国内外聚合物驱油应用发展与现状

国内外聚合物驱油应用发展与现状
国内外聚合物驱油应用发展与现状

国外聚合物驱油应用发展与现状

一、聚合物驱油机理

聚合物驱(Polymer Flooding)是三次采油(Tertiary Recovery)技术中的一种化学驱油技术。聚合物有两种驱油机理,一是地层中注入的高粘度聚合物溶液降低了油水流度比,减小了注入水的指进,提高了波及系数(图1和图2),从而提高原油采收率[1-6]。二是由于聚合物溶液属于非牛顿流体,因此具有一定的粘弹性,提高了微观驱油效率[7-13],从而提高采收率。常使用两种类型的聚合物[14],一种是合成聚合物类,如聚丙烯酰胺、部分水解的聚丙烯酰胺等;另一种是生物作用生产的聚合物,如黄胞胶。在长达30 年的聚合物驱室研究和现场试验中,使用最为广泛的聚合物是部分水解聚丙烯酰胺和生物聚合物黄胞胶两种。由于生物聚合物黄胞胶的价格比较昂贵且易造成井底附近的井筒堵塞,除了在高矿化度和高剪切的油藏使用外,油田现场都使用人工合成的部分水解聚丙烯酰胺作为聚合物驱的驱剂。

图1 平面上水驱与聚驱示意图

图2 纵向上水驱与聚驱示意图

二、国外驱油用聚合物现状及发展趋势

2.1国外驱油用聚合物的发展

由于经济政策和自然资源的原因,国外对聚合物驱油做了细致的理论及实验研究,但未作为三次采油的主要作业手段。驱油用聚合物的理论自80年代成熟以来,并未有较大突破,而其发展主要受限于成本因素。理论上,在油气开采用聚合物中,可以选用的聚合物有部分水解聚丙烯酰胺(HPAM)、丙烯酰胺与丙烯酸的共聚物、生物聚合物(黄胞胶)、纤维素醚化合物、聚乙烯毗咯烷酮等[15]。但己经大规模用于油田三次采油的聚合物驱油剂仅有HPAM和黄胞胶两类。人工合成的驱油用聚合物仍主要以水解聚丙烯酰胺为主。已产业化的HPAM产品包括日本三菱公司的MO系列,第一制药的ORP系列,三井氰胺的Accotrol系列;美国Pfizer的Flopaam系列,DOW的Pusher系列;英国联合胶体的Alcoflood系列;国SNF的AN系列HPAM聚合物。其中,Accotrol、Alcoflood 较早在我国进行了油田实验,而的最初的5万吨/年聚驱用HPAM装置是引进SNF 的技术[16]。

驱油用聚合物目前在国外的消耗量不多,这主要是由于不同地区对三次采油的作业手段选择造成的。根据斯坦佛研究院统计2006年西欧用于聚合物驱油的HPAM消费量为2000吨,除中、美、日及西欧意外的其他地区消费量合计1000 吨[17]。

对于提高聚合物的耐温抗盐性能,国外目前主要集中在聚合物的分子设计方面,主要思路如下:(1)通过选用碳链高分子和分子主链中加入可增加分子链刚性的环状结构来提高聚合物主链的热稳定性;(2)引入大侧基或刚性基团,引入大侧基或刚性基团可使聚合物具有较高的热稳定性;(3)引入抗盐的结构单

元,如AMPS;可抑制酰胺基团水解的亲水结构单元,如NVP;耐水解的结构单元,如N-烷基丙烯酰胺;(4)两性离子聚合物,通过在单体中同时引入阴阳离子,造成分子及分子间静电作用而提高粘性,并实现单体对矿化度的缓冲性[18]。较新的文献也出现了聚合粘弹性表面活性剂的结构[19]。

对于制备手段,通常是以不同方式的自由基聚合实现。雪佛龙菲利普公司为了降低成本,很早就开始研究采用海水(33000mg/L)—高矿化度环境—作为溶剂的制备手段。DSC的HE-Polymer系列(雪佛龙菲利普公司)、BASF的Houstmar系列、Degussa的Polydrill系列(已并入BASF)都是已经工业化的耐温、抗盐产品。其中HE-300型聚合物可在160℃及高矿化度下保持很好的粘性。然而由于价格因素,未大量应用于驱油,而是作为堵水、调剖、钻井液使用。

2.2国驱油用聚合物的发展

我国油田大多属于陆相沉积,具有非均质性严重、油稠等特点,水驱平均采收率32%,并已进入注水后期。受到我国自然资源的影响,我国三次采油以化学驱(聚合物驱)为主要手段。科研人员围绕聚合物驱做了大量的工作,96年以来,聚合物驱配套技术日趋完善;97年我国聚驱增油量居世界首位;98年成为世界上最大的聚驱采油国;02年油区聚驱产量超过1000万吨;03年,聚合物驱采油1234万吨。截止到2006年末,我国有18个聚合物及二元、三元复合驱油项目,分别分布、胜利、新疆、、辽河、、江汉、大港等油田[20]。

在我国,聚合物驱油广泛使用HPAM,效果良好,其年产量在15x104吨/年以上。2006年我国聚驱HPAM使用量为14.66万吨,占全国PAM总需求量的71%。炼化是目前全球最大的驱油聚合物生产基地,产能10万吨/年[21],此外胜利长安、恒聚等都有较大的生产能力。我国用黄胞胶进行驱油实验始于95

年的胜利孤东油田。注入性与耐温性差、价格是HPAM的五倍等原因造成未能取得好的效果。在新的粘弹性驱油理论中,黄胞胶还存在只有粘性没有弹性的问题。对于目前国的II、III类油藏资源,HPAM和黄胞胶均难以满足高温高盐油藏的需要。因此,国目前的研究工作主要集中在开发耐温抗盐驱油剂,包括天然聚合物改性、合成聚合物和高分子表面活性剂三个领域,其中合成聚合物仍然是近期水溶性耐温抗盐聚合物开发的主要发展方向。我国目前的耐温抗盐驱油用聚合物开发有如下几个发展方向[22]:

(1)HPAM超高分子量化:可以降低粘度下降的幅度,使最终保留粘度增大,但同时会导致溶解困难、易机械降解、易吸附、在低渗地层易截留等问题,其适用油藏围十分有限。96年底,石油勘探开发研究院油田化学所生产出了分子量

25.0x106的HPAM,并朝着生产更高分子量HPAM的目标努力。

(2)耐温抗盐单体共聚物:其主导思想是研制高浊点、在高温下水解缓慢或不发生水解的单体,如AMPS、NVP、AMB、VAM等。将一种或多种耐温抗盐单体与AM共聚,得到的聚合物在高温高盐条件下的水解将受到限制,不会出现与钙、镁离子反应发生沉淀的现象,从而达到耐温抗盐的目的。这类聚合物能够长期抗温抗盐,但是耐温抗盐单体成本高,共聚物分子量低,只能少量用于特定场合,大规模用于油田三采在经济上难以承受,还必须进行大量的攻关。国开发较成功的该类聚合物有罗健辉等人[23-24]开发的梳形聚丙烯酰胺RSP系列(产品代号KYPAM),它是具有梳型分子结构的超高分子量的AM/AHPE共聚物,其中共聚单体AHPE结构未知。此外,由欧阳坚等人[25-26]开发的尚未工业化的TS系列聚合物由丙烯酰胺、含支链的强极性单体(磺酸盐)和少量疏水性单体采用胶束

