指数函数的图像和性质导学案.doc

合集下载

指数函数的概念导学案

指数函数的概念导学案

4.2.1 指数函数的概念导学案【学习目标】1.了解指数函数的概念.2.会画出指数函数图象(重点).3.会应用指数函数的性质求复合函数的定义域、值域(重点、难点).【自主学习】一.指数函数的定义一般地,函数 (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R .【答案】y =a x二.指数函数的图象和性质指数函数y =a x(a >0,且a ≠1)的图象和性质如下表:a >1 0<a <1图象定义域 R 值域(0,+∞)性质过定点过定点 ,即x =0时,y =1函数值的变化 当x >0时, ;当x <0时, 当x >0时, ;当x <0时, 单调性在R 上是在R 上是【答案】【当堂达标基础练】1. 下列图象中,有可能表示指数函数的是( ) 【答案】C【解析】由指数函数的增长速度及定义,可知C 正确. 2.已知函数1()12xf x =+,则对任意实数x ,有( ) A .()()0f x f x B .()()0f x f x --= C .()()1f x f x -+= D .1()()3f x f x --=【答案】C3.函数2(2)x y a a =-是指数函数,则( ) A .1a =或3a = B .1a = C .3a = D .0a >且1a ≠【答案】C【分析】由指数函数的定义可得2(2)1a -=,同时0a >,且1a ≠,从而可求出a 的值 【详解】由指数函数定义知2(2)1a -=,同时0a >,且1a ≠,所以解得3a =. 故选:C4.若()233xy a a a =-+是指数函数,则有( )A .1a =或2B .1a =C .2a =D .0a >且1a ≠【答案】C【分析】根据指数函数的概念,由所给解析式,可直接求解.【详解】因为()233xy a a a =-+是指数函数,所以233101a aa a ⎧-+=⎪>⎨⎪≠⎩,解得2a =.故选:C .5.已知函数1(),02()0xx f x x ⎧≤⎪=⎨⎪>⎩,则[(4)]f f =________.故答案为:46.若函数()132xf x a a ⎛⎫=- ⎪⎝⎭(0a >,且1a ≠)是指数函数,则=a ________.一、选择题1.若函数y =(a 2-4a +4)a x是指数函数,则a 的值是( ) A .4 B .1或3 C .3 D .1[答案C【解析】由题意得⎩⎪⎨⎪⎧a >0,a ≠1,a 2-4a +4=1,解得a =3,故选C.2.函数y =⎝ ⎛⎭⎪⎫12x(x ≥8)的值域是( ) A .RB.⎝ ⎛⎦⎥⎤0,1256C.⎝⎛⎦⎥⎤-∞,1256 D.⎣⎢⎡⎭⎪⎫1256,+∞【答案】B【解析】因为y =⎝ ⎛⎭⎪⎫12x在[8,+∞)上单调递减,所以0<⎝ ⎛⎭⎪⎫12x≤⎝ ⎛⎭⎪⎫128=1256.3.函数y =2x-1的定义域是( ) A .(-∞,0) B .(-∞,0] C .[0,+∞) D .(0,+∞)【答案】C【解析】由2x-1≥0得2x≥1,即x ≥0,∴函数的定义域为[0,+∞),选C. 4.当a >0,且a ≠1时,函数f (x )=a x +1-1的图象一定过点( )A .(0,1)B .(0,-1)C .(-1,0)D .(1,0)【答案】C 【解析】∵f (-1)=a-1+1-1=a 0-1=0,∴函数必过点(-1,0).5.函数f (x )=a x与g (x )=-x +a 的图象大致是( )A B C D【答案】A【解析】当a >1时,函数f (x )=a x单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A.二、填空题6.函数f (x )=3x -1的定义域为________. 【答案】[1,+∞)【解析】由x -1≥0得x ≥1,所以函数f (x )=3x -1的定义域为[1,+∞).7.已知函数f (x )=a x+b (a >0,且a ≠1)经过点(-1,5),(0,4),则f (-2)的值为________. 【答案】7【解析】由已知得⎩⎪⎨⎪⎧a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧a =12,b =3,所以f (x )=⎝ ⎛⎭⎪⎫12x +3,所以f (-2)=⎝ ⎛⎭⎪⎫12-2+3=4+3=7.8.若函数f (x )=⎩⎪⎨⎪⎧2x,x <0,-2-x,x >0,则函数f (x )的值域是________.【答案】(-1,0)∪(0,1)【解析】由x <0,得0<2x<1;由x >0, ∴-x <0,0<2-x<1, ∴-1<-2-x<0.∴函数f (x )的值域为(-1,0)∪(0,1).] 三、解答题 9.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝ ⎛⎭⎪⎫2,12,其中a >0且a ≠1.(1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.[解] (1)因为函数图象经过点⎝ ⎛⎭⎪⎫2,12, 所以a2-1=12,则a =12.(2)由(1)知函数为f (x )=⎝ ⎛⎭⎪⎫12x -1(x ≥0),由x ≥0,得x -1≥-1.于是0<⎝ ⎛⎭⎪⎫12x -1≤⎝ ⎛⎭⎪⎫12-1=2, 所以函数的值域为(0,2].10.已知f (x )=9x-2×3x+4,x ∈[-1,2]. (1)设t =3x,x ∈[-1,2],求t 的最大值与最小值; (2)求f (x )的最大值与最小值.[解] (1)设t =3x ,∵x ∈[-1,2],函数t =3x在[-1,2]上是增函数,故有13≤t ≤9,故t 的最大值为9,t 的最小值为13.(2)由f (x )=9x -2×3x +4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且13≤t ≤9,故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.【当堂达标素养练】1.函数y =a-|x |(0<a <1)的图象是( )A B C D【答案】A【解析】y =a -|x |=⎝ ⎛⎭⎪⎫1a |x |,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A.2.若a >1,-1<b <0,则函数y =a x+b 的图象一定在( ) A .第一、二、三象限 B .第一、三、四象限 C .第二、三、四象限 D .第一、二、四象限【答案】A【解析】∵a >1,且-1<b <0,故其图象如图所示.3.已知函数y =⎝ ⎛⎭⎪⎫13x在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________. 【答案】12【解析】∵y =⎝ ⎛⎭⎪⎫13x 在R 上为减函数,∴m =⎝ ⎛⎭⎪⎫13-1=3,n =⎝ ⎛⎭⎪⎫13-2=9,故m +n =12. 4.函数f (x )=3x3x +1的值域是________.【答案】(0,1)【解析】函数y =f (x )=3x3x +1,即有3x =-y y -1,由于3x>0,则-y y -1>0,解得0<y <1,值域为(0,1).5.已知函数f (x )=a x+b (a >0,a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的取值范围;(2)若f (x )的图象如图②所示,|f (x )|=m 有且仅有一个实数解,求出m 的范围. [解] (1)由f (x )为减函数可知a 的取值范围为(0,1), 又f (0)=1+b <0,所以b 的取值范围为(-∞,-1). (2)由图②可知,y =|f (x )|的图象如图所示.由图象可知使|f (x )|=m 有且仅有一解的m 值为m =0或m ≥3.6.设函数()3x f x =,且(2)18f a +=,函数()34()ax x g x x R =-∈. (1)求()g x 的解析式;(2)若方程()g x -b=0在 [-2,2]上有两个不同的解,求实数b 的取值范围. 【答案】(1)()24x x g x =-,(2)31,164b ⎡⎫∈⎪⎢⎣⎭【详解】试题分析:(1);本题求函数解析式只需利用指数的运算性质求出a 的值即可, (2)对于同时含有2,x x a a 的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题.试题解析:解:(1)∵()3x f x =,且(2)18f a += ∴⇒∵∴(2)法一:方程为 令,则144t ≤≤ 且方程为在有两个不同的解.设2211()24y t t t =-=--+ ,y b = 两函数图象在1,44⎡⎤⎢⎥⎣⎦内有两个交点由图知31,164b ⎡⎫∈⎪⎢⎣⎭时,方程有两不同解.法二: 方程为 ,令,则144t ≤≤ ∴方程在1,44⎡⎤⎢⎥⎣⎦ 上有两个不同的解.设21(),,44f t t t b t ⎡⎤=-+-∈⎢⎥⎣⎦解得31,164b ⎡⎫∈⎪⎢⎣⎭考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类型(如一次函数,二次函数,指数函数等),就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求分段函数的解析式时,一定要明确自变量的所属范围,以便于选择与之对应的对应关系,避免出错.。

《指数函数的图像与性质》 导学案

《指数函数的图像与性质》 导学案

《指数函数的图像与性质》导学案一、学习目标1、理解指数函数的概念,掌握指数函数的形式。

2、能够通过绘制图像,观察并总结指数函数的性质。

3、运用指数函数的性质解决相关的数学问题。

二、学习重点1、指数函数的概念和形式。

2、指数函数的图像特征。

3、指数函数的单调性、奇偶性等性质。

三、学习难点1、对指数函数底数范围的理解。

2、运用指数函数的性质进行综合运算和实际应用。

四、知识回顾1、正整数指数幂的运算性质:(1)$a^m×a^n = a^{m + n}$($m$,$n$为正整数)(2)$(a^m)^n = a^{mn}$($m$,$n$为正整数)(3)$(ab)^n = a^n b^n$($n$为正整数)2、根式的性质:(1)$\sqrtn{a^n} =\begin{cases} a, & n 为奇数\\|a|,&n 为偶数\end{cases}$(2)$(\sqrtn{a})^n = a$五、新课导入在实际生活中,我们经常会遇到一些增长或衰减的现象,比如细胞的分裂、放射性物质的衰变等。

