AlTiBRE高效晶粒细化剂的成分优化设计

AlTiBRE高效晶粒细化剂的成分优化设计
AlTiBRE高效晶粒细化剂的成分优化设计

结构优化设计论文

结构优化课程设计 学院土木学院 专业工程力学 班级1001

学号100120118 姓名崔亚超

总结结构优化设计的原理、方法及发展趋势 崔亚超 工程力学1001班学号100120118 摘要:阐述了工程结构优化设计理论从最初的截面优化发展到形状优化、拓扑优化的基本历程及其相关特点,对优化设计选用的各种算法进行归类,并简述结构优化设计的发展趋势。 关键词:尺寸优化;形状优化;拓扑优化;优化算法 Summary structural optimization design principles, methods and development trends Abstract:The structural optimization of engineering design theory from the initial cross-section to optimize the development of shape optimization, topology optimization of the basic course and its related characteristics, the optimum design on the range of algorithms are classified, and to outline the development trend of structural optimization design . Key words:size optimization; shape optimization; topology optimization; optimization algorithm 0 引言 结构优化设计的目的在于寻求既安全又经济的结构形式,而结构形式包括了关于尺寸、形状和拓扑等信息I对于试图产生超出设计者经验的有效的新型结构来说,优化是一种很有价值的工具,优化的目标通常是求解具有最小重量的结构B同时必须满足一定的约束条件,以获得最佳的静力或动力等性态特征。 集计算力学、数学规划、计算机科学以及其他工程学科于一体的结构优化设计是现代构设计领域的重要研究方向。它为人们长期所追求最优的工程结构设计尤其是新型结构设计提供了先进的工具,成为近代设计方法的重要内容之一。 结构优化设计也使得计算力学的任务由被动的分析校核上升为主动的设计与优化,由此结构优化也具有更大的难度和复杂性。它不仅要以有限元等数值方法作为分析手段,而且还要进一步计算结构力学性态的导数值。它要面向工程设计中的各种实际问题建立优化设计模型,根据结构与力学的特点对数学规划方法进行必要的改进。因此,结构优化设计是一综合性、实用性很强的理论和技术。 目前,结构优化设计的应用领域已从航空航天扩展到船舶、桥梁、汽车、机械、水利、建筑等更广泛的工程领域,解决的问题从减轻结构重量扩展到降低应力水平、改进结构性能和提高安全寿命等更多方面。 由于结构优化设计给工程界带来了经济效益及近年来有限元研究和应用的相对成熟,计算机条件的进一步改善和普及,人们对结构优化设计的研究和应用的呼声更高了。无论国内还是国外,对这一现代技术的需求都有增长的趋势。随着设计技术的更新和产品竞争的加剧,结构优化设计将会有更大的发展。

2006-11-295051---配方优化设计方法简介

配方优化设计方法简介 刘莉,辛振祥 (青岛科技大学,山东 青岛 266042) 摘要:本文综述了配方实验优化设计方法及数据处理方法,并综合分析了各种方法的优缺点和应用范围。 关键词:配方优化设计;单因素变量;正交实验法;回归设计;均匀设计;方差分析;回归分析;遗传算法;神经网络中图分类号:TQ330.61 文献标识码:B 文章编号:1009-797X(2004)10-0008-05 作者简介:刘莉(1970-),女,青岛科技大学高分子科学与工程学院在读研究生,主要从事橡胶配方优化设计及高分子材料加工方面的研究。 收稿日期:2003-06-02 配方优化问题是材料领域中的一个重要研究内容。为了获得性能优异、能满足使用要求的配方,需根据产品的性能要求和工艺条件,通过试验、优化、鉴定,合理地选用原材料,确定各种原材料的用量配比关系。对于这样一个复杂的多目标配方体系,试验方法的设计就显得尤为重要。近年来对配方优化设计的应用研究十分活跃,新的试验方法不断出现,旧的方法不断改进,文献报道较多,但这方面的综述报道却很少。面对如此多的设计方法,如何合理选用已成为配方设计者的一大难题。本文针对这一问题对近年来各种实验方法的优缺点及应用范围进行综合分析,希望有助于配方设计者合理选用试验设计方法及优化方法。 1 试验设计方法 试验设计是配方设计的基础。理想的试验设计方案应当是以尽可能少的试验次数反映尽可能多的信息,试验点在试验空间中的分布要合理,既有一定的均匀性,又便于试验结果的分析与模型的建立。橡胶配方优化研究中最早使用的实验方法是单因子实验,后来是正交设 计、正交回归设计。它们在优化设计中的地位与作用是毋庸置疑的[2]。近年来,又出现了许多新型的实验设计方法,如均匀设计法、信噪比实验设计、物理实验设计、数学实验设计等新型的实验设计方法[3]。 试验设计可分为单因素变量的试验设计和多因素变量的试验设计,根据目标优化选择分为单目标最优化问题和多目标最优化问题。 1.1 单因素变量试验方法 单因素变量法比较简单,特别是用来鉴定新材料,或生产中原材料变动时,只做较少的试验,就可做出判断,见效快,试验数据易于处理,通过图表直观比较即可得出结论。正因为如此,这种方法在配方试验中仍然有一定的价值。实验方法如:黄金分割法、平分法(对分法)、分批试验法(均匀分批试验法、比例分割分批试验法)、分数法(裴波那契法)、爬山法、抛物线法等。 1.2 多因素试验设计方法 在大多数的配方研究中,需要同时考虑两个或两个以上的变量因子对性能的影响规律,这即是多因素配方试验设计的问题。与单因素配方设计不同的是,在基本配方拟定中选择了两个或两个以上的不同组份因素,然后考察这些因素对配方性能的影响规律,这无疑使研究问题变得复杂化,试验次数也将增多。

