汽车企业中多AGV通讯组网技术研究

汽车企业中多AGV通讯组网技术研究
汽车企业中多AGV通讯组网技术研究

汽车企业中多AGV通讯组网技术研究

AGV技术以其智能、高效、快捷等优势在工业生产中得到了广泛的应用,这在汽车制造业中体现得尤为明显。随着汽车企业中AGV数量的不断增加,随之而来的是多AGV的通讯组网问题,文章首先分析了Zigbee无线网络的拓撲结构类型,然后采用Zigbee技术设计多AGV通讯系统,使得一台工控机即可对多个AGV进行控制,提高了系统的灵活性。

标签:多AGV;无线通讯;Zigbee;拓扑网络

1 概述

随着制造业成本的提高和利润率的下降,进行技术转型以削减用工成本,是企业提高市场竞争力的关键措施之一[1]。在汽车制造企业中,需要进行大量的物料转运,若采用人工搬运,不仅费时费力,而且容易带来安全问题,不利于企业有序、高效生产。为此,采用AGV技术及其设备进行物料搬运是国内外汽车制造企业的共识。一般而言,AGV的导航方式包括磁钉导航、埋线导航、激光导航等[2],随着计算机视觉技术的发展,基于机器视觉技术的AGV导航越来越受到研究开发者的重视[3]。此外,AGV通常采用离线编程的方式进行路径规划与控制,而随着企业AGV数量的快速增加以及柔性化生产的需求,当需要对AGV进行实时路径规划与调度时,其灵活性较差。因此,新型的无线通讯方式,如蓝牙、Zigbee等技术在AGV小车中越来越多地得到应用[4,5]。本文即是在此背景下,基于Zigbee技术对汽车制造业中多AGV通讯组网系统进行研究。

2 Zigbee无线通讯技术概述

Zigbee无线通讯技术以IEEE 802.15.4无线通信标准为基础[6],具有多个通信频段,一般单个Zigbee网络可以控制数十个乃至上百台设备,其网络包含协调器、路由器、终端节点等三种设备,由这三种设备可组建成不同结构的Zigbee 网络,如星型、网状、树型等,如图1所示。星型拓扑网络组网简单,便于维护和管理,但其协调器处于网络的中央位置,一旦协调器出现故障,将导致整个网络瘫痪而不可用。树型结构网络是在星型网络结构基础上的叠加,可大大增加终端节点的数目,但其与星型结构网络具有同样的缺陷。网状拓扑型无线网络结构,其通讯网络不仅存在于协调器与路由器之间,而且两两路由器也可进行信息通信,因此,当协调器出现故障时并不影响整个网络的功能。

采用Zigbee无线通讯技术来对多AGV进行实时调度,可极大提高系统的灵活性,而且也根据适应柔性化、个性化生产制造的发展趋势。本文采用TI公司的CC2530控制器作为Zigbee系统的通讯模块。该控制芯片最大能建立带20个终端节点或者是14个终端节点加6个路由器的网络结构,数据传输速度为250 Kbps,有效传输距离可达180米。因此,利用该芯片能够完全满足汽车制造企业中多AGV系统的要求。

《车联网体系架构分析》

《车联网体系架构分析》 车联网体系结构与解决方案 背景介绍 近年来,随着汽车保有量的持续增长,道路承载容量在许多城市已达到饱和,交通安全、出行效率、环境保护等问题日益突出。在此大背景下,汽车联网技术因其被期望具有大幅度缓解交通拥堵、提高运输效率、提升现有道路交通能力等功能,而成为当前一个关注重点和热点。欧洲、美国、日本等国家和地区较早进行了智能交通和车辆信息服务的研究与应用,xx年3月大唐电信科技产业集团与启明信息技术股份有限公司携手共建车联网联合实验室,4月在重庆建立国内首个“智能驾驶与车联网实验室”等,充分表明当前国内外对车联网研究的迫切性和广泛性。 车联网与物联网 物联网是一个以互联网为主体,兼容各项信息技术,为社会不同领域提供可定制信息化服务的具有泛在化属性的信息基础平台。物联网的概念和内涵随着信息技术的发展和不同阶段人们信息化需求的不断演进,因其接入对象的广泛性、运用技术的复杂性、服务内容的不确定性以及不同社会群体理解和追求上的差异性,很难用已有概念和标准来准确完整地给出权威定义。然而,车联网概念的出现,因其服务对象和应用需求明确、运用技术和领域相对集中、实施和评价标准较为统 一、社会应用和管理需求较为确定,引起了业界的普遍关注,已

被认为是物联网中最能够率先突破应用领域的重要分支,并成为目前的研究重点和热点。 源于物联网的车联网,以车辆为基本信息单元,以提高交通运输效率、改善道路交通状况、拓展信息交互方式,进而实现智能交通管理,使物联网技术这一原本宽泛的概念在现代交通环境中得以具体体现。本文立足物联网基础理论和模型,以构建以信息技术为主导的智能交通系统为背景,对车联网的基本概念、体系结构、通信架构及其关键技术进行研究。 车联网基本概念和分类车联网概念是物联网面向行业应用的概念实现。物联网是在互联网基础上,利用射频识别(radiofrequencyidentification,rfid)、无线数据通信等技术,构造一个覆盖世界上万事万物的网络体系,实现任何物体的自动识别和信息的互联与共享。物联网不刻意强调物体的类型,更多的是强调物理世界信息的获取和交换,以实现当前互联网未触及的物与物信息交换领域。车联网是物联网概念的着陆点,将这个具体的物理世界限定到车、路、人和城市上。车联网利用装载在车辆上电子标签rfid获取车辆的行驶属性和系统运行状态信息,通过gps等全球定位技术获取车辆行驶位置等参数,通过3g等无线传输技术实现信息传输和共享,通过rfid和传感器获取道路、桥梁等交通基础设施的使用状况,最后通过互联网信息平台,实现对车辆运行监控以及提供各种交通综合服务。 从技术角度区分,车联网技术主要有电子标签技术、位置定位技术、无线传输技术、数字广播技术、网络服务平台技术。

