何来说的,至于通常意义的非欧几何,就是指罗式几何和黎曼几何这两种几何。

欧几里得的《几何原本》提出了五条公设,长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。

黎曼几何基本定理

黎曼几何基本定理

黎曼几何基本定理黎曼几何基本定理,也被称为黎曼度量的基本定理,是黎曼几何中的重要定理之一。

黎曼几何是非欧几何的分支,主要研究曲面的性质和几何性质。

黎曼几何基本定理是研究曲面的内部和外部关联的关键定理之一。

本文将简要介绍黎曼几何基本定理及其应用。

黎曼几何基本定理是由德国数学家黎曼(Bernhard Riemann)于19世纪中叶提出的。

该定理阐述了一个曲面上的点的刻画,通过该点可以确定曲面上的一个局部坐标系。

具体来说,在一个给定的曲面上,任意一点的内部有且仅有一个共轭点,共轭点之间的关系是对偶的。

这就意味着,我们可以通过一个点来确定曲面上的几何性质。

黎曼几何基本定理在许多领域中都有广泛的应用。

一方面,它为计算曲率和度量提供了一种有效的方法。

通过黎曼几何基本定理,我们可以计算曲面上的曲率,而曲率又是很多几何性质的重要指标。

例如,曲面的高斯曲率用于描述曲面的弯曲程度,平均曲率用于描述曲面上各点的平均弯曲程度。

这些指标在物理学、地理学、计算机图形学等领域中都有广泛的应用。

另一方面,黎曼几何基本定理也为解决曲面上的几何问题提供了一种方法。

通过该定理,我们可以确定曲面上的曲线以及曲线上的点,从而解决与曲线相关的几何问题。

例如,我们可以通过曲线的渐近线和曲率半径来描述曲线的性质,进而解决曲线与曲面的相交、相切等问题。

此外,黎曼几何基本定理还被应用于解决一些实际问题。

例如,在机器学习中,我们经常需要处理高维数据和非线性关系。

通过黎曼几何基本定理,我们可以将这些问题转化为曲面上的几何问题,从而更好地理解和处理这些数据。

总而言之,黎曼几何基本定理是描述曲面上点与点之间关系的重要定理,它为计算曲面的几何性质提供了一种方法,并被广泛应用于各个领域。

通过了解该定理,我们可以更好地理解曲面的特性,解决曲面上的几何问题,并在实际问题中应用这些知识。

并不神秘的非欧几何,它究竟讲的是什么?今天带你搞懂

并不神秘的非欧几何,它究竟讲的是什么?今天带你搞懂

并不神秘的非欧几何,它究竟讲的是什么?今天带你搞懂欧氏几何是人类创立的第一个完整的严密的(相对而言)科学体系。

它于公元前三世纪由古希腊数学家欧几里得完成,欧洲数学2000年发展史,几乎有四分之三的时间里欧氏几何一统天下,对科学和哲学的影响极其深远。

直到魏尔斯特拉斯发起的分析算术化运动使代数从欧氏几何中完全脱离以及非欧几何的诞生才结束了欧氏几何的统治地位。

其中,非欧几何的诞生影响着现代自然科学、现代数学和数学哲学的发展,今天我们就来谈一下非欧几何与发展。

欧氏几何第五公设问题掀起的风波欧几里得的《几何原本》标志着非欧几何的诞生,在《几何原本》里,欧几里得给出了 23 条定义、5条公理、5条公设,由此推证出48个命题。

公理是指在任何数学学科里都适用的不需要证明的基本原理,公设则是几何学里的不需要证明的基本原理。

近代数学则对此不再区分,都称“公理”。

这五大公设中,由于第五公设的内容和叙述比前四条公设复杂,所以引起后人的不断研究和探讨。

因为前四条公设都可以用《几何原本》中的其余公设、公理和推论证明,而人们始终相信欧氏几何是物理空间的正确理想化,所以众多数学家就尝试用前4个公设、5个公理以及由它们推证出的命题来证明第五公设,然而都没有成功。

第五公设难题:如果一条线段与两条直线相交,在某一侧的内角和小于两直角和,那么这两条直线在不断延伸后,会在内角和小于两直角和的一侧相交。

论证的不成功引发了数学家的疑义,数学界由此开始了对“第五公设难题”的讨论。

数学家还尝试用更简单、明畅的语言来叙述这条公设,从而更好地理解它并解决它,古希腊数学家普罗克鲁斯在公元5世纪就曾经试图重现陈述它,然而这些替代性陈述效果并不比原来的文字更好。