金属材料晶粒细化的研究论文修改后

金属材料细化组织的方法和途径 1 前言 金属材料作为一种常规材料,由于其原料丰富可以大规模工业化生产,并可以通过合金化、冷热加工、热处理等技术改变材料形状、尺寸性能,其优异的使用性能,能满足机械、冶金、矿山、建筑、化工、海洋等行业的不同需要,因此,在 21 世纪钢铁材料仍然是人类社会使用的最主要材料。因此,钢铁材料的研究有着十分重要的意义!然而不经过任何处理而直接得到的铸锭或铸件存在诸多缺陷,因此,改善其金属性能非常重要。晶粒大小是影响金属性能的重要指标,一般来说,细晶粒组织的材料具有较好的综合性能,即其强度,硬度和人性,范性等都比较好,所以生产上对控制金属材料的晶粒尺寸是相当重要的。因此,细化晶粒对钢铁材料的研究及应用有着极其重要的意义。它是控制金属材料组织结构的最重要、最基本的方法。本文将从金相学角度阐述晶粒细化的原理和方法。 2 晶粒细化的理论与目的 研究表明,高性能钢铁材料的主要指标为强度和韧性,而晶粒细化是同时提高材料的强度和韧性的唯一方法,这就是钢铁材料晶粒细化的目的。目前,晶粒细化已成为新型高性能钢铁材料研究的一个趋势。根据Hall-petch 公式:σs =σ0 + kd - 1/ 2 ,其中σs 为应变量0.2 %的屈服应力;σ0 是移动单个位错所需的克服点阵摩擦的力; k 是常数; d 是平均晶粒尺寸。可以看出,材料的屈服强度与晶粒尺寸倒数的平方根成正比。因此,晶粒细化既能提高材料的强度,又能提高

材料塑性,同时也能显著提高其力学性能。细化晶粒是控制金属材料组织的最重要、最基本的方法,目前人们采用了许多办法细化金属的晶粒并取得了极大的成就。 3 晶粒细化的途径和方法 细化晶粒的基本途径在于尽可能地提高晶核的形成速率,并同时减小晶体的成长速率,以使大量晶核在还没有显著长大的条件下便相互干扰而凝固结束。利用结晶生核、长大现象进行晶粒细化时,临界晶核尺寸大小成为晶粒细化极限的大体目标。临界晶核的尺寸是形核驱动力的函数,驱动力越大,临界晶核尺寸就越小。通常情况下,相变时的驱动力比再结晶时的驱动力大很多。因此,利用相变时得到很细小的临界晶核尺寸,再控制冷却速度,就可使钢铁材料组织超细化。我们通常所知道的晶粒细化的方法或措施有:化学孕育剂法或变质法;快速冷取法;加强液体流动法(机械物理细化法)。还包括相变前奥氏体细化或位错化、奥氏体内部增加形核质点、相变冷却细化、形变处理细化法、物理场细化等。 3.1 化学孕育法或变质法 这种方法是向液体中加入所谓细化剂(孕育剂)或变质剂。添加细化剂(孕育剂)通过增加外来晶核使晶粒细化;添加变质剂是通过加入变质剂合金的共晶组织形态或者第二相的形态来实现细化。 3.1.1 添加细化剂(孕育剂) 熔炼时 ,可以通过向熔体中添加细化剂来形成晶核 ,使粗大的铸

金属凝固组织的细化方法和机理

课程名称:金属凝固指导老师:宋长江,翟启杰教授 金属凝固组织的细化方法和机理 摘要:金属组织细化细化是提高材料性能的一种有效手段。在材料科学领域里,控制金属的凝固过程以细化金属凝固组织是提高铸件性能的重要途径之一,在已有的研究中,控制金属凝固过程以细化凝固组织的方法主要有两类:一是物理细化法,如低温浇注、电磁搅拌、机械振动、超声波细化等,二是化学细化法,如添加形核剂和长大抑制剂等。物理细化方法处理材料纯净度高,不会对金属熔体带来外来夹杂,细化效果好;化学添加剂法细化效果稳定、作用快、操作方便、适应性强,是目前最普遍的细化方法。 关键词:组织细化;细化方法;细化剂;变质剂 Refinement methods and mechanism of solidification structure of metals Abstract: Metal microstructure refinement is an effective means to improve the properties of materials.In the field of meterial science, To contol the metal solidification process to refine the metal solidification structure is an important way of improving the casting performance. There are two main ways in the previous study: the first one is Physical refining method,such as cast cold, electromagnetic stirring, mechanical vibration, ultrasonic Refining and so on. The other one is chemical method, like the addition of nucleating agents and growth inhibitors. Physical refining method can make the material more pure,and there is no inclusion along with. The chemical method is the most common method of refinement because it’s faster and more stable and easy to operate. Key words:structure refinement; refine method; refiners; modifier

结构优化设计

《结构优化设计》课程专题训练 课程名称:结构优化设计 所在班级:工力13-1班 学生姓名:zzzzzzzzz 学号:11111111111 指导教师:zzzzzzz 成绩:

目录 一.研究目的 ...................................... 错误!未定义书签。 1.1 实际问题在工程中的应用........... 错误!未定义书签。 二.研究内容 (3) 2.1 工程模型问题简化假设 (3) 三.问题求解 (4) 3.1准则法求解: (4) 3.2数学规划法求解: (5) 四.结果与结论 (9) 4.1结果 (9) 4.2 结论 (9)