车联网总结

车联网的现状及趋势 当前车联网的发展应该说还处在初级阶段,对于无人驾驶、无事故、不堵车、智能停车、智能导航等理想的交通状态相比,还有很长的路要走。因此车联网的发展要更针对当前拥有的技术和需求进行设计:一方面去掉那些现阶段难以实现的功能和华而不实的功能;另一方面应用好RFID和传感器方面的最新进展。车联网是物联网的一个应用方面,因此技术上有很多重合,如RFID和传感器,;又有其特点,是对动态信息的实时采集、处理、传输,对传感器要求更高,对海量数据的处理和分析传输是个难题。 一、车联网主体功能现在对车联网的定义表述不尽相同,但主体大致是连接车和路、人和车、车和车以及车与服务中心的一个网络,主要实现车辆的安全、有序驾驶,交通的智能管理、方便的服务等功能。 二、车联网网络架构根据各个科研单位的侧重点不同,研究的目的不同,车联网的网络架构也不相同。《车联网网络架构与媒质接入机制研究》,同济大学,2011年05月18 日,作者:须超,王新红,刘富强。文章提出面向安全应用的车联网无线网络架构及其协同通信协议栈,并对车联网自适应多信道媒质接入协议进行分析。网址如下: 我们也可以按照自己的想法设计一个网络架构,如按照物联网结构也分为感知层、网络层、应用层三层结构。也可以按照功能来设计网络架构。下图为自己设计。根据具体情况可不断调整扩展。 现阶段车联网的两个关键领域为(ITS)智能交通技术和(RFID)射频识别技术。智能交通包括传感技术、通信技术、数据处理技术和信息发布技术等;射频识别技术可应用于车辆通信、自动识别、移动定位、远距离监控

等方面。中国科学院、北京邮电大学、同济大学等几所院校在物联网领域有一定能力。 国内车联网发展资金来源主要有政府专项资金、国有大企业、民间基金三个方面,主要来自于政府支持和国有企业投资。 三、车联网相关科研院校及公司 1.目前车联网终端设备领先的是金龙客车与杭州鸿泉合作开发的G-BOS 设备,即苏州金龙智慧客车3G客车。其车载设备终端整合了数据采集、硬盘录像、车辆身份信息、可视倒车、行车记录仪、GPS导航等主要功能。获得相关专利两项:司机行为监测方法和基于3G无线网络海量实时数据采控装置。 2.同济大学在车联网的应用示范与原型系统搭配方面有实力,它提出的车联网架构包括三个方面:被服务终端(汽车、列车、路上行人等),基础设施(热点接入点、基站、卫星、交通设施等),交通管理和控制实体(交通控制中心)。 3.长安汽车与清华大学:侧重于汽车安全技术,主动安全技术,国外已较为成熟。 4.力帆汽车、长安汽车与重庆邮电大学:国内首个“智能驾驶与车联网实验室”,2011年4月11日成立。 5.车联网车载系统设备产品还有中国电信、华为的车载模块/EVDO车载模块,江苏天泽的天泽星网,潍柴动力的共轨行系统等。 6.国内的宝信软件是公路信息化整体解决方案供应商,启明信息是车载端信息系统开发商,新国都开发了自助缴费系统。

智能网联汽车与车联网

一、智能网联汽车定义、关键技术、系统构成、功能等 智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,使车辆具备复杂环境感知、智能决策、协同控制功能,能综合实现安全、节能、环保及舒适行驶的新一代智能汽车。 智能网联汽车关键技术包括环境感知技术、无线通信技术、智能互联技术、信息融合技术、人机界面技术、信息安全与隐私保护技术等;其系统一般由环境感知层、智能决策层、控制和执行层所构成。 智能网联汽车的功能: (1)交通安全:交通事故率可降低到目前的1%; (2)交通效率:车联网技术可提高道路通行效率10%,CACC系统大规模应用将会进一步提高交通效率; (3)节能减排:协同式交通系统可提高自车燃油经济性20%-30%,高速公路编队行驶可降低油耗10%-15%; (4)产业带动:智能网联汽车产业将会拉动机械、电子、通信、互联网等相关产业快速发展; (5)国防应用:无人驾驶战斗车辆; (6)交通方式的改变:减轻驾驶负担,娱乐、车辆共享,快捷出行。 车联网、智能汽车及智能交通系统的关系: (1)协同式智能车辆控制(智能网联汽车) (2)协同式智能交通管理与信息服务 (3)汽车电商、后服务、智能制造等

二、智能网联汽车、车联网相关政策 2016年7月《推进“互联网+”便捷交通促进智能交通发展的实施方案》规定:加快车联网、船联网建设,在民航、高铁等载运工具及重要交通线路、客运枢纽站点提供高速无线接入互联网的公共服务,扩大网络覆盖面。 2016年11月《关于进一步做好新能源汽车推广应用安全监管工作的通知》规定:自2017 年1月1日起对新生产的全部新能源汽车安装车载终端,通过企业监测平台对整车及动力电池等关键系统运行安全状态进行监测和管理 2017年2月《关于印发“十三五”现代综合交通运输体系发展规划的通知》规定:加快车联网、船联网等建设。在民航、高铁等载运工具及重要交通线路、客运枢纽站点提供高速无线接入互联网公共服务。建设铁路下一代移动通信系统,布局基于下一代互联网和专用短程通信的道路无线通信网。研究规划分配智能交通专用频谱。 2017年7月《国务院关于印发新一代人工智能发展规划的通知》规定:加快布局实时协同人工智能的5G增强技术研发及应用,建设面向空间协同人工智能的高精度导航定位网络,加强智能感知物联网核心技术攻关和关键设施建设,发展支撑智能化的工业互联网、面向无人驾驶的车联网等,研究智能化网络安全架构。 2017年9月,国家发改委透露,已启动国家智能汽车创新发展战略起草工作,将通过制订战略明确未来一个时期我国汽车战略方向,同时提出近期的行动计划,确定路线图和时间表。 2017年12月《国家车联网产业标准体系建设指南(智能网联汽车)》规定:到2020 年,初步建立能够支撑驾驶辅助及低级别自动驾驶的智能网联汽车标准体系。到2025 年,系统形成能够支撑高级别自动驾驶的智能网联汽车标准体系。 2017年12《促进新一代人工智能产业发展三年行动计划(2018-2020年)》,将智能网联汽车作为本次行动计划提出的第一项要大力发展的智能产品,并设定了到2020年建立可靠、安全、实时性强的智能网联汽车智能化平台,形成平台相关标准,支撑高度自动驾驶等目标。 2018年1月《智能汽车创新发展战略》(征求意见稿)规定:到2020 年大城市、高速公路的LTE-V2X 覆盖率达到90%,北斗高精度时空服务实现全覆盖;到2025 年,5G-V2X 基本满足智能汽车发展需要。