这些现象都可以用数学中的函数来描述,其中一种常见的函数就是指数函数。

六、指数函数的概念一般地,函数$y = a^x$($a > 0$且$a ≠ 1$)叫做指数函数,其中$x$是自变量,函数的定义域是$R$。

思考:为什么规定$a > 0$且$a ≠ 1$?当$a = 0$时,若$x > 0$,$a^x = 0$;若$x ≤ 0$,$a^x$无意义。

当$a < 0$时,对于$x =\frac{1}{2}$,$\sqrt{a}$在实数范围内无意义。

当$a =1$时,$y =1^x =1$,是一个常数函数,不是指数函数。

七、指数函数的图像我们通过列表、描点、连线的方法来绘制指数函数的图像。

例如,绘制函数$y = 2^x$和$y =(\frac{1}{2})^x$的图像。

|$x$ |$-3$ |$-2$ |$-1$ |$0$ |$1$ |$2$ |$3$ ||||||||||$y = 2^x$ |$\frac{1}{8}$|$\frac{1}{4}$|$\frac{1}{2}$|$1$ |$2$ |$4$ |$8$ ||$y =(\frac{1}{2})^x$ |$8$ |$4$ |$2$ |$1$ |$\frac{1}{2}$|$\frac{1}{4}$|$\frac{1}{8}$|图像如下:通过观察图像,我们可以发现:1、指数函数的图像都过点$(0, 1)$。

指数函数的图像与性质导学案.docx

指数函数的图像与性质导学案.docx

指数函数的图像与性质主备人:陈兆兴 审核人:唐新波 时间:2016年10月20日一、 学习目标:掌握指数函数的图像和性质,进一步体会指数函数的图像和性质 与底数的关系。

二、 定向自学:1、指数函数的图像与性质y - axa>l 0<a<l图 像性质 (1)定义域: (2)值域: (3)过点 ,即当时x 二 吋,y 二 ⑷当x>0时, 当x<0时, ⑷当x>0时,当x<0时,(5)在R 是 函数 (5)在R 是 函数(1 函数V = 6Z r 和9=- 的图像关于对称. 丿2、指数函数y = a x(a>09且心1)中,底数。

对函数图像有什么影响? 三、思考探究:对函数图像有什么影响?1、在同一坐标系中作出y = 2V ,y = 3', y = — y =— J A (2丿 (3丿 的图像,观察底数。

x2、总结:(1) 底数互为倒数吋,图像关于y 轴对称。

(2) 做直线x=l,底数从下往上底数越來越大。

三、典型例题例1:求下列函数的定义域:(1) y = 3、门例2:已知指数函数/(x) = a x(a>0,且QH1)的图象经过点(3,龙),求/(0),/(1),/(-3)的值. (6) 1.703与 0.9九1 丄⑺ 比较小与历的大小,0>0,且4北1.例3:比较下列各题中两个值的大小:的大小:练习:已知下列不等式,比较m,n (1) 1.725与讦 (2)与 (3) OS与 <1<2 1J8 (4) (1) 2W <2M (2) 0.2w >0.2” (3) a w> a" (a > 0且a 丰 1) (5)与(0.2严(四)课堂小结(五)布置作业《练习》1.下列函数中,指数函数的个数是( )/ 2、*①y = 2-3x②歹=3曲③三④y = x2⑤y = 2”—l⑥y = (—3)“(3丿A, 0 B, 1 C, 2 D, 32.( 1 )函数y = 3^ 的定义域是 ________________ , (2)函数),=37-1的定义域是_________________ ,值域是________________ 03.比较大小(1) 0.9" __________ 0.9314(2) 0.2-3 __________ 3七$4.己知a = O.80"7,/? = 0.8°"9,C = 1.2°",则a,/?,c的大小关系是____________________ .5.已知Ovavl"v-1,则函数y = a x + b不经过( )A,第一象限B,第二象限C,第三象限D,第四象限6.函数y = a^(a>i)的图像是( )A, 10" B,—— C, -10' D, --------------------(10丿110丿补充题=—1—的定义域?1.求函数yXz [ \X 2-2X - 的值域为. (3丿2.在[m,n]_h, f(x) = a x(a > 0,且 a Hl)的值域? 四、课堂练习1、 如图是指数函数①y = /,②y = b“,③y = c“,④y = d x的图象,则a,b,c,d 的大小关系是()A. a<b <\<c <dB. b < a <\< d <cC. lcacbcccdD. a<b<\<d <c (1) 4.5"与3.7? .6 (2) 0.5"与0・少 3、已知一lvxvO, 比较3二0.5"的大小,并说明理由。

指数函数导学案

指数函数导学案

2.1.2指数函数及其性质第1课时指数函数的图象及性质问题导学预习课本P54-58,思考以下问题:(1)指数函数的概念是什么?(2)结合指数函数的图象,分别指出指数函数y=a x(a>1)和y=a x(0<a<1)的定义域、值域和单调性各是什么?1.指数函数的定义一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量.■名师点拨指数函数解析式的3个特征(1)底数a为大于0且不等于1的常数.(2)自变量x的位置在指数上,且x的系数是1.(3)a x的系数是1.2.指数函数的图象和性质R(1)底数a与1的大小关系决定了指数函数图象的“升”与“降”.当a>1时,指数函数的图象是“上升”的;当0<a<1时,指数函数的图象是“下降”的.(2)当a>1时,x→-∞,y→0;当0<a<1时,x→+∞,y→0.(其中“x→+∞”的意义是“x 趋近于正无穷大”)判断正误(正确的打“√”,错误的打“×”)(1)指数函数y=a x中,a可以为负数.()(2)指数函数的图象一定在x轴的上方.()(3)函数y=2-x的定义域为{x|x≠0}.()下列函数:①y=(-2)x;②y=2x;③y=2-x;④y=3×2x.其中指数函数的个数为() A.0B.1 C.2 D.4y=⎝⎛⎭⎫34x的图象可能是()若函数y=(a-1)x是指数函数,则a的取值范围是________.若函数f(x)=a x(a>0且a≠1)的图象过点⎝⎛⎭⎫3,18,则f(x)=________.指数函数的概念下列函数中,哪些是指数函数? ①y =(-8)x ;②y =2x 2-1;③y =a x ; ④y =(2a -1)x ⎝⎛⎭⎫a >12,且a ≠1;⑤y =2×3x .(1)判断一个函数是指数函数的方法①看形式:只需判断其解析式是否符合y =a x (a >0,且a ≠1)这一结构特征;②明特征:看是否具备指数函数解析式具有的三个特征.只要有一个特征不具备,则该函数不是指数函数.(2)已知某函数是指数函数求参数值的方法①依据指数函数形式列方程:令底数大于0且不等于1,系数等于1列出不等式与方程; ②求参数值:解不等式与方程求出参数的值.[提醒] 解决指数函数问题时,要特别注意底数大于零且不等于1这一条件.1.若y =(a 2-3a +3)a x 是指数函数,则有( )A .a =1或2B .a =1C .a =2D .a >0且a ≠1 2.指数函数y =f (x )的图象经过点⎝⎛⎭⎫-2,14,那么f (4)·f (2)等于________.指数函数的图象(1)函数y =a x -1a(a >0,且a ≠1)的图象可能是( )(2)函数f (x )=1+a x -2(a >0,且a ≠1)恒过定点________.求解指数函数图象问题的策略(1)抓住特殊点:指数函数的图象过定点(0,1).(2)巧用图象变换:函数图象的平移变换(左右平移、上下平移). (3)利用函数的性质:奇偶性与单调性.1.指数函数①f (x )=m x ,②g (x )=n x 满足不等式0<m <n <1,则它们的图象是( )2.已知0<a <1,b <-1,则函数y =a x +b 的图象必定不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限指数型函数的定义域、值域问题(1)函数y =⎝⎛⎭⎫132x -1-27的定义域是( )A .[-2,+∞)B .[-1,+∞)C .(-∞,-1]D .(-∞,-2](2)已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( ) A .[9,81] B .[3,9] C .[1,9]D .[1,+∞)(3)函数f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值为________.函数y =a f (x )的定义域与值域的求法(1)形如y =a f (x )的函数的定义域就是f (x )的定义域.(2)形如y =a f (x )的值域,应先求出f (x )的值域,再由函数的单调性求出a f (x )的值域.若a 的取值范围不确定,则需对a 进行分类讨论.(3)形如y =f (a x )的值域,要先求出u =a x 的值域,再结合y =f (u )确定出y =f (a x )的值域.求下列函数的定义域和值域.(1)y =1-2x ; (2)y =⎝⎛⎭⎫12x 2-2x -3.。