1.1实际问题在工程中的应用 图1:南京长江大桥 如图一所示为南京长江大桥桁架结构。此类桁架,因其结构轻巧,设计、制作、安装均很简便,且适应跨度范围很大,故在生产中有着大量的应用。这里主要为凸显结构优化问题,将绗架取局部结构,通过两种结构优化算法计算求解,加深对两种方法的了解与对结构优化设计含义的理解。

2.1 工程模型问题简化假设 现将图中结构简化为图三中的两桁架结构,假设壁厚t 和半跨B 已给定,要求选择钢管的平均直径D 和绗架高度H ,使杆件不失稳,杆件材料不屈服,且结构最轻,给定参数荷载P=33000磅,B=30英寸,t=0.1 英寸,屈服应力5 10=σ磅/平方英寸,弹性模量E=3x 710磅/平方英寸。 图 2

三.问题求解 该问题的目标函数是结构的重量,设计所需的约束条件为:圆管杆件中的压应力应该小于或等于压杆稳定的欧拉临界应力;圆管杆件中的压应力应该小于或等于材料的屈服应力;管子的平均直径D 和桁架的高度H 受上、下界的限制。 问题可以总结为: 目标函数:圆管的最轻重量minW 约束条件s.t. 3.1准则法求解: 该问题中指定参数为B,t ,E ,ρ,σ,D ,D ,H ,H ,设计变量为D ,H ,该问题的目标函数时结构的重量,设计受到的约束条件为:圆管杆件中的压应力应该远小于或等于压杆稳定的欧拉临界应力σ;圆管杆件中的压应力应远小于或等于材料的屈服应力σ;管子的平均直径D 和绗架的高度H 受到上下界的限制。 求最优的D 和H ,使目标函数最小,即: 2 122)(t 2min H B D W +=πρ S.T. H H H D D D tDH H B P H B ED tDH H B P ≤≤≤≤≤++≤ +σ πππ) ()(8)(22222 22 122

速溶奶茶配方的优化设计

迤溶韵恭鼹穷绚佻绝鼹钎 郑玉芝1。程江山1,王巍1,赵艺群2,凌彩金2 (1.北京市食品工业研究所,北京100075;2.广东省农科院茶叶研究所,广东广州510640 摘要:速溶奶茶是以茶粉、奶粉、白砂糖和植脂末为原料配制而成的,影响其品质和成本的主要因素是茶粉、奶粉和白砂 糖。本研究采用正交实验法,选用L。(3’表对速溶奶茶的 感官、溶解时间和成本进行了优化设计,得到比较理想的 配方:茶粉2.09,奶粉209,白砂糖559,植脂末239。按照 该配方配制的奶茶经检测,各项指标均符合要求。 关键词:速溶奶茶,茶饮料,固体饮料 中图分类号:TS278文献标识码:B 文章编号:1002—0306(2004)09—0142一03 茶叶是一种良好的天然饮品,主要成分为茶多酚和咖啡因,还含有许多微量成分,如微量元素、维生素、茶多糖、黄酮类、酚酸类等【”。茶多酚具有抗氧化、抗肿瘤、抗动脉粥样硬化、抗龋护齿、抑菌等多种保健和药理作用。茶多糖和类黄酮也具有良好的保健功能。牛奶也是一种营养丰富的食品,含蛋白质2.7%~3.5%,脂肪3%~5%,乳糖4.5~4.8%,还含有多种维生素和微量元素[2】。将茶叶与牛奶搭配,开发既有营养又具保健功能的奶茶制品,具有广阔的市场空间。 近几年茶饮料正处在快速发展阶段,它的发展速度高居饮料行业之首。速溶奶茶虽然不及瓶装茶饮料的市场占有率,但是其市场前景也非常好。目前,市场上主要以立顿、雀巢产品为主,是固体饮料的重要部分。奶茶兼具茶的功能和奶的营养,且又冲饮方便,营养卫生,可与咖啡相媲美。速溶奶茶的生产工艺简单,以茶粉和奶粉等为主要原料,混合配制而成。我们采用正交实验法,对其配方进行了优化设计。 1材料与方法 1.1实验材料 茶粉、全脂奶粉、白砂糖、植脂末市场购买。.1.2溶解时间的测定 参照QB/T3623—1999果香型固体饮料溶解时间的测定方法:称取259(精确到0.19)混合均匀的被 收稿日期:2005—08一02 作者简介:郑玉芝(1965一),女,高工,研究方向:食品分析、食品开发。 基金项目:广东省科技计划项目(2003c20403)。 J蟹巫互匝目测样品于500mL烧杯中,加入200mL冷开水(10℃),搅拌,计算从加入冷开水到完全溶解的时间(s)。1.3正交条件的选择和设计 在速溶奶茶的调配中,主要原料为茶粉、奶粉、白砂糖和植脂末。茶粉的量决定产品中茶多酚和咖啡因的指标值,但是,茶粉具有非常强的吸湿性,不宜添加过量。奶粉的添加使产品保证满足一定的蛋白含量,奶粉对茶的风味有一定的影响。白砂糖的添加虽然对口感有一定的作用,但关键是增加了产品的速溶性。这三种原料是影响速溶奶茶的关键因素,因此,选择茶粉、奶粉和白砂糖作为主要影响因素进行正交设计,正交实验采用k(34)表。根据该产品的特点和相应的指标要求,确定因素的水平表如表l。 表1因子水平表 速溶奶茶配制时,按照正交实验设计进行,总量1009,不足的部分添加相应量的植脂末。 1.4冲调饮用方法 取159样品添加150mL水搅拌均匀即可。 1.5产品质量指标 参照茶饮料QB2499—2000(轻工业行业标准)中奶味茶饮料的标准和固体饮料卫生标准(GB7101—2003)中蛋白型固体饮料的标准进行评定。 2结果与讨论 2.1奶茶配方的确定 速溶奶茶产品的品质除了必须满足必要的产品理化指标和相应的卫生指标外,产品的速溶性和感官也是影响品质的重要因素,此外,生产成本的高低也是企业关注的重点。因此,在配方设计过程中,在满足产品理化和卫生指标要求的同时,利用正交设计法对产品的速溶性、感官和成本进行了研究,结果分别见表2~表4。  万方数据