车联网技术全面解析及主要解决方案盘点

车联网技术全面解析及主要解决方案盘点 车联网(IOV:Internet of Vehicle)是指车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。 【慧聪汽车电子网】 车联网概念解析 2004年中国提出“汽车计算平台”计划,防范汽车工业“空芯化”现象;巴西政府强制所有车辆2014年前必须安装类似“汽车身份识别”的系统并联网;欧洲、日本的ITS(智能交通系统)计划中也都有“车联网”的概念;印度甚至要求所有黄包车都装上GPS与RFID;2011年初,中国四部委联合发文,对“两客一危”运营类车辆提出了必须安装智能卫星定位装置并联网的强制性要求……这些都是车联网的雏形。 美国国家网络可信身份标识战略白皮书NSTIC则是一个里程碑,它要求所有移动终端、包括汽车都必须安装“安全ID芯片”;美国DOT进一步要求,2012年所有运营类车辆都必须遵从M911。显而易见,车联网已经不只是一个汽车业信息化的问题了,而已经上升到了国家信息安全和国家战略层面,很多国家已经开始立法实施了。 什么是车联网 车联网(IOV:InternetofVehicle)是指车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。它可以通过车与车、车与人、车与路互联互通实现信息共享,收集车辆、道路和环境的信息,并在信息网络平台上对多源采集的信息进行加工、计算、共享和安全发布,根据不同的功能需求对车辆进行有效的引导与监管,以及提供专业的多媒体与移动互联网应用服务。 从网络上看,IOV系统是一个“端管云”三层体系。 第一层(端系统):端系统是汽车的智能传感器,负责采集与获取车辆的智能信息,感知行车状态与环境;是具有车内通信、车间通信、车网通信的泛在通信终端;同时还是让汽车具备IOV寻址和网络可信标识等能力的设备。 第二层(管系统):解决车与车(V2V)、车与路(V2R)、车与网(V2I)、车与人(V2H)等的互联互通,实现车辆自组网及多种异构网络之间的通信与漫游,在功能和性能上保障实时性、可服务性与网络泛在性,同时它是公网与专网的统一体。 第三层(云系统):车联网是一个云架构的车辆运行信息平台,它的生态链包含了ITS、物流、客货运、危特车辆、汽修汽配、汽车租赁、企事业车辆管理、汽车制造商、4S店、车管、保险、紧急救援、移动互联网等,是多源海量信息的汇聚,因此需要虚拟化、安全认证、实时交互、海量存储等云计算功能,其应用系统也是围绕车辆的数据汇聚、计算、调度、监控、管理与应用的复合体系。 值得注意的是,目前GPS+GPRS并不是真正意义上的车联网,也不是物联网,只是一种技术的组合应用,目前国内大多数ITS试验和IOV概念都是基于这种技术实现的。笔者以为,简单基于这样的技术来发展车联网,对国家战略领先和技术创新是非常不利的,会造成整体落后国际竞争的被动局面。 什么是GID IOV最核心的技术之一是根据车辆特性,给汽车开发了一款GID(GlobalID,相对于RFID)终端。它是一个具有全球泛在联网能力的通信网关和车载终端,是车辆智能信息传感器,同时也具有全球定位和全球网络身份标识(网络车牌)功能。 GID将汽车智能信息传感器、汽车联网、汽车网络车牌三大功能融为一体,具体表现为: 车辆状态的信息感知功能:GID与汽车总线(OBD、CAN等)相连,内嵌多种传感器,可感知和监控几乎所有车辆的动态与静态信息,包括车辆环境信息和车辆状态诊断信息等; 泛在通信功能:GID具有V2V、V2I和自组网(SON、移动AdHoc、AGPS等)的能力,具有车内联网以及多制式之间的桥接与中继功能,具备全球通信、全球定位与移动漫游能力;

一文看懂“车联网”的前世今生

一文看懂“车联网”的前世今生 从汽车诞生的那一天起,对于城市交通,安全和便捷始终是最重要的课题。面对城市道路中日益增长的车辆,以及与日剧增的事故风险和通行压力,城市管理者和交通领域的科研人员,利用交通信号设施来实现交通控制,并不断地推出新。19世纪60年代,英国伦敦议会大厦前的十字路口吗,安装了世界上第一盏交通信号灯(壁板式燃气交通信号灯)。它由一位警察牵动皮带进行灯色切换:红灯停,绿灯行。虽然缓解了路口的交通压力,但这第一盏交通信号灯在工作了23天后就爆炸自灭了。1914 年,美国俄亥俄州克利夫兰市(Cleveland, Ohio)开始部署电气交通信号灯用于地面交通控 制和协调,这被认为是最早的交通信号控制系统。1918年,纽约市五号街的一座高塔上出现了三色(红、黄、绿三种标志)的交通信号灯,这种经典的“配色”一直延续到现在。1926年,英国的沃尔佛汉普顿首次使用自动化控制器来控制信号灯:按照一个固定的周期切换信号灯的颜色。20世纪60年代,美国丹佛市通过模拟计算机对交通信号实现集中化的实时性控制,可以同时对道路网中各交叉路口的交通信号进行协调控制。而后,加拿大的多伦多在全市围建成了第一个全市交通信号集中控制与协调系统。至今,交通信号灯的样子几乎没有什么改变,但交通控制的理论方法和运行系统

却一直在进步。从人工操作或固定周期式的单点控制;到以协同相邻道口的周期、保证道路沿线的绿灯具有连续性的干线控制;再到持续优化整个区域交通资源(主要是信号灯的配时)的面控制,如今的交通控制技术,虽然演进出很强的自动化、智能化的特性,但同时也已经达到了性能瓶颈。采用单一的“红绿信号灯”模式进行交通控制,已经无法更有效地管理交通资源(实时性不足):红绿灯只在路口起效,其效用无法覆盖整条道路;驾驶员可能因为天气原因,以及在交通拥堵情况下看不清交通信号灯;司机容易陷入“黄灯时两难境地”(Yellow interval dilemma),即在黄灯闪烁时难以抉择是“进”还是“停”;虽然在交通网络中引进了诱导系统(提示路况信息),司机也可以使用实时反馈路况的导航系统,但对道路利用的整体效果并不明显……城市道路要容纳更多的车辆、满足更多的出行需求,就需要突破原有的技术领域,朝着更深度的信息化和智能化方向发展。“智能交通”的想法早在20世纪初就已经出现,它的诞生与城市化发展戚戚相关:城市管理者希望它能够解决城市道路日益拥堵的状态,以及所造成的经济损失。在20世界90年代,智能交通系统(ITS,Intelligent Transportation System)的概念逐渐成型。目前,ITS已经在许多发达国家获得了广泛应用,其研究推进工作呈现“三足鼎立(领先)”的局面:美国、欧洲、日本(美国智能运输协会-ITS America、欧洲道路运