聚合方法和复合引发体系共聚而成,其水溶性良好,抗盐、耐温以及抗剪切性能有显著改善,可望应用于油田实施污水配制聚合物溶液。

(3)疏水缔合水溶性聚合物:目前以基础理论研究为主,主要涉及聚合物的制备手段、结构表征、溶液行为。尽管许多研究人员都曾指出疏水缔合水溶性聚合物是一种最佳的油气开采用新材料[27],但是有关这类聚合物在油气开采中成功应用的相关报道较少。中石油勘探开发总院采收率所2004年对疏水缔合水溶性聚合物进行的性能评价结果表明:只在低温低盐环境下,效果优于HPAM,存在的主要问题包括①疏水基团造成的溶解性问题;②因分子缔合造成耐温抗盐性能下降的问题;③溶液注入性问题;④污水溶液稳定性问题。

(4)生化聚合物:以硬聚葡萄糖、AGBP、琥珀聚糖为代表,具有棒状结构、规整性好、大分子链刚性强、聚合物分子总体非离子性等特点,从而导致很好的耐温抗盐性能,是一类效果很好的驱油聚合物。其研发重点主要是解决生产成本、水溶液中的聚集倾向等问题。

三、聚合物在国外的应用情况

聚合物驱的研究始于20 世纪50 年代未和60 年代初的美国,并在1964 年进行了矿场试验[28]。在1964~1969 年进行了61 个聚合物驱项目,Jewentt 和Schurtz 描述了实施聚合物驱油藏的基本参数和试验条件,并对聚合物驱效果进行了评价。从其中16 个重要的聚合物驱矿场试验结果看,有10 个试验结果是鼓舞人心和成功的,采收率最大提高幅度达到8.6%,表明聚合物驱可以成功地应用于油藏特性和流体性质围很广的油田,使得聚合物驱为人们所认识。从70 年代到1985 年,美国共进行了聚合物矿场试验183 次[29],聚合物驱项目数到达顶峰,评价表明聚合物驱一般都取得了经济效益。美国之所以开展如此多的聚

合物驱项目,得益于美国国优惠的税收政策及国际的高油价。但从1986 年以后,由于原油价格的下跌以及对原油价格预测的总体悲观看法,美国的聚合物驱油项目逐年减少,自1990 年后,聚合物驱基本处于停止状态,但室研究一直在开展,而低油价下CO2混相驱一直稳定增加,成本大幅度下降,这与美国有丰富的CO2资源有关。除美国之外,前联的奥尔良、阿尔兰、罗马什金等大油田,加拿大的Horsefly Lake 油田和Rapdan 油田,法国的Chatearenard油田和Courtenay 试验区以及德国、罗马尼亚和阿曼等国都进行了聚合物驱的矿场试验[16],均取得了一定的效果,原油采收率提高幅度是6~17%。从20 世纪60 年代至今,全世界有200 多个油田或区块进行了聚合物驱油试验,但由于油价的因素,目前国外聚合物驱的研究应用比较少,大部分处于室实验研究和现场小规模试验阶段,还没有形成聚合物驱技术的现场规模化推广应用。

我国是聚合物驱技术应用规模最大的国家,聚合物驱现场应用取得了良好的开发效果,而且应用规模不断扩大,并形成综合配套技术,成为三次采油中的主要技术。

油田自1972年以来,开展了小井距特高含水期注聚合物、喇嘛甸油田南块的工业性聚合物驱等试验,都取得了比较好的效果。截止2005年12月, 油田已投入聚合物驱工业化区块35个[30],面积314.41km2,动用地质储量5.1888×108t,2005年油田工业化聚合物驱全年产油量超过1000×104t,占全油田总产量的14%。油田聚合物驱从六十年代开始探索,经过30年的室研究、先导试验和工业试验,于1995年规模化推广,解决了10项技术难题,获得了重论突破,逐步形成了驱油机理及油藏适应性、注入参数及方式优化、聚驱过程中跟踪调整等配套技术。油田聚合物驱在应用规模、技术水平和经济效益方面居世界领先水平,

截止2014年底,动用面积660.0平方公里(图3),动用地质储量超过97000万吨,累积生产原油18000万吨以上,累积增油10000万吨以上,已成为油田持续稳产的支撑技术。

图3 油田聚合物应用区块分布

胜利油田自20世纪60年代以来,开展了三次采油技术的探索研究,1992年开展了孤岛油田中一区Ng3层聚合物驱矿场先导试验,取得了明显的增油降水效果,提高采收率12%,累积增油19.8×104t,吨聚增油143t/t。1994年又在孤岛中一区Ng3和孤东七区西Ng52+3分别开展了40个井组的注聚扩大试验[31],证实了一类油藏开展化学驱的技术经济可行性。1997年聚合物驱油技术在I类油藏实现工业化推广,此后,开展了Ⅱ类油藏的提高采收率技术研究。截至2006年3月,胜利油田共投入化学驱单元30个,覆盖地质储量3.18×108t,年增产原油达169.3×104t,累计增产原油1150×104t,取得了显著的经济效益和社会效益[32]。

油田在“六五”末至“七五”期间,开展了三采方法的筛选和可行性研究,确定了以聚合物驱为三采主体技术的方向,并进行了潜力分析评价和技术准备。

“八五”期间开展了厚油层聚合物驱油技术的系统攻关研究,解决了聚合物的热氧稳定性技术、减少水中溶解进氧的地面注入工艺等关键技术[33],使聚合物溶液在地层中的粘度达到或大于地下原油粘度。“九五”期间油田聚合物驱技术进入了工业化推广应用阶段,在双河和下二门油田的10 个区块开展了聚合物驱工业化应用[34],动用地质储量3081.2×104t,控制地质储量1966.4×104t,注聚井数105 口,对应油井207口,聚合物区块对应采油井见效141 口,占总井数的68.1%,年增油15.98×104t,累积增油72.3×104t,取得了较显著增油效果,聚合物驱技术已成为油田主导技术之一。此外,大港油田和渤海油田也都进行聚合物驱的研究和矿场应用[35-38],取得了较好开发效果。

四、聚合物应用的发展趋势

随着聚合物应用规模的逐渐扩大,I类油藏聚驱基本已经进入到后续水驱阶段,大量的地质状况较差储层应用聚合物驱提高采收率的需求提到日程上来。低品味储量的动用,使驱油用聚合物的发展出现了新情况、新问题,同时也对其研发应用提出了新的要求,其中主要是面对占资源总量过半的II、III类油藏的开采问题。目前II、III类油藏资源地层温度在70~95℃,地层矿化度在10000~30000mg/L,二价离子800mg/L,常用的水解聚丙烯酰胺(HPAM)在该条件下会出现严重的热降解、水解度增加、遇高价离子结合析出等问题,增粘效果变差。因此,适用于温度90℃,矿化度30000mg/L,二价离子800mg/L油藏条件下能满足粘度要求,并且性价比高,溶解性、稳定性、驱油性能好的产品,即耐温抗盐聚合物是国际上该领域科研机构的主要科研方向[39]。

参考文献

[1] C. G. Zhang. Effects of Polymer Adsorption and Flow Behavior on Tow-Phase Flow