直到 18 世纪普莱菲尔才算总结出一个比较简单的替代性公设:过已知直线外一点能且只能作一条直线与已知直线平行”。

(我们中学教材就常用这个叙述形式来替代第五公设。

)从公元前三世纪一直到公元十八世纪期间,近2000 年的时光过去,整个数学体系已经初具雏形。

三种几何差异

三种几何差异

黎曼几何
黎曼流形上的几何学。德国数学家黎曼19世 纪中期提出的几何学理论。1854年黎曼在格丁根
大学发表的题为《论作为几何学基础的假设》的
就职演说,通常被认为是黎曼几何学的源头。在 这篇演说中黎曼将曲面本身看成一个独立的几何 实体,而不是把它仅仅看作欧几里得空间中的一 个几何实体。
黎曼几何的规定:
欧式几何的五条公理:
1、任意两个点点可以通过一条直线连接。 2、任意线线段能无限延长成一条直线。 3、给定任意线段,可以以其一个端点作为圆心, 该线段作为半径作一个圆。
4、所有直角都全等。
5、若两条直线都与第三条直线相交,并且在同 一边的内角之和小于两个直角和,则这两条直 线在这一边必定相交。
罗氏几何
罗氏几何即双曲几何,也称罗巴切夫斯基
几何,波利亚-罗巴切夫斯基几何,是一种独 立于欧几里得几何的一种几何公理系统。
罗氏几何的公理:
1、同一直线的垂线和斜线不一定相交。 2、垂直于同一直线的两条直线,当两端延长 的时候,离散到无穷。不存在相似而不全等的
多边形。
3、过不在同一直线上的三点,不一定能做一 个圆。
过直线外一点,无法作一条直线与原直线不相交。
而物理界中,据黎曼几何,光线按曲线运动;而欧 氏几何中,光线按直线运动。
1、基本规定:在同一平面内任何两条直线都 有公共点(交点)。
2、直线可以无限延长,但总的长度是有限的。
3、黎曼几何的模型是一个经过适当“改进” 的球面。
在物理学家爱因斯坦的广义相对论中的空间几何就是黎曼几何。

欧式、罗氏、黎曼几何的区别
三种几何的区别,主要体现在如何对待
“殴几里得第五公设”。即
过直线外一点,只可以作一条直线

黎曼几何没有平行线

黎曼几何没有平行线

黎曼流形上的几何学。

德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。

1854年黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。

在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。

他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量,空间中的点可用n个实数(x1,……,xn)作为坐标来描述。

这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。

这种空间上的几何学应基于无限邻近两点(x1,x2,……xn)与(x1+dx1,……xn+dxn)之间的距离,用微分弧长度平方所确定的正定二次型理解度量。

亦即,(gij)是由函数构成的正定对称矩阵。

这便是黎曼度量。

赋予黎曼度量的微分流形,就是黎曼流形。

黎曼认识到度量只是加到流形上的一种结构,并且在同一流形上可以有许多不同的度量。

黎曼以前的数学家仅知道三维欧几里得空间E3中的曲面S上存在诱导度量ds2=Edu2+2Fdudv+Gdv2,即第一基本形式,而并未认识到S还可以有独立于三维欧几里得几何赋予的度量结构。

黎曼意识到区分诱导度量和独立的黎曼度量的重要性,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚,创立了黎曼几何学,为近代数学和物理学的发展作出了杰出贡献。