智能汽车车联网系统分析

智能汽车车联网系统分析 发表时间:2019-05-22T16:16:34.133Z 来源:《基层建设》2019年第5期作者:何晓蕊[导读] 摘要:作为车辆信息化与智能化的重要体系组成部分,车联网系统不仅能够实现车辆的远程控制、远程通讯、故障报警以及电子设备相互连接等诸多功能,更具备性能强、安全性高以及反应速度极快等优点,即使车辆行驶于较为偏远的地带,只要是处于网络信号覆盖下,车联网系统则都能搜索到相应的网络连接信号。 国能新能源汽车有限责任公司天津 300301 摘要:作为车辆信息化与智能化的重要体系组成部分,车联网系统不仅能够实现车辆的远程控制、远程通讯、故障报警以及电子设备相互连接等诸多功能,更具备性能强、安全性高以及反应速度极快等优点,即使车辆行驶于较为偏远的地带,只要是处于网络信号覆盖下,车联网系统则都能搜索到相应的网络连接信号。因此,在当前我国科技信息技术持续进步发展的时代背景下,车联网系统的重要性日益凸显。文中对智能汽车车联网系统进行了分析。 关键词:智能汽车;车联网;系统 1车联网系统概述 车联网系统是车辆智能化和信息化的重要体系之一,该系统提供必要的通信网络,实现车辆的远程通信、远程控制、故障报警、紧急事故报警等安防功能。同时该系统需提供车载WIFI热点,方便用户的其他便携式电子设备连接网络。该系统需提供足够快速、安全的通信网络,并且在全国所有网络信号已覆盖的地区能搜索到网络信号。 2对当前我国汽车车联网发展实际以及难点的分析当前,车联网实现了物联网与智能化汽车的有效连接,二者进行集成,这也是信息化与工业化相结合的重要方面。在新型车联网发展中红,发展了通信、控制以及智能技术的结合,对整个汽车行业,甚至交通运行也意义重大,带动了相关产品的智能化升级,生产方式得以创新,分工更加明确,使得汽车产业突破产品的束缚,更加倾向服务方向,是新型模式的发展。同时,在新一代车联网的发展中红,信息服务得以增强,安全性提高,能效性较强,使得汽车行业实现生态式的发展,立足设计、开发和制造,实现全生命周期的创新。当前,我国的汽车市场庞大,规模扩大。结合不同耳朵主导者,模式各异。首先,是以车厂为主体的模式,其自我进行平台的搭建,提供的是物联网中前装服务。其次,是以行业为主导的模式。主体是使用者或者集成商客户。再次,是电子消费品模式。第四,是移动互联网的模式。随着车联网的不断发展,其技术难点也十分突出,如,缺乏完善的标准和规范,互通性不强,需要不断进行平台和接口的建设。另外,数据安全性需要不断增啊,加强质量体系建设,强化行业可靠性。需要无线通信技术实现不同提升,强化性能,因此,要进行体制的不断创新,加大支持力度,推进车联网技术的不断发展。 3智能汽车车联网系统分析 在整个系统中,车载终端T-BOX是重要的通信设备,实现车内网络与移动网络的有效连接,实现用户在安防、信息获取以及娱乐方面的要求。作为通信的主要通道,其主要的载体是SIM卡,实现与运营商的有效通信,完成其诸多方面的作用和功能。在安防方面,能够实现对相关终端信息的有效接收,以独立终端的主体,实现与BCM的有效互通,主要涉及一些车辆的状态以及实时故障灯,将信号进行传输,达到对车辆的远控控制。另外,借助T-BOX,能够实现对车内新的预先定义,而后发送至相应的数据背景中,也能够实现对信息的接纳,达到及时反馈的目的。娱乐方面的功能主要是借助热点,与网络进行连接,能够进行网络娱乐的共享。 3.1车载终端 车载终端主要负责智能汽车车内网与车联网或者说移动网络之间的通信的重要功能,其次兼顾完成车内的信息收集、安全防护以及车内娱乐等部分功能,作为重要车载通信设备而存在。具体来说,车载终端内置SIM卡可与移动网络运营商通信,从而接通网络通道,进而实现上述娱乐、安防功能。在信息收集方面,车载终端与移动网络之间通信时可以同时将预先定义的车内网信息发送至数据中心,同样的,车载终端也能够直接接收到来自于数据中心所发送的反馈信号或控制信号。在安防功能实现方面,车载终端可以接收其他独立终端所发出的车辆信息、故障信息以及状态信息等,在处理远程控制信号时,也能够直接将其发送至不同相关终端,以实现车辆的远程控制功能。在娱乐方面,由于车载终端内设有WIFI热点,因此,车内人员直接以移动产品进行热点链接就可以进行网络连接。 3.2手机客户端 手机客户端,即手机APP,其功能主要包括用户登录、个人中心、车况显示以及相应的远程功能,通常情况下,为了保障用户信息的安全性,数据中心与手机客户端之间的通信一般采取加密方式,并且,客户端内可以设置相应的地图信息,如此一来,驾驶员就能够直接通过手机或其他设备清晰明确车辆位置的实时信息。 3.3数据中心 作为智能汽车车联网的核心部位,数据中心不仅承担着用户信息、车辆信息中转的重要枢纽作用,更多时候也充当着不同信息存储需求满足载体,其具体功能笔者现总结如下: 3.3.1具备网络通信功能 只有具有网络通信功能,数据中心才能够与用户的手机或其他移动设备进行相互连接,此时才能够实现数据与指令的相互传输与发送。其次,当数据中心社会有网页访问端口时,用户才能够在购买智能汽车后自行注册用户。 3.3.2具备保存用户车辆信息以及用户信息的功能 用户在购买智能汽车并注册用户后,数据中心则可以对用户信息(用户名、用户手机号码、车辆VIN码以及远程控制预设密码等)进行永久保存,且这些信息在任何情况下均不能对外泄露或盗取。另外,数据中还可以通过移动网络为用户显示相应的车辆信息,而用户运用手机客户端对车辆所发送的指令也可以被记录、储存于数据中心,通常情况下,这部分信息的保存期为1年。 3.3.3具备对车辆信息的分析计算功能 当数据中心具备这一功能后,汽车用户的日常驾驶习惯以及机动车近段时间内的油耗情况则可以通过数据中心的分析处理结果适时判断并提示用户是否存在危险驾驶或油耗较高现象,其次,在实际驾车时,所存储的车辆信息处理数据也可以给予用户相应的安全驾驶与经济驾驶建议。 3.3.4具体可拓展第三方应用与接收第三方信息的的功能