微生物驱油技术综述

摘要相对于常规提高采收率技术, 微生物采油有 2 个优点, 即微生物不会消耗大量能源且其使用与油价无关。微生物能以油藏里的物质为营养代谢, 在发酵过程中排出生物气, 占据部分储层空间, 或形成人工气顶。微生物还可以堵塞油层的高渗透通道。微生物在油藏整个水相里都发挥作用, 包括水与岩石界面和油水界面, 并可以受控地在分子和孔隙微观水平上连续产出气体、溶剂、表面活性剂以及其他生物化学剂,驱替石油。日本和中国用优选的微生物菌种注入油藏进行矿场试验, 结果提高采收率15 %~23 % 。但是微生物采油也有一些局限性, 所以应该加强目前进行的微生物驱油模拟研究, 确定最好的菌种、营养物、代谢和生理特征, 使微生物驱油开采技术获得较高成功率。 一、微生物采油原理 为了让微生物快速繁殖和生长, 研究人员用各种方法往油藏里注入营养物, 激活这些微生物。有些微生物能以油藏里的物质为营养代谢, 在发酵过程中排出生物气, 占据部分储层空间, 或形成人工气顶。 微生物还可用于堵塞油层的高渗透通道。在多年注水开发后, 注入水会绕过渗流阻力高的含油部位, 沿渗流阻力最小通道流动。微生物数量在这个通道中也很多, 可以在注入水中添加营养物激活微生物。微生物的繁殖造成其数量猛增, 封堵无效循环的水路, 扩大波及体积, 提高注水效率。 大多数微生物具有天然依附于岩石表面的倾向, 不在液体中自由浮动。油藏里, 微生物吸附在岩石表面并繁殖, 产生胞外多糖, 促进了菌体在岩石表面的吸附作用, 形成生物膜, 起到对菌体保护的作用, 并加快细菌更好地利用营养物等资源。随注入水进入油藏的细菌将在原来的生物膜上流过, 有时微生物也会从生物膜中分离出去并与注入水一起渗流, 或者到油藏深部。 从物理化学原理方面看, 促使微生物增长并释放原油的机理与常规EOR 技术基本是一样的。尽管泄油机理相似, 但其他方面却有很大差异。常规的非微生物提高采收率技术是通过井口大量注水, 而微生物在油藏整个水相里都发挥作用, 包括水与岩石界面和油水界面, 并可以在受到控制的情况下在分子和孔隙微现水平上连续产出气体、溶剂、表面活性剂以及其他生物化学剂。这些生物生成物都有已知的泄油机制, 对石油具有化学和物理作用。 二、微生物驱技术分类 微生物可以在油藏中也可以在地面增长。地面培养时, 可以分离和收集微生物的代谢产物, 经过加工和处理再注入到油藏里驱油。 从专业角度来看, 微生物驱油有些类似于地下生物改造作用。注入的营养物与本源或外源微生物一起促进地下微生物的增长和代谢产物, 使更多原油流动, 通过油藏降压作用、界面张力/ 油相降粘以及选择性堵塞高渗区来提高剩余油流动性。另外, 经发酵后的活微生物再注入油藏也能达到增采的效果。 微生物在地下不但要生成原油流动所必需的化学物, 而且要在油藏环境下繁殖增长。在微生物驱油过程中, 要经常注入营养物保持微生物代谢作用, 有时还往油藏注入可发酵的碳水化合物作为碳源。有的油藏还需要无机营养物作为细胞生长的基液或者作为有氧呼吸的另一种电子受体。 三、油藏特征与效果 在注微生物前, 必须确定油藏的特征, 如矿化度、p H 值、温度、压力和营养物情况。岩石性质也很重要。天然裂缝可能改变微生物有效进入油藏的方式。泥质的存在可能会吸收生物聚合物和生物表面活性剂, 影响作用的发挥。碳酸盐会迅速与酸反应, 产生更大量的有利气体, 例如二氧化碳。 只有细菌是微生物驱油的希望之星。由于菌类的原因, 霉菌、酵母、藻类和原生动物等无法在油藏条件下增长。许多油藏的NaCl浓度高, 这就要求使用能够适应这种环境的细菌。在

国内外农业物联网发展现状

国内外农业物联网发展现状 进入新世纪以来,我国和欧美等一些国家相继开展了农业领域的物联网应用示范研究,在农业资源利用、农业生态环境监测、农业生产、农产品安全监管等领域取得了一定的成果,同时推动了相关新兴产业及其标准化的发展。 一、农业物联网应用发展现状 在农业资源监测和利用领域,美国和欧洲主要利用资源卫星对土地利用信息进行实时监测,并将其结果发送到各级监测站,进入信息融合与决策系统,实现大区域农业的统筹规划。例如,美国加州大学洛杉矶分校建立的林业资源环境监测网络,通过对加州地区的森林资源进行实时监测,为相应部门提高实时的资源利用信息,为统筹管理林业提供支撑。我国主要将GPS定位技术与传 感技术相结合,实现农业资源信息的定位与采集;利用无线传感器网络和移动通信技术,实现农业资源信息的传输;利用GIS技术实现农业资源的规划管理等。例如杭州电子科技大学学者研究了基于无线传感器网络的湿地水环境数据视频监测系统,该系统实现对湿地全天候的实时监测,具有数据分析与处理,并对污染等突发事件和环境急剧变化所影响的水域的水环境状况实时报警等功能。 在农业生态环境监测领域,美国、法国和日本等一些国家主要综合运用高科技手段构建先进农业生态环境监测网络,通过利用先进的传感器感知技术、信息融合传输技术和互联网技术等建立覆盖全国的农业信息化平台,实现对农业生态环境的自动监测,保证农业生态环境的可持续发展。例如,美国已形成了生态环境信息采集-信息传输处理-信息发布的分层体系结构。法国利用通信卫星技术对灾害性天气进行预报,对病虫害进行测报。我国研制了地面监测站和遥感技术结合的墒情监测系统,建立了农业部至各省、重点地县的农业环境监测网络系统等一批环境监测系统,实现对农业环境信息的实时监测。例如我国每年通过农业环境监测网络开展农业环境常规监测工作,获取监测数据10 万多个;融合智能传感器技术的墒情监测系统已在贵阳、辽宁、黑龙江、河南、南京等地推广应用。 在农业生产精细管理领域,美国、澳大利亚、法国、加拿大等一些国家在大田粮食作物种植精准作业、设施农业环境监测和灌溉施肥控制、果园生产不 同尺度的信息采集和灌溉控制、畜禽水产精细化养殖监测网络和精细养殖等方面应用广泛。例如,2008 年,法国建立了较为完备的农业区域监测网络,指导施肥、施

国内外物联网发展现状及存在问题

国内外物联网发展现状及存在问题 几年前IBM率先提出了“服务科学管理与工程”(SSME),对一些工业已经较发达国家的经济结构转型起到了积极作用。当然对IBM本公司的发展也起了不小作用。我国从国家经济发展的角度提出以科学发展观理论指导做好经济结构调整和转型,并及时地提出了努力发展我国现代服务业,几年来我国在该领域已取得不少成果。 这一次又是IBM它提出“智慧地球、物联网和云计算”,它打动了美国政府。不少专家认为,这次由美国引发的世界性经济风暴,美国若无创新的技术出现和支撑,很难让美国的经济顺利复苏。更不可能达到风暴前的称王称霸的地位。因此美国的奥巴马政府不仅对IBM的“智慧地球、物联网、云计算”给予高度重视,更提出要关注全球互联网的管理和安全问题。可见这些内容已纳入美国新的国策。目的是用这些创新技术以求得新的经济复苏。 我国不失时机的提出了发展物联网,提出“感知中国”,“感知城市”,也是为了推动我国的经济发展和结构调整与转型,同样我国也要占据人类未来发展的方向的制高点。本文将先讨论一下何为“物联网”,然后讨论国内外物联网发展状况。最后讨论一下现代服务业与物联网的关系。 (二).何为物联网 现在对物联网的定义至少有几十种,都是不同领域专家从不同领域定义的,我们选几种有代表性的供大家参考: 1.英语中“物联网”一词:InternetofThings,可译成物的互联网。 2.2005年ITU关于物联网概念:是一个具有可识别,可定位的传感网络。 3.物联网是一个概念:指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器与互联网结合起来。其目的是把所有物品连接在一起。 4.经过接口与无线网络(也含固定网络),把物体与物体之间的实现沟通和对话,人与物体之间实现沟通与对话。能实现上述功能的网称为物联网。 5.作者比较赞成一种基于泛网及其多制式、多系统、多终端等综合的物联网的定义——或称为广义物联网定义:在广义物联网中不仅是M2M(机器与机器),也包括机器与人(M2P)、人与人(P2P)、人与机器(P2M)