Al-Ti-B合金晶粒细化

目录 1、引言 (1) 2、细化原理 (1) 2.1、包晶相图理论 (2) 2.2、碳化物-硼化物理论 (2) 2.3、双重形核理论 (3) 2.4、α-Al晶体增殖理论 (3) 3、合金元素的作用 (3) 3.1、Ti对铝合金熔铸组织的细化作用 (3) 3.2、B对铝合金熔铸组织的细化作用 (4) 3.3、其它杂质元素对铝合金熔铸组织的 细化影响 (4) 4、小结 (5) 5、参考文献 (6)

Al-Ti-B合金晶粒细化 【摘要】铝合金中加入少量Ti和B时,铝合金组织可得到明显细化,合金的强度、韧度、耐磨性、抗疲劳性能及热稳定性等均有所提高。 【关键词】铝钛硼合金晶粒细化合金元素 Al-Ti-B Alloy grain refinement 【Abstract】Aluminum alloy to add a small amount of Ti and B, the refined aluminum alloy group is obviously, the strength of the alloy, toughness, wear resistance, fatigue resistance and thermal stability were improved 【Key words】Al-Ti-B alloy grain refinement alloying elements 1、引言 根据Hall-Petch公式可知,材料的屈服强度和材料的晶粒大小成反比,细小的晶粒尺寸可以有效地提高材料的强度和韧性,同时改善合金的机械加工性能,对于铝在各行业的应用均具有重要的意义 [1]。目前,细化铝合金晶粒的方法主要包括以下4种: ①控制金属凝固时的冷却速度[2]; ②机械物理细化法,包括机械振动和机械搅拌等; ③物理场细化法[3],如电场、磁场和超声波处理等; ④化学细化法,加入各种晶粒细化剂,促进铝及合金的形核或抑 制晶核长大。 在工业生产中,细化晶粒尺寸最常用的方法是化学细化法,即在熔融的铝液中加入晶粒细化剂,起到异质形核的作用,进而细化晶粒尺寸。铝钛硼合金晶粒细化是铝加工业普遍采用的晶粒细化方法,对铝合金的铸态组织具有强烈的细化作用。它可以使合金成份均匀,加快铸造速度,减少裂纹,消除羽毛状晶和冷隔。在随后的压力加工过程中,还可以提高铝板的力学性能,减小板材的变形织构和各向异性,提高板材的深冲性能和成品率。铝钛硼的组织对铸态晶粒的细化效果起关键性作用。 2、细化机理 由于铝合金的细化过程非常复杂,与熔炼条件和铸造条件相关,且容易受到杂质元素的影响,导致细化效果发生改变。因此,仍没有一种理论能较全面的解释整个细化过程。目前,铝晶粒细化的细化理论主要包括[4]:包晶相图理论、碳化物-硼化物、双形核理论、α-Al 晶体增殖理论、超形核理论等。 2.1、包晶相图理论

M50和M50Nil钢多向锻造碳化物及晶粒细化机制研究

M50和M50Nil钢多向锻造碳化物及晶粒细化机制研究 M50钢具有高温条件下硬度、强度高等优点,是目前综合性能优良的航空轴承钢。M50钢中合金元素形成的碳化物是其重要的组织特征同时也是轴承性能良好的保障,但是分布不均,尺寸过大的碳化物会使轴承在服役过程中发生开裂导致失效。 M50Nil钢是在M50钢的基础上研发的新一代高温轴承钢,这种钢在经过表面硬化处理后,具有“表硬内韧”的特点,这样大大提高了轴承的疲劳寿命,但是 M50Nil钢的晶粒尺寸较大,这样影响了锻件的性能,因此,如何控制M50钢中碳化物的尺寸和分布、M50Nil钢中晶粒粗大的问题,提高材料性能,是目前制备高性能高温轴承钢的难题。本文通过对M50钢和M50Nil钢进行多向锻造,研究了始锻温度和累计应变量对M50钢和M50Nil钢微观组织的影响,并分析了M50钢的碳化物碎化机制以及M50Nil钢的晶粒细化机制。 在1000℃和1100℃对M50钢分别进行累积应变量为1.2、2.4、3.6和5.4的多向锻造,多向锻造后的锻件碳化物发生明显的碎化,由原始M50钢中尺寸为25μm的碳化物碎化为小于10μm,同时始锻温度升高使得颗粒状碳化物发生了明显的溶解。始锻温度为1100℃时,随着累积应变量的增加,锻件易变形区的晶粒得到细化,当累积应变量增加到5.4时,易变形区平均晶粒尺寸为3μm。 在1050℃、1100℃、1150℃和1180℃下对M50Nil钢进行了累积应变量为3.6的多向锻造发现,锻后锻件易变形区的晶粒尺寸发生了明显的变化,当 M50Nil钢只在这四个温度下保温一定时长不进行多向锻造时,晶粒尺寸随着加 热温度的升高逐渐长大,而多向锻造后易变形区的晶粒尺寸在1100℃时达到最 小值。在1100℃保温30min后对M50Nil钢进行了累积应变量分别为0.6、1.8、