2019年智能汽车(ADAS)和车联网(V2X)的发展路径分析

2019年智能汽车(ADAS)和车联网(V2X)的发展路径分析

写在前面的 (6) 当前是无人驾驶的关键时点 (6) 智能汽车(ADAS)和车联网(V2X)分别是实现无人驾驶的内部和外部要求 (9) ADAS——车内智能的开端 (9) ADAS的原理、构成和分类 (10) 市场空间:全球市场规模众说纷纭,测算国内千亿前装规模 (12) 产业链公司发展现状及推荐标的 (15) 车联网——通向无人驾驶高级阶段的核心技术 (16) 广义车联网包含车内、车际和车云网 (16) 车际网是车联网之魂,其核心在于V2X技术 (16) 车联网市场空间:预计到2025年市场规模接近万亿级别 (19) 车联网标的推荐 (21) 展望:无人驾驶发展之路 (22) 短期关注ADAS渗透率提高带动传感器产业链发展 (23) 中期关注车联网伴生的智慧交通基础设施建设 (30) 长期关注L4级别成熟后共享汽车引领的出行方式颠覆 (38) 问题 (40) 安全问题或成为拖慢自动驾驶发展的重要因素 (41) 多传感器融合成为趋势的同时也将带来算法挑战 (41) 5G商用速度或影响车联网应用进度 (41) 标准法规制定 (42) 无人驾驶产业链标的推荐 (42) 华域汽车——龙头转型,业务结构持续优化 (42) 中国汽研——掌握核心技术,前瞻布局5G以及智能检索检测业务 (42) 德赛西威——国内车机龙头,智能驾驶推进有序 (43) 保隆科技——中国TPMS龙头,汽车电子新贵 (44) 星宇股份——好行业+好格局+好公司,具备全球车灯龙头潜质 (44) 拓普集团——智能刹车系统切入ADAS执行层 (45)

车联网技术全面解析及主要解决方案盘点教学内容

车联网技术全面解析及主要解决方案盘点

车联网技术全面解析及主要解决方案盘点 车联网(IOV:Internet of Vehicle)是指车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。 【慧聪汽车电子网】 车联网概念解析 2004年中国提出“汽车计算平台”计划,防范汽车工业“空芯化”现象;巴西政府强制所有车辆2014年前必须安装类似“汽车身份识别”的系统并联网;欧洲、日本的ITS(智能交通系统)计划中也都有“车联网”的概念;印度甚至要求所有黄包车都装上GPS与RFID;2011年初,中国四部委联合发文,对“两客一危”运营类车辆提出了必须安装智能卫星定位装置并联网的强制性要求……这些都是车联网的雏形。 美国国家网络可信身份标识战略白皮书NSTIC则是一个里程碑,它要求所有移动终端、包括汽车都必须安装“安全ID芯片”;美国DOT进一步要求,2012年所有运营类车辆都必须遵从M911。显而易见,车联网已经不只是一个汽车业信息化的问题了,而已经上升到了国家信息安全和国家战略层面,很多国家已经开始立法实施了。 什么是车联网 车联网(IOV:InternetofVehicle)是指车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。它可以通过车与车、车与人、车与路互联互通实现信息共享,收集车辆、道路和环境的信息,并在信息网络平台上对多源采集的信息进行加工、计算、共享和安全发布,根据不同的功能需求对车辆进行有效的引导与监管,以及提供专业的多媒体与移动互联网应用服务。 从网络上看,IOV系统是一个“端管云”三层体系。 第一层(端系统):端系统是汽车的智能传感器,负责采集与获取车辆的智能信息,感知行车状态与环境;是具有车内通信、车间通信、车网通信的泛在通信终端;同时还是让汽车具备IOV寻址和网络可信标识等能力的设备。 第二层(管系统):解决车与车(V2V)、车与路(V2R)、车与网(V2I)、车与人(V2H)等的互联互通,实现车辆自组网及多种异构网络之间的通信与漫游,在功能和性能上保障实时性、可服务性与网络泛在性,同时它是公网与专网的统一体。 第三层(云系统):车联网是一个云架构的车辆运行信息平台,它的生态链包含了ITS、物流、客货运、危特车辆、汽修汽配、汽车租赁、企事业车辆管理、汽车制造商、4S店、车管、保险、紧急救援、移动互联网等,是多源海量信息的汇聚,因此需要虚拟化、安全认证、实时交互、海量存储等云计算功能,其应用系统也是围绕车辆的数据汇聚、计算、调度、监控、管理与应用的复合体系。 值得注意的是,目前GPS+GPRS并不是真正意义上的车联网,也不是物联网,只是一种技术的组合应用,目前国内大多数ITS试验和IOV概念都是基于这种技术实现的。笔者以为,简单基于这样的技术来发展车联网,对国家战略领先和技术创新是非常不利的,会造成整体落后国际竞争的被动局面。 什么是GID IOV最核心的技术之一是根据车辆特性,给汽车开发了一款GID(GlobalID,相对于RFID)终端。它是一个具有全球泛在联网能力的通信网关和车载终端,是车辆智能信息传感器,同时也具有全球定位和全球网络身份标识(网络车牌)功能。 GID将汽车智能信息传感器、汽车联网、汽车网络车牌三大功能融为一体,具体表现为: 车辆状态的信息感知功能:GID与汽车总线(OBD、CAN等)相连,内嵌多种传感器,可感知和监控几乎所有车辆的动态与静态信息,包括车辆环境信息和车辆状态诊断信息等; 泛在通信功能:GID具有V2V、V2I和自组网(SON、移动AdHoc、AGPS等)的能力,具有车内联网以及多制式之间的桥接与中继功能,具备全球通信、全球定位与移动漫游能力;