二氧化碳驱油技术研究现状与发展趋势

二氧化碳驱油技术研究现状与发展趋势 随着世界经济的飞速发展,能源的生产与供求矛盾越发突出,石油作为工业发展的命脉,由于其储量的有限性,使得人们对它的研究和关注程度远胜于其它能源。寻找有效而廉价的采油新技术一直是专家们不断探索的问题。 针对目前世界上大部分油田采用注水开发面临着需要进一步提高采收率和水资源缺乏的问题国外近年来大力开展了二氧化碳驱油提高采收率(EOR)技术的研发和应用。这项技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。该技术不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采收率 (一)二氧化碳驱油技术机理 1、降粘作用 二氧化碳与原油有很好的互溶性,能显著降低原油粘度,可降低到原粘度的1/10左右。原油初始粘度越高,降低后的粘度差越大,粘度降低后原油流动能力增大,提高原油产量。 2、改善原油与水的流度比 二氧化碳溶于原油和水,使其碳酸化。原油碳酸化后,其粘度随之降低,同时也降低了水的流度,改善了油与水流度比,扩大了波及体积。 3、膨胀作用 二氧化碳注入油藏后,使原油体积大幅度膨胀,便可以增加地层的弹性能量,还有利于膨胀后的剩余油脱离地层水以及岩石表面的束缚,变成可动油,是驱油效率升高,提高原油采收率。 4、萃取和汽化原油中的轻烃 在一定压力下,二氧化碳混合物能萃取和汽化原油中不同组分的轻质烃,降低原油相对密度,从而提高采收率。二氧化碳首先萃取和汽化原油中的轻质烃,随后较重质烃被汽化产出,最后达到稳定。 5、混相效应 混相效应是指两种流体能相互溶解而不存在界面,消除了界面张力。二氧化碳与原油混合后,不仅能萃取和汽化原油中轻质烃,而且还能形成二氧化碳和轻质烃混合的油带。油带移动是最有效的驱油过程,可使采收率达到90%以上。 6、分子扩散作用 多数情况下,二氧化碳是通过分子的缓慢扩散作用溶于原油。分子的扩散过程很

微生物采油技术简介

微生物采油技术简介 大庆石油学院 2006年3月

一、概述 微生物采油技术在我国发展很快,近年来各油田采用与大学、研究院所合作以及从国外公司引进技术等方式,进行了大量的室内研究,取得了一定的成果,并进行了一定数量的现场试验。但在以烃类为营养物的厌养菌或兼性厌养菌的筛选、评价和应用等方面的研究还很少。我们在此方面进行了大量的实验,已经筛选出能够在油藏环境生长、繁殖、代谢的菌种。室内研究取得了突破性的进展,在大庆油田的不同区块进行了油井解堵、水井降压以及提高采收率矿场试验,效果非常明显,经济效益好。 二、研究依据 经过几十年的研究,通过微生物地下发酵提高原油采收率,已经提出了以下几个方面的机理: 1、细菌降粘,减少原油的渗流阻力; 2、产生气体,形成气驱和原油降粘; 3、产生表面活性剂,降低油水界面张力,提高洗油效率; 4、产生聚合物,封堵高渗透层,调整吸水剖面; 5、脱硫或脱硫菌,食原油组分中的硫、氮、降解沥青和胶质,降低原油粘 度; 6、产生有机酸,溶解岩石,提高油层的孔隙度和渗透率; 7、产生醇、醛、酮等有机溶剂,降低原油的粘度; 8、利用微生物产生的代谢物质,使储层岩石表面的湿性反转,以利于水驱 提高采收率。 以上的微生物采油机理,主要是以细菌在地下代谢碳水化合物(如糖蜜)为基础提出来的。我国的糖蜜资源有限,不可能将大量的糖蜜注入地层。但是,在油层中却存在着大量未被采出的残余油。如果能够找到以油层原油为碳源生长繁殖的细菌,通过产生大量代谢产物或使原油降粘来增加原油的产量,那么将是一条非常经济的MEOR途径。 三、菌种的筛选 对于所筛选解堵或提高原油采收率的菌种,必须满足以下的条件才有可能取得较好的效果。 1、厌氧条件下能以原油为唯一碳源生长繁殖; 2、营养要求简单,补充氮、磷、钾元素,即能满足厌氧代谢原油的要求; 3、以原油为碳源时,厌氧生长速度较快; 4、细胞较大; 5、适合油藏条件(如温度、PH值、矿化度等); 6、地面扩大发酵较为简单。 按照上述要求,最终确定了几株菌供矿场试验。所选育的菌种是来自大庆油田油井产出的油水混合物。此种细菌产物主要为生物表面活性剂。并且能以原油为唯一碳源进行长繁殖。细胞大小为0.5~1×3~100微米,形成1微米左右的孢子。对于不同的油层条件将以此菌为基础,进行不同工艺的培养及配伍应用。在提高原油采收率方面效果很显著。

国内外物联网产业发展现状趋势全面综述 2

国内外物联网产业发展现状趋势 关键词: 物联网RFID 【提要】2009年8月和12月,温家宝总理分别在无锡和北京发表重要讲话,重点强调要大力发展传感网技术,努力突破物联网核心技术,建立“感知中国”中心。2010年《政府工作报告》中,温总理再次指出:将“加快物联网的研发应用”明确纳入重点产业振兴计划。这代表着中国传感网、物联网的“感知中国”已成为国家的信息产业发展战略。 2009年8月和12月,温家宝总理分别在无锡和北京发表重要讲话,重点强调要大力发展传感网技术,努力突破物联网核心技术,建立"感知中国"中心。2010年《政府工作报告》中,温总理再次指出:将"加快物联网的研发应用"明确纳入重点产业振兴计划。这代表着中国传感网、物联网的“感知中国”已成为国家的信息产业发展战略。 物联网概述 1.物联网的定义与概念提出 所谓"物联网",是指通过射频识别、红外感应器、全球定位系统和激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。 通俗地解释,物联网就是"物物相连的互联网"。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通讯。 物联网的概念是美国Auto-ID实验室在1999年首次提出的,2005年国际电信联盟在信息社会世界峰会上发布《ITU互联网报告2005:物联网》,正式提出"物联网概念",激情豪迈地指出"物联网时代即将到来"。 2.物联网的本质和关键技术 物联网的本质概括起来主要体现在三个方面:一是互联网特征,即对需要联网的物一定要能够实现互联互通的互联网络;二是识别与通信特征,即纳入物联网的"物"一定要具备自动识别与物物通信(MachinetoMachine,M2M)的功能;三是智能化特征,即网络系统应具有自动化、自我反馈与智能控制的特点。 物联网产业链可以细分为感知、处理和信息传送三个环节,每个环节的关键技术分别为传感技术、智能信息处理技术和网络传输技术。传感技术通过多种传感器、RFID、二维码、GPS定位、地理信息识别系统和多媒体信息等多媒体采集技术,实现对外部世界的感知和