铝合金晶粒细化剂的试验方法_1

铝合金晶粒细化剂的试验方法⑴ 高泽生 (涿州市铝合金材料厂 河北涿州 072750) 摘要 介绍了铝合金晶粒细化剂性能的各种试验方法:铝合金晶粒细化剂标准试验TP1法;K BI环模试验法;雷诺高尔夫T模试验法;德国铝联合公司VAW法和美国铝业公司Al2 coa冷指试验法。 关键词 TP1试验法 铝合金 晶粒细化剂 雷诺高尔夫T模试验法 VAW法 K BI环模试验法 Alcoa冷指试验法 铝合金晶粒细化剂的供需双方都要有一个评定晶粒细化试验结果与铸品中晶粒尺寸相互关系的标准方法。80年代中期,由于没有统一的标准试验法,一些供应厂开发了自己的检验方法,按用户要求供应产品。这些方法包括Alcan试验法、K B I环模试验法、雷诺标准高尔夫T模试验法(Reynolds standard G olf Tee Test)、VAW法、美国铝业公司冷指试验法(Al2 coa cold Finger Test)。 由于这些方法使用的工具和试验条件不同,所得的晶粒细化结果,即晶粒尺寸也不相同。因此,必须提供一个共同认可的统一方法。这个方法就是铝业协会通过的以70年代开发的Alcan试验法为蓝本的“铝合金晶粒细化剂标准试验法TP1”,首次公布于1987年〔1〕, 1988年1月正式发行。文献〔2〕概述了自1986~1997年TP1法的开发过程。这就是本文下面介绍的TP1标准试验法。 以后发表的有关TP1标准法的研究文献,主要涉及测量精度、再现性〔3〕、实验方法与试验技术具体问题〔4〕。文献〔3〕的结论是,当晶粒细化剂加入量足够产生均匀的等轴晶时,TP 1法是精确的,特别是晶粒尺寸在100~130μm范围内再现性和精度最高。一般情况下,精确度偏差为±10μm。研究还发现,TP1法对基体合金中的铁和硅浓度敏感。例如用9919%Al和9917%Al制造的丝,铁含量较高的9917%Al制造的晶粒细化剂显示了高的细化效果,铁含量由0115%变化至0120%时平均晶粒尺寸减小5μ,即每0101%Fe有2μm的变化。 下面分别介绍这些试验方法。 1 标准试验法TP1 本方法适用于确定晶粒细化剂在标准条件下对于规定成分的铝合金在凝固期间减小晶粒尺寸的能力,也适用检验晶粒细化剂组织均匀性和有无缺陷。兹重点介绍如下。 1.1 取样 ⑴化学分析试样 华夫锭:应从一个小锭的顶部、底部和中心部取相等重量的钻屑混合组成。 丝:至少由两个不相邻的段上能代表整个截面的铣屑或剪屑组成。 ⑵晶粒细化试验试样 华夫锭:从一个熔次任选一小锭的中央部取要求重量的晶粒细化剂(图4b)。 丝:从一卷任意部取一段要求重量的晶粒细化剂;金相检验试样的纵、横截面如图5所示;机械性能测量试样长度应保证300mm。1.2 化学成分 按上述方法取的化学分析试样,按美国联 收稿日期:1998-06-03

配方设计

饲料配方设计 第一部分配合饲料的分类 一、全价饲料 1、适用于规模化养殖、幼龄动物等 2、质量保证、但成本高 二、浓缩饲料 1、适合于农村和小型养殖场 2、合理利用当地饲料资源 3、成本较低 三、预混料 1、有利于微量的原料均匀分散于大量的配合饲料中 2、适合于农村和小型养殖场 3、合理利用当地饲料资源 4、成本较低 第二部分配方设计 一、设计的原则 1、科学性原则 2、经济性和市场性原则 3、可行性原则 4、安全性与合法性原则 5、逐级预混原则 二、设计必备的资料 1. 动物营养需要资料 2. 饲料营养价值资料 3. 动物营养和饲料科学的基本知识 三、饲料配方设计的基本目标 1、基本或完全能预防营养缺乏症 2、营养需要标准选择适宜 3、配方饲料组合适宜 4、饲料配方成本和动物生产成本适宜 5、配方产品让用户考虑的补充成分适宜 四、饲料配方设计的方法 (一)配方设计的5个基本步骤 1、明确目标 (1) 单位面积收益最大; (2) 每头上市动物收益最大; (3) 使动物达到最佳生产性能; (4) 使整个集团收益最大; (5) 对环境的影响最小; (6) 生产特定品质的畜产品。 2、确定动物的营养需要量 (1) 饲养标准可作为营养需要量的基本参考。 参考示例: ①本地土种 我国肉脂兼用型标准;