《指数函数的图像和性质》教学设计、导学案、同步练习

《指数函数的图像和性质》教学设计、导学案、同步练习

第四章指数函数与对数函数《4.2.2指数函数的图像和性质》教学设计【教材分析】本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.2.2节《指数函数的图像和性质》。

从内容上看它是学生学习了一次函数、二次函数、反比例函数,以及函数性质基础上,通过实际问题的探究,建立的第四个函数模型。

其研究和学习过程,与先前的研究过程类似。

先由实际问题探究,建立指数函数的模型和概念,再画函数图像,然后借助函数图像讨论函数的性质,最后应用建立的指数函数模型解决问题。

体现了研究函数的一般方法,让学生充分感受,数学建模、直观想象、及由特殊到一般的思想方法。

【教学目标与核心素养】【教学重难点】教学重点:指数函数的图象和性质。

教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质及其应用。

【教学过程】(一)、创设问题情境你能说说研究函数的一般步骤和方法吗? (二)、探索新知问题1 用描点法作函数1.列表2.描点3.连线.用描点法作函数观察这四个图像有何特点?问题1:图象分别在哪几个象限?问题2:图象的上升、下降与底数a 有联系吗? 问题3:图象有哪些特殊的点? 问题4:图象定义域和值域范围?指数函数的图像与性质 图 象定义域 值域 性 质过定点 非奇非偶 在R 上是在R 上是(三)典例解析例3:说出下列各题中两个值的大小:(1)1.72.5__1.73;(2)0.8—1__0.8—2;(3)1.70.5__0.82.5开门见山,通过对函数研究的一般方法回顾,提出研究方法。

培养和发展逻辑推理和数学建模的核心素养。

探究问题:问题1.通过对特殊的指数函数图像观察,归纳出指数函数的性质;发展学生数学抽象、数学建模和逻辑推理等核心素养;x xy =2y =3.和的图象⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭xx11y =y =.23和的图象解:①∵函数y=1.7x在R上是增函数,又∵2.5<3,∴1.72.5<1.73②∵函数y=0.8x在R上是减函数,又∵-1>-2,∴0.8—1<0.8—2③∵1.70.5>1.70=1=0.80>0.82.5,∴1.70.5>0.82.5[规律方法] 比较幂的大小的方法1同底数幂比较大小时构造指数函数,根据其单调性比较2指数相同底数不同时分别画出以两幂底数为底数的指数函数图象,当x取相同幂指数时可观察出函数值的大小3底数、指数都不相同时,取与其中一底数相同与另一指数相同的幂与两数比较,或借助“1”与两数比较4当底数含参数时,要按底数a>1和0<a<1两种情况分类讨论例4:如图,某城市人口呈指数增长.(1)根据图象,估计该城市人口每翻一番所需的时间(倍增期);(2)该城市人口从80万人开始,经过20年会增长到多少万人?分析:(1)因为该城市人口呈指数增长,而同一指数函数的倍增期是相同的,所以可以从图象中选取适当的点计算倍增期.(2)要计算20年后的人口数,关键是要找到20年与倍增期的数量关系.5.设f (x )=3x,g (x )=⎝ ⎛⎭⎪⎫13x.(1)在同一坐标系中作出f (x ),g (x )的图象;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论?【答案】 (1)函数f (x ),g (x )的图象如图所示: (2)f (1)=31=3,g (-1)=⎝ ⎛⎭⎪⎫13-1=3,f (π)=3π,g (-π)=⎝ ⎛⎭⎪⎫13-π=3π, f (m )=3m,g (-m )=⎝ ⎛⎭⎪⎫13-m=3m .从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y 轴对称.6.已知函数f (x )=a x (a >0且a ≠1)的图象经过点⎝ ⎛⎭⎪⎫2,19.(1)比较f (2)与f (b 2+2)的大小; (2)求函数g (x )=ax 2-2x (x ≥0)的值域.【答案】 (1)由已知得a 2=19,解得a =13,因为f (x )=⎝ ⎛⎭⎪⎫13x在R 上递减,则2≤b 2+2,所以f (2)≥f (b 2+2).(2)因为x ≥0,所以x 2-2x ≥-1,所以⎝ ⎛⎭⎪⎫13x 2-2x ≤3,即函数g (x )=ax 2-2x(x ≥0)的值域为(0,3].《4.2.2 指数函数的图像和性质》导学案【学习目标】1.理解指数函数的概念和意义,会画指数函数的图像。