国外物联网发展现状 - 副本

国际金融危机爆发后,美、欧、日、韩等主要发达国家纷纷把发展物联网等新兴产业作为应对危机和占领未来竞争制高点地重要举措,制定出台战略规划和扶持政策,全球范围内物联网核心技术持续发展,标准和产业体系逐步建立,初步形成了传感器与无线射频识别()等感知制造业,网络设备与通信模块、机器到机器()终端与运营服务以及基础设施服务、软件与集成服务等产业链,年全球物联网产业规模超过亿美元.发达国家凭借信息技术和社会信息化方面地优势,在物联网应用及产业发展上具有较强竞争力. 美国:作为振兴经济地“新武器” 年月,在美国总统奥巴马与美国工商领袖地"圆桌会议"上,公司提出"智慧地球"地概念,即把传感器放到电网、铁路、桥梁和公路等物体中,能量极其强大地计算机群,能够对整个网络内部人员和物体实施管理和控制.这样,人类可以更加精确地利用动态实施地方式管理生产活动和生活方式,达到"智慧"状态.该战略一经提出,在全球范围内得到极大地响应,物联网荣升当年最热门话题之一.文档收集自网络,仅用于个人学习 "智慧地球"地提议得到了奥巴马总统地积极回应并在随后出台地总额亿美元地《经济复苏和再投资法》中提出,从能源、科技、医疗、教育等方面着手,通过政府投资、减税等措施来改善经济、增加就业机会,推动美国长期发展.其中鼓励物联网技术发展政策主要体现在推动能源、宽带与医疗三大领域上.例如,得克萨斯州地电网公司建立了智慧地数字电网.这种数字电网可以在发生故障时自动感知和汇报故障位置,并且自动路由,秒钟之内就能恢复供电.该电网还可以接入风能、太阳能等新能源,有利于新能源产业地成长.相配套地智能电表可以让用户通过手机控制家电,给居民提供便捷地服务.文档收集自网络,仅用于个人学习奥巴马将物联网作为振兴经济地两大武器之一,投入巨资深入研究物联网相关技术.无论基础设施、技术水平还是产业链发展程度,美国都走在世界各国地前列,已经趋于完善地通信互联网络为物联网地发展创造了良好地先机.文档收集自网络,仅用于个人学习 欧盟:引领世界物联网“加速跑” 欧洲智能系统集成技术平台()在《》报告中分析预测,未来物联网地发展将经历四个阶段,年之前被广泛应用于物流、零售和制药领域,年物体互联,年物体进入半智能化,年之后物体进入全智能化.文档收集自网络,仅用于个人学习 年月、日,欧洲各国地官员、企业领袖和科学家在布鲁塞尔就物联网进行专题讨论,并作为振兴欧洲经济地思路.欧盟委员会信息社会与媒体中心主任鲁道夫·施特曼迈尔说:"物联网及其技术是我们地未来".年月欧盟发布了新时期下物联网地行动计划.欧盟围绕物联网技术和应用做了不少创新性工作.在年月地全球物联网会议上,欧盟专家介绍了《欧盟物联网行动计划》,意在引领世界物联网发展.文档收集自网络,仅用于个人学习从目前地发展看,欧盟各国家已推出地物联网应用主要包括以下几方面: 德国:德国电信公司近日推出了面向全球地市场平台,供厂商和开发商提供与(机对机)通信相关地硬件、软件、应用和整体解决方案等.该公司称,这是全球首个针对地应用市场.文档收集自网络,仅用于个人学习 该平台提供了个业务分类,包括能源、医疗、交通物流、汽车、消费电子、零售、工业自动化、公共事业和安全.德国电信相关人员称,该平台提供地领域产品“应有尽有”,其意义在于打通了厂商和用户地直接通道,将大大推动市场地发展.文档收集自网络,仅用于个人学习 德国电信称,该市场可以说是一个全球分销平台.厂商除自有渠道外,可在该市场平台上发布自己地产品,附上详细地说明和图片.而用户则可看到全球地产品并充分比较,可下载技术说明书,找到最适合自己地单个产品或是打包服务.文档收集自网络,仅用于个人学习 德国电信计划提供适用于领域地卡和芯片.德国电信称,自身已经从一家传统电信运营

微生物驱油技术研究现状与发展趋势

油藏工程新进展论文 班级:油工08-5 学号:080201140513 姓名:梁立宝

微生物驱油技术研究现状与发展趋势 随着世界经济的飞速发展,能源的生产与供求矛盾越发突出,石油作为工业发展的命脉,由于其储量的有限性,使得人们对它的研究和关注程度远胜于其它能源。寻找有效而廉价的采油新技术一直是专家们不断探索的问题。 有资料表明我国原油开采采出率仅有30%左右,远低于发达国家50%-70%的采出率,高粘、高凝和高含腊的胶质沥青油藏为原油的开采带来诸多困难,而新型微生物采油系列产品对“三高”油藏的开发具有较强的针对性,能使采出率大幅度提高。 (一)微生物驱油技术定义 利用特定的微生物或菌种作用于地下油藏,通过其生长、繁殖以及产生的各种具有驱油作用的带下产物,改变储油层的渗流特征或使油水间的物化性质发生改变,从而提高原油采收率的方法称之为微生物驱油技术。 微生物采油是技术含量较高的一种提高采收率技术 ,不但包括微生物在油层中的生长、繁殖和代谢等生物化学过程 ,而且包括微生物菌体、微生物营养液、微生物代谢产物在油层中的运移 ,以及与岩石、油、气、水的相互作用引起的岩石、油、气、水物性的改变。 (二)微生物驱油技术机理 采油微生物种类较多,各种微生物特性和作用机理不尽相同,但从效果上概括起来主要是对原油起到清蜡降粘的作用,在微生物代谢的同时伴有产热、产气和产生表面活性物质等。 微生物通过在岩石表面上的生长繁殖,粘附在岩石表面,占据孔隙空间,在油膜下生长,最后把油膜推开,使油释放出来。微生物所产生的表面活性剂会降低油水界面张力,减少水驱毛管张力,提高驱替毛管数。同时生物表面活性剂会改变油藏岩石的润湿性,从亲油变成亲水,使吸附在岩石表面上的油膜脱落,油藏剩余油饱和的降低,从而提高采收率。微生物在油藏高渗区生长繁殖及产生聚合物,能够有选择的堵塞大孔道,增大扫油系数和降低水油比。在水驱中增加水的粘度,降低水相的流动性,减少指进和过早的水淹,提高波及系数,增大扫油效率。在地层中产生生物聚合物,能在高渗透地带控制流度比,调整注水油层的吸水剖面,增大扫油面积,提高采收率。 (三)微生物驱油技术细菌功能分类 1、产气(包括CH4、H 2、CO2、N2等气体) 2、降解烃类 3、堵塞岩石孔道 4、产生有机酸和溶剂

国内外物联网发展现状及物联网关键技术研发情况

国内外物联网发展现状及物联网关键技术研发情况

目录 一、全球物联网发展总体态势 (1) (一)发展动能不断丰富,带动物联网在全球的持续发展 (1) (二)物联网应用场景持续拓展,应用新特征不断显现 (2) (三)物联网产业力量不断增强,但供需对接仍需推进 (4) (四)物联网生态之争愈演愈烈,边云双核心加快布局 (7) (五)物联网与多样化技术加快融合,创新能力持续提升 (9) 二、物联网应用发展情况和特点 (12) (一)全球物联网应用的整体情况 (12) (二)消费物联网应用热点迭起 (14) (三)智慧城市物联网应用全面升温 (18) (四)生产性物联网应用成就新的风口 (21) 三、物联网关键技术产业进展情况 (23) (一)传感器成本持续走低,应用微创新特征显现 (23) (二)芯片产业格局初步形成,市场潜力巨大 (25) (三)模组产业竞争激烈,注重高附加值发展 (28) (四)网络接入侧进展迅速,核心网侧突破缓慢 (29) (五)平台功能更加完备,开放性不断提升 (32) 四、我国物联网发展情况 (35) (一)“十三五”进程过半,物联网取得阶段性进展 (35) (二)MEMS传感器产业取得一定进展,但短板仍较为突出 (37)

(三)芯片呈现多层次供应商格局,模组低价格竞争明显 (39) (四)中国形成规模最大公共物联网网络,但盈利模式尚需探索 (40) (五)物联网平台之争进一步升级,探索商业模式闭环和转型增多 (42) 五、我国物联网发展展望与推进策略建议 (42) (一)我国物联网发展展望 (42) (二)我国物联网发展的策略建议 (44)