②国内育成品种和二元杂交种→我国瘦肉型标准; ③土三元杂交种→台湾和美国(1988)标准; ④引进纯种和洋三元杂交种→美国(1998)标准。 (2) 根据当地的实际情况,进行必要的调整。 (3) 确定动物采食量。 3、选择饲料原料 (1) 选择可利用的原料并确定其养分含量和对动物的利用率。 (2) 原料的选择应是适合动物的习性并考虑其生物学效价(或有效率)。 4、饲料配方 (1) 将以上三步所获取的信息综合处理,形成配方配制饲粮, (2) 可以用手工计算,或计算机优化配方软件。 5、配方质量评定 (1) 实验室进行化学分析,并将分析结果和预期值对比。 (2) 动物试验:实际饲养效果和畜产品品质是配方质量的最终评价手段。 (二)配合饲料产品设计的方法 1、手工计算法:交叉法、方程组法、试差法; 2、计算机规划法:根据有关数学模型(线性规划、多目标规划、模糊规划、概率模型等)编制专门程序软件进行饲料配方的优化设计。 (1) 试差法 例:用GB2级玉米、麸皮、豆粕、菜籽粕、棉籽饼、磷酸氢钙、石粉、食盐、1%预混料、及赖氨酸、蛋氨酸等原料,用试差法配制一体重60-90kg阶段生长肥育猪的日粮。 设计思路: 1) 先考虑能量、蛋白质两种养分的平衡,因而先确定能量原料和蛋白质原料的比例。 但要将其他的原料比例给以预留。一般矿物质饲料及添加剂预混料占全价配合饲料的2%-4%。第一步:查饲养标准。 选择关键营养指标:猪:DE,Lys,M+C,Thr,Try,Ca,aP,Cp; 60-90阶段生长肥育猪的营养需要量如下表所示:

浅谈镁合金晶粒细化的方法和意义

浅谈镁合金晶粒细化的方法和意义 重庆大学材料科学与工程学院材料科学专业 摘要 简述了镁合金的工程运用现状和细化晶粒的益处;以镁合金晶粒细化方法为主线,对镁合金在熔体阶段的过热处理、添加变质剂、物理场法、动态晶粒细化和快速凝固法,以及镁合金固态阶段的锻造、挤压、轧制和剧烈塑性变形等细化晶粒的方法进行了总结。同时,归纳了镁合金细化晶粒的意义。 关键词 镁合金 晶粒细化 熔体 固态形变 1 背景介绍 纯镁是银白色金属,熔点651℃,密度为1.74×103kg/m3,是最轻的工程金属[1]。镁合金具有密度低、比强度高、比刚度高、减振和抗冲击性能好等优点,而且还具有较好的尺寸稳定性和机械加工性能及低廉的铸造成本。在汽车、电子、通信、航空航天、国防和3C 等行业都拥有广泛的应用前景。但是镁合金密排六方的晶体结构特点,决定了在室温条件下独立滑移系少,导致室温塑性低、变形加工困难和变形容易开裂等阻碍了镁合金材料的广泛应用。其次,镁合金强度偏低,无法应用于受力较大的工程环境,也成为镁合金大规模运用的一大瓶颈。所有提高镁合金的室温塑性变形能力和强度有利于镁合金工程应用的普及和推广[2~5]。 细化晶粒是唯一可以提高金属构件强度的同时,又提高塑性的方法。根据Hall-petch 公式21 0s -+=d k y σσ,材料的强度随着晶粒尺寸的减小而增大。镁合金具有很大的系数k y ,所 有,细化晶粒能够显著的提高镁合金的强度[6]。而且,由于有细小均匀晶粒的材料发生塑性变形时,各晶粒分担一定的变形量,使变形更加均匀,位错在晶界处塞积少,应力集中小,材料开裂的倾向减小,从而提高材料的塑性。 2 晶粒细化方法 目前用于工程和科研中有很多细化镁合金晶粒的方法,笔者综合相关论文报道将镁合金晶粒细化分为两个阶段细化:熔体阶段细化和固态形变处理细化。 2.1 熔体阶段细化 2.1.1 过热处理法 过热处理是浇注前将熔体温度升高并保持一段时间后再降温至浇注温度进行浇注的工艺过程。过热处理细化晶粒的机制是过热处理过程中形成了可以作为非均质结晶核心[7]。目前广泛认同的观点是Fe 等元素在镁熔体中的溶解的随温度变化很显著,随着温度的降低,Fe 在镁中溶解度急剧降低,在过热的熔体降温时,过热难容的铁将从液相中先析出,在凝固过程中成为α-Mg 的异质形核基底。过热处理在一定程度上可以细化晶粒,但是也存在很多缺陷。例如,将熔体加热到高温镁合金熔体会因大量溶解气体和杂质而质量下降,从而降低合金的综合性能,所以,过热处理法在工业上应用很少。 2.1.2 添加变质剂 添加变质剂可以改善合金的铸造性能和加工性能,使铸件组织细小均匀,因而提高合金的强度和塑性。加入的变质剂必须满足6点:①高温下化学成分不变,在熔体中有足够的稳定性,