指数函数的图象和性质 教案

指数函数的图象和性质 教案

4.4.2 指数函数的图象与性质教学目标1.掌握指数函数的图象变换.2.熟悉指数函数与其他函数的复合函数的处理方法.3.熟悉指数函数在实际问题中的应用教学重点:1.指数函数的图象与底数的关系.2.指数函数的图象变换与参数的关系,特殊点在图象变换中的作用.3.复合函数的单调性、定义域与值域问题的处理方法.4.指数函数性质的应用.教学难点:1.指数函数的图象与底数关系的直观理解与严格证明.2.参数在图象变换(平移、翻转)中的作用,数形结合方法的进一步渗透.3.复合函数相关问题中各种函数性质的综合应用.教学过程:一、核心概念知识点一、不同底指数函数图象的相对位置指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系如图所示,则0<c<d<1<a<b.在y轴右侧,图象从上到下相应的底数由变;在y轴左侧,图象从下到上相应的底数由变;即无论在y轴的左侧还是右侧,底数按逆时针方向递增.知识点二、函数图象的对称和变换规律一般地,把函数y=f(x)的图象向右平移m个单位得函数y=f(x-m)的图象(m∈R,若m<0就是向左平移|m|个单位);把函数y=f(x)的图象向上平移n个单位,得到函数y=f(x)+n的图象(n∈R,若n<0,就是向下平移|n|个单位).函数y=f(x)的图象与y=f(-x)的图象关于y轴对称,函数y=f(x)的图象与函数y=-f(x)的图象关于x 轴对称,函数y =f (x )的图象与函数y =-f (-x )的图象关于原点对称.函数y =f (|x |)的图象是关于y 轴对称的,所以只要先把y 轴右边的图象保留,y 轴左边的图象删去,再将y 轴右边部分关于y 轴对称得y 轴左边图象,就得到了y =f (|x |)的图象. 知识点三、与指数函数复合的函数单调性(1)关于指数型函数y =a f (x )(a >0,且a ≠1)的单调性由两点决定,一是底数a >1还是0<a <1;二是f (x )的单调性.它由两个函数, 复合而成.(2)若y =f (u ),u =g (x ),则函数y =f [g (x )]的单调性有如下特点:过考查f (u )和g (x )的单调性,求出y =f [g (x )]的单调性.二、评价自测1.判一判(正确的打“√”,错误的打“×”)(1)3-1.8>3-2.5.( ) (2)7-0.5<8-0.5.( )(3)6-0.8<70.7.( )答案:(1)√、(2)×、(3)√2.做一做(请把正确的答案写在横线上) (1)如果57xx aa (a >0,且a ≠1),当a >1时,x 的取值范围是__________;当0<a <1时,x 的取值范围是________.(2)满足31()4x 的x 的取值范围是________.(3)某种细菌在培养的过程中,每15分钟分裂一次(由一个分裂成两个),则这种细菌由一个分裂成4096个需经过________小时.答案:(1)7(,)6,7(,)6、(2)(,1)、(3)3三、典例分析题型一 指数函数的图象变换例1利用函数f (x )=⎝⎛⎭⎫12x 的图象,作出下列各函数的图象:(1)f (x -1);(2)-f (x );(3)f (-x ).【答案】作出f (x )=⎝⎛⎭⎫12x的图象,如图所示:(1)f (x -1)的图象:需将f (x )的图象向右平移1个单位长度得f (x -1)的图象,如下图(1). (2)-f (x )的图象:作f (x )的图象关于x 轴对称的图象得-f (x )的图象,如下图(2). (3)f (-x )的图象:作f (x )的图象关于y 轴对称的图象得f (-x )的图象,如下图(3).金版点睛:作与指数函数有关的图象应注意的问题(1)作与指数函数有关的函数图象,只需利用指数函数的图象作平移变换或对称变换即可,值得注意的是作图前要探究函数的定义域和值域,掌握图象的大致趋势.(2)利用熟悉的函数图象作图,主要运用图象的平移、对称等变换,平移需分清楚向何方向移,要移多少个单位,如本例(1);对称需分清对称轴是什么,如本例(2)(3). 跟踪训练1画出函数y =2|x -1|的图象,并根据图象指出这个函数的一些重要性质. 【答案】y =2|x -1|=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝⎛⎭⎫12x -1,x <1.其图象是由两部分组成的:一是把y =2x 的图象向右平移1个单位长度,取x ≥1的部分;二是把y =⎝⎛⎭⎫12x的图象向右平移1个单位长度,取x <1的部分,如图中实线部分所示.由图象可知,函数有三个重要性质:①对称性:图象的对称轴为直线x =1;②单调性:在(-∞,1]上单调递减,在[1,+∞)上单调递增; ③函数的值域:[1,+∞).题型二 利用指数函数的单调性比较大小 例2比较下列各题中两个值的大小:(1)1.7-2.5,1.7-3;(2)1.70.3,1.50.3;(3)1.70.3,0.83.1.【答案】 (1)∵1.7>1.∴y =1.7x 在(-∞,+∞)上是增函数. ∵-2.5>-3,∴1.7-2.5>1.7-3.(2)解法一:∵1.7>1.5,∴在(0,+∞)上,y =1.7x 的图象位于y =1.5x 的图象的上方.而0.3>0, ∴1.70.3>1.50.3. 解法二:∵1.50.3>0,且1.70.31.50.3=⎝⎛⎭⎫1.71.50.3, 又1.71.5>1,0.3>0,∴⎝⎛⎭⎫1.71.50.3>1, ∴1.70.3>1.50.3.(3)∵1.70.3>1.70=1,0.83.1<0.80=1, ∴1.70.3>0.83.1.金版点睛:比较函数值大小的常用方法(1)利用函数单调性比较,此法用于可化为同底的式子.(2)对于底数不同,指数相同的两个幂值比较大小,可利用指数函数的图象的变化规律来判断.(3)当底数不同,指数也不同时,采用中间值法,即当两个数不易比较时,可找介于两值中间且与两数都能比较大小的一个值,进而利用中间值解决问题.跟踪训练2比较下列各题中的两个值的大小. (1)0.8-0.1,1.250.2;(2)⎝⎛⎭⎫1π-π,1.【答案】 (1)∵0<0.8<1,∴y =0.8x 在R 上是减函数.∵-0.2<-0.1,∴0.8-0.2>0.8-0.1,又∵0.8-0.2=1.250.2∴0.8-0.1<1.250.2.(2)∵0<1π<1,∴函数y =⎝⎛⎭⎫1πx 在R 上是减函数. 又∵-π<0,∴⎝⎛⎭⎫1π-π>⎝⎛⎭⎫1π0=1,即⎝⎛⎭⎫1π-π>1.题型三解简单的指数不等式 例3设0<a <1,解关于x 的不等式22232223x x xx aa .【答案】∵0<a <1,∴y =a x 在R 上是减函数.又∵22232223x x xx aa ,∴2x 2-3x +2<2x 2+2x -3,解得x >1. ∴不等式的解集是(1,+∞).金版点睛:解指数型函数不等式的依据解a f (x )>a g (x )(a >0,且a ≠1)此类不等式主要依据指数函数的单调性,它的一般步骤为:跟踪训练3求满足下列条件的x 的取值范围:(1)139x x ; (2)0.225x0.2x <25; (3)57xx aa (0a ,且1a).【答案】 (1)∵3x -1>9x ,∴3x -1>32x ,又y =3x 在定义域R 上是增函数, ∴x -1>2x ,∴x <-1,即x 的取值范围是(-∞,-1).(2)∵0<0.2<1,∴指数函数f (x )=0.2x 在R 上是减函数.又25=0.2-2,∴0.2x <0.2-2,∴x >-2,即x 的取值范围是(-2,+∞). (3)当a >1时,∵a-5x<a x -7,∴-5x <x -7,解得x >76;当0<a <1时,∵a -5x<a x -7,∴-5x >x -7,解得x <76.综上所述,当a >1时,x 的取值范围是⎝⎛⎭⎫76,+∞;当0<a <1时,x 的取值范围是⎝⎛⎭⎫-∞,76. 题型四 指数函数性质的综合应用 例4已知函数f (x )=a -12x +1(x ∈R ).(1)用定义证明:不论a 为何实数,f (x )在(-∞,+∞)上为增函数; (2)若f (x )为奇函数,求a 的值;(3)在(2)的条件下,求f (x )在区间[1,5]上的最小值. 【答案】 (1)证明:∵()f x 的定义域为R ,任取12x x ,则121212121122()()2121(21)(21)x x x x x x f x f x aa, ∵12x x , ∴1212220,(21)(21)0xx x x , ∴12()()0f x f x ,即12()()f x f x ,∴不论a 为何实数,()f x 总为增函数. (2)∵f (x )在x ∈R 上为奇函数, ∴f (0)=0,即a -120+1=0,解得a =12.(3)由(2)知,f (x )=12-12x +1,由(1)知,f (x )为增函数,∴f (x )在区间[1,5]上的最小值为f (1). ∵f (1)=12-13=16,∴f (x )在区间[1,5]上的最小值为16.金版点睛:复合函数的单调性问题函数y =f (a x )的单调区间既要考虑f (x )的单调区间,又要讨论a 的取值范围:当a >1时,函数y =f (a x )与函数f (x )的单调性相同;当0<a <1时,函数y =f (a x )与函数f (x )的单调性相反.但在证明过程中,仍应严格按照定义证明. 跟踪训练4已知函数f (x )=3x -13x +1.(1)证明:f (x )为奇函数;(2)判断f (x )的单调性,并用定义加以证明. 【答案】 (1)证明:由题知f (x )的定义域为R .f (-x )=3-x -13-x +1=(3-x -1)·3x (3-x +1)·3x =1-3x1+3x =-f (x ),所以f (x )为奇函数. (2)f (x )在定义域上是增函数.证明如下:任取x 1,x 2∈R ,且x 1<x 2, 则2121212112213131222(33)()()(1)(1)31313131(31)(31)x x x x x x x x x x f x f x , ∵12x x , ∴2112330,310,310xx x x ,∴21()()f x f x ,∴()f x 为R 上的增函数.四、随堂练习1.下列判断正确的是( )A .2.52.5>2.53B .0.82<0.83C .22D .0.90.3>0.90.5答案:D解析:因为函数y =0.9x 在R 上为减函数,所以0.90.3>0.90.5.2.若213211()()22aa a,则实数a 的取值范围是( )A .(1,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,1) D.⎝⎛⎭⎫-∞,12 答案:B解析:函数y =⎝⎛⎭⎫12x 在R 上为减函数,∴2a +1>3-2a ,∴a >12.3.设13<⎝⎛⎭⎫13b <⎝⎛⎭⎫13a <1,则( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a答案:C解析:由已知条件得0<a <b <1,∴a b <a a ,a a <b a ,∴a b <a a <b a .4.函数11()2x y的单调增区间为( ) A .(-∞,+∞) B .(0,+∞) C .(1,+∞) D .(0,1)答案:A解析:设t =1-x ,则y =⎝⎛⎭⎫12t,则函数t =1-x 的递减区间为(-∞,+∞),即为y =⎝⎛⎭⎫121-x的递增区间.5.已知函数y =a 2x +2a x -1(a >0,且a ≠1),当x ≥0时,求函数f (x )的值域.解:y =a 2x +2a x -1,令t =a x ,则y =g (t )=t 2+2t -1=(t +1)2-2. 当a >1时,∵x ≥0,∴t ≥1, ∴当a >1时,y ≥2.当0<a <1时,∵x ≥0,∴0<t ≤1. ∵g (0)=-1,g (1)=2, ∴当0<a <1时,-1<y ≤2.综上所述,当a >1时,函数的值域是[2,+∞); 当0<a <1时,函数的值域是(-1,2].。