聚合物驱油技术

聚合物驱油技术 聚合物驱是一种提高采收率的方法,聚合物驱是注入水中加入少量水溶性高分子聚合物,通过增加水相粘度和降低水相渗透率来改善流度比,提高波及系数,从而提高原油的采油率。在宏观上,它主要靠增加驱替液粘度,降低驱替液和被驱替液的流度比,从而扩大波及体积;在微观上,聚合物由于其固有的粘弹性,在流动过程中产生对油膜或油滴的拉伸作用,增加了携带力,提高了微观洗油效率。 从20世纪60年代至今,全世界有200多个油田或区块进行了聚合物驱的试验。水驱的采收率一般为40%左右,通过聚合物驱采收率为50%左右,比水驱提高10%。国内外在研究聚合物驱油理论与技术方面取得了大量的成果,我国在大庆油田,胜利油田和大港油田都应用了聚合物驱油并取得良好的效益。 目前,我国的大型油田,如大庆油田、胜利油田等东部油田都已进入开发末期,产量都有不同程度的递减,而新增储量又增加越来越缓慢,并且勘探成本和难度也越来越大,因此控制含水,稳定目前原油产量,最大程度的提高最终采收率,经济合理的予以利用和开发,对整个石油工业有着举足轻重的作用,而三次采油技术是目前为止能够达到这一要求的技术,国家也十分重视三次采油技术的发展情况,在“七五”、“八五”和“九五”国家重点科技攻关项目中,既重视了室内研究,又安排了现场试验,使得我国的三次采油技术达到了世界领先水平。目前的三次采油技术中,化学驱技术占有最重要的位置,化学驱中又以聚合物驱技术最为成熟有效。聚合物驱机理就是在注入水中加入高分子聚合物,增加驱替相粘度,调整吸水剖面,增大驱替相波及体积,从而提高最终采收率。 我国油田主要分布在陆相沉积盆地,以河流三角洲沉积体系为主,储油层砂体纵横向分布和物性变化均比海相沉积复杂,油藏非均质性严重,而且原油粘度高,比较适合聚合物驱。对全国25个主力油田资料的研究表明,平均最终水驱波及系数0.693,驱油效率0.531,预测全国油田水驱采收率仅仅为34.2%,剩余石油储量百亿吨。目前这些已经投入开发的老油田,大部分已经进入高出程度、高含水期,开展新的采油技术十分必要。国内自1972年在大庆油田开展了小井

国内外农业物联网发展现状讲课教案

国内外农业物联网发 展现状

国内外农业物联网发展现状 作者: 来源:《农业工程技术·农业信息化》2015年第09期 进入新世纪以来,我国和欧美等一些国家相继开展了农业领域的物联网应用示范研究,在农业资源利用、农业生态环境监测、农业生产、农产品安全监管等领域取得了一定的成果,同时推动了相关新兴产业及其标准化的发展。 一、农业物联网应用发展现状 在农业资源监测和利用领域,美国和欧洲主要利用资源卫星对土地利用信息进行实时监测,并将其结果发送到各级监测站,进入信息融合与决策系统,实现大区域农业的统筹规划。例如,美国加州大学洛杉矶分校建立的林业资源环境监测网络,通过对加州地区的森林资源进行实时监测,为相应部门提高实时的资源利用信息,为统筹管理林业提供支撑。我国主要将GPS定位技术与传感技术相结合,实现农业资源信息的定位与采集;利用无线传感器网络和移动通信技术,实现农业资源信息的传输;利用GIS技术实现农业资源的规划管理等。例如杭州电子科技大学学者研究了基于无线传感器网络的湿地水环境数据视频监测系统,该系统实现对湿地全天候的实时监测,具有数据分析与处理,并对污染等突发事件和环境急剧变化所影响的水域的水环境状况实时报警等功能。 在农业生态环境监测领域,美国、法国和日本等一些国家主要综合运用高科技手段构建先进农业生态环境监测网络,通过利用先进的传感器感知技术、信息融合传输技术和互联网技术等建立覆盖全国的农业信息化平台,实现对农业生态环境的自动监测,保证农业生态环境的可持续发展。例如,美国已形成了生态环境信息采集信息传输处理信息发布的分层体系结构。法国利用通信卫星技术对灾害性天气进行预报,对病虫害进行测报。我国研制了地面监测站和遥感技术结合的墒情监测系统,建立了农业部至各省、重点地县的农业环境监测网络系统等一批环境监测系统,实现对农业环境信息的实时监测。例如我国每年通过农业环境监测网络开展农业环境常规监测工作,获取监测数据10万多个;融合智能传感器技术的墒情监测系统已在贵阳、辽宁、黑龙江、河南、南京等地推广应用。 在农业生产精细管理领域,美国、澳大利亚、法国、加拿大等一些国家在大田粮食作物种植精准作业、设施农业环境监测和灌溉施肥控制、果园生产不同尺度的信息采集和灌溉控制、畜禽水产精细化养殖监测网络和精细养殖等方面应用广泛。例如,2008年,法国建立了较为完备的农业区域监测网络,指导施肥、施药、收获等农业生产过程。荷兰VELOS智能化母猪管理系统在荷兰以及欧美许多国家得到广泛应用,能够实现自动供料、自动管理、自动数据传输和自动报警。泰国初步形成了小规模的水产养殖物联网,解决了RFID技术在水产品领域的应用难题。我国在涉及田间环境土壤信息获取、联合收获机自动测产、农田作物产量空间差异分布图自动生产和农业机械作业监控等大田粮食作物生产方面;在设施农业环境数据采集、发布,调控等设施农业生产方面;在果园监测、水肥控制、节水灌溉自动化等果园精准管理方面;在养殖环境监控、健康养殖等畜禽水产养殖等方面研发了一批系统,且应用成效显著。例如国家农业信息化工程技术研究中心成功研制了基于GNSS、GIS、GPRS等技术的农业作业机械远程监控调度系统,可优化农机资源分配,避免农机盲目调度。中国农业大学建立了蛋鸡健康养殖网络系统和水产养殖环境智能监控系统。

二氧化碳驱油大有可为解读

二氧化碳驱油大有可为 目前,世界上大部分油田仍采用注水开发,这就面临着需要进一步提高采收率和水资源缺乏的问题。对此,国外近年来大力开展二氧化碳驱油提高采收率技术的研发和应用。这项技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。 把二氧化碳注入油层中可以提高原油采收率。由于二氧化碳是一种在油和水中溶解度都很高的气体,当它大量溶解于原油中时,可以使原油体积膨胀,黏度下降,还可以降低油水间的界面张力。与其他驱油技术相比,二氧化碳驱油具有适用范围大、驱油成本低、采收率提高显著等优点。据国际能源机构评估认为,全世界适合二氧化碳驱油开发的资源约为3000亿~6000亿桶。 二氧化碳驱油广受关注 注入二氧化碳用于提高石油采收率已有30多年的历史。二氧化碳驱油作为一项日趋成熟的采油技术已受到世界各国的广泛关注,据不完全统计,目前全世界正在实施的二氧化碳驱油项目有近80个。 用于提高石油采收率的注入速率可大致由供封存的能力来决定。 二氧化碳驱油提高采收率技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。该技术不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采收率。2006年世界二氧化碳提高采油率产量占总提高产量的14.4%。 二氧化碳纯度在90%以上即可用于提高采油率。二氧化碳在地层内溶于水后,可使水的黏度增加20%~30%。二氧化碳溶于油后,使原油体积膨胀,黏度