结构优化设计是在满足规范要求

结构优化设计是在满足规范要求、保证结构安全和建筑产品品质的前提下,通过合理的结构布置、科学的计算论证、适度的构造措施,充分发挥材料性能、合理节约造价的设计方法。结构优化设计在当前竞争日益激烈的建筑设计市场成为大势所趋。如何在满足建筑功能的前提下,保证结构安全并控制含钢量成为摆在结构设计工程师面前的现实课题。本文总结了以往的设计经验,参考了相关文献,给出了结构优化设计的步骤和一些具体措施,供设计人员参考。 1结构优化设计的步骤 笔者认为,结构优化设计的合理步骤应该是:①在方案阶段,通过与建筑专业的充分沟通,对建筑的平面布置、立面造型、柱网布置等提出合理的建议和要求,使结构的高度、复杂程度、不规则程度均控制在合理范围内,避免抗震审查,为降低含钢量争取主动权;②在初步设计阶段,通过对结构体系、结构布置、建筑材料、设计参数、基础型式等内容的多方案技术经济性比较,选出最优方案,整体控制含钢量;③在具体计算过程中,通过精确的荷载计算、细致的模型调整,使结构达到最优受力状态,进一步降低用钢量;④在施工图阶段通过精细的配筋设计抠出多余钢筋,彻底降低含钢量。 在进行多方案的技术经济性比较时,应综合考虑材料费、模板费、基坑开挖降水支护费用、措施费、施工难易、工期长短等因素,与甲方协商后择优选用。 2结构体系与布置优化 结构体系和布置对造价影响很大,应予重视。 1)应根据建筑布置、高度和使用功能要求选择经济合理的结构体系。比如,异形柱框架比普通框架用钢量大,在可能的情况下尽量采用前者;短肢剪力墙比普通剪力墙含钢量高,在可能的情况下尽量采用后者。 2)应选择比较规则的平面方案和立面方案。尽量避免平面凸凹不规则或楼板开大洞,控制平面长宽比,合理设缝,使结构刚度中心与质量中心尽量靠近。竖向应避免有过大的外挑或内收,同时注意限制薄弱层、跃层、转换层等不利因素,使侧向刚度和水平承载力沿高度尽量均匀平缓变化。 3)应选择合理、均匀的柱网尺寸,使板、梁、柱、墙的受力合理,从而降低构件的用钢量。柱网大则楼盖用钢量大,柱网小则柱子用钢量增大,应根据建筑实际情况和经验合理布置。例如,住宅中小开间结构中墙柱的作用不能得到充分发挥,过多的墙柱还会导致较大的地震作用,可考虑采用大开间结构体系,既节约造价,又便于建筑灵活布置。 4)应选择经济合理的楼盖体系。楼盖质量大,层数多,占整体造价比重高,对楼盖的类型、构件的尺寸、数量、间距等应进行对比分析,选择最优的方案。一般住宅宜采用现浇梁板楼盖,预应力楼盖的预应力钢筋容易被二次装修破坏,井字梁楼盖影响室内美观,均不推荐。办公楼等大空间结构宜采用十字梁、井字梁、预应力梁板方案。双向板比单向板经济,应多做双向板。板的厚度,双向板宜控制在短跨的1/35,单向板宜控制在短跨的1/30,此时板易满足强度和变形要求,经济性好。 5)剪力墙结构的优化空间很大,应下大力气优化。剪力墙的布置宜规则、均匀、对称,以控制结构扭转变形。在满足规范和计算的前提下应尽量减少墙的数量,限制墙肢长度,控制连梁刚度,剪力墙能落地的就全部落地不做框支转换层,平面能布置成大开问的尽量布置成大开间,墙体的厚度满足构造要求和轴压比的要求即可。连梁刚度太大时可通过梁中开水平缝变成双梁、增大跨高比等措施降低连梁刚度。尽量少用短肢剪力墙,限制“一”字墙,少做转换。 6)降低含钢量的小技巧:①楼电梯间不宣布置在房屋端部或转角处。因其空间刚度较小,设在端部对抗扭不利,设在转角处应力集中。②框架结构层刚度较弱时,加大柱尺寸或梁高都可显著增大层刚度,而提高混凝土强度效果不明显。③柱的截面尺寸,多层宜2层~3层

培养基优化设计

课程设计说明书 课程名称:新编生物工艺学 设计题目: 培养基优化设计 院系:生物与食品工程学院 学生姓名: 学号:200806040035 专业班级:08生物技术 指导教师:关现军 2011 年6月3 日

课程设计任务书

目录 1.摘要··页码 2.关键字··页码 3.设计背景·页码 3.1培养基简介··页码 3.2培养基优化设计的重用意义··页码 4 设计方案·页码 4.1原材料制备··页码 4.2菌种的选择··页码 4.3营养因子的比例设··页码 4.4理化条件控制··页码 4.5总工艺流程列叙··页码 5 预期结果··页码 6 方案实施时可能出现的问题与对策·页码 7 设计感受··页码 7.1 关于本方案··页码 7.2 关于自我··页码 8参考文献··页码 .

1 摘要 以改良MRS发酵培养基为墓础,选择玉米浆、牛肉膏、乳糖、番茄汁、际蛋白陈等7个营养因子增菌培养乳酸菌进行优化。利用L8(2的7次方)正交实验,优化出培养墓营养因子最佳组成是:玉米浆3%、牛肉膏1%、乳糖1%。研究结果表明,嗜酸乳杆菌、嗜热链球菌、保加利亚乳杆菌、嗜酸乳酸菌,在优化后的MRS培养基发酵液中,37℃培养20h,菌落数均高于原MRS培养基发酵液的菌落数,达到1护cumL以上,乳酸菌发酵液得到了浓缩,大大降低了乳酸菌发酵培养墓的成本,原料成本降低了约40%,同时使菌种数量达到最大。 2 关键字 乳酸菌,营养因子,优化培养,最大产菌 3. 设计背景 3.1乳酸菌培养基简介 乳酸菌工业产品为菌体本身细胞,因而设计出能增菌的培养基在工业上具有重要意义。设计选用工业上佳美低廉的原料,便于降低成本,也有利于降低菌种的适应期,利于增值。 乳酸菌增菌液配方设计中因营养要求复杂,影响生长的因素多,在实际工作中还应做其他条件的优化,如增菌液氧化还原电势、pH值、温度等,因工作量大而时间有限,只能对配方作初步的优化设计。为了降低生产成本,在工业应用时可选用乳清和脱脂乳经蛋白酶水解,用以提高增菌效果,再加入乳糖、啤酒酵母的自溶水解物,在发酵罐内完成乳酸