指数函数的概念指数函数的图象和性质第2课时 指数函数y=ax(0<a<1)的图象和性质 导学案

指数函数的概念指数函数的图象和性质第2课时 指数函数y=ax(0<a<1)的图象和性质 导学案

第2课时 指数函数y=a x (0<a<1)的图象和性质◆ 知识点一 指数函数的图象和性质函数y=a x (a>1)y=a x (0<a<1)图象性 质定义域 R值域过定点单调性 在R 上为 在R 上为 函数值 变化当x>0时,y>1 当x>0时, 当x<0时,0<y<1当x<0时,◆ 知识点二 指数函数y=a x 与y=b x (0<a<b<1)的特点如图.(1)当x<0时,a x >b x >1; (2)当x=0时,a x =b x =1; (3)当x>0时,0<a x <b x <1.【诊断分析】 判断正误.(请在括号中打“√”或“×”) (1)将函数y=(12)x的图象向右平移1个单位长度,即得到函数y=(12)x -1的图象. ()(2)(12)x <(13)x.( )(3)若a 2<a -1(a>0,且a ≠1),则y=a x 在R 上为减函数. ()◆ 探究点一 比较大小例1 (1)已知a=0.92,b=270.8,c=√243,则a ,b ,c 的大小关系为( )A .a<b<cB .a<c<bC .c<a<bD .b<a<c(2)比较下列各组中两个数的大小:①0.8-0.1与0.8-0.2;②(1π)2与(13)-1.3.变式 (多选题)[2024·江西赣州高一期中] 若a=20.6,b=40.4,c=0.20.8,则( )A .b>aB .a>bC .a>cD .ab>c[素养小结]对于两个相同底数的式子,要利用相应指数函数的单调性,通过自变量的大小关系直接判断相应函数值的大小;当两个式子不能化为相同底数时,我们可以找到一个中间值,将这两个数分别与中间值进行比较,常用的中间值有0,1等.拓展 (1)关于x 的不等式10·(12)x -(14)x>16的解集为 .(2)如果a -5x >a x+7(0<a<1),那么x 的取值范围为 .◆ 探究点二 指数函数图象的识别与应用例2 函数y=3x ,y=5x,y=(14)x在同一平面直角坐标系中的大致图象是 ()变式 已知y 1=(13)x,y 2=3x ,y 3=10-x ,y 4=10x ,则在同一平面直角坐标系内,它们的大致图象为( )ABCD[素养小结](1)不同底数的指数函数的图象在同一平面直角坐标系中的相对位置关系是:在y 轴右侧的图象从下到上相应的底数由小变大;在y 轴左侧的图象从下到上相应的底数由大变小. (2)对于指数函数y=a x (a>0,a ≠1),其图象一定出现在x 轴上方.若指数型函数的图象出现在x 轴下方或与x 轴相切,则可以通过平移变换和对称变换实现.拓展 直线y=2a 与函数y=|a x -1|(a>0且a ≠1)的图象有两个公共点,则实数a 的取值范围是 .第2课时 指数函数y=a x (0<a<1)的图象和性质【课前预习】知识点一(0,+∞) (0,1) 增函数 减函数 0<y<1 y>1知识点二诊断分析(1)√ (2)× (3)√ [解析] (1)函数y=(12)x 的图象向右平移1个单位长度得到函数y=(12)x -1的图象.(2)当x>0时,有(12)x >(13)x ;当x=0时,有(12)x =(13)x =1;当x<0时,有(12)x <(13)x.(3)因为2>-1,a 2<a -1(a>0,且a ≠1),所以0<a<1,y=a x 在R 上为减函数. 【课中探究】探究点一例1 (1)A [解析] 因为y=3x为增函数,所以c=√243=352>32.4=270.8=b ,即b<c.又a=0.92<0.90=1=270<270.8=b ,即a<b ,所以a<b<c.故选A .(2)解:①因为0<0.8<1,所以指数函数y=0.8x 在R 上是减函数,又-0.1>-0.2,所以0.8-0.1<0.8-0.2.②因为(1π)2<1,(13)-1.3>1,所以(1π)2<(13)-1.3.变式 ACD [解析] 因为a=20.6>20=1,b=40.4=(22)0.4=20.8>20.6=a ,c=0.20.8<0.20=1,且c>0,所以b>a>1>c>0,且ab>c.故选ACD .拓展 (1)(-3,-1) (2)(-76,+∞) [解析] (1)由题知(14)x-10·(12)x+16<0,整理得[(12)x]2-10·(12)x+16<0,即[(12)x-8][(12)x-2]<0,可得2<(12)x<8,即(12)-1<(12)x<(12)-3,解得-3<x<-1.(2)当0<a<1时,y=a x 在R 上是减函数,∵a -5x >a x+7,∴-5x<x+7,解得x>-76,即x 的取值范围是(-76,+∞).探究点二例2 B [解析] 函数y=3x ,y=5x 是R 上的增函数,其图象都是上升的,排除C,D;在第一象限内,底数越大的指数函数的图象越靠近y 轴,排除A .故选B .变式 A [解析] y 2=3x与y 4=10x在R 上为增函数,y 1=(13)x与y 3=10-x=(110)x在R 上为减函数.在第一象限内作直线x=1,该直线与四条曲线交点的纵坐标对应各底数,则从上到下各点的纵坐标对应的底数依次为10,3,13,110,故选A .拓展 0<a<12[解析] 当a>1时,在同一平面直角坐标系中作出直线y=2a 和函数y=|a x -1|的图象(如图①),由图象可知,直线y=2a 与函数y=|a x -1|的图象只能有一个公共点,此时不满足题意.当0<a<1时,作出直线y=2a 和函数y=|a x -1|的图象(如图②),若直线y=2a 与函数y=|a x -1|的图象有两个交点,则由图象可知0<2a<1,所以0<a<12.故实数a 的取值范围是0<a<12.。

指数函数的图像与性质学案

指数函数的图像与性质学案

2.1.2 指数函数及其性质学案(一)【学习目标】1.理解指数函数的概念与意义;2.能画出具体的指数函数的图象,通过图象探究指数函数的性质;3.掌握指数函数的性质的简单应用指数函数概念问题1: 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……. 1个这样的细胞分裂 x 次后, 得到的细胞个数 y 与 x 的函数关系是什么?问题2: 一尺之棰,日取其半,万世不竭。

(出自《庄子 天下篇》)已知一把尺子第一次截去它的一半,第二次截去剩余部分的一半,第三次截去第二次剩余部分的一半,依次下去,问截的次数x 与剩余尺子长度y 之间的函数关系如何?(假设原来长度为1个单位)问题3:两个函数的解析式有何共同特征?问题4:指数函数定义中为什么规定a >0且a≠1呢?如果不这样规定会出现什么情况呢?例1.下列函数中,哪些是指数函数?x y 4=4x y =x y 4-=14+=x y指数函数的图象、性质 (1)列表、描点、作图象x x y 2= x y )21(= 图象 x y 2= x y )21(= 2-y O x 5.1-1-5.0-5.015.12(2)两个图象的关系函数x y 2=与x y )21(=的图象,都经过定点 ,它们的图象关于 对称.通过图象的上升和下降可以看出, 是定义域上的增函数, 是定义域上的减函数.(3)类比以上函数的图象,总结函数性质,填写下列表格:10<<a 1>a图象定义域值域性质指数函数性质应用例2 比较下列各题中两个值的大小:(1)5.27.1,37.1; (2)1.08.0-,2.08.0-; (3)3.07.1,1.39.0.拓展 迁移:已知下列不等式 , 比较 m,n 的大小 :1. 2. 3.小结归纳,拓展深化(1)通过本节课的学习,你学到了哪些知识 ?(2)你又掌握了哪些研究数学的学习方法?布置作业,提高升华(1)必做题 :课本P59,A 组5、7(2)选做题: 课本P60,B 组4n m 22<n m 2.02.0>)10(≠>>a a a a n m 且。

公开课:指数函数的图像与性质导学案

公开课:指数函数的图像与性质导学案

公开课:指数函数的图像与性质导学案(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--指数函数及其图像与性质(导学案)老师寄语:聪明的你一定能从本节课学到新的知识,得到新的提高!一、学习目标:1、理解指数函数的概念和意义,注意底数的取值范围及指数函数的定义域。

2、掌握指数函数的图像和性质,会用指数函数的性质解决一些简单的问题。

二、学习过程:(一)引入:游戏情境,学生动手折纸,将一张长方形的纸对折,请观察: 问题1.对折的次数x 与所得的层数y 之间有什么关系函数关系是问题2.对折的次数x 与折叠后小矩形面积y 之间有什么关系(记折前纸张面积为1)函数关系是 思考:上面两个函数关系式有什么共同特征? (二)指数函数的概念:一般地,函数 叫做指数函数,其中x 是自变量,函数的定义域是 。

思考1:为什么规定1,0≠>a a 且呢否则会出现什么情况呢 ①若0<a ,会有什么问题②若0=a ,会有什么问题?③若1=a ,又会怎样?思考2:指数函数的解析式有什么特点?练一练:指出下列函数哪些是指数函数:(1)xy π=;(2)x y )4(-=;(3)3x y =;(4)x y -=3 (5)x y 32⋅=;(6)41xy =+总结指数函数的解析式具有的三个结构特征:(三)指数函数x y a =(a>0且1a ≠)的图像和性质1、分组画函数2x y =和1()2x y =、3x y =和1()3x y =的图像。

ox观察图像并思考:1.函数图像都在x 轴的 ,向上 ______ ,向下 ________ ; 2.函数图像都经过点 ; 3.函数2x y =和3x y =的图像自左至右呈 趋势; 函数1()2x y =和1()3x y =的图像自左至右呈 趋势.2、指数函数x y a =(a>0且1a ≠)的图像和性质:a >1 0<a <1图像定义域 值域 过定点单调性3、例题示范:例1:已知指数函数()x f x a =的图像经过点(2,16),求(0)f ,(3)f 的值练习:已知指数函数()f x 的图像经过点(13,8-),则(2)_______f =。

指数函数的图像和性质

指数函数的图像和性质
板书答案,点评时根据图像分 析 板书答案,点评时根据图像分 析 板书答案,点评时根据图像分 析
2B2
1x y( ) 观察右边图象,回答下列问题:1 ) x 3 y( 2 问题一:
y=3X
图象分别在哪几个象限? 答:四个图象都在第____象限 Ⅰ、Ⅱ
Y
y = 2x
问题二: O 图象的上升、下降与底数a有联系吗?
图 象ቤተ መጻሕፍቲ ባይዱ
(0,1)
O
定义域 R 定义域 定义域 R R 值域(0,+∞) 值域(0,+∞) 值域(0,+∞) 性 过定点(0,1) 过定点(0,1) 过定点(0,1) 质 在R上是增函数 在R上是减函数
x
x
1、定义: 函数y = ax(a0,且a 1)叫做指数函数。
思考:为何规定a0,且a1?
当a0时,ax有些会没有意义,如(-2) 等都没有意义;
1 2
,0