降低30%~80%,油水界面张力降低,有利于增加采油速度,提高洗油效率和收集残余油。二氧化碳驱油一般可提高原油采收率7%~15%,延长油井生产寿命15~20年。二氧化碳可从工业设施如发电厂、化肥厂、水泥厂、化工厂、炼油厂、天然气加工厂等排放物中回收,既可实现温室气体的减排,又可达到增产油气的目的。 北美 美国是二氧化碳驱油项目开展最多的国家。目前,美国每年注入油藏的二氧化碳量约为2000万吨至3000万吨,其中有300万吨二氧化碳来源于煤气化厂和化肥厂的尾气。 从事油田开发的Oxy公司在美国得克萨斯州和新墨西哥州的Permian盆地,注入二氧化碳约12亿立方英尺/天,现回收约18万桶石油/天。 美国Encana公司的Weyburn 二氧化碳提高采油率项目,注入的二氧化碳来自Dakota汽化公司Buelah地区将煤转化为甲烷的合成燃料装置,通过204英里的管道供应。Encana公司现注入9500万立方英尺/天二氧化碳。Dakota汽化公司还向阿帕奇加拿大公司在Saskatchewan的Midale油田二氧化碳提高采油率项目出售2500万立方英尺/天二氧化碳。 Hunton能源公司与陶氏化学公司在美国建设燃用合成气的联产装置。该装置产生的二氧化碳全部被捕集,然后用于提高石油采收率。 Rancher能源公司与埃克森美孚旗下的埃克森美孚天然气和电力销售公司于2008年2月中旬签署二氧化碳购销协议。埃克森美孚公司将在10年内向Rancher能源公司提供7000万立方英尺/天二氧化碳。埃克森美孚公司向Rancher能源公司提供的二氧化碳将用于Rancher能源公司在怀俄明州Powder River盆地3个生产性油田提高石油采收率。埃克森美孚公司供应的二氧化碳

三次采油化学驱油技术发展现状

万方数据

万方数据

万方数据

万方数据

三次采油化学驱油技术发展现状 作者:庞丽丽, 宁宇清 作者单位:庞丽丽(中国石油大学,华东,石油工程学院,山东,东营,257061;中国石化胜利油田分公司东辛采油厂,山东,东营,257094), 宁宇清(中国石化胜利油田分公司东辛采油厂,山东,东营 ,257094) 刊名: 内蒙古石油化工 英文刊名:INNER MONGULIA PETROCHEMICAL INDUSTRY 年,卷(期):2010,36(8) 被引用次数:0次 参考文献(11条) 1.王启民.聚合物驱油技术的实践与认识[J].大庆石油地质与开发,1999. 2.牛金刚.大庆聚合物驱提高采收率技术的实践与认识[J].大庆石油地质与开发,2004. 3.韩大匡.杨普华.发展三次采油为主的提高采收率新技术[J].油气采收率技术,199 4. 4.冈秦麟.论我国的三次采油技术[J].油气采收率技术,1998. 5.李干佐.我国三次采油进展[J].日用化学品科学,1999. 6.牟建海.李干佐.三次采油技术的发展现状及展望[J].化学科技市场,2000. 7.程杰成,廖广志,杨振宇,等.大庆油田三元复合驱矿场试验综述[J].大庆石油地质与开发,2001. 8.杜雄文,李洪富,洪冀春,等.杏二中三元复合驱工业性矿场试验[J].新疆石油天然气,2005. 9.廖广志,牛金刚,邵振波,等.大庆油田工业化聚合物驱效果及主要做法[J].大庆石油地质与开发,2004. 10.顾永强,解宝双,魏志高.孤东油田聚合物驱工业化应用效果分析[J].中外能源,2008. 11.王德民.关于三次采油的经济效益[J].油气田地面工程,1998. 相似文献(10条) 1.期刊论文黄鹤.HUANG He辽河油田化学驱三次采油技术经济评价方法探讨-特种油气藏2009,16(2) 针对辽河油田正在开展的三次采油技术进行相关的经济评价方法研究及探讨,提出采用"有无项目对比法"进行增量效益经济评价,并从投资估算、成本费用分析、财务经济评价以及项目风险等方面进行了详细的分析,为辽河油田化学驱三次采油技术经济评价方法提供了依据. 2.会议论文王宏申.谭帅.尹彦君.刘全刚.王锦林.张英勇渤海湾油田三次采油技术筛选及潜力初步评价2007 三次采油是指油田在利用天然能量进行开采和传统的用人工增补能量(注水、注气)之后,利用物理的、化学的、生物的新技术进行采油的开发方式。渤海湾油田为实现2010年生产2500×10<'4>~3000×10<'4>m<'3>油气当量这一宏伟目标和今后进一步提高原油采收率,正积极开展三次采油技术的研究和应用。为此,非常需要对三次采油技术在渤海各油田的适应性、潜力大小等问题进行研究。本文根据渤海油田地质油藏状况和三次采油各项技术的筛选标准,初步筛选出了适合渤海各个油田的三次采油技术,并对各种三次采油技术在渤海油田应用的潜力进行了初步预测。 3.学位论文张志军三次采油用改性石油磺酸钠的合成与性能研究2009 表面活性剂是三次采油化学驱中碱.表面活性剂,聚合物驱(三元复合驱)和表面活性剂.聚合物驱提高原油采收率技术的关键,其关键性能要求为在较宽的浓度范围内使油水界面张力降低到10-3mN/m以下,以大幅度降低油滴通过油藏孔隙的毛细阻力。目前碱-表面活性剂.聚合物驱和表面活性剂-聚合物驱中应用的表面活性剂主要为重烷基苯磺酸盐,这些表面活性剂虽具有优良的油水界面活性,但其原料重烷基苯的市场供应量严重限制其应用规模。为此,开发可替代重烷基苯磺酸盐表面活性剂,且原料供应充足、质量稳定的新型表面活性剂已成为石油开发领域的研究热点。
本文以供应量充足的大庆炼化公司两种渣油为原料(糠醛抽出油和减三线馏分油),采用发烟硫酸为磺化剂合成了可在钙镁离子浓度为300mg/L以下实现油水超低界面张力10-3mN/m的石油磺酸钠,并对两种石油磺酸钠提纯后进行表征。发现以减三线油合成的产品分子量分布较宽、平均分子量较大,降低油水界面张力的性能较好。
为了研究提高石油磺酸钠抗耐钙镁离子能力,对两种原料油采用两种方法合成了改性石油磺酸钠。一种方法是将两种原料油与马来酸酐酰基化后用亚硫酸钠磺化,采用吊片法测定两种改性石油磺酸钠的表面性能结果表明,以糠醛抽出油为原料合成产品的临界胶束浓度(CMC)值为1.76×10-3g/L,最低表面张力为36.18mN/m;以减三线馏分油为原料合成产品的CMC值为1.02×10-3g/L,最低表面张力为38.92mN/m。另一种改性方法是以酰氯为酰基化剂、经丙二酸二乙酯Knoevenagel反应后再用发烟硫酸磺化,表面性能测试结果,以糠醛抽出油为原料合成产品的CMC值为1.23×l0-3g/L,最低表面张力为39.14mN/m;以减三线馏分油为原料合成产品的CMC值为1.09×10-3g/L,最低表面张力值为43.35mN/m。这说明以糠醛抽出油和减三线馏分油为原料油 ,采用两种合成方法制取改性石油磺酸钠的路线是可行的。
耐钙镁离子能力测试结果,以大庆炼化公司两种渣油为原料,采用上述两种合成方法制备的改性石油磺酸钠,由于产物中引入蟹爪状羧酯基,对钙镁离子有较强的螯合作用,同时增加了亲水基,增大了表面活性剂分子与钙镁离子的反应量,因而在600mg/L的钙镁离子溶液中获得10-3级的超低界面张力;而普通石油磺酸钠仅能在300mg/L的钙镁离子溶液中获得超低界面张力。这表明以大庆炼化公司渣油-糠醛抽出油和减三线馏分油为原料合成出一种成本低、界面性能好和具有较强耐钙镁离子能力的石油磺酸盐表面活性剂。 4.期刊论文李梅霞.Li Meixia国内外三次采油现状及发展趋势-当代石油石化2008,16(12) 通过对世界三次采油技术的前期发展、现状和未来发展趋势进行研究,分析了不同国家采取的不同三次采油方法,以及相同国家在不同时期、不同油价情况下采取不同三次采油方法的项目数、产量变化及其变化原因.结合中国石化油田具体油藏情况及原油性质,分析了中国石化发展三次采油的主要发展方向并提出了有关建议. 5.学位论文蒋平稠油油藏表面活性剂驱油机理研究2009