黎曼几何以欧几里得几何和种种非欧几何作为其特例。

例如:定义度量(a是常数),则当a=0时是普通的欧几里得几何,当a>0时,就是椭圆几何,而当a<0时为双曲几何。

黎曼几何中的一个基本问题是微分形式的等价性问题。

该问题大约在1869年前后由E.B.克里斯托费尔和R.李普希茨等人解决。

前者的解包含了以他的姓命名的两类克里斯托费尔记号和协变微分概念。

在此基础上G.里奇发展了张量分析方法,这在广义相对论中起了基本数学工具的作用。

他们进一步发展了黎曼几何学。

但在黎曼所处的时代,李群以及拓扑学还没有发展起来,因此黎曼几何只限于小范围的理论。

平行线及相关的数学发展---不存在平行线:黎曼几何

平行线及相关的数学发展---不存在平行线:黎曼几何

平行线及相关的数学发展---不存在平行线:黎曼几何现在,假定我们可知的空间范围是无限的,但是有界的。

这个命题似乎是令人费解的,可是想到地球表面就可以理解了:一个人只要能爬得了山涉得了水,他就可以在地球表面无限制地走下去,但是地球的大小是有限的。

这个命题又是极为重要的,因为它是构成爱因斯坦广义相对论几何空间的思想基础。

可以想象,在这样的几何中定义直线是非常困难的,因为连接球面上任意两点的线都是曲线,而不是我们传统观念中的欧几里得几何意义下的直线。

如果决心用这样的曲线来定义直线,那么,这样的曲线有无限多,用哪条曲线合适呢?回想欧几里得几何,我们抽象出欧几里得直线的一个最为本质的性质:两点间直线距离最短。

现在,我们就用这个性质作为定义直线的出发点:称两点间最短的曲线为直线。

很显然,这个定义与欧几里得最初的定义是不悖的,因为《原理》中第4个定义就认为直线是一种特殊的曲线。

在日常生活和生产实践中,人们关于“距离最短”这个概念是有经验的,远在欧几里得之前,因为航海和天文学的需要,人们就开始对球面的问题,特别是球面三角进行了认真的研究,其先驱是古希腊学者希帕恰斯(约公元前180-前125)。

我们曾经提到的亚历山大图书馆的学者们也在这方面做出了杰出的工作,梅内劳斯(约70-130)在那里写出了球面三角的第一部著作《球面学》,使得三角学脱离天文学而成为独立的学科。

这部著作开宗明义给出了球面三角形的定义:“在球面上大圆弧所包围的部分”,这是连接两点的最短弧线,古希腊的学者称之为大圆。

但关于天体(包括地球表面)研究集大成的还是亚历山大图书馆的后期学者托勒密,他的巨著《天文学大全》共13卷,其中第1卷的附录给出了至今发现最早的三角函数表,第2卷讨论的是球面上的三角。

我们曾经说过,这部巨著深深地影响了中世纪的欧洲。

球面是二维的,人们发明了经度和维度来表示地球表面的地理位置,但是维度并不表明最短距离。

北京大约位于北纬40度东经116度,纽约大约位于北纬40度西经74度,因为维度相同,从北京沿着北纬40度一直向东行就可以到达纽约,行程大约为14411千米,那么,这就是从北京到纽约的最短距离吗?对于球面上任意表明的两个点,我们都能像切西瓜那样,经过这两个点把这个球切开,切出的轨迹正好能够构成一个圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黎曼流形上的几何学。

德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。

1854年黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。

在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。

他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量,空间中的点可用n个实数(x1,……,xn)作为坐标来描述。

这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。

这种空间上的几何学应基于无限邻近两点(x1,x2,……xn)与(x1+dx1,……xn+dxn)之间的距离,用微分弧长度平方所确定的正定二次型理解度量。

亦即

(gij)是由函数构成的正定对称矩阵。

这便是黎曼度量。

赋予黎曼度量的微分流形,就是黎曼流形。

黎曼认识到度量只是加到流形上的一种结构,并且在同一流形上可以有许多不同的度量。

黎曼以前的数学家仅知道三维欧几里得空间E3中的曲面S上存在诱导度量ds2=Edu2+2Fdudv+Gdv2,即第一基本形式,而并未认识到S还可以有独立于三维欧几里得几何赋予的度量结构。

黎曼意识到区分诱导度量和独立的黎曼度量的重要性,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚,创立了黎曼几何学,为近代数学和物理学的发展作出了杰出贡献。

黎曼几何以欧几里得几何和种种非欧几何作为其特例。

例如:定义度量(a是常数),则当a=0时是普通的欧几里得几何,当a>0时,就是椭圆几何,而当a<0时为双曲几何。

黎曼几何中的一个基本问题是微分形式的等价性问题。

该问题大约在1869年前后由E.B.克里斯托费尔和R.李普希茨等人解决。

前者的解包含了以他的姓命名的两类克里斯托费尔记号和协变微分概念。

在此基础上G.里奇发展了张量分析方法,这在广义相对论中起了基本数学工具的作用。

他们进一步发展了黎曼几何学。

但在黎曼所处的时代,李群以及拓扑学还没有发展起来,因此黎曼几何只限于小范围的理论。

大约在1925年H.霍普夫才开始对黎曼空间的微分结构与拓扑结构的关系进行了研究。

随着微分流形精确概念的确立,特别是E.嘉当在20世纪20年代开创并发展了外微分形式与活动标架法,建立了李群与黎曼几何之间的联系,从而为黎曼几何的发展奠定重要基础,并开辟了广阔的园地,影响极其深远。

并由此发展了线性联络及纤维丛的研究。

相关文档
最新文档