1 2
而当a=1时,函数值y恒等于1,没有研究的必要.
是指数函 数吗?
y - 3) (
x
用描点法作函数 2 和y 3 的图象 y .
x x
二 、 指 数 函 数 的 图 像
x
y=2x y=3x


-3
1/8
-2
1/4 1/9
-1
1/2 1/3
x
0
1 1
1
2 3
2
4 9
3
8 27

… …
… 1/27
yy 3
y 2x
1
-3 -2 -1
o
1
2
3
x
指 数 函 数 的 图 像
1 x 1 x 用描点法作函数 y ( ) 和y ( ) 的图象 . 2 3

《指数函数的图像和性质》第2课时导学案

《指数函数的图像和性质》第2课时导学案

课题:4.2.2《指数函数的图像和性质 》(第2课时)导学案命制人: 审核人: 使用人: 高一全体学生 使用日期:学习目标:1.能用指数函数的图像研究函数的值域和单调性。

2.能运用指数函数的图像和性质解决有关数学问题。

任务一:知识回顾底数a 的范围10<<a 1>a图象性质 定义域 值域 过定点单调性 任务二:知识应用题型一:求指数型函数的定义域例1.函数121x x y -=-的定义域是( )A .RB .{}|1x x ≠C .{}|0x x ≠D .{|0x x ≠且}1x ≠练习1函数()39x f x =-的定义域为练习2函数()112xf x ⎛⎫=- ⎪⎝⎭的定义域为 练习3函数()1182102xf x x ⎛⎫=+- ⎪+⎝⎭的定义域为 题型二:求值域和最值例2.函数()[]1,0,22xf x x ⎛⎫=∈ ⎪⎝⎭,则()f x 的值域是 练习1函数3x y =+1在1,22⎡⎤⎢⎥⎣⎦上的最小值是 . 练习2求函数12xy ⎛⎫= ⎪⎝⎭-2,[]1,3x ∈的最大值与最小值。

例3.已知函数()1,02,0x x f x xa x ⎧<⎪=⎨⎪-≥⎩的值域为R ,则实数a 的取值范围是 . 练习1函数4,104,023x x x y x ⎧-≤≤⎪=⎨⎛⎫<≤⎪ ⎪⎝⎭⎩的值域为 . 例4.函数3132x x y -=-的值域是 . 练习1求函数2121x x y -=+的值域 例5.已知函数()2234x x f x +=-⨯定义域为[]1,1x ∈-,则()f x 的最大值和最小值分别是( )A .2,03B .4,13C .45,34D .log3,1题型三指数型函数的单调性与最值例6.函数y =13x 的单调递减区间是( )A.(-∞,+∞)B.(-∞,0)C.(0,+∞)D.(-∞,0)和(0,+∞)练习1函数的单调递增区间是 . 练习2函数y=a x 在[0,1]上的最大值与最小值的和为3,则a=________________.任务三:能力提高1.若且 求 的取值范围. 2.(多选)已知实数满足等式 ,则下列关系式中,可能成立的关系式有( ) A. B. C. D.3.若函数 则不等式 的解集为 .4.函数1423x x y +=-+的定义域为[]1,1x ∈-,求函数的值域.5.已知函数. (1)若,求 的单调区间; (2)若的最大值为3,求实数 的值; (3)若的值域是 ,求实数 的值.作业布置:课本习题4.2的1.3.6题及同步练习册。

《指数函数的图像和性质》教案、导学案与同步练习

《指数函数的图像和性质》教案、导学案与同步练习

《第四章 指数函数与对数函数》 《4.2.2指数函数的图像和性质》教案【教材分析】本节课在已学指数函数的概念,接着研究指数函数的图像和性质,从而深化学生对指数函数的理解,并且了解较为全面的研究函数的方法,为以后在研究对数函数幂函数等其它函数打下基础。

另外,我们日常生活中的很多方面都涉及到了指数函数的知识,例如细胞分裂,放射性物质衰变,贷款利率等,所以学习这一节具有很大的现实价值。

【教学目标与核心素养】 课程目标1、掌握指数函数的图象和性质,培养学生实际应用函数的能力;2、通过观察图象,分析、归纳、总结指数函数的性质;3、在指数函数的学习过程中,体验数学的科学价值并养成勇于探索的良好习惯.数学学科素养1.数学抽象:指数函数的图像与性质;2.逻辑推理:图像平移问题;3.数学运算:求函数的定义域与值域;4.数据分析:利用指数函数的性质比较两个函数值的大小:5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结指数函数性质.【教学重难点】重点:指数函数的图象和性质;难点:对底数的分类,如何由图象、解析式归纳指数函数的性质. 【教学方法】:以学生为主体,采用诱思探究式教学,精讲多练。