聚合物驱油技术机理及应用的综述

聚合物驱油技术机理及应用文献综述 目录 聚合物溶液种类及性质 (2) 聚合物驱油机理 (3) 聚合物驱提高采收率的影响因素 (4) 油层条件对提高采收率的影响因素1 (4) 聚合物条件对提高采收率的影响4 (5) 国内油田形成的聚合物驱主要技术 (7) 一类油层聚合物驱油技术 (7) 二类油层聚合物驱技术 (9) 聚合物驱油技术应用效果 (10) 大庆油田北一区断西聚合物驱油工业性矿场试验效果 (10) 胜坨油田高温高盐油藏有机交联聚合物驱试注试验12 (12) 大港油田港西五区一断块聚合物驱油试验效果 (13) 参考文献 (15)

聚合物溶液种类及性质 驱油用的聚合物有下面几种,黄胞胶(天然),聚丙烯酰胺(PAM),梳形抗盐聚合物,疏水缔合聚合物等等1。 黄胞胶是一种由假黄单胞菌属发酵产生的单胞多糖,具有良好的增粘性、假塑性、颗粒稳定性。由于其凝胶强度较弱,不耐长期冲刷,以及弹性差、残余阻力系数小,现场试验驱油效果不好,还容易发生生物降解作用,因此调剖和三次采油现在不怎么样用,有待于进一步改善。 聚丙烯酰胺是丙烯酰胺(AM)及其衍生物的均聚和共聚物的统称。产品有三种形式,水溶液胶体、粉状及胶乳,并可以有阴离子、阳离子和非离子等类型(油田一般用粉状阴离子型产品,再者是非离子,阳离子正在发展)。具有双键和酰胺基官能团,具有烯烃的聚合性能以及酰胺结构的性能。具有水解、霍夫曼降解、交联等反应属性。聚合物溶液应用过程中会发生氧化降解、自发水解、铁离子促进降解等化学反应,以及机械剪切降解和生物降解作用。经试验证明,粘度对聚合物相对分子质量、水解度、浓度、温度、水质矿化度、流速有很多依赖性,基本上相对分子质量越高,水解度越小,浓度越大,温度越低,水质矿化度越小,流速越小,其粘度就越大。聚合物溶液在孔隙介质中流动特性有絮凝、粘弹等特性。聚丙烯酰胺的絮凝作用具有电荷中和和吸附絮凝两大因素,能降低聚合物在水中的有效浓度和粘度。通过稳态剪切流动和稳态剪切流动实验,证明了聚合物具有粘弹性,一定条件下随流速增加而发展,粘弹效应是聚合物溶液提高微观驱油效率重要机理。另外聚合物溶液的注入性差会导致注入压力上升,严重时将引起地层破坏,致使聚合物驱油失败。 普通聚丙烯酰胺耐温、抗盐性能差,为此有关专家研制出梳形抗盐聚合物,经过试验,其粘度、黏温性、增稠性、热稳定性都得到大大的提高,此类产品现已经成为普通聚合物的替代品。另外研制出一种疏水缔合聚合物,增粘及抗温、抗盐、抗剪切性能提高,但是其溶

我国聚合物驱油现状

我国聚合物驱油现状 目前,我国的大型油田,如大庆油田、胜利油田等东部油田都已进入开发末期,产量都有不同程度的递减,而新增储量又增加越来越缓慢,并且勘探成本和难度也越来越大,因此控制含水,稳定目前原油产量,最大程度的提高最终采收率,经济合理的予以利用和开发,对整个石油工业有着举足轻重的作用,而三次采油技术是目前为止能够达到这一要求的技术,国家也十分重视三次采油技术的发展情况,在“七五”、“八五”和“九五”国家重点科技攻关项目中,既重视了室内研究,又安排了现场试验,使得我国的三次采油技术达到了世界领先水平。 目前的三次采油技术中,化学驱技术占有最重要的位置,化学驱中又以聚合物驱技术最为成熟有效。聚合物驱机理就是在注入水中加入高分子聚合物,增加驱替相粘度,调整吸水剖面,增大驱替相波及体积,从而提高最终采收率。聚合物驱技术由于其机理比较清楚、技术相对简单,世界各国开展研究比较早,美国于五十年代末、六十年代初开展了室内研究,1964年进行了矿场试验。1970年以来,前苏联、加拿大、英国、法国、罗马尼亚和德国等国家都迅速开展了聚合物驱矿场试验。从20世纪60年代至今,全世界有200多个油田或区块进行了聚合物驱试验。 我国油田主要分布在陆相沉积盆地,以河流三角洲沉积体系为主,储油层砂体纵横向分布和物性变化均比海相沉积复杂,油藏非均质性严重,而且原油粘度高,比较适合聚合物驱。对全国25个主力油田资料的研究表明,平均最终水驱波及系数0.693,驱油效率0.531,预测全国油田水驱采收率仅仅为34.2%,剩余石油储量百亿吨。目前这些已经投入开发的老油田,大部分已经进入高出程度、高含水期,开展新的采油技术十分必要。国内自1972年在大庆油田开展了小井距聚合物驱矿场试验以来,我国的大庆、胜利、大港、南阳、吉林、辽河和新疆等油田开展了矿场先导试验及扩大工业试验。经过“七五”、“八五”和“九五”期间的共同努力,这一技术在我国取得了长足发展,其驱油效果和驱替动态可以较准确的应用数值模拟进行预测,聚合物已经形成系列产品,矿场试验已经取得明显效果,并形成配套技术。目前我国已经成为世界上使用聚合物驱技术规模最大,大面积增产效果最好的国家,聚合物驱技术成为我国石油持续高产稳产的重要技术措施。 大庆油田在会战初期就提出,如果采收率提高1 %,就相当于找到了 1个玉门油田,如果提高 5%,就相当于找到了 1个克拉玛依油田。1972年我国开始在大庆油田萨北地区开始进行聚合物驱试验。大庆原油属低酸值的石蜡基原油,油层特征是渗透率较高,油层温度较低(45℃),油层水的矿化度较低,基本满足聚合物驱条件。在1987年到1988年萨北地区现场试验的基础上,1990年又在中西部地区开始试验。这些试验获得了较高的经济效益,平均每吨聚合物增产原油150吨。大庆油田将聚合物驱油技术应用于整个油田,并建设生产聚丙烯酰胺工厂。大庆油田聚合物驱自1996 年投入工业化应用以来, 已经取得了显著的技术经济效果。2002年, 大庆油田聚合物驱年产油量已经突破千万吨, 大庆油田三次采油技术以其规模大、技术含量高、经济效益好,创造了世界油田开发史上的奇迹。聚合物驱技术已成为保持大庆油田持续高产及高含水后期提高油田开发水平的重要技术支撑。 克拉玛依黑油山在70年代也开辟了三次采油提高采收率试验区。克拉玛依原油属中酸值环烷基原油,开展表面活性剂驱难度很大。通过“七五”、“八五”以来的国家在大庆、克拉玛依的重点科技攻关,使中国油田的聚合物驱油技术取得了突破性的进展胜利油田从1992年开始在孤岛油田开展了注聚先导试验,1994年在孤岛和孤东油田开展了注聚扩大试验,1997

相关文档
最新文档