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

细化晶粒

细晶镁合金的制备方法 制约变形镁合金发展的主要原因在于其较差的室温塑性变形能力,如何在较大程度上改善镁合金的塑性已成为人们关注的焦点。常用的方法包括合金化及晶粒细化等。而结合镁合金室温滑移系少、形变各向异性强的特点,用织构强化或软化来提高或合理利用镁合金的力学性能,已成为变形镁合金研究领域的一个重要分支。 纯镁的晶粒尺寸细化到8um以下时,其脆性转变温度可降至室温。若采用适当合金化及快速凝固工艺将晶粒细化到1um时,甚至在室温下镁合金亦可以具有超塑性,其伸长率可达到1000%。因此通过镁合金晶粒细化可以调整材料的组织和性能,获得具有优良变形性能的材料。细化晶粒的方法有很多,下面介绍几种常见的制备细镁合金的方法。 1 等径角挤压(ECAP) 强应变化塑性变形可以在低温度条件下使金属材料的微观结构得到明显的细化,从而大大提高其强度和韧性。近年来研究表明,大塑性变形可以成功制备具有超细晶(微米级,亚微米级和纳米级)微观结构的金属材料。前苏联科学家Segal于1981年提出了等截面通道角形挤压法(equal channel angular press-ing)等径角挤压法(ECAP)。ECAP的基本原理;将润滑良好、与通道截面尺寸相差无几的块状试样放进入口通道,在外加载荷作用下,由冲头将试样挤放进入口通道,在外加截荷作用下,由冲头将试样挤到出口通道内。入

口通道与出口通道之间存在一个夹角。在理想条件下,变形是通过在两等截面通道交截面(剪切平面)发生简单的切变实现的。经角径角挤压后,试样发生简单切变,但仍保持横截面积不变,挤压过程可以反复进行,从而在试样中实现大塑性变形。通过这项技术,可以不依赖粉末冶金和复杂的形变热处理而制备大体积块状细晶材料。 2 添加适当的合金化元素 根据合金化原理,明确各种元素在镁中产生的作用,针对不同的需要对镁合金中添加适当的微量合金元素,并进行显微组织和结构设计,引人固溶强化、沉淀强化或弥散强化等机制,可以达到细化晶粒,调整镁合金组织,提高和改善合金性能的目的。如SN、SB和PB等元素在镁中有较大的极限固溶度,而且.随着温度的卜降,固溶度减小并生成弥散沉淀相。根据沉淀强化原理,这些元素能够提高镁合金度的强度:而有的表面活性元素.可以减小粗大相的形成,起到细化晶粒的作用,甚至可以生成弥散相阻碍晶界的滑移 Zr元素在镁合金中就是一种最有效的晶粒细化剂、 3 大挤压比热挤压(L)100) 镁合金组织性能受塑性变形影响很大,因此可以通过塑性加工过程控制或改善镁合金坯料的组织性能,例如镁合金挤压棒材的性能右严重的各向异性,需采用热挤压方法消除各向异性,通过采用不同的挤压温度、改变挤压比、挤压速度可以获得不同组织性能的镁合

铝晶粒细化剂制造项目策划方案

铝晶粒细化剂制造项目 策划方案 泓域咨询机构

报告说明 铝晶粒细化剂直接应用于铝材制造加工过程,其产品质量直接影响成型后铝材性能,而判断铝晶粒细化剂产品质量的标准主要包括:熔体纯净程度、晶核颗粒团大小、形核能力及扩散速度。根据上述判断标准,铝晶粒细化剂可分为四个等级:第一类专用于航空航天用铝板、PS版、CTP版、罐料、电子铝箔的生产,该类铝晶粒细化剂对晶核尺寸、熔体纯净程度、晶核形核能力及扩散速度要求最高;第二类主要是轨道交通用铝材、普通装饰用铝板、普通包装用铝箔、汽车铝板类产品加工所使用的铝晶粒细化剂,其性能要求略为降低;第三类用于建筑铝型材,其性能要求已大为降低;第四类用于铸造铝材,该类铝晶粒细化剂大多属于块状合金,一般的市场要求只是化学成分、杂质含量控制在行业标准范围即可,其生产装备和工艺要求均较为简单。目前,英国LSM、美国KBAlloys、荷兰KBM为高端(即有能力生产第一类、第二类产品)铝晶粒细化剂主要生产厂商。 本期项目总投资包括建设投资、建设期利息和流动资金。根据谨慎财务估算,项目总投资33375.05万元,其中:建设投资26409.63万元,占项目总投资的79.13%;建设期利息524.31万元,占项目总投资的1.57%;流动资金6441.11万元,占项目总投资的19.30%。

根据谨慎财务测算,项目正常运营每年营业收入76600.00万元, 综合总成本费用63091.72万元,净利润7959.87万元,财务内部收益 率21.92%,财务净现值1992.35万元,全部投资回收期6.05年。本期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。 本期项目技术上可行、经济上合理,投资方向正确,资本结构合理,技术方案设计优良。本期项目的投资建设和实施无论是经济效益、社会效益等方面都是积极可行的。 综合判断,在经济发展新常态下,我区发展机遇与挑战并存,机 遇大于挑战,发展形势总体向好有利,将通过全面的调整、转型、升级,步入发展的新阶段。知识经济、服务经济、消费经济将成为经济 增长的主要特征,中心城区的集聚、辐射和创新功能不断强化,产业 发展进入新阶段。 报告全面深入地进行市场分析、预测、调查和预测拟建项目产品 在国内、国际市场的供需情况和销售价格;研究产品的目标市场,分 析市场占有率;研究确定市场,主要是产品竞争对手和自身竞争力的 优势、劣势,以及产品的营销策略,并研究确定主要市场风险和风险 程度。

相关文档
最新文档