智能网联汽车与车联网

、智能网联汽车定义、关键技术、系统构成、功能等 智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,使车辆具备复杂环境感知、智能决策、协同控制功能,能综合实现安全、节能、环保及舒适行驶的新一代智能汽车。 智能网联汽车关键技术包括环境感知技术、无线通信技术、智能互联技术、信息融合技术、人机界面技术、信息安全与隐私保护技术等;其系统一般由环境感知层、智能决策层、控制和执行层所构成 智能网联汽车的功能: (1)交通安全:交通事故率可降低到目前的1%; (2)交通效率:车联网技术可提高道路通行效率10%, CACC系统大规模应用将会进 步提高交通效率; 节能减排:协同式交通系统可提高自车燃油经济性20%-30%高速公路编队行 驶可降低油耗10%-15% (4)产业带动:智能网联汽车产业将会拉动机械、电子、通信、互联网等相关产业 快速发展; (5)国防应用:无人驾驶战斗车辆; (6)交通方式的改变:减轻驾驶负担,娱乐、车辆共享,快捷出行。 车联网 ■ 丨⑴II ■\ g 唧

二、智能网联汽车、车联网相关政策 2016年7月《推进“互联网+”便捷交通促进智能交通发展的实施方案》规定:加快车联网、船联网建设,在民航、高铁等载运工具及重要交通线路、客运枢纽站点提供高速无线接入互联网的公共服务,扩大网络覆盖面。 2016年11月《关于进一步做好新能源汽车推广应用安全监管工作的通知》规定:自 2017 年1月1日起对新生产的全部新能源汽车安装车载终端,通过企业监测平台对整车及动力电池等关键系统运行安全状态进行监测和管理 2017年2月《关于印发“十三五”现代综合交通运输体系发展规划的通知》规定:加快车联网、船联网等建设。在民航、高铁等载运工具及重要交通线路、客运枢纽站点提供高速无线接入互联网公共服务。建设铁路下一代移动通信系统,布局基于下一代互联网和专用短程通信的道路无线通信网。研究规划分配智能交通专用频谱。 2017年7月《国务院关于印发新一代人工智能发展规划的通知》规定:加快布局实时 协同人工智能的5G增强技术研发及应用,建设面向空间协同人工智能的高精度导航定位网络,加强智能感知物联网核心技术攻关和关键设施建设,发展支撑智能化的工业互联网、面向无人驾驶的车联网等,研究智能化网络安全架构。 2017年9 月,国家发改委透露,已启动国家智能汽车创新发展战略起草工作,将通过制订战略明确未来一个时期我国汽车战略方向,同时提出近期的行动计划,确定路线图和时间表。 2017年12月《国家车联网产业标准体系建设指南(智能网联汽车)》规定:到2020 年,初步建立能够支撑驾驶辅助及低级别自动驾驶的智能网联汽车标准体系。到2025 年,系统形成能够支撑高级别自动驾驶的智能网联汽车标准体系。 2017年12《促进新一代人工智能产业发展三年行动计划(2018-2020年)》,将智能网联汽车作为本次行动计划提出的第一项要大力发展的智能产品,并设定了到2020年建立可靠、安全、实时性强的智能网联汽车智能化平台,形成平台相关标准,支撑高度自动驾驶等目标。 2018年1月《智能汽车创新发展战略》(征求意见稿)规定:到2020 年大城市、高速公路的LTE-V2X覆盖率达到90%,北斗高精度时空服务实现全覆盖;到2025年,5G-V2X基本满足智能汽车发展需要。

一文看懂真正的车联网

一文看懂真正的车联网 车联网的核心在于车辆以及交通环境的数字化,将现实世界中的模拟量转化为可量化的数据,进而对海量数据的总和进行处理。 根据对车联网体系架构的理解,以及作为车联网产品服务集成者,可将我们应当涉及的领域分为如下四部分:终端,网络,数据和后台。 而根据与车联网相关的汽车技术和交通技术的发展进程,又可以分为三个阶段,分别为:(1)可预见的发展近期, (2)自动驾驶和电动车时代, (3)个人交通和公共交通的统和时代。 基本的技术发展路线如下所述,每个环节涉及的具体技术和可以衍生的产品可以不断补充。 1.可预见的发展近期 在可预见的发展近期,交通运输的模式并未发生根本性改变,人们的主要陆地交通工具依然为采用油、气为主要燃料的汽车,驾驶员作为驾驶行为的控制主体,而车联网为此提供各种辅助性服务。 1.1终端 此处的终端可以理解为现实交通行为中的各个元素,包括人、车、路三大板块,作为车联网数据化概念下的数据感知层而存在。 在终端信息数据化的过程中,主要分为两部分,即数据模型的建立以及模型参数的获取。 车联网的数据化过程可以完全改变人们审视交通行为的视角。传统的模式是根据现象来

推测机理,即人们去观察和测量所表现出来的交通行为,并依此为根据来总结该行为的机理;而车联网的数据化过程可以让人们从全局的角度掌握交通行为的机理,甚至以此来预测出下一步的交通行为。 1.1.1 人 人主要指驾驶行为的控制主体,即驾驶员,以及跟驾驶员紧密相关的移动终端,包括各种智能化可穿戴设备。 根据数据流的流向,可以分为数据采集和信息下发两个方向。 在此基础上,涉及到如下技术和产品: (1)驾驶操作信息采集及驾驶行为分析技术。 (2)驾驶员生理及心理状态采集。 (3)移动终端与车载终端的互联互通技术 (4)基于智能化可穿戴设备的增强现实技术。 1.1.2 车 车辆是交通行为中最重要的主体。随着汽车技术的发展,传统机械部件没有大幅度改变的情况下,汽车电子设备在汽车整体中所占的比例不断上升,这为车联网构架下汽车的模型化和数据化提供的良好的基础。 在此基础上,涉及到如下技术和产品: (1)车辆标识系统。 (2)高精度车辆模型的建立。 (3)车辆状态信息采集技术。 (4)车辆动力学控制技术。 1.1.3 路