【教学过程】 一、情景导入请学生用三点画图法画图像,观察两个函数图像猜测指数函12,()2x x y y ==数有哪些性质?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本116-117页,思考并完成以下问题1.结合指数函数的图象,可归纳出指数函数具有哪些性质?2.指数函数的图象过哪个定点?如何求指数型函数的定义域和值域问题?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1、指数函数的图象和性质四、典例分析、举一反三题型一指数函数的图象问题题点一:指数型函数过定点问题例1函数y=a x-3+3(a>0,且a≠1)的图象过定点________.【答案】(3,4)【解析】因为指数函数y=a x(a>0,且a≠1)的图象过定点(0,1),所以在函数y=a x-3+3中,令x-3=0,得x=3,此时y=1+3=4,即函数y=a x-3+3的图象过定点(3,4).题点二:指数型函数图象中数据判断例2函数f(x)=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D.0<a <1,b <0【答案】D【解析】从曲线的变化趋势,可以得到函数f(x)为减函数,从而有0<a <1;从曲线位置看,是由函数y =a x (0<a <1)的图象向左平移|-b|个单位长度得到,所以-b >0,即b <0.题点三:作指数型函数的图象例3画出下列函数的图象,并说明它们是由函数f(x)=2x 的图象经过怎样的变换得到的.(1)y =2x +1;(2)y =-2x .【答案】见解析【解析】如图.(1)y =2x +1的图象是由y =2x 的图象向上平移1个单位长度得到的;(2)y =-2x 的图象与y =2x 的图象关于x 轴对称. 解题技巧:(指数函数的图像问题)1.指数函数在同一平面直角坐标系中的图象的相对位置与底数大小的关系:在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从上到下相应的底数由小变大.无论指数函数的底数a 如何变化,指数函数y=ax(a>0,且a≠1)的图象与直线x=1相交于点(1,a),因此,直线x=1与各图象交点的纵坐标即为底数,由此可得底数的大小.2.因为函数y=ax 的图象恒过点(0,1),所以对于函数f(x)=kag(x)+b(k,a,b 均为常数,且k≠0,a>0,且a≠1).若g(m)=0,则f(x)的图象过定点(m,k+b).3.指数函数y=ax 与y=(1a )x(a>0,且a≠1)的图象关于y 轴对称.4.处理函数图象问题的常用方法:一是抓住图象上的特殊点;二是利用图象的变换;三是利用函数的奇偶性与单调性.跟踪训练一1、如图是指数函数:①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d 与1的大小关系是( )A.a<b<1<c<dB.b<a<1<d<cC.1<a<b<c<dD.a<b<1<d<c2、已知函数f(x)=a x+1+3的图象一定过点P,则点P 的坐标是 .3、函数y=的图象有什么特征?你能根据图象指出其值域和单调区间吗?【答案】1.B2.(-1,4)3.原函数的图象关于y 轴对称.由图象可知值域是(0,1],单调递增区间是(-∞,0],单调递减区间是(0,+∞).【解析】1、解析:(方法一)①②中函数的底数小于1且大于0,在y 轴右边,底数越小,图象向下越靠近x 轴,故有b<a,③④中函数的底数大于1,在y 轴右边,底数越大, 图象向上越靠近y 轴,故有d<c.故选B.(方法二)作直线x=1,与函数①,②,③,④的图象分别交于A,B,C,D 四点, 将x=1代入各个函数可得函数值等于底数值, 所以交点的纵坐标越大,则对应函数的底数越大. 由图可知b<a<1<d<c.故选B. 答案:B2、解析:∵当x+1=0,即x=-1时,f(x)=a 0+3=4恒成立,故函数f(x)=a x+1+3恒过(-1,4)点.3、解:∵y=(12)|x|={(12)x,x≥0,(12)-x ,x<0,∴其图象由y=(12)x(x≥0)和y=2x (x<0)的图象合并而成.||1()2x而y=(12)x(x>0)和y=2x(x<0)的图象关于y 轴对称,所以原函数的图象关于y轴对称.由图象可知值域是(0,1],单调递增区间是(-∞,0],单调递减区间是(0,+∞).题型二指数函数的性质及其应用 题点一:比较两个函数值的大小 例4比较下列各题中两个值的大小: (1)1.72.5与1.73 (2)0.8−√2与0.8−√3 (3)1.70.3与0.93.1【答案】(1)1.72.5<1.73(2)0.8−√2<0.8−√3(3)1.70.3>0.93.1【解析】(1)(单调性法)由于1.72.5与1.73的底数是1.7,故构造函数y=1.7x,而函数y=1.7x在R 上是增函数.又2.5<3,∴1.72.5<1.73(2)(单调性法)由于0.8−√2与0.8−√3的底数是0.8,故构造函数y=0.8x,而函数y=0.8x在R 上是减函数.又0.8−√2<0.8−√3(3)(中间量法)由指数函数的性质,知0.93.1<0.90=1,1.70.3>1.70=1,则1.70.3>0.93.1题点二:指数函数的定义域与值域问题 例5求下列函数的定义域与值域 (1)y=21x−4; (2)y=(23)-|x|.【答案】(1)定义域为{x|x ∈R,且x≠4},值域为(0,1)∪(1,+∞). (2)定义域为R,值域为[1,+∞). 【解析】(1)∵由x-4≠0,得x≠4,∴函数的定义域为{x|x ∈R,且x≠4}.∵1x−4≠0,∴21x−4≠1.∴y=21x−4的值域为(0,1)∪(1,+∞).(2)函数的定义域为R.∵|x|≥0,∴y=(23)-|x|=(32)|x|≥(32)0=1.故y=(23)-|x|的值域为[1,+∞).解题技巧:(指数函数的性质及其应用) 1.函数y=af(x)(a>0,且a≠1)的定义域、值域:(1)定义域的求法.函数y=a f(x)的定义域与y=f(x)的定义域相同.(2)函数y=af(x)的值域的求法如下.①换元,令t=f(x); ②求t=f(x)的定义域x ∈D; ③求t=f(x)的值域t ∈M;④利用y=a t的单调性求y=a t(t ∈M)的值域. 2.比较幂的大小的常用方法:跟踪训练二1、比较下面两个数的大小: (a-1)1.3与(a-1)2.4(a>1,且a≠2). 2、比较下列各题中两个值的大小: ①2.53,2.55.7; ②1.5-7,(827)4;③2.3-0.28,0.67-3.1.【答案】1.当a>2时,(a-1)1.3<(a-1)2.4;当1<a<2时,(a-1)1.3>(a-1)2.4. 2.①2.53<2.55.7..②1.5-7>(827)4.③2.3-0.28<0.67-3.1.【解析】1、因为a>1,且a≠2,所以a-1>0,且a-1≠1, 若a-1>1,即a>2,则y=(a-1)x是增函数,∴(a-1)1.3<(a-1)2.4.若0<a-1<1,即1<a<2,则y=(a-1)x 是减函数,∴(a-1)1.3>(a-1)2.4. 故当a>2时,(a-1)1.3<(a-1)2.4; 当1<a<2时,(a-1)1.3>(a-1)2.4.2.①(单调性法)由于2.53与2.55.7的底数是2.5,故构造函数y=2.5x,而函数y=2.5x在R 上是增函数.又3<5.7,∴2.53<2.55.7. ②(化同底)1.5-7=(32)-7=(23)7,(827)4=[(23)3]4=(23)12,构造函数y=(23)x.∵0<23<1,∴y=(23)x 在R 上是减函数.又7<12,∴(23)7>(23)12,即1.5-7>(827)4. ③(中间量法)由指数函数的性质,知2.3-0.28<2.30=1,0.67-3.1>0.670=1,则2.3-0.28<0.67-3.1.五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本118页习题4.2 【教学反思】本节通过运用指数函数的图像及应用解决相关问题,侧重用实操,培养学生的逻辑思维能力,提高学生的数学素养.《4.2.2 指数函数的图像和性质》导学案【学习目标】知识目标1、掌握指数函数的图象和性质,培养学生实际应用函数的能力;2、通过观察图象,分析、归纳、总结指数函数的性质;3、在指数函数的学习过程中,体验数学的科学价值并养成勇于探索的良好习惯.核心素养1.数学抽象:指数函数的图像与性质;2.逻辑推理:图像平移问题;3.数学运算:求函数的定义域与值域;4.数据分析:利用指数函数的性质比较两个函数值的大小:5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结指数函数性质.【重点与难点】重点:指数函数的图象和性质;难点:对底数的分类,如何由图象、解析式归纳指数函数的性质.【学习过程】一、预习导入阅读课本111-113页,填写。

指数函数的图像和性质导学案

指数函数的图像和性质导学案

学习内容: 2.1.2指数函数的图像和性质导学案学科:数学编写:高一数学组马玲班级姓名【课程学习目标】(一)【知识技能目标】1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;2. 理解指数函数的概念和意义;3. 能画出具体指数函数的图象,掌握指数函数的性质;4. 能简单应用概念、图像和性质解题。

(二)【过程与方法】学习过程:引→探→导→学→议→练→延。

自主探究指数函数的概念、意义、图像和性质,培养学生观察分析、探索归纳能力,并在此鼓励学生积极思考,大胆猜想,培养学生自主学习能力和创新意识。

学习方法:阅读自学导引,小组合作探究,小组交流展示,群体质疑,小组归纳提练,拓展延伸。

(三)【情感与态度价值观】通过各学习小组对本节内容的自主探索,合作研讨,培养学生的积极探索新知的激情,培养学生倾听,学会学习,学会合作,学会交流,展示,归纳总结的能力,提高学生学习数学的兴趣。

【教学重点及难点】【教学重点】指数函数的概念、图像和性质【教学难点】指数函数图像、性质的熟念掌握及简单应用教学过程:第一学习时间新知预习----- 不看不讲(自主学习)【学习情境构建】(创设情境,引入课题:)实例:A.细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么?B:一把长为1的尺子,第1次截去它的一半,第2次截去剩余部分的一半,第3次截去第2次剩余部分的一半,······,依次截下去,问截的次数x与剩下的尺子长度y之间的关系?观察归纳两个函数式的共性:再由具体到一般的思想可做怎样的延伸拓展?抽象出怎样的函数?图像怎样?性质怎样?带着问题请大家阅读教材P54-58并完成以下问题。

【读记材料交流】(读、看、填、练交互进行)(概念形成)●探究点(一)指数函数的定义(1)一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为,值域为。

(完整版)《指数函数图像及其性质》导学案.docx

(完整版)《指数函数图像及其性质》导学案.docx

《指数函数的图像与性质》导学案一、学习目标1.理解并掌握指数函数的图像与性质.2.会利用指数函数的图像与性质比较大小,解指数不等式。

二、教学重难点教学重点:指数函数的图像与性质教学难点:用数形结合的方法,从具体到一般的探索、概括指数函数的性质.三、教学过程:(一)创设情境1.复习:( 1)一般地,函数叫做指数函数,其中x是自变量,函数的定义域为.( 2)指数函数解析式的特征:。

2.导入:一般来说,函数的图像与性质紧密联系,图像可反映函数的性质 , 所以我们今天学习指数函数的图像与性质。

(二)自主探究(学生通过自主学习完成下列任务)1x1. 用列表、描点、连线的作图步骤,画出指数函数y 2 x、y的图像2x-2 -1 0 12y2xyx121x2.通过图象,分析y 2x、 y的性质(定义域、值域、单调性、特殊点)2函数y 2x x1y2定义域值域单调性特殊点y 的分布情况当 x0 时,当 x0 时,当 x0 时,当 x0 时,1x3.比一比:y 2x与 y的图象有哪些相同点,哪些不同点?21x4.画一画:在平面直角坐标系中画出函数y3x、y的图像,试分析性质。

3x5.议一议:通过以上四个函数的图像和性质,归纳指数函数y a( a 0,且 a 1)的图象和性质如下:a >10<a<1图y像----定义域值域性定点过定点,即 x =时, y =质单调性在 R上是函数在 R 上是函数函数值当 x >0时,当 x >0时,的变化当 x <0时,当 x <0时,奇偶性(三)典例精讲类型一 两个数比较大小例 1. 比较下列各题中两个数的大小: ( 1)0.8 和0.7;( 2)0.75-0.1和0.750.1;( 3)0.80.7与0.70.8.33类型二 解指数不等式例 2.(1)求使不等式4 x32 成立的 x 的集合;4a 2 , 求数 a 的取值范围 .( 2)已知 a 5(四)当堂检测1. 课本第 73 页 练习 1 1.2. 解下列不等式:(1)3x 11;(2)4 x2x 13 0.81(五)课堂小结( 1) 通过本节课的学习,你学到了哪些知识?( 2) 你学会了哪些数学思想方法?(六)布置作业必做题:课本 77 页, A 组.4,5,6选做题: 课本 77 页, B 组 1,6.四、教学反思达标训练1.y (1) x 2+2的定义域是_____________,值域是______________,在定义域2上,该函数单调递 _________.2.若函数 y a x 1 3 的图象恒过定点.3.指数函数 y f (x) 的图象经过点(2,4 ),求f ( x)的解析式和 f (3) 的值.4.比较下列各组值的大小;( 1)0.32,20.3222;(2)4.15,3.8 5,1.9 5.5.函数 y a x在[ 0,1]上的最大值与最小值的和为,求a值.3a x16.已知函数 f ( x) a x11),(1)判断函数 f ( x) 的奇偶性;(2)证明:函数 f ( x) 在上是增函数。