车联网中的关键技术

Leading Technology技术前沿 车联网中的关键技术文/常琳 钟汇才 陈大鹏 在物联网领域发展如火如荼的今天,车联网作为物联网的典型应用,引起了越来越广泛的关注。车联网的实现将会给社会和生活带来巨大的变化,然而实现车联网的技术目前并没有完全具备。本文从车联网的发展现状出发,逐步介绍了实现车联网需要突破的各项关键技术,以及各项技术与车联网功能之间的关系。 引言 一直以来,汽车在行驶过程中被当做一个个独立的个体,车辆与车辆之间、车辆与路侧基础设置之间没有任何的交互。设想一下,如果车辆之间可以“通话”,前方车辆会告诉后方车辆前面的路况,道路是否拥堵,是否有交通作业,是否发生交通事故;在行驶过程中,车辆与车辆之间通过“通话”自动保持适当的车距;通过远程诊断,车辆会告诉驾驶人哪个部位存在安全隐患;根据综合驾驶行为分析,车辆会自动引导驾驶人养成良好的驾驶习惯,包括遵守交通规则和更经济节能等。随着信息技术的发展,车联网可以使以上设想成为现实。 车联网的实现需要有机地结合传感器技术、通信技术、数据处理技术、自动控制技术、信息发布技术等。 世界车联网技术发展现状 以构建更安全的行车环境,实现更高效的交通管理,达到更环保的经济效益为目标,车联网的发展引起了国内外相关部门和研究机构的高度重视,下面就几个成功案例做简单介绍。 美国 2010年,美国交通部研究和创新技术管理局发布的《ITS战略研究计划:2010-2014》中,将智慧驾驶(Intellidrive)作为核心。智慧驾驶安全应用是通过车辆与车辆、车辆与基础设施之间的通信来加强人们对行车状况的判断和减少或避免碰撞,主要支持以下功能:驾驶建议,驾驶警示,车或设施控制。智慧驾驶移动应用提供一个互联的,数据丰富的出行环境。网络从车载设备(汽车、卡车和公交车)和基础设施采集实时数据。这些数据通过无线发送,由运输管理者来进行大范围的动态、多模应用以使交通系统的性能得到优化。智慧驾驶环境应用同时产生和采集环境相关实时数据,并用这些数据产生实用的信息来支持和方便“绿色”交通的选择。他们同时帮助系统使用者和操作者进行“绿色”交通的选择和转换,因此减少每次出行对环境的影响。 欧洲 目前,欧洲在智能交通领域有多个项目在同时执行,如CVIS、GST、PReVENT、EASIS、ARPOSYS、AIDE和SAFESPOT等。其中车路协同协调(CVIS)最贴近车联网的概念,CVIS是由欧洲委员会发起的一个项目,目的在于允许交通主体(车辆、设施)间进行灵活、和谐、开放地通信和合作,这些主体将完善已经存在的道路服务和开发新的服务。车路协同系统基于车辆与车辆和车辆与基础设施之间的通信,为驾驶人提供车辆的实时环境、其他车辆和道路使用者等信息,由先进的驾驶环境引导安全驾驶和高效移动。车路协同系统能

汽车车联网技术

汽车车联网系统 内容提要:近几年,汽车保有量突飞猛进,智能交通已经成为交通运输行业迫在眉睫需要解决的课题。智能交通的突出特点是通过对信息的收集、处理、发布、交换、分析和利用,根据交通参与者的需求提供各种所需的服务。基于智能交通的车联网是智能交通的核心。关键字:汽车智能车联网 一.结构 车联网系统采用了无线通信技术、GPS 全球卫星定位技术、GIS 地理信息技术、计算机网络技术和数据库技术等,建立了一个GPS监控中心和可以通过各种设备使用互联网接入的综合的道路卫星车辆卫星定位系统平台。 本系统由五部分组成:GPS监控中心、无线通信平台、全球卫星定位系统、车载定位设备和道路卫星车辆卫星定位系统平台。本系统的总体架构分为六层,分别为:应用展示、应用服务、基础服务、数据存储、数据处理和数据接收。数据接收层负责接收从终端发来的各种数据,并下达指令和数据到终端上,提供双向通讯服务。 数据接收层提供几种方式的数据接入,比如终端直连、短信指令下发等。终端接收到数据后,把数据插入系统的消息队列。同时,数据接收层还需要处理由系统下发给终端的各种指令以及数据。如果直连失败,可以通过短信进行指令的派发。数据处理层负责从消息队列中读取从终端接收的数据,进行协议的解析、数据处理,存入数据库。数据存储层含两个数据库,一个是关系型数据库,一个是非结构化数据库。关系型数据库用于存储关系型基础数据、业务数据和地理空间数据。非结构化数据库用于存储非结构化数据:视频、图片和轨迹等。基础服务层负责向应用服务层提供公共的构件和服务,比如报表打印服务、角色权限管理、多媒体服务、电子地图服务和系统管理服务。基础服务层独立开发与升级,保证接口的延续性与扩展性。应用服务层负责系统的业务管理,并给外部系统提供共享数据的接口,还提供统一的身份认证。应用服务层的系统管理功能,可以管理下属各级分公司的车辆,系统提供各种类型的监控、查询查看和统计分析等功能。应用展示层提供浏览器、桌面客户端、WAP 浏览器等多种用户界面,满足各类用户使用不同的设备进行管理和查看。 二.原理 (1)无线接入车载环境技术是车联网系统的通信基础和核心,无线接入车载环境技术能够实现车-车,车-路,车-人之间利用宽带无线通信,完成图像、语音、数据的双向传输。无线接入车载环境技术现在已经能够提供高速的数据传输,并保证可靠和稳定。 (2)GPS是 Global Positioning System 的简称,意即全球定位系统。GPS 起始于1958年,是美国军方的一个项目,1964 年投入使用。在上世纪 70 年代,美国耗资超过 300亿美元了推出了新一代的卫星定位系统用于导航、情报收集和应急通讯等目的。1994年美国发射升空的24颗GPS卫星全球覆盖率高达98%。 GPS 导航系统是以24颗人造卫星为基础,向全球各地提供三维位置、三维速度等信息。它由三部分构成,地面控制部分,由主控站、地面天线、监测站组成。空间部分,由24颗卫星分布在6个轨道平面。用户装置部分,由GPS接收机和接收机卫星天线组成。定位精度不超过10米。 地理信息系统GIS是综合性学科,是基于计算机技术对空间信息进行分析和处理的工具。GIS技术把地图这种独特的数据和常规数据库操作相结合。

浅谈汽车电子技术车联网技术定位

浅谈汽车电子技术车联网技术定位 1车联网技术 1.1概述 (1)技术组成。车联网技术是物联网技术的一个分支,以物联 网为技术基础,是物联网在汽车智能化系统设计制造中的应用。和 传统的汽车智能系统相比,车联网技术的应用,能够为驾驶员提供 更加舒适便利的信息服务,进一步提高行车的安全性,具有联网、 时空性、整体性、智能化等多方面优势,是汽车技术与物联网技术 和信息化技术融合的产物。车联网连接的主要对象是人、车、路, 利用各种智能化技术、信息技术以及物联网技术,实现人车、车车、车路之间的多方信息交互,从而构建统一的智能交通信息管理平台。(2)工作流程。车联网技术能够实时记录自身车辆的行进速度、具 体位置、行进路线、汽车油量、健康状态等相关信息,并将其上传 给统一的管理平台,进行后台运算分析,然后向驾驶员提供相关的 安全信息,并对驾驶过程给出适当地指导和提示,引导车辆行驶, 提高车辆行驶安全性,为驾驶员提供更加便捷实时的路况和车况信 息服务。(3)服务功能。车联网技术需要采集更丰富的数据信息,不 仅包括车辆自身的信息,还包括路况信息、车辆间信息等内容,借 助车辆自身的各种传感器、道路电子拍摄系统、GPS系统,在统一 的通信规范标准基础上进行信息的采集传输和分析,然后再向驾驶 员提供信号灯、车前后距、路况信息、天气信息、车辆状态信息, 便于驾驶员进行行车决策,选择最佳通行路线,提高通行效率。 1.2功能模块 (1)通信功能。车联网借助物联网技术和通讯技术,极大地提 升了网络传输带宽,数据传输量更大,满足了车辆智能系统对数据

传输实时性以及数据量的要求,和传统的车辆管理系统不同,车联 网的带宽更高,并且通信形式以无线通讯为主,在使用过程中,没 有传统无线数据信号带宽频带占用问题,数据传输更稳定,满足了 数据交换的基本需求。(2)定位功能。定位是车联网的基础功能, 路况信息提醒、线路导航、行车安全等高级功能都需要通过精准的 定位来实现。车联网同时应用了GPS定位技术和导航卫星技术,能 够对车辆进行高精度的实时定位,从而满足路线规划、行车安全提 醒等高级服务功能对车辆定位的基本需求。(3)网络与安全功能。 除了基于物联网的车辆行驶信息服务,车联网还向驾驶员提供了网 络通信服务功能。车辆网的通信广播有单播、组播等不同形式,信 道管理更加方便,数据连通管理办法更加高效,能够实现互联网移 动节点的高效率数据传输,提供IPv4、IPv6寻址服务。 2汽车电子技术专业车联网技术的定位 2.1产业定位 (1)产业结构。汽车是经济龙头,近些年,汽车行业呈现产业 化的发展趋势,车联网被广泛用于汽车管理、交通管理、远程监控 等应用场景,极大地提高了汽车智能化的程度。技术层次上,车联 网技术有服务、平台、网络、传感器与控制等几个层面,并且随着 车联网技术的快速发展与广泛应用,车联网的产业链条也逐渐清晰,其中上游产业为传感器、芯片、通信基础等核心技术产业,中游则 为设备制造、软件平台开发,下游为服务和内容提供。(2)产业链 中的位置。汽车电子技术对应车联网中下游的终端制造、内容提供、服务提供等工作,因此,汽车电子技术本身应该属于车联网技术的 中端产业,上游产业与技术基本完善,中下游的制造与应用普及是 未来一段时间车联网技术发展的重点,并且汽车电气技术主要研究

车联网方案

[键入文字] 基于物联网技术的车辆智能综合管理信息系统 (车联网) 建 设 方 案 2014年9月25日

目录 前言 (3) 第1章方案概述 (3) 第2章非法车辆查缉 (4) 2.1电子车牌 (4) 2.1.1 Rfid技术应用 (4) 2.2.2 EPC编码结构 (5) 2.2.3 EPC编码规则 (5) 2.2.4 Savant系统 (5) 2.2.5 ONS系统 (6) 2.2.6 PML系统 (6) 2.2.7车辆电子标签中对应PML数据库中的信息设计 (6) 2.2系统设计 (7) 2.2.1系统结构设计 (7) 2.2.2监控中心设计 (7) 2.2.3信息服务系统设计 (8) 2.2.4车辆识别形象图 (8) 第3章打击涉车犯罪 (9) 3.1车载终端 (9) 3.1.1什么事车载终端 (9) 3.1.2车载终端的功能 (9) 3.2系统设计 (10) 3.2.1车载终端系统架构图 (11) 3.2.2控制中心 (11) 3.2.3通信系统 (11) 3.2.4位置服务系统 (12) 3.2.5应急联动系统 (12) 3.2.6系统数据架构 (13) 3.2.7通信网络设计 (13) 第4章总结 (14) 前言:车联网的提出与应用

据悉,汽车物联网项目已被列为我国重大专项,将获财政扶持资金。知情人士表示,扶持资金将集中在汽车电子、信息通信及软件解决方案上,车联网平台投资需求或超过百亿元。 车联网的核心部分是由电子地图、卫星定位导航、汽车电子、3G移动互联网所组成的Telematics(移动通信导航信息系统),是以无线语音、数字通信和GPS全球定位系统为基础,通过GPS定位系统和无线通信网,向驾驶员和乘客提供交通信息、应付紧急情况的对策、远距离车辆诊断和互联网(金融交易、新闻、电子邮件等)服务。因此,车联网最基础,也是最核心的服务之一首先是通信服务、导航服务、定位和智能交通服务,其中通信服务正是当前的最大焦点。 目前车联网发展的最大热点,就是对3G技术的整合。美国的汽车制造业基本上已经把移动通信模块作为一个标准配件安装在汽车上,使汽车在行驶的过程中与外界沟通联系,这就是车联网的基础应用。中国目前在这方面差距还很大,但是中国作为世界上最大的汽车消费国,车联网的前景非常值得看好。据了解,目前我国已经有超过20万用户正在体验车载信息服务,预计到2015年,用户规模将达到4000万,到2020年将实现可控车辆规模超过一亿。专家指出,由于互联网的发展,特别是移动通信的发展,车联网的概念已经逐渐被广大民众所认同,它正在从一个概念走向应用。 第1章:方案概述 随着我国汽车工业的发展和人民生活水平的提高,汽车越来越多地进入普通家庭。由于各种突发性道路交通事故与汽车盗窃案件的频繁发生,公安机关的工作强度越来越大,人们对汽车安全与防盗的关注度也日益提高。开发汽车安全与防盗系统,是确保查缉非法车辆与打击涉车犯罪的有效措施。 本方案主要利用物联网和云计算技术提高车辆防护能力,采用射频识别系统实现对入网车辆动静态信息全面采集,通过车载设备的地理位置实现对车辆的定位和跟踪,通过公安专网传输到互联网,建设公安机关车辆智能综合管理信息系统,实现对入网车辆的全面监控,能够在入网车辆发生突发事件时(被盗、车祸、故障),及时定位车辆,采取应急措施,保证车主财产和运行安全,全面提高车辆防护能力。 同时本方案也是未来车联网融合的基础。 第2章:非法车辆查缉

相关文档
最新文档