4.2.2 第1课时 指数函数的图象和性质(一)

4.2.2   第1课时 指数函数的图象和性质(一)
象限,且经过定点(0,1),若b≥0,图象往上平移,则必过第一、二象限,若b<0,
1.函数f(x)=ax-a(a>0,且a≠1)的图象可能是(
)
答案:C
返回导航
解析:因为函数f(x)=ax -a(a>0,且a≠1),当a>1时,y=ax是增函
数,并且恒过定点(0,1),又因为f(x)=ax-a的图象在y=ax的基础上
向下平移超过1个单位长度,故D错误,C正确;当0<a<1时,y=ax是
因而指数函数为非奇非偶函数.)
a>1
0<a<1
图象
返回导航
定义域
R
值域
(0,+∞)
__________
过定点
(0,1)
过定点________,即x=____时,y=____
1
0
(过定点问题在许多函数中都有体现).
性质
0<y<1
当x>0时,________
y>1
当x<0时,________;
0<y<1
(3)学会利用指数函数的图象和性质求函数的定义域、值域.
返回导航
【导学】—— 新知初探·夯基提能
学习目标一
指数函数的图象
1 x
x
师问:请在同一坐标系中画出指数函数y=2 与y=( ) 的图象,回答下
2
面问题:
(1)图象分别过哪几个象限?
(2)图象的上升、下降与底数a有联系吗?
(3)图象有哪些特殊的点?
当x<0时,________
y>1
当x>0时,________;
函数值的变化
单调性
对称性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

百度文库- 让每个人平等地提升自我
学习内容: 2.1.2指数函数的图像和性质导学案
学科:数学编写:高一数学组马玲
班级姓名
【课程学习目标】
(一)【知识技能目标】
1.了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;
2.理解指数函数的概念和意义;
3.能画出具体指数函数的图象,掌握指数函数的性质;
4.能简单应用概念、图像和性质解题。

(二)【过程与方法】
学习过程:引→探→导→学→议→练→延。

自主探究指数函数的概念、意义、图像和性质,培养学生观察分析、探索归纳能力,并
在此鼓励学生积极思考,大胆猜想,培养学生自主学习能力和创新意识。

学习方法:阅读自学导引,小组合作探究,小组交流展示,群体质疑,小组归纳提
练,拓展延伸。

(三)【情感与态度价值观】
通过各学习小组对本节内容的自主探索,合作研讨,培养学生的积极探索新知的激情,
培养学生倾听,学会学习,学会合作,学会交流,展示,归纳总结的能力,提高学生学习数
学的兴趣。

【教学重点及难点】
【教学重点】指数函数的概念、图像和性质
【教学难点】指数函数图像、性质的熟念掌握及简单应用
教学过程:
第一学习时间新知预习 -----不看不讲(自主学习)
【学习情境构建】(创设情境,引入课题:)实例:
A .细胞分裂时,第一次由 1 个分裂成 2 个,第 2 次由 2 个分裂成 4 个,第 3 次由 4 个分
裂成 8 个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与次数 x 的函数关系
式是什么?
B:一把长为1的尺子,第1次截去它的一半,第2次截去剩余部分的一半,第 3 次截去第
2 次剩余部分的一半,····· · ,依次截下去,问截的次数x 与剩下的尺子长度y 之
间的关系?
观察归纳两个函数式的共性:
再由具体到一般的思想可做怎样的延伸拓展?抽象出怎样的函数?图像怎样?性质怎样?
带着问题请大家阅读教材P54-58 并完成以下问题。

【读记材料交流】(读、看、填、练交互进行)(概念形成)
●探究点(一)指数函数的定义
(1)一般地,函数叫做指数函数(exponential function),其中x是
( 2)为什么规定 a > 0 且 a ≠1呢?否则会出现什么情况呢?
( 3)函数 y=2·3x 是指数函数吗?如何把握式子的结构特点?
题 1、 判断:下列函数中,哪些是指数函数?
3
x +
2
(3) y = (-2) x x -x
(1) y=x
(2) y = 2 (4) y =- 2 (5) y =π 题 2、已知指数函数 f(x)= a x (a>0 且 a ≠ 1)的图象过点 (2, π),求 f(0), f(1) ,f(- 3)的值
●探究点(二) :指数函数的图像和性质
(1)你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?
回顾:研究方法:画出函数图象,结合图象研究函数性质。

研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性等。

(2)作图 :在同一坐标系中画出下列函数图象:
y ( 1 )x
, y 2x (新函数图像列表、描点、连线)
2
x -3
-2-1
123
y 2 x
y 1 ) x
(
2
图:
(3)函数 y
2 x 与 y ( 1 )x 的图象有什么关系?能否由
y 2x 的图象画出 y
( 1 )x 的图象?
2
2
(4)根据两个函数的图象的特征,归纳出这两个指数函数的性质,进一步在上面同一坐标 系下,用不同颜色的笔画出底数为
3 和 1
的指数函数图像。

3
认真观图归纳新知:
新知:根据图象归纳指数函数的性质 .
a>1
0<a<1
还能归纳出其它性质吗?加油!


问题 1、函数 f(x)= a x 2 1 (a>0,a ≠ 1)
的图象恒过定点( ) .
(1)定义域:
A. (0,1)
B.
(0,2)

C. (2,1)
D. (2,2)
(2)值域:

问 题
2 、 指 数 函 数 ① f ( x) m x
(3)过定点
,即 x= 时, y= ,
(4)在 R 上是增函数 (4) 在 R 上是减函数
② g ( )
x
满 足 不 等 式
x n
0 m n 1 ,则它们的图象是(
)。

小结:熟念掌握函数的图像和性质。

●探究点(三) :指数函数的图像和性质的简单应用
问题 1、比较下列各组中两个值的大小:
( 1) 20.6 ,2 0.5 ; ( 2) 0.9 2 ,0.9
1.5

( 3) 2.10.5 ,0.5 2.1 ;
( 4)
2 3
与; ( 5) 0.9 2 ,0.98
2
2.1
2.1
1 ; ( 6) 2.1 ,0.5 。

第二学习时间:新知练习 ------ 不议不讲(合作探究)
【探究与思考
1】 函数 y ( a 2 3a 3)a x 是指数函数,则 a 的值为(
)。

A. 1
B. 2
C.1或2
D. 任意值
变式 1、已知指数函数 y = (2 b - 3) a x 经过点 (1,2) ,求 a , b 的值.
【探究思考
2】 1. 比较大小:
( 1) a 0.80.7 ,b 0.80.9 ,c 1.20.8 ; ( 2) 10 , 0.4 2.5 , 2 0.2 , 2.51.6 。

2、解不等式
(1) ( 1
) 2x 1
(1) x 2
(2) 52x
1
1
5
5
(3) 2x
4x 1
(4) a 3 x 1
a 2 x 4 ( a 0, a 1)
【探究思考 3】求下列函数的定义域与值域:
1
2
x
5x 1
x ( x 1)
(1) y 2 x 4

(2)y =

(3) y = 3 ;
3
( 4)y = 4
21
【课堂小结】:通过本节内容的学习你们小组有哪些收获?
1、学了哪些数学知识?
2、运用了哪些数学方法?
3、数学思想有哪些?
4、你们小组还有哪些收获?
第三学习时间【拓展训练】 -- (拓展延伸)【课程达标检测】(方法能力化 ? 能力具体化)
1、在 [ m,n] 上,判断 f ( x) a x (a 0且
a 1) 的单调性,并求值域。

1 x
1 的定义域为,函数 y= 1
的定义域为。

2、函数 y( ) x
9 51
x 1
x在 R上为减函数,则
3、若函数 y=(a-1) a 满足()
A 0 < a < 1
B a > 1
C 1< a < 2
D a > 2
4、指数函数 y=a x,y=b x ,y=c x,y=d x 在同一坐标系中的图象如下图所示, 则 a、
b、 c、 d 的大小顺序为 ( )
A b<a<d<c
B a<b<d<c
C b<a<c<d
D b<c<a<d
5、设 a、 b 均为大于零且不等于 1 的常数,则下列说法错误的是() .
A.y=a x的图象与 y=a-x的图象关于 y 轴对称
-x
B.函数 f(x)=a (a>1)在 R 上递减
C.若 a 2 >a 2 1,则 a>1
D.若 2 x >1,则x 1
6、某市 2000 年国民生产总值为20 亿元,计划在今后的10 年内,平均每年增长8%,问 2010 年该市国民生产总值可达多少亿元(精确到亿元 )?
自我反思
完成情况及反馈结对互学科长教师检
查记录记录查记录
各小组评价①②③④⑤⑥⑦⑧⑨⑩⑾⑿。

相关文档
最新文档